
1

MAJoRCom: A Dual-Function Radar
Communication System Using Index Modulation

Tianyao Huang, Nir Shlezinger, Xingyu Xu, Yimin Liu, and Yonina C. Eldar

Abstract—Dual-function radar communication (DFRC) sys-
tems implement both sensing and communication using the same
hardware. Such schemes are often more efficient in terms of size,
power, and cost, over using distinct radar and communication
systems. Since these functionalities share resources such as spec-
trum, power, and antennas, DFRC methods typically entail some
degradation in both radar and communication performance. In
this work we propose a DFRC scheme based on the carrier
agile phased array radar (CAESAR), which combines frequency
and spatial agility. The proposed DFRC system, referred to as
multi-carrier agile joint radar communication (MAJoRCom),
exploits the inherent spatial and spectral randomness of CAESAR
to convey digital messages in the form of index modulation.
The resulting communication scheme naturally coexists with
the radar functionality, and thus does not come at the cost
of reduced radar performance. We analyze the performance of
MAJoRCom, quantifying its achievable bit rate. In addition,
we develop a low complexity decoder and a codebook design
approach, which simplify the recovery of the communicated
bits. Our numerical results demonstrate that MAJoRCom is
capable of achieving a bit rate which is comparable to utilizing
independent communication modules without affecting the radar
performance, and that our proposed low-complexity decoder
allows the receiver to reliably recover the transmitted symbols
with an affordable computational burden.

I. INTRODUCTION

Recent years have witnessed a growing interest in dual-
function radar communication (DFRC) systems. Many practi-
cal applications, including autonomous vehicles, commercial
flight control, and military radar systems, implement both
sensing as well as communications [2]–[5]. Jointly imple-
menting radar and communication contributes to reducing
the number of antennas [6], system size, weight, and power
consumption [7], as well as alleviating concerns for elec-
tromagnetic compatibility (EMC) and spectrum congestion
issues [2]. In one of the most common models for joint
radar and communications, the DFRC system acts as the radar
transceiver and communications transmitter simultaneously.
This setup, which is considered henceforth, is commonly
referred to as the monostatic broadcast channel [3, Sec. III-C].
In such scenarios, radar is regarded as the primary function
and communications as the secondary one, sharing the high
power and large bandwidth of the radar [8], [9].
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Since DRFC systems implement both radar and commu-
nications using a single hardware device, these functionali-
ties inherently share some of the system resources, such as
spectrum, antennas, and power. To facilitate their coexistence,
many different DFRC approaches have been proposed in the
literature. In a single antenna radar or traditional phased
array radar that transmits a single waveform, a common
scheme is to utilize the communication signal as the radar
probing waveform [10]. Such dual-function waveforms include
phase modulation, as well as orthogonal frequency division
multiplexing (OFDM) signaling [10], [11]. The design of
such waveforms to fit a given beam pattern was studied
in [12]. However, this approach tends to come at the cost
of reducing radar performance compared to using dedicated
radar signals [9], [13]. Furthermore, transmitting non-constant
modulus communication waveforms may result in low power
efficiency when using practical non-linear amplifiers.

Another common DFRC approach is to utilize different sig-
nals for radar and communications, designing the functionali-
ties to co-exist by mitigating their cross interference. Multiple-
input multiple-output (MIMO) radar systems in which a subset
of the antenna array is allocated to radar and the rest to
communications were studied in [13], along with the setup in
which both functionalities utilize all the antennas. Methods for
treating the effect of spectrally interfering separate radar and
communication systems were studied in [14], [15], while [16]
analyzed the effect of radar interference on communication
systems. Frequency allocation among radar and communica-
tions was considered in [17]. Coexistence in MIMO DFRC
systems can be realized using beamforming, namely, by gener-
ating multiple beams with different waveforms towards radar
targets and communication users at diverse directions [18],
[19]. The work [20] proposed a scheme based on generalized
spatial modulation (GSM) [21], in which some of the informa-
tion bits are conveyed in the selection of the antennas utilized
for communication. The drawback of these previous DFRC
methods, particularly when radar is the primary functionality,
is that communication interferes with the radar, either via spec-
tral interference, power sharing, or by reducing the number of
available antennas, resulting in an inherent tradeoff between
radar and communication performance [22], [23].

An alternative DFRC strategy is to incorporate communi-
cation functionality into existing radar schemes. A common
radar technique which can be extended into a DFRC system
is MIMO radar, in which each antenna element transmits a
different orthogonal waveform, enhancing the flexibility in
transmit beam pattern design [24]. The resulting waveform
diversity can be exploited to embed information bits into the
transmitted signal with minimal effect on the radar perfor-
mance. For example, the information bits can be conveyed in
the sidelobe levels [25] or via frequency hopping codes [26].
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Fig. 1. Transmission example of CAESAR [27]. In every pulse of this
example, two out of three carrier frequencies are emitted by different sub-
arrays. For example, frequency 0 and 2 are selected in the 0-th pulse and are
sent by antennas 0, 2, 4 and antennas 1, 3, respectively. FAR is a special case
of CAESAR, with only one out of three frequencies sent in each pulse.

The recent work [9] studied permutation of antenna elements,
each transmitting a different predefined orthogonal waveform,
as a method for embedding information bits. However, since
radar returns of all orthogonal waveforms are received by each
antenna element, MIMO radar receivers usually operate at a
large bandwidth, resulting in high complexity in hardware and
computing. Consequently, these DFRC approaches may be
difficult to implement in practice and cannot be applied in
many existing radar architectures.

In our previous work [27] we proposed carrier agile phased
array radar (CAESAR), which is a radar scheme capable
of approaching wideband performance while utilizing nar-
rowband signals. This improved performance is achieved by
combining the concept of frequency agile radar (FAR), in
which the carrier frequencies vary from pulse to pulse [28],
with spatial agility. In particular, CAESAR randomly chooses
multiple frequencies simultaneously in a single pulse, and
then selects a set of antennas for each chosen frequency
such that each set of antennas uses a different frequency as
depicted in Fig. 1. In the reception stage, each array element
acquires the radar returns at the same single frequency as
in the transmitting stage, which reduces hardware complexity
in comparison with MIMO radar architectures. The resulting
radar scheme has excellent electronic counter-countermeasures
(ECCM) and EMC performance; it supports spectrum sharing
in congested electromagnetic environments; and its radar per-
formance is comparable to that of costly wideband radar [27].
In addition to the aforementioned advantages, the inherent
spectral and spatial randomness of CAESAR can be utilized
to convey information using index modulation methods, in
which the indices of the building blocks (e.g., frequencies
and/or antennas) are used to convey additional information
bits [29], without degrading radar performance. The resulting
multi-carrier agile joint radar communication (MAJoRCom)
system is the focus of the current work.

Here, we propose MAJoRCom: a DFRC system equipped
with a phased array antenna, in which radar is the primary
user and is based on CAESAR. We show how CAESAR
is capable of conveying information to a remote receiver
using index modulation. MAJoRCom utilizes the selections
of carrier frequencies and their allocation among the an-
tenna elements of CAESAR to convey digital information
in a combination of frequency index modulation [30] and
spatial index modulation [29]. Unlike previously proposed

DFRC systems [10]–[14], [17], [20], which use dedicated
independent waveforms and/or antennas for communication,
in MAJoRCom the ability to convey information is an inherent
byproduct of the radar scheme. Consequently, communication
transmission is naturally obtained from the radar design, and
both functionalities coexist without cross interference.

We analyze the communication performance of
MAJoRCom. Since the communication functionality does
not interfere with the radar subsystem, the radar performance
of MAJoRCom is the same as CAESAR, and was studied
in our previous work [27]. Here, we first detail the scheme
for embedding digital communication messages into the
radar transmission. We characterize the achievable rate of
MAJoRCom, and show that the maximal number of bits
which can be conveyed in each pulse grows linearly with
the number of transmit antennas and logarithmically with
the number of available carrier frequencies. To overcome the
increased computational complexity associated with index
modulation decoding [31], we propose a low complexity
communication receiver structure and design a permutation
codebook to facilitate decoding. MAJoRCom is evaluated
in a numerical study, demonstrating its capability to achieve
comparable communication rates with DFRC systems using
antennas that are dedicated for communication only, without
affecting the radar performance and resources.

Our main contributions are summarized as follows:
• We propose MAJoRCom which is a DFRC system

that arises from CAESAR. The proposed communica-
tion scheme is based on frequency and spatial index
modulation, in which selections of frequencies and the
corresponding antenna elements are used to embed infor-
mation, without requiring the transmitter to have channel
state information (CSI). These communication methods
are inherent to the radar scheme, and thus do not affect
the power and waveform of the radar functionality.

• We analyze the achievable information rate of
MAJoRCom. In particular, we show that the maximal
number of bits which can embedded into each pulse,
representing an upper bound on the information rate
which is achievable in high signal-to-noise ratio (SNR),
grows logarithmically with the number of carrier
frequencies. This indicates that increasing the agility of
the radar also contributes to its achievable rate.

• We propose a low complexity decoder for the proposed
scheme, which achieves comparable bit error rate (BER)
performance as the optimal decoder. Codeword design ap-
proaches are also proposed to further facilitate decoding,
at the cost of reducing the information rate.

The main advantage of MAJoRCom over previously proposed
DFRC systems, e.g., [10]–[13], [17], [20], is that it provides
the ability to communicate without affecting the radar sub-
system, while supporting the usage of simple narrowband
transceivers.

The rest of paper is organized as follows. Section II re-
views CAESAR and introduces MAJoRCom, which applies
frequency selection and spatial permutation to convey digital
messages. Section III is devoted to communication analysis,
while Section IV introduces low-complexity receiver and
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codebook design methods. Numerical results are provided in
Section V, followed by concluding remarks in Section VI.

Throughout the paper we use the following notation: The
sets C, R and Z are the complex, real and integer numbers,
respectively. We use | · | for the magnitude or cardinality
of a scalar value or a set, respectively. We denote by bxc
the largest integer less than or equal to x ∈ R. Uppercase
and lowercase boldface letters are used for matrices and
vectors, respectively. The m,n-th (n-th) element of matrix A
(vector a) is written as [A]m,n ([a]n). We use 0/1n×m to
denote a n × m dimensional matrix with all entries being
0/1. The complex conjugate operator, transpose operator, and
the complex conjugate-transpose operator are denoted by (·)∗,
(·)T , and (·)H . We use ‖ · ‖p as the `p norm of an argument,
and E[·] is the stochastic expectation.

II. MAJORCOM SYSTEM MODEL

In this work, we propose MAJoRCom, which jointly imple-
ments radar as well as the ability of communicating informa-
tion to a remote receiver. Radar is considered to be the primary
user, and is based on the recently proposed CAESAR scheme
[27]. The communication method is integrated into CAESAR
to avoid coexistence issues. In order to formulate MAJoRCom,
we first review CAESAR in Subsection II-A, after which we
present its extension to a DFRC system in Subsection II-B.

A. Carrier Agile Phased Array Radar
CAESAR is a recently proposed radar scheme [27] which

extends the concept of FAR [28]. This technique was shown
to enhance the ECCM and EMC radar measures as well
as achieve improved target reconstruction performance while
avoiding costly instantaneous wideband components [27].
Broadly speaking, CAESAR randomly changes the carrier
frequencies from pulse to pulse, maintaining the frequency
agility of FAR, while allocating these frequencies among its
antenna elements in a random fashion, introducing spatial
agility. An illustration of this scheme is depicted in Fig. 1.

To properly formulate CAESAR, consider a radar system
equipped with LR antenna elements, uniformly spaced with
distance d between two adjacent elements. Let F be the set
containing the available carrier frequencies of cardinality M ,
given by

F := {fc +m∆f |m ∈M}, (1)

where M := {0, 1, . . . ,M − 1}, fc is the initial carrier
frequency, and ∆f is the frequency step. Let N be the
number of radar pulses transmitted in each coherent processing
interval, and fn ∈ F denote the carrier frequency of the n-th
pulse. Radar pulses are repeatedly transmitted, starting from
time instance nTr to nTr + Tp, n ∈ {0, 1, . . . , N−1} :=N ,
where Tr and Tp are the pulse repetition interval and duration,
respectively, Tr > Tp.

In the n-th pulse, CAESAR randomly selects a set of carrier
frequencies Fn from F , Fn ⊂ F . We assume that the cardi-
nality of Fn is constant, i.e., |Fn| = K for each n ∈ N , and
write the elements of this set as Fn = {Ωn,0, . . . ,Ωn,K−1}.
A sub-array is allocated for each frequency, such that all
the antenna array elements are utilized for transmission and
each element transmits at a single carrier frequency. Denote

by fn,l ∈ Fn the frequency used by the l-th antenna array
element, i.e., if Ωn,k is the frequency used by the l-th element
then fn,l = Ωn,k. The waveform sent from the lth element
for the n-th pulse is expressed as φ(fn,l, t − nTr), where
φ(f, t) := rect (t/Tp) e

j2πft. In order to direct the antenna
beam pointing towards a desired angle θ, the signal transmitted
by each antenna is weighted by the function wl(θ, fn,l) ∈ C,
which is set to [32]

wl(θ, fn,l) = ej2πfn,lld sin θ/c, (2)

where c denotes the speed of light. The transmission of the
l-th array element can thus be written as

[x(n, t)]l = wl(θ, fn,l)φ(fn,l, t− nTr). (3)

The vector x(n, t) ∈ CLR in (3) denotes the transmission
vector of the full array for the n-th pulse at time instance t.
An illustration of such a transmission is depicted in Fig. 1.
The transmitted signal (3) can also be expressed by grouping
the array elements which use the same frequency Ωn,k, k =
0, . . . ,K − 1. Let xk(n, t) ∈ CLR represent the portion of
x(n, t), which utilizes Ωn,k, i.e., x(n, t) =

∑K−1
k=0 xk(n, t).

The transmitted signal can now be written as

x(n, t) :=

K−1∑
k=0

P (n, k)w (θ,Ωn,k)φ (Ωn,k, t− nTr) , (4)

where P (n, k) ∈ {0, 1}LR×LR is a diagonal selection matrix
with diagonal p(n, k) ∈ {0, 1}LR , whose l-th entry is 1 if the
corresponding array element uses Ωn,k and 0 otherwise, i.e.,
[P (n, k)]l,l = [p(n, k)]l = 1 when [xk(n, t)]l 6= 0.

In the reception stage of the n-th pulse, i.e., nTr+Tp < t <
(n+1)Tr, the l-th antenna element only receives radar returns
at frequency fn,l, and abandons returns at other frequencies,
facilitating the usage of narrowband radar receiver and simpli-
fying the hardware requirements. Our proposed extension of
CAESAR to a DFRC system, detailed in the following sub-
section, exploits the transmitted signal model (4), and does not
depend on the observed radar returns and processing strategy.
The readers are referred to [27] for a detailed description of
the received radar signal model, target recovery methods, and
radar performance analysis of CAESAR.

B. Information Embedding Scheme
The inherent randomness in the selection of carrier fre-

quencies and their allocation among the transmit antennas
can be exploited to convey information in the form of index
and permutation modulations. Index modulation refers to the
embedding of information bits through indices of certain
parameters involved in the transmission [29], most commonly
the subcarrier index in OFDM modulation, i.e., frequency
index modulation [30], or the antenna selection in MIMO
communications, namely, spatial modulation [21]. CAESAR
randomly selects an index corresponding to a set of carrier
frequencies, and permutes the selected frequencies and the
corresponding antenna elements, which can either be treated
as an index of a specific permutation, or as a permutation
modulation codeword [33]. By doing so, CAESAR realizes
a DFRC system, as illustrated in Fig. 2 for the setting of
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Fig. 2. A phased array DFRC system, which can detect targets (e.g., the
pedestrian) and send communication symbols to remote receivers. Each array
element independently selects the carrier frequency, e.g. from f1 and f2.

|F| = M = 2. Consequently, a natural extension of CAESAR
is to utilize this randomness to convey information to a
remote receiver, thus realizing digital communications without
affecting the radar functionality.

The proposed information embedding method is applied
identically on each pulse, where transmitting more pulses
results in more bits being conveyed to the receiver. Con-
sequently, in order to formulate the embedding method, we
only consider a single pulse in this section. Accordingly, we
simplify our notations as follows: F := Fn, Pk := P (n, k),
pk := p(n, k), x(t) := x(n, t), xk(t) := xk(n, t), and
wk := w (θ,Ωn,k).

Before transmitting the dual function waveform, CAESAR
first selects frequencies and then allocates array elements to
each frequency. The randomness of digital communication
messages is utilized to convey information in the selection
of the frequencies subset and in the allocation of the subset
among the transmit antennas. We propose to exploit this fact
to generate two sets of codewords, combined into a hybrid
modulation strategy, as discussed next.

1) Frequency Index Modulation: Recall that at each trans-
mission, K out of M frequencies in F are used. The set of
possible frequency selections at each pulse is denoted by

f :=
{
F (i)

∣∣∣∣∣∣F (i)
∣∣∣ = K,F (i) ⊂ F , i = 0, 1, 2, . . .

}
, (5)

where the superscript (i) stands for the i-th codeword in the
set f. The number of possible frequency selections is thus

|f| =
(
M

K

)
=

M !

K!(M −K)!
. (6)

2) Spatial Index Modulation: Once the carrier frequencies
are selected, each antenna element uses a single frequency to
transmit its monotone waveform. To mathematically formulate
this allocation, we define LK := LR/K ≥ 1, which is
assumed to be an integer, and allow each frequency to be
utilized by exactly LK antenna elements1 assigned to the
selected K frequencies. The diagonal selection matrices {Pk}

1The assumption that LR/K is an integer is used only to facilitate the
formulation of the permutation technique. Clearly, the proposed spatial index
modulation can be extended to the case that LR is not an integer multiple of
K and that antennas are unevenly allocated by adapting the above arguments.

uniquely describe the allocation of antenna elements. We note
that tr (Pk) = LK , as exactly LK antennas use the k-th
frequency, and

∑K−1
k=0 Pk = ILR

, indicating that all the
antenna elements are utilized. Let P denote the set of all
possible allocation patterns, given by

P :=
{
P

(i)
0 , . . . ,P

(i)
K−1

∣∣∣ i = 0, 1, . . .
}
, (7)

where the superscript (i) stands for the i-th allocation pattern.
Note that the number of patterns is

|P| = LR!

(LK !)
K
. (8)

As an example, consider a MAJoRCom system equipped
with LR = 4 antennas, transmitting K = 2 frequencies in
each pulse, namely, each frequency is utilized by LK = 2
antennas. In this case, the number of codewords which can be
conveyed by this spatial permutation is 4!

(2!)2
= 6. The first

three possible selection patterns are:

p
(0)
0 = [1, 1, 0, 0]

T
,p

(0)
1 = [0, 0, 1, 1]

T
,

p
(1)
0 = [1, 0, 1, 0]

T
,p

(1)
1 = [0, 1, 0, 1]

T
,

p
(2)
0 = [1, 0, 0, 1]

T
,p

(2)
1 = [0, 1, 1, 0]

T
.

(9)

The remaining three matrices are obtained by interchanging
the subscripts, e.g., by setting p(3)

0 = p
(0)
1 , p(3)

1 = p
(0)
0 .

3) Hybrid modulation: Combining frequency and antenna
selection yields a hybrid frequency and spatial index modula-
tion scheme, in which the total number of codewords is

|f| |P| = M !

K!(M −K)!

LR!

(LK !)
K
. (10)

It follows from (10) that the maximum number of bits which
can be conveyed in each pulse is

log2 |f|+log2 |P|=log2

M !

K!(M −K)!
+log2

LR!

(LK !)
K
. (11)

Using Stirling’s formula log2 n! ≈ n log2 n − n log2 e, the
number of bits (11) can be approximated as

log2 |f|+log2 |P| ≈ log2

(
MM

(M−K)M−KKK

)
+LR log2K

≈ K log2M + LR log2K. (12)

This approximation holds for a large number of antennas LR

and a large number of frequencies M such that LR � K and
M � K. It follows from (12) that the number of bits grows
linearly with LR and logarithmically with M , indicating the
theoretical benefits of utilizing MAJoRCom with large-scale
antenna arrays where M is large.

The proposed information embedding scheme is carried out
as follows: At each pulse, the input bits are divided into two
sets. The first set of bits is used for selecting the frequencies
F from f, while the remaining bits determine the pattern
of antenna allocation from P . An example of this scheme
is depicted in Fig. 3. This method bears some similarity to
generalized space-frequency index modulation proposed in
[34]. In particular, both schemes convey information in the
selection of the carrier frequencies as well as in the form of
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Fig. 3. Hybrid frequency and spatial index signaling of MAJoRCom.

the signal transmitted by each antenna element. Nonetheless,
while [34] transmits an OFDM signal consisting of multiple
subcarriers from a subset of the complete antenna array,
MAJoRCom utilizes a single carrier frequency at each transmit
antenna and transmits a radar waveform using all the avail-
able antennas. Consequently, our approach transmits constant
modulus monotone signals, and utilizes the complete antenna
array, maximizing the radar power and aperture. For the radar
function, the use of complete antenna array is important,
because it leads to a more directional beam and higher antenna
gain, which is more suitable for target detection, especially in
tracking mode [35]. In contrast, [34] embeds information in
the selection of active antennas, leading to incomplete antenna
aperture and reduction of radar performance.

MAJoRCom does not require the DFRC system to have CSI,
namely, no a-priori knowledge of the channel to the receiver is
required in order to embed the information, as opposed to, e.g.,
spatial beamforming-based DFRC systems [19], [36]. Such
knowledge is only needed at the receiver to facilitate decoding,
as discussed in the following section. Furthermore, while we
assume that the radar waveform φ(f, t) := rect (t/Tp) e

j2πft

does not convey informative bits, MAJoRCom can clearly
be extended to embed data into the waveform. For example,
by utilizing GSM [21], the proposed hybrid frequency and
spatial modulation can potentially increase the communication
rate. However, such a modification would come at the cost of
some degradation in radar performance as the radar scheme
depends on the waveform and available resources. We leave
this investigation to future work.

III. COMMUNICATION PERFORMANCE ANALYSIS

We now analyze the communication performance of
MAJoRCom in terms of achievable rate. To that aim, we first
derive the received communication signal model in Subsec-
tion III-A, and then characterize the achievable rate in Sub-
section III-B. This analysis allows us to numerically evaluate
the communication capabilities of MAJoRCom in Section V,
where we demonstrate that its achievable rate is comparable to
using dedicated communication waveforms, without affecting
radar performance.

A. Received Communication Signal Model
To model the signal observed by the remote communication

receiver, let LC denote the number of receiver antennas, and
consider a memoryless additive white Gaussian noise channel.
The channel output observed by the receiver, yC(t) ∈ CLC , is
given by

yC(t) =

K−1∑
k=0

Hxk(t) + nC(t), (13)

where nC(t) ∈ CLC is the additive Gaussian noise signal and
H ∈ CLC×LR is the channel matrix representing the complex-
valued fluctuations between the MAJoRCom system and the
remote receiver. The proposed model can be extended to
account for frequency selective channels by using bandlimited
waveforms whose bandwidth is no larger than the channel
coherence bandwidth. In this case, the matrix H in (13) is
replaced with the frequency index dependent matrix Hk.

After down-conversion by e−j2πfct, the receiver samples the
signal at time instances iTs, where Ts is the sampling interval,
and i = 0, 1, . . . , bTp/Tsc, resulting in LT := bTp/Tsc + 1
outputs per pulse. We assume that the receiver observes the
complete frequency range F , and applies Nyquist sampling
rate of the entire bands, Ts = 1

M∆f . We refer to [37],
[38] and references therein for sub-sampling approaches. By
letting YC,NC ∈ CLC×LT denote the sampled channel output
and noise corresponding to a single pulse in matrix form,
respectively, it follows from the transmit signal model (4) that

YC =

K−1∑
k=0

HPkwkψ
T
ck

+NC. (14)

In (14), we define ck := (Ωn,k − fc) /∆f ∈ M as the
frequency codeword corresponding to Ωn,k, and ψck :=[
1, ej2πck∆fTs·1, . . . , ej2πck∆fTs·(LT−1)

]T ∈ CLT as the
baseband signal corresponding to the frequency codeword ck.

We assume that the receiver knows the number of fre-
quencies K, the steering vectors {wk}, and has CSI, i.e.,
knowledge of the channel matrix H , and the distribution of
the additive noise. Recall that such CSI is only required at
the receiver side. The fact that for a fixed frequency-antenna
allocation, the transmitted waveform is deterministic, can be
utilized to facilitate channel acquisition in a pilot-aided fashion
when H has to estimated. We leave the analysis of channel
estimation and its effect on the system performance, as well
as the design of frequency-antenna allocation pilot sequences
for future investigation, and focus here on the case where H
is known at the receiver. Under the above signal model, we
next study the achievable rate.

B. Achievable Rate Analysis
In order to evaluate the proposed communication scheme,

we characterize its achievable rate, namely, the maximal
number of bits which can be reliably conveyed to the receiver
at a given noise level in each pulse. To facilitate the analysis,
we assume that each discrete-time channel output represents a
single pulse, i.e., LT = 1. It is emphasized that the following
analysis can also be extended to any positive integer value
of LT . Under this model, for each pulse, the input-output
relationship of the communication channel (14) is given by

yC = Hx+ nC, (15)

where x =
∑K−1
k=0 Pkwk, and nC is additive white Gaussian

noise with covariance σ2ILC
, independent of x. Previous

works which characterized bounds on the achievable rates of
index modulation schemes, e.g., [31], [39], assumed that the
channel input includes a digitally modulated symbol whose
parameters are exploited to convey additional information via
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index modulation. Here, the primary user is the radar func-
tionality, and the channel input x in (15) is a radar waveform.
The information bits are embedded in x =

∑K−1
k=0 Pkwk,

via the set of carrier frequencies, encapsulated in {wk}, and
their antenna allocation, modeled via {Pk}. The following
achievable rate study is thus specifically tailored for the
statistical characterization of x which arises in MAJoRCom.

Based on the transmission scheme detailed in Section II, we
define a set X ⊂ CLC that contains all the possible transmitted
signal vectors x, whose carnality is |X | = M !

K!(M−K)!
LR!

(LK !)K
.

Assuming that the codewords are equally distributed, it holds
that x is uniformly distributed over X . Consequently, the
channel output yC obeys a Gaussian mixture (GM) distribution
with equal priors. Let fGLC

(
u;m,C

)
denote the probability

density function (PDF) of an LC × 1 proper-complex Gaus-
sian vector with mean m ∈ CLC and covariance matrix
C ∈ CLC×LC , where u is the realization of the random vector.
Then, the PDF of yC is

fyC (u) =
1

|X |
∑

x(i)∈X

fGLC

(
u;Hx(i), σ2ILC

)
. (16)

Using the input-output relationship of the channel, we can
characterize the achievable rate. Let I(·; ·) and h(·) denote
the mutual information and differential entropy, respectively.
Since the channel in (15) is memoryless, its achievable rate is
given by the single letter characterization [40]

RC = I (x;yC) = h (yC)− h (yC|x)

= h (yC)− h (nC) (17)
= h (yC)− LC · log2

(
π · e · σ2

)
, (18)

where (17) holds since x is independent of nC, and (18) is
the differential entropy of proper-complex Gaussian vectors.

In order to evaluate (18), one has to compute the differential
entropy of the GM random vector yC. While there is no
closed-form analytic expression for the differential entropy of
GM random vectors [41], a lower bound on the achievable
rate can be obtained, as stated in the following proposition:

Proposition 1. The achievable rate of the proposed commu-
nication scheme is lower bounded by

RC ≥ −
1

|X |
∑

x(i)∈X

log2 fyC

(
Hx(i)

)
−LC · log2

(
π · e · σ2

)
,

where fyC
(·) is given in (16).

Proof. The proposition follows from lower bounding h (yc)
using [41, Thm. 2].

A trivial upper bound on RC is obtained by noting that x
is uniformly distributed over the discrete set X , thus,

RC ≤ h(x) = log2 |X |. (19)

This upper bound can be approached at sufficiently high SNRs
where the codewords are reliably distinguishable. We note that
(19) implies that the number of bits which can be conveyed
in each pulse cannot be larger than the number of bits needed
for representing the different codewords. The upper bound in
(19) can be approximated using Stirling’s formula via (12).

The achievable rate analysis provides a measure for quan-
tifying the communication capabilities of MAJoRCom. In
the numerical study in Section V we demonstrate that in
low SNRs, MAJoRCom is capable of achieving higher rates
than using individual dedicated communication waveforms,
without interfering or even affecting the radar performance.
Nonetheless, this information-theoretic framework does not
account for practical considerations such as computational
burden at the receiver, motivating the reduced complexity
implementation presented in the following section.

IV. REDUCED DECODING COMPLEXITY IMPLEMENTATION

As discussed in the introduction, one of the major benefits of
MAJoRCom stems from its usage of narrowband signals and
relatively low computational complexity, which imply that it
can be implemented using simple hardware components. How-
ever, while generating and transmitting the communication
signal by MAJoRCom does not require heavy computations,
decoding the transmitted index-modulated message by the
communication receiver may entail a substantial computational
burden. Consequently, in this section we propose methods for
reducing the decoding complexity.

We begin by discussing the optimal maximum likelihood
(ML) symbol decoding scheme in Subsection IV-A. Then,
we present two approaches for mitigating its complexity:
In IV-B we propose a sub-optimal decoding method, which
affects only the communication receiver. Then, we propose
a modified codebook design which facilitates decoding by
reducing the number of codewords used by MAJoRCom in
Subsection IV-C. The change of codebook may affect the
radar beam pattern, however the simulation results present later
in Section V demonstrate that this change has minimum influ-
ence on range, Doppler and angle estimates of radar targets.
Those two approaches are independent of each other, and can
be used either simultaneously or individually, depending on
the computational abilities of the communications receiver.

A. Optimal ML Decoder
To detect the conveyed symbols, the receiver estimates both

the selected frequencies and allocated antenna indices. Since
the entries of the noise matrix NC are i.i.d. Gaussian and
the codewords are equiprobable, the detector which minimizes
the probability of error is the ML estimator of the frequency
indices {ck} and the antenna allocations {Pk} [42, Ch. 5.1].
From (14), the ML estimator is given by{
ĉk, P̂k

}K−1

k=0
= arg min
{ck,Pk}

∥∥∥∥∥YC −
K−1∑
k=0

HPkwkψ
T
ck

∥∥∥∥∥
2

F

, (20)

where ‖·‖F denotes the Frobenius norm. Since the frequency
indices {ck} and the selection matrices {Pk} are integers and
binary matrices, respectively, the above problem is generally
NP-hard. In particular, solving (20) involves exhaustively
searching over f and P , resulting in high computational
complexity. This increased complexity settles with the fact
that optimal index modulation decoding is typically compu-
tationally complex [29].

Various low complexity methods have been proposed for
different forms of index modulation, see, e.g., [29, Tbl. 1].
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However, as our form of index modulation, in which all
the transmitted information is embedded in the selection of
the frequencies and their allocation among antennas (without
additional digital modulation signals), is unique, in the next
subsection we design a dedicated low-complexity decoder.

B. Low Complexity Receiver Design
Here, we present a sub-optimal detection method. Instead

of jointly estimating {ck,Pk} in (20), our proposed strategy
operates in an iterative manner: It first initializes the frequency
estimates {ck} using sparse recovery, possibly via simple fast
Fourier transformation (FFT) followed by thresholding. Then,
we iteratively recover the spatial selection matrices {Pk}, and
refine the estimation of {ck} in an alternating fashion.

1) Frequency Initialization: In the first step, we obtain an
initial estimation of the transmitted frequencies. To that aim,
we rewrite the model (14) as

Y T
C = ΨA+NT

C , (21)

where Ψ = [ψ0,ψ1, . . . ,ψM−1] ∈ CLT×M contains all
M sub-bands, and thus is a-priori known. The matrix A ∈
CM×LC depends on the frequency indices {ck}: When there
exists an index ck = m, the transpose of the m-th row of A
is given by [

AT
]
m

= HPkwk ∈ CLC , (22)

while otherwise
[
AT
]
m

= 0LC
. We regard A as an unknown

variable, which has to be estimated. After A is estimated as
Â, the frequency indices {ck} are recovered from the non-zero
rows (or the K rows with largest norms) of Â.

When the number of active frequencies is sufficiently
smaller than the number of available frequencies, i.e., K �
M , (21) becomes a typical sparse recovery problem, and Â
be can be obtained using any sparse recovery method [43].
We note that when the pulse duration is an integer multiple of
1/∆f , i.e., Tp = n/∆f , n ∈ Z+, then LT = nM and Ψ in
(21) consists of M columns from the LT × LT FFT matrix.
In such cases, in which the columns of Ψ are orthogonal (or
approximately orthogonal), it is noted that simple projection
and thresholding may achieve comparable support recovery
performance as more computationally complex iterative sparse
recovery methods. In particular, when the columns of Ψ are
orthogonal, projection and thresholding recovers Â via

Â = ΨHY T
C , (23)

which can be computed using FFT. We then sort the norms of
rows,

∥∥[AT
]
m

∥∥
2
, in a descending order, and identify the first

K rows, which correspond to the frequency indices {ck}.
The aforementioned simplified scheme is most suitable

when Tp ≈ n/∆f , and its main benefit is its low compu-
tational complexity. When this approximation does not hold,
one can utilize any sparse recovery method for obtaining Â.

2) Spatial Decoder: After the frequency indices are recov-
ered as {ĉk}, the ML estimator (20) becomes{

P̂k

}K−1

k=0
= arg min

{Pk}

∥∥∥YC −
K−1∑
k=0

HPkwkψ
T
ĉk

∥∥∥2

F
, (24)

which jointly optimizes K selection matrices {Pk}K−1
k=0 and

can be solved by exhaustive search over P . As directly solving
(24) may still be difficult, we next introduce a greedy approach
that solves each selection matrix Pk sequentially to reduce the
computational burden.

Denote by ĉ0, ĉ1, . . . , ĉK−1 the obtained frequency indices
{ck} in such an order that the corresponding rows of Â satisfy∥∥∥[AT

]
ĉ0

∥∥∥
2
≥
∥∥∥[AT

]
ĉ1

∥∥∥
2
≥ · · · ≥

∥∥∥[AT
]
ĉK−1

∥∥∥
2
. According

to (22), we write the ĉk-th row of A as[
ÂT
]
ĉk

= H̃pk + nk, (25)

where H̃ := Hdiag (wk); diag (wk) denotes the diagonal
matrix with entries defined in wk; pk ∈ {0, 1}LR contains the
diagonal entries in Pk; and nk denotes the estimate errors in[
ÂT
]
ck

. Recall that in each pulse, every antenna is assigned to
a single frequency, and thus

∑K−1
i=0 pi = 1LR

, implying that
pk ∧

(∑k−1
i=0 pi

)
= 0LR

, where ∧ denotes entry-wise logical
and operation. The fact that the unknown vectors {pk} take
binary values and are subject to this joint constraint implies
that (25) should not be treated as K individual linear recovery
problems, giving rise to the following sequential approach.
Here, we assume that p0,p1, . . . ,pk−1 have been recovered
prior to pk. Then, we use (25) to formulate the recovery of
pk as:

p̂k = arg min
pk

∥∥∥ [ÂT
]
ck
− H̃pk

∥∥∥2

2
,

s.t. pk ∧

(
k−1∑
i=0

pi

)
= 0LR

, ‖pk‖1 = LK .

(26)

Note that (26) should be solved using exhaustive search due
to its non-conventional constraints and since pk takes binary
values. There are

(
LR−kLK

LK

)
possible values for each pk, and

at most a total of K
(
LR

LK

)
evaluations should be carried out

to recover all vectors {pk}. Compared with the optimal ML
method (24), which requires approximately |P| ≈

(
LR

LK

)K
searches once the frequency indices {ck} are recovered, the
sub-optimal method reduces the complexity significantly. In
our numerical analysis in Section V we show that the pro-
posed low-complexity decoder is capable of achieving BER
performance which is comparable with the computationally
complex ML decoder.

The proposed method obtains a coarse estimate of {ck,Pk},
and the corresponding decoder is summarized in Alg. 1. This
coarse estimate can be later refined by updating {ck} and
{Pk}, as well as Â which is used in estimating both {ck}
and {Pk}, in an alternating manner. The method to update
{Pk} using an estimate of {ck} and Â is based on the above,
while the refining of {ck} and Â based on an estimate of
{Pk} is detailed in the subsequent frequency refinement step.

3) Frequency Refinement: With the estimates {P̂k}K−1
k=0 , we

then refine the frequency codes {ck}K−1
k=0 . According to (20),

the optimization problem becomes

{ĉk} = arg min
{ck}

∥∥∥YC −
K−1∑
k=0

w̃kψ
T
ck

∥∥∥2

F
, (27)
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Algorithm 1 Non-iterative low complexity decoder
Input: YC , Ψ, K.
Steps:

(1) Compute Â via sparse recovery, possibly using (23) if
Tp ≈ n/∆f , and calculate the norms of the rows of Â.
(2) Sort these norms in a descend order, recovering {ĉk}.
(3) Apply ML-based spatial decoder via (24), or perform
greedy spatial decoding, i.e., sequentially solve (26).

Output: {ĉk, P̂k}K−1
k=0 .

where w̃k := HP̂kwk ∈ CLC . Since the set {ck} consists
of K distinct indices in the range {0, 1, . . . ,M − 1}, (27)
should be solved via exhaustive search, requiring a total
of
(
M
K

)
evaluations. Similarly to the aforementioned spatial

decoder that utilizes greedy approach, one may also estimate
the frequency codes sequentially to reduce the computation,
as detailed next.

Particularly, when recovering ck, let {ĉm}k−1
m=0 be the pre-

viously obtained frequency indices. The estimation of ck can
be formulated by rewriting (27) as

ĉk = arg min
ck

∥∥∥YC −
k−1∑
m=0

w̃mψ
T
ĉm −HP̂kwkψ

T
ck

∥∥∥2

F
,

s.t. ck ∈ {0, 1, . . . ,M − 1}\{ĉm}k−1
m=0.

(28)

In this greedy approach, only a total of
∑K−1
k=0 (M − k) =

KM − K(K−1)
2 evaluations are required, which is much less

than its exhaustive search counterpart.
Next, we use the estimates of {ĉk, P̂k} to obtain a refined

estimate of Â, which is used in the greedy spacial decoder
(26). In the initial steps (as indicated in Alg. 1), in which
an estimate of {ĉk, P̂k} is not available, Â is computed with
sparse recovery. Having obtained {ĉk, P̂k}, we can refine the
value of Â. In particular, by (22), Â can now be computed
by setting its ĉk-th row to[

ÂT
]
ĉk

= HP̂kwk, (29)

while fixing the remaining rows to be the all-zero vector. The
resulting algorithm, which uses the Spatial Decoder and Fre-
quency Refinement steps to update {Pk}K−1

k=0 and {ck}K−1
k=0 ,

respectively, is summarized in Alg. 2.

C. Codebook Design
In the description of MAJoRCom in Section II, all possible

options in f and P are coded uniquely and used to carry
different symbols. Fully exploiting the variety of these sets
allows the achievable rate to approach the upper bound in
(19) at sufficiently high SNR, as the different codewords
can be reliably distinguished from one another. However, the
computational complexity required to properly decode the
message grows rapidly with the cardinality of these sets. Par-
ticularly, while detecting the used frequencies from f can be
implemented in a low complexity manner at the cost of some
performance reduction, recovering the antenna allocation from
P typically requires an exhaustive search, as discussed in the
previous subsection. Therefore, in order to facilitate accurate

Algorithm 2 Iterative low complexity decoder
Input: YC , Ψ, K, maximal iteration imax.
Initialization:

(1) i← 1.
(2) Obtain {ĉ(0)

k , P̂
(0)
k }

K−1
k=0 and Â(0) using Alg. 1.

While i < imax:
(3) Obtain {c(i)k }

K−1
k=0 via ML-based frequency refinement

(27), or by sequentially solving (28).
(4) Evaluate Â(i) using (29).
(5) Compute {P̂ (i)

k }
K−1
k=0 by applying ML-based spatial

decoding (24), or by sequentially solving (26).
(6) i← i+ 1.

Output: {ĉ(imax−1)
k , P̂

(imax−1)
k }K−1

k=0 .

decoding under computational complexity constraints, we now
propose a codebook design which makes full use of f while
utilizing a subset of Nb codewords from P , thus balancing
achievable rate and computational burden at the receiver.

Our goal is to design a constellation set, which is a subset of
P , such that the ability of the receiver to distinguish between
different codewords is imporved. To that aim, we first discuss
the design criterion, which yields a high dimensional NP-hard
max-min problem. To solve it, we first apply a dimension
reduction approach, after which we propose a sub-optimal
solution.

1) Design Criterion: When the impact on radar function is
not accounted for, the proper codebook design objective is to
maximize the minimum distance between any two codewords,
{P (i)

k }
K−1
k=0 and {P (j)

k }
K−1
k=0 , or equivalently, {p(i)

k }
K−1
k=0 and

{p(j)
k }

K−1
k=0 . In particular, it follows from (24) that the distance,

∥∥∥∥K−1∑
l=0

HP
(i)
l wlψ

T

c
(i)
l

−
K−1∑
k=0

HP
(j)
k wkψ

T

c
(j)
k

∥∥∥∥2

F

, (30)

dominates the error probability between the i-th and j-th sym-
bols. Since we optimize the minimum distance with respect
to the antenna allocations {pk}, we henceforth focus on the
setting where the set of frequency indices are the same in
those symbols, i.e.,

{
c
(i)
k

}K−1

k=0
equals

{
c
(j)
k

}K−1

k=0
. This setting

generally leads to a smaller distance in comparison with the
unequal case, and can thus be considered as a worst case
scenario.

When the frequency modulations are orthogonal, i.e.,
ψHm1

ψm2
= 0, m1 6= m2, m1,m2 ∈ M, which holds when

Tp is an integer multiple of 1/∆f , the distance between two
codewords can be simplified to

H-Disti,j :=

K−1∑
k=0

∥∥∥H̃p(i)
k − H̃p

(j)
k

∥∥∥2

2
. (31)

The distance (31) is upper bounded by the largest eigenvalue
of H̃ times Disti,j , which is defined as

Disti,j :=

K−1∑
k=0

∥∥∥p(i)
k − p

(j)
k

∥∥∥2

2
. (32)
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We propose a codebook design to find a subset P# ⊂ P of
cardinality Nb that maximizes the distance

max
P#⊂P

min
i,j∈P#,i6=j

Disti,j , s.t.
∣∣P#

∣∣ = Nb. (33)

We note that (33) is still NP-hard to solve. Although the
objective in (33) can be considered as the minimal Hamming
distance, standard codebook desgins based on this criterion,
see [42, Ch. 8], cannot be used here. The reason is that
our codewords are subject to the additional unique constraint∑K−1
k=0 p

(i)
k = 1LR , which does not appear in standard binary

codebooks. Thus, we propose a codebook design based on
projection into a lower dimensional plane, described next.

2) Dimension Reduction of the Constellation Set: We pro-
pose to project the original codewords into a real-valued LD-
dimensional plane, i.e., {p(i)

k } 7→ p̃(i) ∈ RLD , such that the
distances between codewords are maintained

d̃ 〈i, j〉 :=
∥∥∥p̃(i) − p̃(j)

∥∥∥2

2
= Disti,j , (34)

where i, j = 0, 1, . . . , |P|−1. It is easy to verify that (34) holds
when there exist an orthogonal matrix U ∈ RKLR×KLR and
a constant vector a ∈ RKLR such that

p(i) = U

[
p̃(i)

0KLR−LD

]
+ a, (35)

where p(i) :=
[
pT0 ,p

T
1 , . . . ,p

T
K−1

]T ∈ {0, 1}KLR .
To find such U , a and p̃(i), we use principal compo-

nent analysis (PCA) [44]. Denote the codebook matrix by
D :=

[
p(0),p(1), . . . ,p(|P|−1)

]
∈ {0, 1}KLR×|P|, and the

dimension reduced matrix by D̃ :=
[
p̃0, p̃1, . . . , p̃|P|−1

]
∈

RLD×|P|, respectively. Then, (35) becomes

D = U

[
D̃

0(KLR−LD)×|P|

]
+ a · 1T|P|. (36)

Noticing that p(i) has identical average, i.e.,
1

KLR
1TKLR

p(i) = 1
K , we first normalize columns of D

to zero mean by

D = D − 1

K
1KLR×|P|. (37)

With D, we then perform SVD decomposition on D, i.e.,

D = UΣV T , (38)

where U ∈ RKLR×KLR and V ∈ R|P|×|P| are unitary ma-
trices, UUT = UTU = IKLR

, V V T = V TV = I|P|, and
Σ ∈ RKLR×|P| is a diagonal matrix with [Σ]i,i, i ≤ KLR,
being the singular values ofD. We estimate LD, which is often
regarded as the intrinsic dimension of the original codewords,
as the number of nonzero singular values, i.e., the rank of D,
and the transpose of the new codewords are given by

D̃T = V
[
ΣT
]
{0,1,...,LD−1} . (39)

Let a = 1/K1KLR
and it can be verified that (36) holds and

codewords D̃ preserve the distances as stated in (34).
It is worth noting that the special structure of p(i) results in

some symmetry of the distances Disti,j . To see this, we define
the distance matrix R ∈ Z|P|×|P| with entries

[R]i,j = Disti,j , i, j = 0, 1, . . . , |P| − 1. (40)

The distance matrix has the following properties.

Proposition 2. The matrix R is symmetric and its diagonal
entries are zeros, i.e,. [R]i,j = [R]j,i and [R]i,i = 0, i, j =
0, 1, . . . , |P|−1. Furthermore, each row of R is a permutation
of the first row in R.

Proof. A proof is given in the Appendix.

Proposition 2 implies that, given a set P of different possible
antenna allocation codewords, the calculation of the distance
matrix R is far less computationally complex than evaluating
the distance between each possible pair of elements of P in a
straightforward manner.

We take LR = 4, K = 2 and LK = 2 as an example
to demonstrate the dimension reduction. When LD = 2, 3,
we find that the projected codebook can be visualized conve-
niently using p̃. To see this, recall that there are 6 possible
spatial selection patterns as explained by (9). The original
codewords,

{
p

(i)
0 , . . . ,p

(i)
K−1

}
, i = 0, . . . , 5, have KLR = 8

dimensions, and are difficult to display. The entries of the
distance matrix here are given by

[R]i,j =


0 i = j,

8 |i− j| = 3,

4 otherwise.

After dimensionality reduction, one obtains the following
three-dimensional representation of the codewords: p̃(0) =
[0,
√

2, 0]T , p̃(1) = [
√

2, 0, 0]T , p̃(2) = [0, 0,
√

2]T , and
p̃(3) = −p̃(0), p̃(4) = −p̃(1), p̃(5) = −p̃(2). We can
verify that d̃ 〈i, j〉 = [R]i,j . The resulting three-dimennsional
constellation set is depicted in Fig. 4.

Fig. 4. A constellation of dimension reduced codewords, LR = 4, K = 2
and LK = 2.

3) Design of the Constellation Set: After dimension reduc-
tion, the codebook design problem (33) becomes

max
P#⊂P

min
i,j∈P#,i6=j

d̃ 〈i, j〉 , s.t.
∣∣P#

∣∣ = Nb. (41)

We propose the following sub-optimal approach to design a
codebook based on (41): Using clustering methods such as
k-means, the codewords p̃ can be divided into Nb classes.
The codeword which is the nearest to the center point of the
class is used to represent the class in the final codebook. Since
clustering methods typically maximize the distances between
classes, the proposed codebook is expected to have a large
minimal distance, thus approaching the solution to (41).

Reducing the number of different antenna allocations af-
fects the spatial agility and radiation pattern of the radar
scheme, and thus potentially impacts the accuracy of range,
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Doppler or angular parameters of CAESAR. Nonetheless, in
the simulations study presented in Section V it is numerically
demonstrated that the radar performance degradation due to
using the proposed reduced cardinality codebook is minimal.

V. SIMULATIONS

In this section we numerically evaluate the performance of
MAJoRCom. Since the radar functionality of MAJoRCom is
based on CAESAR and is not affected by the communication
subsystem, we focus here on the communication functionality
of MAJoRCom, and refer to [27] for a detailed study of its
radar performance.

In particular, three aspects of the communication scheme
are evaluated: First, in Subsection V-A the fundamental limits
of the proposed system are compared to using different wave-
forms for communications and radar. Then, the proposed low
complexity decoders are numerically compared to the optimal
ML decoder in Subsection V-B. Finally, in Subsection V-C
the proposed reduced complexity codebook design approaches
are evaluated along with their effect on radar performance.
Throughout this study, the initial frequency is fc = 1.9 GHz,
the frequency spacing is ∆f = 10 MHz, and the number of
frequencies utilized at each pulse is K = 2.

A. Achievable Rate
Our achievable rate analysis quantifies the communication

capabilities of MAJoRCom, facilitating its comparison to
other configurations. As a numerical example, we consider
a scenario with 4 transmit and receive antennas, i.e., LR =
LC = 4. The parameters of the proposed system are set to
θ = π

4 , d = 10 c
fc

, and the number of available frequencies
is M = 10. The selection matrices used are given in (9).
The overall number of codewords here is |X | = 270, i.e., the
maximal number of bits that can be conveyed in each pulse
is log2 |X | ≈ 8.1. We consider two settings for the channel
matrix H: A spatial exponential decay channel, for which
[H]l1,l2 = e−

1
4 (|l1−l2|+j(l1−l2)π); and Rayleigh fading, where

the entries of H are randomized from an i.i.d. zero-mean
unit-variance proper-complex Gaussian distribution, and the
achievable rate is averaged over 100 realizations.

For each channel,we evaluate the lower and upper bounds
on the achievable rate computed via Proposition 1 and (19),
respectively versus SNR, defined here as 1/σ2. This bound
is compared to the rate achievable (in bits per channel use)
when, instead of using the randomness of the radar scheme to
convey bits, either the first antenna or the first two antennas are
dedicated only for communications subject to a unit average
power constraint, i.e., the same power as that of the radar
pulse, neglecting the cross interference induced by radar and
communications coexistence. This study allows to understand
when the achievable rate of MAJoRCom, which originates
from radar transmission, is comparable to using ideal dedicated
communication transmitters, which are costly and induce
mutual interference between radar and communications. The
numerically evaluated achievable rates for the spatial decay
channel and the Rayleigh fading channel are depicted in Figs.
5-6, respectively.

Observing Figs. 5-6, we note that in relatively low SNRs,
our proposed scheme achieves higher rates compared to using
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Fig. 5. Achievable rate comparison, spatial decay channel.
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Fig. 6. Achievable rate comparison, Rayleigh fading channel.

a dedicated communications antenna element without impair-
ing the radar performance. For Rayleigh fading channels, it is
demonstrated in Fig. 6 that MAJoRCom is capable of outper-
forming a system with two dedicated communication antennas
for SNRs not larger than 5 dB. As the SNR increases, using
dedicated communication antennas outperforms our proposed
system as more and more bits can be reliably conveyed in
a single channel symbol. However, it should be emphasized
that by allocating some of the antenna elements for commu-
nications, the radar performance, which is considered as the
primary user in our case, is degraded. Furthermore, in order
to avoid coexistence issues, which we did not consider here,
the communications and radar signals should be orthogonal,
e.g., use distinct bands, thus reducing the radar bandwidth.
Finally, the computation of the achievable rate with dedicated
antennas assumes the transmitter has CSI and does not account
for the need to utilize constant modulus waveforms; it is in fact
achievable using Gaussian signaling [40, Ch. 9]. Consequently,
the fact that, in addition to the practical benefits of our
proposed scheme and its natural coexistence with the radar
transmission, it is also capable of achieving communication
rates comparable to using dedicated communication antennas,
illustrates the gains of MAJoRCom.

B. Decoding Strategies
We now evaluate the BER performance of the reduced

complexity decoders proposed in Subsection IV-B. To that
aim, we set the number of transmit and receive antennas to
LR = 6 and LC = 4, respectively, and the channel matrix
H is randomized as a zero-mean proper complex Gaussian
matrix with i.i.d unit variance entries. The number of available
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Fig. 7. Bit error rates of the proposed decoders.

frequencies is M = 7, and the beam is directed towards
θ = 0. Here, LK = 3 antenna elements use each frequency.
The duration of the pulse is Tp = 1 µs, and the sampling
rate used is 1

Ts
= M∆f . The number of channel outputs

corresponding to each pulse is LT = Tp ·M∆f = 70. The
number of bits conveyed by frequency and spatial selections
are blog2 |f|c = 4 and blog2 |P|c = 4, respectively.

We compare the BER performance of the proposed de-
coders, including the optimal ML decoder (20), denoted
’ML Decoder’, and the low complexity decoders proposed
in Subsection IV-B with non-iterative (Alg. 1) and iterative
settings (Alg. 2). In Alg. 1, we apply both an ML spatial
decoder (24) as well as the sub-optimal sequential method
with exhaustive search for (26) to recover the antenna selection
vectors pk, denoted by ’NonIter + ML’ and ’NonIter +
Greedy’, respectively. In Alg. 2, we test two approaches: One
uses ML for both spatial and spectrum decoders, i.e. (24) and
(27), denoted by ’Iter + ML’; the other one, denoted by ’Iter +
Greedy’, uses greedy methods, i.e., (26) and (28) to recover the
antenna selection vectors pk and frequencies, respectively. In
both iterative algorithms, i.e., ’Iter + ML’ and ’Iter + Greedy’,
the maximum numbers of iterations is imax = 10. The initial
estimate of the matrix Â is computed via (23).

In Fig. 7 we depict the BER performance of these decoders
versus SNR, 1/σ2, averaged over 106 trials. As expected,
the computationally complex optimal ML decoder achieves
the lowest BER values. Our proposed sub-optimal decoders
achieve a performance which scales similarly as the ML
decoder with respect to SNR. In particular, the iterative and
non-iterative decoders both achieve BER of 10−4 at SNR
around -9 dB when combined with ML estimation, while the
global ML decoder achieves the same BER at -10 dB, namely,
an SNR gap of 1 dB. The corresponding SNR gap of the
greedy sequential decoders is 3 dB. In particular, when using
the greedy methods, it is observed in Fig. 7 that estimation
refinement using Alg. 2 does not necessarily improve the
accuracy over the initial estimation in Alg. 1. These results
indicate that the proposed low complexity decoders are capable
of achieving performance comparable to the ML decoder
while substantially reducing the computational burden at the
communication receiver.

0 2 4 6 8 10 12 14 16 18

Dist

0

5

10

15

20

25

30

H
-D

is
t

Fig. 8. H-Dist vs. Dist for LC = 4. Each circle represents a codeword.

C. Codebook Comparison

Here, we numerically study the codebook design proposed
in Subsection IV-C, and evaluate the impact of the designed
codewords on the decoding BER as well as the radar per-
formance. The number of antennas is set to LR = 8. Since
the codebook does not affect the decoding procedure of the
frequency indices, we assume that the transmitted frequencies
are already recovered without errors. The remaining settings
are the same as those used in the previous study.

We first evaluate the approximate design criterion min-
imizing (32), compared to the desired objective (31). The
numerically computed distances (32) and (31), denoted ’Dist’
and ’H-Dist’, respectively, are depicted in Fig. 8 for LC = 4.
Observing Fig. 8, we note an approximate monotonic relation-
ship between two distances, which indicates that designing the
codewords to minimize (32) also reduces the desired objective
(31) proportionally. It is emphasized that when the number
of receive antennas LC increases, the monotonicity becomes
more distinct. This can be explained since the channel matrix
H here is Gaussian with i.i.d. entries. Such matrices are
known to asymptotically preserve the norm of a projected
vector [43], thus (32) and (31) become equivalent. To avoid
cluttering, we only present the results for LC = 4. Comparison
between iterative methods and their non-iterative counterparts
indicate that iteratively updating improves accuracy of de-
coders, while the improvement is not significant.

We next use the objective (32) to design a codebook.
After computing distance matrix R in (40), we use the PCA
algorithm to reduce the dimensions of the original codewords,
and generate candidate codewords p̃ ∈ RLD . The intrinsic
dimension of the codewords pk is estimated as LD = 7 here.
Given Nb = 21, 23, 25, the k-means method is applied to
cluster the candidates p̃ into Nb classes. The candidate that
is closest to the class center is selected as the final codeword.
With these final codewords, we test the BER of the ’NonIter +
ML’ decoder (24) and depict the results in Fig. 9. As expected,
as Nb grows, thus more different messages are conveyed, the
overall BER performance is degraded. It is noted that while
using smaller Nb values decreases the BER as well as the
decoding complexity, it also reduces the data rate, as less bits
are conveyed in each symbol.

Finally, we evaluate the impact of the codebook design on
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Fig. 9. BERs of the ML spatial decoder (24) for different codebook sizes.

radar performance. In particular, we consider range-Doppler
reconstruction and angle estimate of targets being observed,
using hit rate and the root mean squared error (RMSE) as
performance metrics, respectively. A hit is proclaimed if the
range-Doppler parameter of a scattering point is successfully
recovered. The RMSE of the target angle is defined as√

E[(ϑs − ϑ̂s)2], where ϑs and ϑ̂s denote true angle and
estimated one for the s-th target, respectively. The number
of radar pulses is set to N = 32 and is directed to θ = 0.
There are S = 4 radar targets inside the beam ϑs ∈ Θ :=

θ +
[
− π

2LR
, π

2LR

]
with scattering intensities set to 1. The

numerical performance is averaged over 100 Monte Carlo
trials. In each trial, the range-Doppler parameters of every
target are randomly chosen from the grid points (grid points
are explained in [27, Sec. IV]), and the angles are randomly
set within the beam Θ. We define the SNR of the radar
returns as 1/κ2, where κ2 is the variance of the additive i.i.d.
zero-mean proper-complex Gaussian noise; see [27, Sec. VII].
The algorithm used for radar signal processing is detailed
in [27, Algorithm 1], where Lasso is applied to solve the
compressed sensing problem. The resultant range-Doppler
reconstruction hit rates and angle estimation performance with
the aforementioned codebooks are depicted in Figs. 10 and
11, respectively. Observing these two figures, we note that
decreasing the codebook size has only a minimal effect on
the range-Doppler and angle estimates of radar targets. This
indicates that the proposed codebook reduction method can
be used to facilitate the decoding complexity by limiting
the number of codewords at the cost of log2Nb less bits
conveyed in each symbol with hardly any impact on estimation
performance of radar targets.

VI. CONCLUSIONS

In this paper, we proposed MAJoRCom - a DFRC system
which combines frequency and spatial agility. MAJoRCom
exploits an inherent randomness in the radar scheme to convey
information to a remote receiver using index modulation.
In particular, the ability of MAJoRCom to convey digital
messages is a natural byproduct of its radar scheme, and
thus does not induce any coexistence and mutual interference
issues, unlike most previously proposed DFRC methods. The
achievable rate of the proposed communications scheme was
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Fig. 10. Range-Doppler recovery versus SNR.
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Fig. 11. Angle estimation performance versus SNR.

shown to be comparable to that obtained with dedicated
communication waveforms without interfering with the radar
functionality. To handle the increased decoding complexity of
this scheme, a low complexity receiver and codebook design
approach were proposed. Simulation results demonstrate that
MAJoRCom exhibits excellent communication performance,
and that the proposed low complexity techniques allow to
efficiently balance computational burden and communication
reliability.

APPENDIX
PROOF OF PROPOSITION 2

The symmetry and zero main diagonal of R follow directly
from its definition (40). We thus only prove that each row of
R is a permutation of its first row.

For each codeword i, there exists an LR ×LR permutation
matrix Σi such that Σip

(0)
k = p

(i)
k , k = 0, . . . ,K − 1. This

permutation matrix is not unique: two permutations Σ, Σ̃

induce the same codeword (i.e., Σp
(0)
k = Σ̃p

(0)
k for all k)

if and only if Σ−1Σ̃p
(0)
k = p

(0)
k , for all k. For convenience,

denote by G the set of all permutation matrices that fix p(0)
k

for all k. Choose for each i a permutation matrix Σi inducing
codeword i. The i-th row of R consists of elements

[R]i,j =

K−1∑
k=0

∥∥∥Σip
(0)
k −Σjp

(0)
k

∥∥∥2

. (42)

Since permutation matrices are orthogonal, this is equal to
K−1∑
k=0

∥∥∥p(0)
k −Σ−1

i Σjp
(0)
k

∥∥∥2

. (43)
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Denote by codeij the codeword induced by Σ−1
i Σj . Then,

[R]i,j =

K−1∑
k=0

∥∥∥∥p(0)
k − p

(codeij)

k

∥∥∥∥2

. (44)

For j 6= j′, we note that Σ−1
i Σj and Σ−1

i Σj′ induce different
codewords since

(Σ−1
i Σj)

−1Σ−1
i Σj′ = Σ−1

j Σj′ 6∈ G. (45)

Thus, as j runs through all the codewords, both code0
j and

codeij run through all the codewords. By (44) this implies that
the i-th row of R is a permutation of the first row of R.
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