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Abstract—This paper proposes and analyzes a communication-
efficient distributed optimization framework for general noncon-
vex nonsmooth signal processing and machine learning problems
under an asynchronous protocol. At each iteration, worker
machines compute gradients of a known empirical loss function
using their own local data, and a master machine solves a
related minimization problem to update the current estimate.
We prove that for nonconvex nonsmooth problems, the proposed
algorithm converges with a sublinear rate over the number
of communication rounds, coinciding with the best theoretical
rate that can be achieved for this class of problems. Linear
convergence is established without any statistical assumptions
of the local data for problems characterized by composite loss
functions whose smooth parts are strongly convex. Extensive
numerical experiments verify that the performance of the pro-
posed approach indeed improves – sometimes significantly – over
other state-of-the-art algorithms in terms of total communication
efficiency.

Index Terms—Communication-efficient, asynchronous, dis-
tributed algorithm, convergence, nonconvex, strongly convex

I. INTRODUCTION

DUE to rapid developments in information and comput-
ing technology, modern applications often involve vast

amounts of data, rendering local processing (e.g., in a single
machine, or on a single processing core) computationally
challenging or even prohibitive. To deal with this problem,
distributed and parallel implementations are natural methods
that can fully leverage multi-core computing and storage
technologies. However, one drawback of distributed algorithms
is that the communication cost can be very expensive in terms
of raw bytes transmitted, latency, or both, as machines (i.e.,
computation nodes) need to frequently transmit and receive
information between each other. Therefore, algorithms that
require less communication are preferred in this case.

In this paper we study a general communication-efficient
distributed algorithm which can be applied to a broad class
of nonconvex nonsmooth inference problems. Assume that
we have available some N data samples. We consider a
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general problem appearing frequently in signal processing and
machine learning applications; we aim to solve

x∗ = argmin
x∈Rp

L(x) :=
1

N

N∑
k=1

lk(x) + h(x), (1)

where each lk(x) is a loss function associated with the k-th
data sample, and is assumed smooth but possibly nonconvex
with Lipschitz continuous gradient and h(x) is a convex
(proper and lower semi-continuous) function that is possi-
bly nonsmooth. Problem (2) covers many important machine
learning and signal processing problems such as the local-
ization with wireless acoustic sensor networks (WASNs) [1],
support vector machine (SVM) [2], the independent principal
component analysis (ICA) reconstruction problem [3], and the
sparse principal component analysis (PCA) problem [4].

For our distributed approach, we consider a network of
m total machines having a star topology, where one node
designated as the “Master” node (node 1, without loss of
generality) is located at the center of the star, and the remain-
ing m− 1 nodes (with indices 2, 3, . . . ,m) are the “Worker”
nodes (see Figure 1). Without loss of generality, assume that
the number of data samples is evenly divisible by m, i.e.,
N = nm for some integer n, and each machine stores n
unique data samples. Then (1) can be reformulated to the
following problem:

x∗ = argmin
x∈Rp

L(x) :=
1

mn

m∑
j=1

n∑
i=1

lji(x) + h(x), (2)

where lji(x) is the loss function corresponding to the i-th
sample of the j-th machine.

 

Master 

Worker 3 Worker 2 Worker j Worker m 

Fig. 1. m-nodes network with a star topology

A. Main Results

We propose an Efficient Distributed Algorithm for Non-
convex Nonsmooth Inference (EDANNI), and show that, for
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general problems of the form of (2), EDANNI converges to
the set of stationary points if the algorithm parameters are
chosen appropriately according to the maximum network de-
lay. Our results differ significantly from existing works [5]–[7]
which are all developed for convex problems. Therefore, the
analysis and algorithm proposed here are applicable not only
to standard convex learning problems but also to important
nonconvex problems. To the best of our knowledge, this is
the first communication-efficient algorithm exploiting local
second-order information that is guaranteed to be convergent
for general nonconvex nonsmooth problems. Moreover, linear
convergence is also proved in the strongly convex setting
with no statistical assumption of the data stored in each local
machine, which is another improvement on existing works.
The synchronization inherent in previous works, including [5]–
[10], slows down those methods because the master needs
to wait for the slowest worker during each iteration; here,
we propose an asynchronous approach that can accelerate
the corresponding inference tasks significantly (as we will
demonstrate in the experimental results).

B. Related Work

There is a large body of work on distributed optimization for
modern data-intensive applications with varied accessibility;
see, for example, [5]–[7], [11]–[23]. (Parts of the results
presented here appeared in our conference paper [22] without
theoretical analysis.) Early works including [6], [11], [15]
mainly considered the convergence of parallelizing stochastic
gradient descent schemes which stem from the idea of the
seminal text by Bertsekas and Tsitsiklis [16]. Niu et al.
[12] proposed a lock-free implementation of distributed SGD
called Hogwild! and provided its rates of convergence for
sparse learning problems. That was followed up by many
variants like [24], [25]. For solving large scale problems,
works including [17], [18], [19], and [26] studied distributed
optimizations based on a parameter server framework and
parameters partition. Chang et al. [20] studied asynchronous
distributed optimizations based on the alternating direction
method of multipliers (ADMM). By formulating the optimiza-
tion problem as a consensus problem, the ADMM can be used
to solve the consensus problem in a fully parallel fashion
over networks with a star topology. One drawback of such
approaches is that they can be computationally intensive, since
each worker machine is required to solve a high dimensional
subproblem. As we will show, these methods also converge
more slowly (in terms of communication rounds) as compared
to the proposed approach (see Section IV).

A growing interest on distributed algorithms also appears in
the statistics community [27]–[31]. Most of these algorithms
depend on the partition of data, so their work usually involves
statistical assumptions that handle the correlation between the
data in local machines. A popular approach in early works is
averaging estimators generated locally by different machines
[15], [28], [32], [33]. Yang [34], Ma et al. [35], and Jaggi et al.
[36] studied distributed optimization based on stochastic dual
coordinate descent, however, their communication complexity
is not better than that of first-order approaches. Shamir et al.

[37] and Zhang and Xiao [38] proposed truly communication-
efficient distributed optimization algorithms which leveraged
the local second-order information, though these approaches
are only guaranteed to work for convex and smooth objectives.
In a similar spirit, Wang et al. [8], Jordan et al. [9], and Ren
et al. [10] developed communication-efficient algorithms for
sparse learning with `1 regularization. However, each of these
works needs an assumption about the strong convexity of loss
functions, which may limit their approaches to only a small
set of real-world applications. Here we describe an algorithm
with similar flavor, but with more general applicability, and
establish its convergence rate in both strongly convex and
nonconvex nonsmooth settings. Moreover, unlike [8]–[10],
[37], [38] where the convergence analyses rely on certain
statistical assumptions on the data stored in machines, our
convergence analysis is deterministic and characterizes the
worst-case convergence conditions.
Notation. For a vector v = (v1, · · · , vs)> ∈ Rs and q > 0
we write ‖v‖q = (

∑s
i=1 |vi|q)1/q; for q ≥ 1 this is a norm.

Usually ‖v‖2 is briefly written as ‖v‖. The set of natural
numbers is denoted by N. For an integer m ∈ N, we write
[m] as shorthand for the set {1, . . . ,m}.

II. ALGORITHM

In this section, we describe our approach to computing
the minimizer x∗ of (2). Recall that we have m machines.
Let us denote t ≥ 0 as the iteration number, then At ⊆
[m] := {1, 2, · · · ,m} is defined as the index of a subset
of worker machines from which the master receives updated
gradient information during iteration t; worker i is said to be
“arrived” if i ∈ At. At iteration t, the master machine solves a
subproblem to obtain an updated estimate, and communicates
this to the worker machines in the subset At. After receiving
the updated estimate, the worker machines will compute the
corresponding gradients of local empirical loss functions.
These gradients are then communicated back to the master
machine, and the process continues.

Formally, let

Lj(x) =
1

n

∑
i∈[n]

lji(x), j ∈ [m]

be the empirical loss at each machine. Let tj be the latest time
(in terms of the iteration count) when the worker j is arrived
up to and including iteration t.

In the t-th iteration, the master (machine 1) solves the
following subproblem to update xt+1

xt+1 = argmin
x

L1(x) + h(x) +
ρ

2
‖x− xt‖2

+
〈 1

m

∑
j∈[m]

∇Lj(xtj )−∇L1(xt1),x− xt
〉
. (3)

This xt+1 is communicated to the worker machines that
are free, where it is used to compute their local gradient
∇Lj(xt+1). Since machine 1 is assumed to be the master
machine, t1 is actually t.

Now one question is: which partial sets of worker machines
(with indices in At) from which the master receives updated
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gradient information during iteration t are sufficient to ensure
convergence of a distributed approach? Firstly, let τ ≥ 0 be
a maximum tolerable delay, that is, the maximum number of
iterations for which every worker machine can be inactive.
The set At should satisfy:

Assumption II.1 (Bounded delay). For all i ∈ [m] and
iteration t ≥ 0, it holds that i ∈ At∪At−1∪· · ·∪Amax{t−τ,0}.

To satisfy Assumption II.1, At should contain at least the
indices of the worker machines that have been inactive for
longer than τ iterations. That is, the master needs to wait
until those workers finish their current computation and have
arrived. Note that by the definition of tj , it holds that

t− τ ≤ tj ≤ t, ∀j ∈ [m].

Assumption II.1 requires that every worker j is arrived at
least once within the period [t − τ, t]. In other words, the
gradient information ∇Lj(xtj ) used by the master must be at
most τ iterations old. To guarantee the bounded delay, at every
iteration the master needs to wait for the workers who have not
been active for τ iterations, if such workers exist. Note that,
when τ = 0, one has j ∈ At for all j ∈ [m], which reduces
to the synchronous case where the master always waits for all
the workers at every iteration.

The proposed approach is presented in Algorithm 1, which
specifies respectively the steps for the workers and the master.
Algorithm 1 has three prominent differences compared with
its synchronous alternatives. First, only the workers j in At
update the gradient ∇Lj(xt) and transmit it to the master
machine. For the workers j in Act , the master uses their
latest gradient information before t, i.e., ∇Lj(xtj ). Second,
the variables dj’s are introduced to count the delays of the
workers since their last updates. dj is set to zero if worker j
is arrived at the current iteration; otherwise, dj is increased
by one. Therefore, to ensure Assumption II.1 holds at each
iteration, the master should wait if there exists at least one
worker whose dj > τ−1. Third, after solving subproblem (3),
the master transmits the up-to-date variable xt+1 only to the
arrived workers. In general both the master and fast workers
in the asynchronous approach can update more frequently and
have less waiting time than their synchronous counterparts.

III. THEORETICAL ANALYSIS

Solving subproblem (3) is inspired by the approaches of
Shamir et al. [37], et al., Wang et al. [8], and Jordan et al. [9],
and is designed to take advantage of both global first-order
information and local higher-order information. Indeed, when
ρ = 0 and Lj is quadratic, (3) has the following closed form
solution:

xt+1 = xt −∇2L1(xt)−1
(

1
m

∑m
j=1∇Lj(xtj )

)
,

which is similar to a Newton updating step. The more general
case has a proximal Newton flavor; see, e.g., [39] and the
references therein. However, our method is different from their
methods in the proximal term ρ

2‖x− xt‖2 as well as the first
order term. Intuitively, if we have a first-order approximation

L1(x) ≈ L1(xt) +
〈
∇L1(xt1),x− xt

〉
, (4)

Algorithm 1: Efficient Distributed Algorithm for
Nonconvex-Nonsmooth Inference (EDANNI)
Input: Loss functions {lji(·, ·)}i∈[n],j∈[m], parameter ρ,

initial point x0. Set d1 = · · · = dm = 0 and
A0 = [m];

for t = 0, 1, . . . do
Worker machines:
for j = 2, 3, . . . ,m do

if Receive xt from the master then
Calculate gradient ∇Lj(xt) and transmit it to the
master.
end

end for
Master:
Receive {∇Lj(xt)}mj=2 from worker machines j in a
set At such that dj ≤ τ − 1, ∀j ∈ Act
then

Update

dj =

{
0 ∀j ∈ At
dj + 1 ∀j ∈ Act

.

Solve the subproblem (3) with the specified ρ
to obtain xt+1. Broadcast xt+1 to the worker
machines j that are free.

end for

then (3) reduces to

xt+1 = argmin
x

〈
1
m

∑
j∈[m]∇Lj(xtj ),x− xt

〉
+ h(x) +

ρ

2
‖x− xt‖2, (5)

which is essentially a first-order proximal gradient updating
step.

We consider the convergence of the proposed approach
under the asynchronous protocol where the master has the
freedom to make updates with gradients from only a partial
set of worker machines. We start with introducing important
conditions that are used commonly in previous work [13], [20],
[40].

Assumption III.1. The function Lj(x) is differentiable and
has Lipschitz continuous gradient for all j ∈ [m], i.e.,

‖∇Lj(x)−∇Lj(y)‖ ≤ L‖x− y‖.

The proof of the linear convergence relies on the following
strong convexity assumption.
Assumption III.2. For all j ∈ [m], the function Lj is strongly
convex with modulus σ2, which means that

Lj(x) > Lj(y) + 〈∇Lj(y), x− y〉+
σ2

2
‖x− y‖2,

for all x,y ∈ Rp, j ∈ [m].

Assumption III.3. For all t, the parameter ρ in (3) is chosen
large enough such that:

I. γ(ρ) > 3L + 2Lδτ and ρ > 2Lτ
δ , for some constant
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δ > 0, where γ(ρ) represents the convex modulus of the
function h(x) + ρ

2‖x− xt‖2.
II. There exists a constant L such that

L(x) > L > −∞ ∀x ∈ Rp.

Moreover the following concept is needed in the first part
of Theorem III.1.

Definition III.1. We say a function F(x) is coercive if

lim
‖x‖→∞

F(x) = +∞.

Define

∇̃xL (xt) = xt − Proxh
(
xt − 1

m

∑
j∈[m]

∇Lj(xt)
)
, (6)

where Proxh is a proximal operator defined by Proxh[z] :=
argmin

x
h(x)+ 1

2‖x−z‖
2. Usually ∇̃xL (xt) is called the prox-

imal gradient of L; x is a stationary point when ∇̃xL (x) = 0.
Based on these assumptions, now we can present the main

theorem.

Theorem III.1. Suppose Assumption II.1, III.1, and III.3 are
satisfied. Then we have the following claims for the sequence
generated by Algorithm 1 (EDANNI).

• (Boundedness of Sequence). The gap between xt and
xt+1 converges to 0, i.e.,

lim
t→∞

xt+1 − xt = 0.

If L(x) is coercive, then the sequence {xt} generated by
Algorithm 1 is bounded.

• (Convergence to Stationary Points). Every limit point of
the iterates {xt} generated by Algorithm 1 is a stationary
point of problem (2). Furthermore,

∥∥∥∇̃xL(xt)
∥∥∥→ 0, as

t→∞.
• (Sublinear Convergence Rate). Given ε > 0, let us

define T to be the first time for the optimality gap to
reach below ε, i.e.,

T := argmin
t

{∥∥∥∇̃xL(xt)
∥∥∥ < ε

}
.

Then there exists a constant ν > 0 such that

T ≤ ν

ε
+ 1,

where ν equals to a positive constant times(
2(2 + ρ)2 + 8L2τ

)
/min

{
γ(ρ)

2 −
3L
2 − Lδτ,

ρ
2 −

Lτ
δ

}
for some δ > 0. Therefore, the optimality gap∥∥∥∇̃xL(xt)

∥∥∥ converges to 0 in a sublinear manner.

Remark III.1. The theorem suggests that the iterates {xt}
may or may not be bounded without the coerciveness property
of L(x). However, it guarantees that the optimality measure∥∥∥∇̃xL(xt)

∥∥∥ converges to 0 sublinearly. We remark that [19]
also analyzed the convergence of a proximal gradient method
based communication-efficient algorithm for nonconvex prob-
lems, but they did not give a specific convergence rate. Note
that such sublinear complexity bound is tight when applying

first-order methods for nonconvex unconstrained problems (see
[41], [42]).

Let us define

F(x,xt) := 1
m

∑
j∈[m] Lj(x) + ρ

2 ‖x− xt‖2 + h(x).

The gap between xt and xt+1 is denoted by ∆(t) := xt+1−xt,
for t ∈ N. The proof of Theorem III.1 relies on Lemma III.1,
III.2, and III.3 in the following.

Lemma III.1. Suppose Assumption III.1 and Assumption III.3
(I) are satisfied. then the following is true for iterates {xt}
generated by Algorithm 1 (EDANNI)

ρ

2
‖xt+1 − xt‖2 + h(xt+1)− ρ

2
‖xt − xt−1‖2 − h(xt)

≤ −

〈
∇L1(xt+1) +

1

m

m∑
j=1

∇Lj(xtj )−∇L1(xt1),

∆(t)

〉
− γ(ρ)

2

∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2
. (7)

Lemma III.2. Under the assumptions of Theorem III.1 for
any δ > 0 we have

F(xt+1,xt)− F(xt,xt−1)

≤
(

3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+
L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2
. (8)

Lemma III.3. Suppose Assumption III.3 is satisfied. Then for
xt generated by (EDANNI), there exists some constants F and
F̄ such that

+∞ > F̄ > F(xt+1,xt) > F > −∞, ∀t ≥ 0.

The proofs of these lemmata are in the Appendix. Now in
the following we prove Theorem III.1.

Proof of Theorem III.1. We begin by establishing the first
conclusion of the theorem. Summing inequality (8) in Lem-
ma III.2 over t yields

F(xT+1,xT )− F(x1,x0)

≤
T∑
t=1

(
3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2

+

T∑
t=1

(
Lτ

δ
− ρ

2

)∥∥∆(t−1)
∥∥2
.

Now define

c := min

{
γ(ρ)

2
− 3L

2
− Lδτ, ρ

2
− Lτ

δ

}
,

by Assumption III.3 we have γ(ρ) > 3L+2Lδτ and ρ > 2Lτ
δ ,

therefore c > 0. It holds that

F(xT+1,xT )− F(x1,x0) ≤ −c
T∑
t=0

∥∥∆(t)
∥∥2
. (9)
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Note that by Lemma III.3 the LHS of (9) is bounded from
below. By letting T →∞, it follows that∥∥∆(t)

∥∥→ 0, t→∞.

Moreover, Lemma III.3 shows that F(xt+1,xt) is bounded,
but due to the coerciveness assumption

lim
‖x‖→∞

1

m

∑
j∈[m]

Lj(x) + h(x) +
ρ

2

∥∥x− xt
∥∥2

= +∞, (10)

so we know {xt+1} is bounded. Therefore the first conclusion
is proved.

We now establish the second conclusion of the Theorem.
From (3), we know that

xt+1 = Proxh
[
xt+1 −

(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )

−∇L1(xt1) + ρ
(
xt+1 − xt

) )]
,

where Proxh is a proximal operator defined by Proxh[z] :=
argmin

x
h(x) + 1

2‖x− z‖
2. This implies that∥∥∥∥∥xt − Proxh

(
xt − 1

m

∑
j∈[m]

∇Lj(xt)

)∥∥∥∥∥
≤

∥∥∥∥∥xt − xt+1 + xt+1

− Proxh

xt − 1

m

∑
j∈[m]

∇Lj(xt)

∥∥∥∥∥
≤
∥∥xt − xt+1

∥∥
+

∥∥∥∥∥Proxh

[
xt+1 −

(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )

−∇L1(xt1) + ρ
(
xt+1 − xt

))]

− Proxh

xt − 1

m

∑
j∈[m]

∇Lj(xt)

∥∥∥∥∥
(a)

≤

∥∥∥∥∥(1 + ρ)(xt+1 − xt) +
1

m

∑
j∈[m]

∇Lj(xt)

− 1

m

∑
j∈[m]

∇Lj(xtj )−
(
∇L1(xt+1)−∇L1(xt1)

) ∥∥∥∥∥
+
∥∥∆(t)

∥∥
≤ (2 + ρ)

∥∥∆(t)
∥∥+ 2L

τ∑
k=0

∥∥∆(t−k)
∥∥

−→ 0, t→∞. (11)

Note that here inequality (a) holds because of the nonexpan-
siveness of the operator Proxh. The last inequality follows
from Assumption III.1.

Let X∗ be the set of stationary points of problem (2), and

let

dist
(
xt,X∗

)
:= min

x̂∈X∗
‖xt − x̂‖

denote the distance between xt and the set X∗. Now we prove

lim
t→∞

dist
(
xt,X∗

)
= 0.

Suppose there exists a subsequence {xtk} of {xt} such that
xtk → x̂, k →∞ but

lim
k→∞

dist(xtk ,X∗) ≥ γ > 0. (12)

Then it is obvious that lim
k→∞

dist(xtk , x̂) = 0. Therefore there
exists some K(γ) > 0, such that

‖xtk − x̂‖ ≤ γ

2
, k > K(γ). (13)

On the other hand, from (11) and the lower semi-continuity
of h(x) we have x̂ ∈ X∗, so by the definition of the distance
function we have

dist(xtk ,X∗) ≤ dist(xtk , x̂). (14)

Combining (13) and (14), we must have

dist(xtk ,X∗) ≤ γ

2
, k > K(γ).

This contradicts to (12), so the second result is proved.
We finally prove the third conclusion of the Theorem.

Summing (11) over t yields

T∑
t=0

∥∥∥∥∥xt − Proxh

xt − 1

m

∑
j∈[m]

∇Lj(xt)

∥∥∥∥∥
2

≤
T∑
t=0

2(2 + ρ)2
∥∥∆(t)

∥∥2
+ 2(2L)2

T∑
t=0

τ∑
k=0

∥∥∆(t−k)
∥∥2

≤
(
2(2 + ρ)2 + 8L2τ

) T∑
t=0

∥∥∆(t)
∥∥2
. (15)

Combining (9) and (15) we have
T∑
t=0

∥∥∥∇̃L (xt)∥∥∥2

≤ µ

c

(
F(x1,x0)− F(xT+1,xT )

)
,

where µ :=
(
2(2 + ρ)2 + 8L2τ

)
.

Let T (ε) := min
{
t |
∥∥∥∇̃L(xt)

∥∥∥ ≤ ε, t ≥ 0
}

. Then the
above inequality implies

T (ε)ε ≤ µ

c

(
F(x1,x0)− F(xT+1,xT )

)
.

Thus it follows that

ε ≤
C ·
(
F(x1,x0)− F

)
T (ε)

,

where C := µ
c > 0, proving Theorem III.1.

Besides the convergence in the nonconvex setting, in the
following theorem we show that the proposed algorithm con-
verges linearly if Lj is strongly convex. Quite interestingly,
comparing with the results of [8]–[10], here the linear conver-
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gence is established without any statistical assumption of the
data stored in each local machine.

Theorem III.2. Suppose Assumption II.1, III.1, and III.2 are
satisfied. If ρ is sufficiently large such that

δ1L+ ρ
2 (1 + δ1)

ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ

2
+ Lδτ < 0

and
δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ

2
+ Lδτ

− ρη

2
+
(L
δ

+
δ1
2 L

2τ
ρ
2 (1 + δ1) + δ1

)ητ − 1

η − 1
< 0,

for some δ > 0 and δ1 > (2L + ρ + 1)/σ2, then it holds for
the sequence generated by (EDANNI) that

0 ≤ F(xt+1,xt)− F(x∗,x∗)

≤ 1

ηt
(F(x1,x0)− F(x∗,x∗)),

where η := 1 + 1
ρ
2 (1+δ1)+δ1

.
Note the above conditions can be satisfied when ρ is

sufficiently larger than the order of L and the exponential of τ
and δ1 is larger than the order of L/σ2. Theorem III.2 asserts
that with the strongly convexity of Lj’s, the augmented opti-
mality gap decreases linearly to zero under these conditions.
Moreover, Assumption III.2 can be replaced by only requiring
each Lj is convex and 1

m

∑
j∈[m] Lj is strongly convex with

modulus σ2. To prove Theorem III.2, we need the following
lemma to bound the optimality gap of function F.
Lemma III.4. Suppose Assumption II.1, III.1, and III.2 hold
and δ1 > (2L + ρ + 1)/σ2 for some δ1 > 0, then it follows
that

1
ρ
2 (1 + δ1) + δ1

(
F(xt+1,xt)− F(x∗,x∗)

)
≤
δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

‖xt − xt+1‖2

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2. (16)

The proof of Lemma III.4 is in the Appendix. Now we begin
to prove Theorem III.2.

Proof of Theorem III.2. We begin by defining ∆̃(t+1) =
F(xt+1,xt)−F(x∗,x∗). Then from the proof of Lemma III.2
it holds that

∆̃(t+1) ≤ ∆̃(t) +

(
3L

2
− ρ

2
+ Lδτ

)∥∥∆(t)
∥∥2

−ρ
2

∥∥∆(t−1)
∥∥2

+

(
L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2

)
(17)

Note that from (16) of Lemma III.4 we have

1
ρ
2 (1 + δ1) + δ1

∆̃(t+1) ≤
δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

∥∥∆(t)
∥∥2

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2 (18)

By combining (18) and (17), we have the following bound
of the LHS:(

1 +
1

ρ
2 (1 + δ1) + δ1

)
∆̃(t+1)

≤ ∆̃(t) +
[δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ

2
+ Lδτ

]∥∥∆(t)
∥∥2

− ρ

2

∥∥∆(t−1)
∥∥2

+
L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2. (19)

Inequality (19) gives us an relation between ∆̃(t+1) and ∆̃(t).
Let us define η := 1 + 1

ρ
2 (1+δ1)+δ1

and

(P3) :=
δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ

2
+ Lδτ,

then by applying (19) recursively we have

∆̃(t+1)

≤ 1

η
∆̃(t) +

1

η
(P3)

∥∥∆(t)
∥∥2 − ρ

2η

∥∥∆(t−1)
∥∥2

+
L

δη

τ∑
k=1

∥∥∆(t−k)
∥∥2

+
1

η

1
ρ
2 (1 + δ1) + δ1

δ1L
2

2m

∑
j∈[m]

‖xtj − xt‖2

≤ 1

η2
∆̃(t−1) +

1

η

(
1

η
(P3)

∥∥∆(t−1)
∥∥2 − ρ

2η

∥∥∆(t−2)
∥∥2
)

+
1

η
(P3)

∥∥∆(t)
∥∥− ρ

2η

∥∥∆(t−1)
∥∥2

+

(
L

δη

τ∑
k=1

∥∥∆(t−k)
∥∥2

+
L

δη2

τ∑
k=1

∥∥∆(t−1−k)
∥∥2

)

+
1

η2

1
ρ
2 (1 + δ1) + δ1

δ1
2m

L2
1∑
l=0

1

ηl+1

∑
j∈[m]

τ∑
k=1

∥∥∆(t−l−k)
∥∥2

· · ·

≤ 1

ηt
∆̃(1) +

1

η
(P3)

∥∥∆(t)
∥∥2

+
( 1

η2
(P3)− ρ

2η

)∥∥∆(t−1)
∥∥2

+
( 1

η3
(P3)− ρ

2η2

)∥∥∆(t−2)
∥∥2

+ · · ·

+
( 1

ηt+1
(P3)− ρ

2ηt
)∥∥∆(0)

∥∥2
+
( L
δη

t∑
l=0

1

ηl

τ∑
k=1

∥∥∆(t−l−k)
∥∥2
)

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
t∑
l=0

1

ηl+1

∑
j∈[m]

τ∑
k=1

∥∥∆(t−l−k)
∥∥2

≤ 1

ηt
∆̃(1) +

1

η
(P3)

∥∥∆(t)
∥∥2

+

(
1

η2
(P3)− ρ

2η

)∥∥∆(t−1)
∥∥2

+

(
1

η3
(P3)− ρ

2η2

)∥∥∆(t−2)
∥∥2

+ · · ·

+

(
1

ηt+1
(P3)− ρ

2ηt

)∥∥∆(0)
∥∥2

+
(L
δ

+
δ1
2 L

2τ
ρ
2 (1 + δ1) + δ1

)ητ − 1

η − 1

t∑
l=1

1

ηl+1

∥∥∆(t−l)∥∥2
,
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where we use the fact that
t∑
l=0

1

ηl+1

τ∑
k=1

∥∥∆(t−l−k)
∥∥2

= η−t−1
t∑
l=0

ηt

ηl

τ∑
k=1

∥∥∆(t−l−k)
∥∥2

= η−t−1
t∑

j=0

ηj
τ∑
k=1

∥∥∆(j−k)
∥∥2

(h)

≤ η−t−1
t−1∑
j=0

ηj+1(1 + η + · · ·+ ητ−1)
∥∥∆(j)

∥∥2

≤ ητ − 1

η − 1

t−1∑
j=0

1

ηt−j
∥∥∆(j)

∥∥2

≤ ητ − 1

η − 1

t∑
l=1

1

ηl+1

∥∥∆(t−l)∥∥2
.

The inequality (h) holds because the coefficient of
∥∥∆(j)

∥∥2

in the summation is less than ηj+1(1 + η + · · ·+ ητ−1).
Therefore if ρ > 0 satisfies that

(P3) :=
δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ

2
+ Lδτ < 0, (20)

and

(P3)− ρη

2
+
(L
δ

+
δ1
2 L

2τ
ρ
2 (1 + δ1) + δ1

)ητ − 1

η − 1

=
δ1L+ ρ

2 (1 + δ1)
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ

2
+ Lδτ

− ρη

2
+
(L
δ

+
δ1
2 L

2τ
ρ
2 (1 + δ1) + δ1

)ητ − 1

η − 1
< 0, (21)

then we have

0 ≤ ∆̃(t+1) ≤ 1

ηt
∆̃(1).

The conclusion is proved.

A. Inexactly Solving the Subproblems

In this section we discuss the case where subproblem (3) is
not solved exactly. The motivation is that in some practical
applications, it may not be easy to exactly minimize the
objective function. The following analysis shows that the
convergence still holds true when there are small errors in
solving the subproblems, thus implying the robustness of the
proposed algorithm. Specifically, we assume subproblem (3)
is solved with some error at iteration t; that is, there is an
error εt such that

εt ∈ ∇L1(xt+1) + 1
m

∑
j∈[m]∇Lj(xtj )−∇L1(xt1)

+∂h(xt+1) + ρ
(
xt+1 − xt

)
, (22)

which is equivalent to

xt+1 = Proxh
[
xt+1 −

(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )

−∇L1(xt1) + ρ
(
xt+1 − xt

)
− εt

)]
. (23)

First, we introduce the following assumption that gives the
bound of the error term.

Assumption III.4. The error term in (22) satisfies

‖εt‖2 < c1
∥∥∆(t−1)

∥∥2
, for t > 0.

This assumption requires that the error in solving the
subproblem is bounded by a constant times the progress
of xt in the previous iteration. Note that when ∆(t−1) :=
xt − xt−1 = 0, it holds that xt is a stationary point in
the nonconvex scenario and xt = x∗ in the strongly convex
scenario. Following the proof steps in Lemma III.1, we have
ρ

2
‖xt+1 − xt‖2 + h(xt+1)− ρ

2
‖xt − xt−1‖2 − h(xt)

≤ −
〈
∇L1(xt+1) +

1

m

m∑
j=1

∇Lj(xtj )−∇L1(xt1)− εt,

∆(t)
〉
− γ(ρ)

2

∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2
.

In the second step, for the descent of function F similar to
Lemma III.2 it holds that for any δ > 0

F(xt+1,xt)− F(xt,xt−1)

≤
(

3L
2 −

γ(ρ)
2 + Lδτ

)∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+L
δ

∑τ
k=1

∥∥∆(t−k)
∥∥2

+ 〈εt,∆(t)〉. (24)

Therefore Lemma III.3 still holds true by Assumption III.4
and (24). Now the first conclusion of Theorem III.1 can be
proved. Summing up inequality (24) over t yields

F(xT+1,xT )− F(x1,x0)

≤
T∑
t=1

(
3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2

+

T∑
t=1

(
Lτ

δ
− ρ

2

)∥∥∆(t−1)
∥∥2

+

T∑
t=1

〈εt,∆(t)〉

≤
T∑
t=1

(
3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2

+

T∑
t=1

(
Lτ

δ
− ρ

2

)∥∥∆(t−1)
∥∥2

+
1

2

T∑
t=1

(‖εt‖2 +
∥∥∆(t)

∥∥2
)

≤
T∑
t=1

(
3L

2
− γ(ρ)

2
+ Lδτ +

1

2

)∥∥∆(t)
∥∥2

+

T∑
t=1

(
Lτ

δ
− ρ

2
+

1

2
c1

)∥∥∆(t−1)
∥∥2
,

where in the last inequality we use Assumption III.4.
Now define c̃ := min

{γ(ρ)
2 −

3L
2 −Lδτ−

1
2 ,

ρ
2−

Lτ
δ −

1
2c1
}

.
Assume that

γ(ρ) > 3L+ 2Lδτ + 1 and ρ >
2Lτ

δ
+ c1, (25)

then we have c̃ > 0. Therefore

F(xT+1,xT )− F(x1,x0) ≤ −c̃
T∑
t=0

∥∥∆(t)
∥∥2
. (26)

Note that by Lemma III.3 the LHS of (26) is bounded from
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below. It follows that∥∥∆(t)
∥∥→ 0, t→∞.

We now establish the second conclusion of Theorem III.1.
From (23) we know that

xt+1 = Proxh
[
xt+1 −

(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )

−∇L1(xt1) + ρ
(
xt+1 − xt

)
+ εt

)]
,

where Proxh is a proximal operator defined by Proxh[z] :=
argmin

x
h(x) + 1

2‖x− z‖
2. This implies that

∥∥∥∥∥xt − Proxh

xt − 1

m

∑
j∈[m]

∇Lj(xt)

∥∥∥∥∥
≤

∥∥∥∥∥xt − xt+1 + xt+1

− Proxh

xt − 1

m

∑
j∈[m]

∇Lj(xt)

∥∥∥∥∥
≤
∥∥xt − xt+1

∥∥
+

∥∥∥∥∥Proxh

[
xt+1 −

(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )

−∇L1(xt1) + ρ
(
xt+1 − xt

)
− εt

)]

− Proxh

xt − 1

m

∑
j∈[m]

∇Lj(xt)

∥∥∥∥∥
(ã)

≤

∥∥∥∥∥(1 + ρ)(xt+1 − xt)− εt +
1

m

∑
j∈[m]

∇Lj(xt)

− 1

m

∑
j∈[m]

∇Lj(xtj )−
(
∇L1(xt+1)−∇L1(xt1)

) ∥∥∥∥∥
+
∥∥∆(t)

∥∥
≤ (2 + ρ)

∥∥∆(t)
∥∥+ 2L

τ∑
k=0

∥∥∆(t−k)
∥∥+ c

1
2
1

∥∥∆(t−1)
∥∥

−→ 0, t→∞. (27)

Note that here inequality (ã) holds because of the nonexpan-
siveness of the operator Proxh. The last inequality follows
from Assumption III.1. Therefore as in the proof of Theo-
rem III.1, the second result holds.

The rest analysis is the same as that of Theorem III.1.
Specifically it holds that

T∑
t=0

∥∥∥∇̃L (xt)∥∥∥2

≤ µ̃

c̃

(
F(x1,x0)− F(xT+1,xT )

)
,

where µ̃ := 3
(

2 + ρ+ 2Lτ + c
1
2
1

)
.

Recall that T (ε) := min
{
t |
∥∥∥∇̃L(xt)

∥∥∥ ≤ ε, t ≥ 0
}

, thus

it follows that

ε ≤
C ·
(
F(x1,x0)− F

)
T (ε)

,

where C := µ̃
c̃ > 0. Therefore we have the following corollary.

Corollary III.1. Let Assumptions II.1 III.1, III.3(II), and III.4
hold, and suppose ρ satisfies (25). Then all conclusions in The-
orem III.1 hold true for the sequence generated by (EDANNI)
with subproblems being solved inexactly (as quantified above).

Results corresponding to Theorem III.2 also holds in the
scenario of solving the subproblems inexactly. Similar to
Lemma III.4, the optimality gap of function F can be bounded
by

1
ρ
2 (1 + δ1) + δ1

(
F(xt+1,xt)− F(x∗,x∗)

)
≤ δ1L

ρ
2 (1 + δ1) + δ1

‖xt − xt+1‖2

+
ρ
2 (1 + δ1)

ρ
2 (1 + δ1) + δ1

‖xt − xt+1‖2

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2

+
(1

2
‖εt‖2 +

1

2

∥∥∆(t)
∥∥2) 1

ρ
2 (1 + δ1) + δ1

. (28)

Following the steps of Lemma III.2, we have

F(xt+1,xt)− F(xt,xt−1)

≤
(

3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+
L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2

+ 〈εt,∆(t)〉. (29)

Combining (28) and (29) and then applying the Assump-
tion III.4 leads to(

1 +
1

ρ
2 (1 + δ1) + δ1

)
∆̃(t+1)

≤ ∆̃(t) − ρ− c1
2

∥∥∆(t−1)
∥∥2

+
L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2

+
[δ1L+ ρ

2 (1 + δ1) + 1
2

ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ− 1

2
+ Lδτ

]∥∥∆(t)
∥∥2

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2

+
c1

ρ
2 (1 + δ1) + δ1

∥∥∆(t−1)
∥∥2
.

By a recursive argument similar to the proof of Theo-
rem III.2, one can prove that if ρ > 0 satisfies that

δ1L+ ρ
2 (1 + δ1) + 1

2
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ− 1

2
+ Lδτ < 0 (30)
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and

δ1L+ ρ
2 (1 + δ1) + 1

2
ρ
2 (1 + δ1) + δ1

+
3L

2
− ρ− 1

2
+ Lδτ − (ρ− c1)η

2

+

(
L

δ
+

δ1
2 L

2τ
ρ
2 (1 + δ1) + δ1

)
ητ − 1

η − 1
+

c1η
ρ
2 (1 + δ1) + δ1

< 0,

(31)

then we have

0 ≤ ∆̃(t+1) ≤ 1

ηt
∆̃(1).

In summary we have the following corollary.

Corollary III.2. Suppose Assumption II.1, III.1, III.2, and
III.4 are satisfied. If ρ satisfies (30) and (31) for some δ > 0
and δ1 > (2L+ρ+1)/σ2, then for the sequence generated by
(EDANNI) with subproblems being solved inexactly we have

0 ≤ F(xt+1,xt)− F(x∗,x∗)

≤ 1

ηt

(
F(x1,x0)− F(x∗,x∗)

)
,

where η := 1 + 1
ρ
2 (1+δ1)+δ1

.

IV. EXPERIMENTS

Now we test our algorithm on both a convex application
(LASSO) and a nonconvex application (Sparse PCA). In both
settings, we compare with various advanced algorithms:

(1) Efficient Distributed Learning with the Parameter Server
(Parameter Server): the state-of-the-art proximal gradient
descent based framework with the parameter server pro-
posed in [19].

(2) Asynchronous Distributed ADMM (AD-ADMM): the
ADMM based asynchronous algorithm proposed in [20].

(3) Efficient Distributed Algorithm for Nonconvex-
Nonsmooth Inference (EDANNI): the proposed approach
in this paper.

We first compare their communication cost, that is, the total
number of transmissions between the master and the workers.
Then the effects of the asynchrony on the working time and
the idle time are examined.

A. LASSO

In this example, to demonstrate the convergence perfor-
mance of the above algorithms in terms of communication
rounds, we consider the following LASSO problem

argmin
w∈Rp

1

2mn

∑
j∈[m]

∑
i∈[n]

∥∥xTjiw − yji∥∥2
+ θ‖w‖1, (32)

where θ > 0 is the coefficient of the regularizer. Note that from
now on we switch the notation to let the unknown quantity be
denoted by w instead of x.

The data {xji}i∈[n],j∈[m] is independently sampled from
a multivariate Gaussian distribution with zero mean and co-
variance matrix Σ. For r ∈ [p], t ∈ [p], the rt-th entry

TABLE I
COMPARISON OF THE COMMUNICATION COST FOR LASSO

Type Parameters Method Communication(m,n,p,s,θ)

Synchronous

(10,1000,500,5,0.01)
AD-ADMM 21.9

PS 1.7
EDANNI 1

(20,500,500,5,0.01)
AD-ADMM 34.1

PS 1.3
EDANNI 1

(20,500,1000,10,0.01)
AD-ADMM 8.3

PS 1.4
EDANNI 1

Asynchronous

(10,1000,500,5,0.01)
AD-ADMM 20.6

PS 1.2
EDANNI 1

(20,500,500,5,0.01)
AD-ADMM 35.1

PS 1.3
(τ = 10) EDANNI 1

(20,500,1000,10,0.01)
AD-ADMM 6.7

PS 1.5
EDANNI 1

of covariance matrix is set to be: |Σrt| = 0.5|r−t|. The
corresponding yji is constructed by

yji = xTjiw
∗ + εji, ∀j ∈ [m], i ∈ [n],

where noise εji is a zero mean Gaussian random variable with
variance 0.01. The true parameter w∗ is s-sparse where all the
entries are zero except that the first s entries are i.i.d random
variables from a uniform distribution in [0,1]. The sparsity s
is set to be 0.01× p, where p is the dimension of data xji.

Those algorithms are compared in the setting where m =
20, n = 500, p = 1000, s = 10, and θ = 0.01. Even though
Theorem III.1 suggests that ρ should be a larger value, we
find that ρ = 0 works well for this case. Both the synchronous
scenario and the asynchronous scenario are considered. To
simulate the asynchronous case, in each iteration half of the
workers are assumed to be arrived with probability 0.2 and
the other workers are assumed be arrived with probability 0.5.
Moreover, the maximum tolerable delay τ is set be 3 and
the master will update the variables once the workers j with
dj > τ − 1 have arrived.
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(a) Synchronous, (7.7, 1.3, 1)

50 100 150 200 25010
− 2

10− 1

10
0

101

102

103

Rounds of Communications

O
bj

ec
tiv

e 
Va

lu
e

DADMM 
Parameter Server 
EDANNI

(b) Asynchronous, (6.7, 1.5, 1)

Fig. 2. Comparison of candidate algorithms in LASSO when m = 20,
n = 500, p = 1000, s = 10, and X ∼ N (0,Σ).

One can observe from Figure 2 that the proposed algorithm
indeed converges faster than AD-ADMM and Parameter Serv-
er in terms of communication rounds, in both the synchronous
scenario and the asynchronous scenario. The triple of numbers
in each figure’s caption indicates the communication cost
needed for AD-ADMM, Parameter Server, and EDANNI to
attain the minimum objective value with error less than 10−6.
For simplicity, we scale the communication complexity of
EDANNI to 1. The results for other settings of m,n, p, s
are summarized in Table I. It is shown in these results that
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Fig. 3. Comparison of EDANNI in LASSO with different settings of τ when
ρ = 0.

EDANNI is the most communication-efficient among the three
algorithms.

Figure 3 shows the performance of the proposed approach
when we choose different maximum tolerable delay τ . It can
be observed from Figure 3 (a) that the convergence rate varies
much with different values of τ . Basically, EDANNI converges
faster when τ is larger, and converges relatively slower when
τ = 0 (i.e., the synchronous case). The results in Figure 3 (b)
shows that the ratio of the computing time over the idle time
increases when the delay bound τ becomes larger, therefore
speeding up the convergence. Here the distributed implemen-
tation is simulated on a single machine by randomly setting
the computation speed for each node from a uniform[1, 10]
distribution.

B. Sparse PCA

To verify the convergence conclusion of Theorem III.1 for
nonconvex nonsmooth problems, we consider the following
sparse PCA problem [4]:

argmin
w∈Rp

− 1

mn

∑
j∈[m]

∑
i∈[n]

wTBjiB
T
jiw + θ‖w‖1,

s.t. ‖w‖ ≤ 1 (33)

where Bji ∈ Rp×q is a sparse matrix, ∀j ∈ [m], i ∈ [n],
and the regularization coefficient θ > 0. Note that this is
not a convex problem. In this example, we set m = 3,
n = 20 p = 500, q = 1000, and θ = 0.1. Each matrix
Bji ∈ R500×1000 is a sparse random matrix with nearly
s = 3000 non-zero entries. The parameter ρ in (3) is set
to ρ = 2λmax

(∑
j∈[m]BjiB

T
ji

)
. The candidate algorithms

are compared in both the synchronous scenario and the
asynchronous scenario. One can see from Figure 4 (a) and
Figure 4 (b) that the proposed approach converges much
faster than AD-ADMM and Parameter Server with much
less communication cost. The results for other settings of
m,n, p, q, s in Table II also verify such a conclusion.

The performance of the proposed approach with different
maximum tolerable delay τ is summarized in Figure 5. Here
the distributed implementation is simulated in the same way
as in the LASSO case. In Figure 5 we set m = 6, n = 20
p = 100, q = 1000. One can observe from Figure 5 (a) that in
this example the convergence rate in terms of time is indeed
affected by values of τ . The running time when τ = 15 is
much less than that when τ is small. Similar to the LASSO

case, Figure 5 (b) shows that the ratio of the computing time in
the overall running time increases closely to 1 when the delay
bound τ becomes 15, therefore speeding up the convergence.
Such results can be observed generally regardless of the choice
of parameters m,n, p, q, s, θ.

50 100 150 200 250 300
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4
AD-ADMM
Parameter Server
EDANNI

Rounds of Communications

O
bj

ec
tiv

e 
Va

lu
e

(a) Synchronous, (2.5, 2.0, 1)

50 100 150 200 250 300
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4
AD-ADMM
Parameter Server
EDANNI

Rounds of Communications

O
bj

ec
tiv

e 
Va

lu
e

(b) Asynchronous, (3.2, 2.0, 1)
Fig. 4. Comparison of candidate algorithms in sparse PCA.

0 100 200 300 400 500
-1.1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4
-0.3

=1
=5
=10
=15

Time

O
bj

ec
tiv

e 
Va

lu
e

(a) Convergence for different τ ’s

0

50

100

150

200

250

300

350

400

450

T
im

e

Working Time
Idle Time

(b) Time table for different τ ’s
Fig. 5. Comparison of EDANNI in sparse PCA with different settings of τ
when ρ = 2.

TABLE II
COMPARISON OF THE COMMUNICATION COST FOR SPCA

Type Parameters Method Communication(m,n,p,q,s,θ)

Synchronous

(20,100,50,100,50,0.1)
AD-ADMM 11.5

PS 2.4
EDANNI 1

(30,200,50,100,50,0.1)
AD-ADMM 30.0

PS 2.5
EDANNI 1

(3,20,500,1000,500,0.1)
AD-ADMM 5.2

PS 1.7
EDANNI 1

Asynchronous

(20,100,50,100,50,0.1) AD-ADMM 12.5
(τ = 3) PS 4.1

EDANNI 1

(30,200,50,100,50,0.1) AD-ADMM 31.1
(τ = 10) PS 7.2

EDANNI 1

(3,20,500,1000,500,0.1) AD-ADMM 6.3
(τ = 3) PS 2.0

EDANNI 1

V. CONCLUSION

This paper proposes a communication-efficient distributed
algorithm (EDANNI) solving a general problem (2) in signal
processing and machine learning under an asynchronous proto-
col. Theoretically, we prove the proposed algorithm converges
to a stationary point in a sublinear rate, even in nonconvex
nonsmooth scenarios. Moreover, unlike the previous work,
linear convergence rate is established in strongly convex sce-
narios without any statistical assumptions of the local data. In
experiments, we compare EDANNI with other state-of-the-art
distributed algorithms in different applications, and the results
show the superior performance of the proposed algorithm in
terms of communication efficiency and the speed up caused
by the asynchrony.
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tion: Unifying framework for 8 sparse PCA formulations and efficient
parallel codes,” arXiv preprint arXiv:1212.4137, 2012.

[5] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks. ACM, 2004, pp. 20–27.

[6] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimiza-
tion,” in Advances in Neural Information Processing Systems, 2011, pp.
873–881.

[7] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, “Parallel
coordinate descent for l1-regularized loss minimization,” arXiv preprint
arXiv:1105.5379, 2011.

[8] J. Wang, M. Kolar, N. Srebro, and T. Zhang, “Efficient distributed
learning with sparsity,” in Proceedings of the International Conference
on Machine Learning, 2017, pp. 3636–3645.

[9] M. I. Jordan, J. D. Lee, and Y. Yang, “Communication-efficient
distributed statistical inference,” arXiv preprint arXiv: 1605.07689,
2016.

[10] J. Ren, X. Li, and J. Haupt, “Communication-efficient distributed
optimization for sparse learning via two-way truncation,” in IEEE
International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2017.

[11] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

[12] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems, 2011, pp. 693–701.

[13] M. Hong, “A distributed, asynchronous and incremental algorithm for
nonconvex optimization: An ADMM based approach,” arXiv preprint
arXiv:1412.6058, 2014.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[15] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Advances in Neural Information Processing
Systems, 2010, pp. 2595–2603.

[16] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
Numerical methods, vol. 23, Prentice hall Englewood Cliffs, NJ, 1989.

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al., “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems, 2012,
pp. 1223–1231.

[18] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B. Su, “Scaling distributed machine learning
with the parameter server.,” in OSDI, 2014, vol. 14, pp. 583–598.

[19] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” in
Advances in Neural Information Processing Systems, 2014, pp. 19–27.

[20] T. Chang, M. Hong, W. Liao, and X. Wang, “Asynchronous distributed
admm for large-scale optimization Part I: Algorithm and convergence
analysis,” IEEE Transactions on Signal Processing, vol. 64, no. 12, pp.
3118–3130, 2016.

[21] T. Chang, W. Liao, M. Hong, and X. Wang, “Asynchronous distributed
admm for large-scale optimization Part II: Linear convergence analysis
and numerical performance,” IEEE Transactions on Signal Processing,
vol. 64, no. 12, pp. 3131–3144, 2016.

[22] J. Ren and J. Haupt, “Provably communication-efficient asynchronous
distributed inference for convex and nonconvex problems,” in IEEE
Global Conference on Signal and Information Processing, 2018.

[23] M. Ma, J. Ren, G. B. Giannakis, and J. Haupt, “Fast asynchronous
decentralized optimization: allowing multiple masters,” in IEEE Global
Conference on Signal and Information Processing, 2018.

[24] L. Cannelli, F. Facchinei, V. Kungurtsev, and G. Scutari, “Asynchronous
parallel algorithms for nonconvex big-data optimization. part I: Model
and convergence,” arXiv preprint arXiv:1607.04818, 2016.

[25] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent:
Parallelism and convergence properties,” SIAM Journal on Optimization,
vol. 25, no. 1, pp. 351–376, 2015.

[26] A. Aytekin, H. R. Feyzmahdavian, and M. Johansson, “Analysis
and implementation of an asynchronous optimization algorithm for the
parameter server,” arXiv preprint arXiv:1610.05507, 2016.

[27] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal
distributed online prediction using mini-batches,” Journal of Machine
Learning Research, vol. 13, no. Jan, pp. 165–202, 2012.

[28] Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-
efficient algorithms for statistical optimization,” in Advances in Neural
Information Processing Systems, 2012, pp. 1502–1510.

[29] O. Shamir and N. Srebro, “Distributed stochastic optimization and
learning,” in 52nd Annual Allerton Conference on Communication,
Control, and Computing, 2014, pp. 850–857.

[30] Y. Arjevani and O. Shamir, “Communication complexity of distributed
convex learning and optimization,” in Advances in Neural Information
Processing Systems, 2015, pp. 1756–1764.

[31] J. D. Lee, Q. Lin, T. Ma, and T. Yang, “Distributed stochastic vari-
ance reduced gradient methods and a lower bound for communication
complexity,” arXiv preprint arXiv:1507.07595, 2015.

[32] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, and G. S. Mann,
“Efficient large-scale distributed training of conditional maximum en-
tropy models,” in Advances in Neural Information Processing Systems,
2009, pp. 1231–1239.

[33] C. Huang and X. Huo, “A distributed one-step estimator,” arXiv preprint
arXiv:1511.01443, 2015.

[34] T. Yang, “Trading computation for communication: Distributed stochas-
tic dual coordinate ascent,” in Advances in Neural Information Process-
ing Systems, 2013, pp. 629–637.

[35] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč,
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APPENDIX A
PROOFS OF LEMMATA

A. Proof of Lemma III.1

Using optimality of xt+1 in the update (3), we have

−

[
∇L1(xt+1) +

1

m

m∑
j=1

∇Lj(xtj )−∇L1(xt1)

]
∈ ∂

[
h(x) + ρ

2 ‖x− xt‖2
]
. (34)

Recall that in Assumption III.3 (I), we define the convex
modulus of ρ

2‖x− xt‖2 + h(x) by γ(ρ). It follows that
ρ
2‖x

t+1 − xt‖2 + h(xt+1)−
(
ρ
2‖x

t − xt‖2 + h(xt)
)

≤

〈
−
[
∇L1(xt+1) +

1

m

m∑
j=1

∇Lj(xtj )−∇L1(xt1)
]
,

xt+1 − xt

〉
− γ(ρ)

2
‖xt+1 − xt‖2

= −

〈
∇L1(xt+1) +

1

m

m∑
j=1

∇Lj(xtj )−∇L1(xt1),

∆(t)

〉
− γ(ρ)

2

∥∥∆(t)
∥∥2
,

where we define ∆(t) := xt+1 − xt. Therefore
ρ

2
‖xt+1 − xt‖2 + h(xt+1)− ρ

2
‖xt − xt−1‖2 − h(xt)

=
ρ

2
‖xt+1 − xt‖2 + h(xt+1)− ρ

2
‖xt − xt‖2 − h(xt)

+
ρ

2
‖xt − xt‖2 + h(xt)− ρ

2
‖xt − xt−1‖2 − h(xt)

≤ −

〈
∇L1(xt+1) +

1

m

m∑
j=1

∇Lj(xtj )−∇L1(xt1),

∆(t)

〉
− γ(ρ)

2

∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2
, (35)

proving Lemma III.1.

B. Proof of Lemma III.2

It follows from Assumption III.1 that ∇Lj(x) is Lipschitz
continuous with constant L. Therefore we have

1

m

∑
j∈[m]

Lj(x
t+1)− 1

m

∑
j∈[m]

Lj(x
t)

≤

〈
xt+1 − xt,

1

m

∑
j∈[m]

∇Lj(xt)

〉
+
L

2
‖xt+1 − xt‖2

=

〈
∆(t),

1

m

∑
j∈[m]

∇Lj(xt)

〉
+
L

2

∥∥∆(t)
∥∥2
. (36)

By the above definition of fucntion F, combining (35) and (36)
results in

F(xt+1,xt)− F(xt,xt−1)

(b)

≤ −

〈
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )−∇L1(xt1),

∆(t)

〉
− γ(ρ)

2

∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+

〈
∆(t),

1

m

∑
j∈[m]

∇Lj(xt)

〉
+
L

2

∥∥∆(t)
∥∥2

= −

〈
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xt)−∇L1(xt),

∆(t)

〉
− γ(ρ)

2

∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+

〈
∆(t),

1

m

∑
j∈[m]

∇Lj(xt)

〉
+
L

2

∥∥∆(t)
∥∥2

+

〈
1

m

∑
j∈[m]

∇Lj(xt)−
1

m

∑
j∈[m]

∇Lj(xtj ),∆(t)

〉

+
〈
∇L1(xt1)−∇L1(xt),∆(t)

〉
≤
(

3L

2
− γ(ρ)

2

)∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+

〈
1

m

∑
j∈[m]

∇Lj(xt)−
1

m

∑
j∈[m]

∇Lj(xtj ),∆(t)

〉
︸ ︷︷ ︸

(P1)

+
〈
∇L1(xt1)−∇L1(xt),∆(t)

〉
︸ ︷︷ ︸

(P1)

, (37)

where inequality (b) is due to Lemma III.1 and Assump-
tion III.1.

Note that

∇L1(xt1)−∇L1(xt)

=

t−t1∑
k=1

(
∇L1(xt−k)−∇L1(xt−k+1)

)
,

which implies

‖∇L1(xt1)−∇L1(xt)‖

≤
t−t1∑
k=1

∥∥∇L1(xt−k)−∇L1(xt−k+1)
∥∥

≤
t−t1∑
k=1

L
∥∥xt−k − xt−k+1

∥∥
≤

τ∑
k=1

L
∥∥xt−k − xt−k+1

∥∥
=

τ∑
k=1

L
∥∥∆(t−k)

∥∥.
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Similarly, we can see∥∥∥ 1
m

∑
j∈[m]∇Lj(xt)−

1
m

∑
j∈[m]∇Lj(xtj )

∥∥∥
≤

τ∑
k=1

L
∥∥∆(t−k)

∥∥.
These two inequalities result in

(P1) ≤ 2L

τ∑
k=1

∥∥∆(t−k)
∥∥∥∥∆(t)

∥∥
≤ L

τ∑
k=1

(
1

δ

∥∥∆(t−k)
∥∥2

+ δ
∥∥∆(t)

∥∥2
)

≤ L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2

+ Lδτ
∥∥∆(t)

∥∥2
, (38)

where in the second inequality we apply the fact that

a · b ≤ 1

2

(
1

δ
a2 + δb2

)
for any a, b, δ > 0. By inserting (38) into (37) we have

F(xt+1,xt)− F(xt,xt−1)

≤
(

3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2 − ρ

2

∥∥∆(t−1)
∥∥2

+
L

δ

τ∑
k=1

∥∥∆(t−k)
∥∥2
,

proving the conclusion of Lemma III.2.

C. Proof of Lemma III.3

First of all, summing the above inequality (8) of Lem-
ma III.2 over t yields

F(xT+1,xT )− F(x1,x0)

≤
T∑
t=0

(
3L

2
− γ(ρ)

2
+ Lδτ

)∥∥∆(t)
∥∥2

+

T∑
t=0

(
Lτ

δ
− ρ

2

)∥∥∆(t−1)
∥∥2
.

If ρ satisfies Assumption III.3, then it holds that

F(xT+1,xT )− F(x1,x0) < 0.

By taking xT as the initial point, similarly we have

F(x2T+1,x2T )− F(xT+1,xT ) < 0.

Continuing this process we get a decreasing subsequence{
F(xkT+1,xkT )

}
k=0,1,···. Therefore there exists a constant F̄0

such that

F(xkT+1,xkT ) ≤ F̄0. (39)

When starting with x1, · · · ,xT−1, with similar analysis we
can prove that there exists constants F̄1, · · · , F̄T−1 such that

F(xkT+l+1,xkT+l) ≤ F̄l, (40)

for l = 1, 2, · · · , T − 1. Define F̄ := max
{
F̄0, · · · , F̄T−1

}
,

then

F(xt+1,xt) < F̄ < +∞, ∀t ∈ N.

On the other hand, let F := L, then by the definition of
F(xt+1,xt) and Assumption III.3, we have

F(xt+1,xt)

=
1

m

∑
j∈[m]

Lj(x
t+1) +

ρ

2

∥∥xt+1 − xt
∥∥2

+ h(xt+1)

≥ 1

m

∑
j∈[m]

Lj(x
t+1) + h(xt+1)

= L(xt+1) > L = F > −∞,

for any t ∈ N. Therefore the boundedness of function F in
Lemma III.3 is proved.

D. Proof of Lemma III.4

To prove the convergence rate, we first need to
bound

(
F(xt+1,xt)− F(x∗,x∗)

)
, where F(x,xt) =

1
m

∑
j∈[m]

Lj(x) + ρ
2‖x − xt‖2 + h(x) ≥ F(x∗,x∗) =

1
m

∑
j∈[m]

Lj(x
∗) + h(x∗).

By the optimality of xt+1 in the update (3), we have(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )−∇L1(xt)

+ ∂h(xt+1) + ρ(xt+1 − xt)
)>

(xt+1 − x) ≤ 0, (41)

for all x ∈ Rp. Letting x = x∗ implies(
∇L1(xt+1) +

1

m

∑
j∈[m]

∇Lj(xtj )−∇L1(xt)

+ ∂h(xt+1) + ρ(xt+1 − xt)
)>

(xt+1 − x∗) ≤ 0. (42)

By the strong convexity of Lj one has

Lj(y) ≥ Lj(x) + (∇Lj(x))
>

(y − x) +
σ2

2
‖y − x‖2,

∀x, y ∈ Rp. (43)

Setting y = x∗, x = xt+1 in (43) we have

Lj(x
∗) ≥ Lj(x

t+1) +
(
∇Lj(xt+1)

)>
(x∗ − xt+1)

+
σ2

2
‖x∗ − xt+1‖2,

which further implies that(
∇Lj(xt+1)

)>
(xt+1 − x∗)

≥ Lj(x
t+1)− Lj(x

∗) +
σ2

2
‖x∗ − xt+1‖2. (44)



14

Note that (42) implies that(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xtj )

− 1

m

∑
j∈[m]

∇Lj(xt+1)
)

+
1

m

∑
j

∇Lj(xt+1)

+ ∂h(xt+1) + ρ(xt+1 − xt)
)>

(xt+1 − x∗) ≤ 0. (45)

Summing (44) over j ∈ [m] gives that

1

m

∑
j∈[m]

(
∇Lj(xt+1)

)>
(xt+1 − x∗) ≥ 1

m

∑
j∈[m]

Lj(x
t+1)

− 1

m

∑
j∈[m]

Lj(x
∗) +

σ2

2
‖x∗ − xt+1‖2.

(46)

Putting (46) into (45), we have(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xtj )

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

+
( 1

m

∑
j∈[m]

Lj(x
t+1)− 1

m

∑
j∈[m]

Lj(x
∗)
)

+
σ2

2
‖x∗ − xt+1‖2 + ∂h(xt+1)(xt+1 − x∗)

+ ρ(xt+1 − xt)>(xt+1 − x∗) ≤ 0. (47)

Since h(x) is convex, we have

h(xt+1)− h(x∗) ≤ ∂h(xt+1)(xt+1 − x∗).

Putting it into (47), we have(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xtj )

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

+
( 1

m

∑
j∈[m]

Lj(x
t+1)− 1

m

∑
j∈[m]

Lj(x
∗)
)

+
σ2

2
‖x∗ − xt+1‖2 + h(xt+1)− h(x∗)

+ ρ(xt+1 − xt)>(xt+1 − x∗) ≤ 0. (48)

Note that

ρ(xt+1 − xt)>(xt+1 − x∗) =
ρ

2
‖xt+1 − x∗‖2

+
ρ

2
‖xt+1 − xt‖2 − ρ

2
‖xt − x∗‖2. (49)

Then putting (49) into (48), one obtains(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xtj )

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

+
( 1

m

∑
j∈[m]

Lj(x
t+1)− 1

m

∑
j∈[m]

Lj(x
∗)
)

+
σ2

2
‖x∗ − xt+1‖2 + h(xt+1)− h(x∗)

+
ρ

2
‖xt+1 − xt‖2 +

ρ

2
‖xt+1 − x∗‖2 − ρ

2
‖xt − x∗‖2 ≤ 0,

which is equivalent to

F(xt+1,xt)− F(x∗,x∗) ≤ −σ
2

2
‖x∗ − xt+1‖2

−
(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xtj )

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

− ρ

2
‖xt+1 − x∗‖2 +

ρ

2
‖xt − x∗‖2. (50)

Now, note that(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xtj )

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

=
(
∇L1(xt+1)−∇L1(xt) +

1

m

∑
j∈[m]

∇Lj(xt)

− 1

m

∑
j∈[m]

∇Lj(xt+1)
)>

(xt+1 − x∗)

+
( 1

m

∑
j∈[m]

∇Lj(xtj )−
1

m

∑
j∈[m]

∇Lj(xt)
)>

(xt+1 − x∗)

︸ ︷︷ ︸
(P5)

.

(51)

By the Mean Value Theorem one has(
∇L1(xt+1)−∇L1(xt) +

( 1

m

∑
j∈[m]

∇Lj(xt)

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

= (xt+1 − xt)>
[
∇2L1(ξ)− 1

m

∑
j∈[m]

∇2Lj(ξ)
]

· (xt+1 − x∗)

=
1

2
‖xt+1 − x∗‖2Σ −

1

2
‖xt+1 − xt+1‖2Σ

+
1

2
‖xt − xt+1‖2Σ −

1

2
‖xt − x∗‖2Σ,
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where Σ := ∇2L1(ξ)− 1
m

∑
j∈[m]∇2Lj(ξ). It follows that(

∇L1(xt+1)−∇L1(xt) +
( 1

m

∑
j∈[m]

∇Lj(xt)

− 1

m

∑
j∈[m]

∇Lj(xt+1)
))>

(xt+1 − x∗)

=
1

2
‖xt+1 − x∗‖2Σ +

1

2
‖xt − xt+1‖2Σ

− 1

2
‖xt − xt+1 + xt+1 − x∗‖2Σ

≥ 1

2
‖xt+1 − x∗‖2Σ +

1

2
‖xt − xt+1]‖2Σ

− 1

2
(1 + δ1)‖xt+1 − xt‖2Σ −

1

2
(1 + 1/δ1)‖xt+1 − x∗‖2Σ

≥ −1

2
δ1‖xt − xt+1‖2Σ −

1

2δ1
‖xt+1 − x∗‖2Σ. (52)

Note that
ρ

2
‖xt − x∗‖2 =

ρ

2
‖xt − xt+1 + xt+1 − x∗‖2

≤ ρ

2
(1 + δ1)‖xt − xt+1‖2 +

ρ

2
(1 + 1/δ1)‖xt+1 − x∗‖2,

which implies that

− ρ

2
‖xt+1 − x∗‖2 +

ρ

2
‖xt − x∗‖2

≤ ρ

2
(1 + δ1)‖xt − xt+1‖2 +

ρ

2

1

δ1
‖xt+1 − x∗‖2. (53)

Putting (51), (52), and (53) into (50), we can bound the
optimality gap of function F by

F(xt+1,xt)− F(x∗,x∗) ≤ −σ
2

2
‖x∗ − xt+1‖2

+
1

2
δ1‖xt+1 − xt‖2Σ +

1

2δ1
‖xt+1 − x∗‖2Σ

− ρ

2
‖xt+1 − x∗‖2 +

ρ

2
‖xt − x∗‖2 − (P5)

= −σ
2

2
‖x∗ − xt+1‖2 +

1

2δ1
‖xt+1 − x∗‖2Σ

+
ρ

2δ1
‖xt+1 − x∗‖2 +

1

2
δ1‖xt+1 − xt‖2Σ

+
ρ

2
(1 + δ1)‖xt − xt+1‖2 − (P5). (54)

Now we bound (P5) on the RHS of (54). For some δ1 > 0
one has

(P5)

≥ − δ1
2m

∑
j∈[m]

‖∇Lj(xtj )−∇Lj(xt)‖2 −
1

2δ1
‖xt+1 − x∗‖2

≥ − δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2 − 1

2δ1
‖xt+1 − x∗‖2.

Therefore we have

F(xt+1,xt)− F(x∗,x∗)

≤ −σ
2

2
‖x∗ − xt+1‖2 +

1

2δ1
‖xt+1 − x∗‖2Σ

+
ρ

2δ1
‖xt+1 − x∗‖2 +

1

2
δ1‖xt+1 − xt‖2Σ

+
ρ

2
(1 + δ1)‖xt − xt+1‖2

+
δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2 +
1

2δ1
‖xt+1 − x∗‖2. (55)

Let σ2

2 > 2L
2δ1

+ ρ
2δ1

+ 1
2δ1

, i.e., σ2 > 2L
δ1

+ ρ
δ1

+ 1
δ1

, then

F(xt+1,xt)− F(x∗,x∗)

≤ 1

2
δ1‖xt+1 − xt‖2Σ +

ρ

2
(1 + δ1)‖xt − xt+1‖2

+
δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2

≤ δ1L‖xt+1 − xt‖2 +
ρ

2
(1 + δ1)‖xt − xt+1‖2

+
δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2, (56)

from which we have
1

ρ
2 (1 + δ1) + δ1

(
F(xt+1,xt)− F(x∗,x∗)

)
≤ δ1L

ρ
2 (1 + δ1) + δ1

‖xt − xt+1‖2

+
ρ
2 (1 + δ1)

ρ
2 (1 + δ1) + δ1

‖xt − xt+1‖2

+
1

ρ
2 (1 + δ1) + δ1

δ1
2m

L2
∑
j∈[m]

‖xtj − xt‖2,

therefore proving Lemma III.4.
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