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Abstract

We present a new method for estimating signal model parameters using the Cumulative 

Distribution Transform (CDT). Our approach minimizes the Wasserstein distance between 

measured and model signals. We derive some useful properties of the CDT and show that the 

resulting estimation problem, while nonlinear in the original signal domain, becomes a linear least 

squares problem in the transform domain. Furthermore, we discuss the properties of the estimator 

in the presence of noise and present a novel approach for mitigating the impact of the noise on the 

estimates. The proposed estimation approach is evaluated by applying it to a source localization 

problem and comparing its performance against traditional approaches.
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I. INTRODUCTION

SIGNAL parameter estimation is at the heart of many signal processing applications that 

involve localisation and tracking of a source signal, e.g. radar [1], underwater acoustics [2], 

source localization [3] [4], seismology [5] [6], communication [7] etc. All these systems 

require estimation of the values of a group of parameters. In radar systems, for example, the 
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estimated time delay and Doppler stretch between transmitted and received signals are used 

to determine the position and speed of a target object (Fig. 1a). Fig. 1b illustrates another 

example where the location of an AE (acoustic emission) source is determined using the 

estimated time difference of arrivals (TDOAs) of the signals received by four sensors. 

Typical estimation techniques involve maximizing the likelihood function [1], which most 

often yield to non-convex optimization problems. In this paper, we propose to solve the 

parametric signal estimation problem by minimizing Wasserstein distance between 

measured and model signals. To solve the ensuing transport problem, we rely on a novel 

technique called the cumulative distribution transform (CDT) introduced in [8] for the 

purposes of simplifying the estimation process.

A. Estimation as a transport problem

We propose to solve certain signal estimation problems borrowing concepts from optimal 

transport theory [9]. Specifically, we are interested in the case where a strictly positive 

quantity s(t) is undergoing a parameterized change of variables

sg(t) = gp′(t)s(gp(t)) (1)

where gp(t) is a one to one, differentiable function with parameters p e.g. gp(t) = ∑k = 0
K − 1 pktk

and gp′ (t) = dgp/dt . This signal model is particularly pertinent in physical situations where 

s(t) represents a conserved quantity, e.g., intensity, that evolves in time or space. To 

emphasize this point we note that Eqn. (1) can be restated as:

∫
−∞

t
sg(u)du = ∫

−∞

gp(t)
s(u)du (2)

which underscores the conservation of s(t) under the action of gp(t). Here, u is the 

integration variable. Indeed, Eqn. (1) is simply a Lagrangian restatement of the continuity 

equation from continuum mechanics where the function gp(t) transforms the independent 

variable according to the problem physics (see e.g., [10, 11]).

Such models are common in wave optics, for example, where Eqn. (1) is seen to operate on 

the squared magnitude of a wavefunction or an electric field (see e.g., Schrodinger equation 

[12] or paraxial wave equation [13, 14]). For example, if s(t) represents the time-varying 

optical intensity of a beam propagating through a lossless medium, gp(t) captures the 

influence of the medium to yield the modified intensity sg(t) [11]. Similar physics can be 

observed in phase modulated acoustic signals of finite duration (i.e., “pulses”) propagating 

through linear elastic solids [15]. In short, the signal model used in this work is consistent 

with data collected from a broad and important class of physical systems.

Note that measured signals may or may not conform to the approach outlined above since 

they may not be strictly positive or conserve energy. These properties can be guaranteed, 

however, under an appropriate normalization scheme. Denoting the measured signal 

zg(t), t ∈ Ωz, we can associate with this signal a positive probability density function (PDF):
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sg(t) = B(zg)(t): = zg2(t)
∫Ωzzg2(t)dt (3)

where B(.) is a normalization scheme that transforms raw signals into PDFs. Although this 

transformation is non-invertible, it guarantees strict positivity and a constant signal energy in 

accordance with our signal model (1). The impact of this normalization scheme on the 

estimation problem will be discussed in section (V). Note that B(zg) is not one-to-one 

function of zg(t), and thus critical phase information may not be retrieved [16]. This would 

impede us from performing correct estimation in case of estimating the shift of periodic 

signals (e.g. a pure sign wave); however, in this paper we are interested to estimate the 

parameters of signals that are mostly transient. Therefore our approach does not require 

recovering zg(t).

The goal of this work is to illustrate how relationships (1) and (2) can be leveraged to 

produce estimates of the parameters p of gp(t) that governs the modulation or modification 

of such signals. In particular, we will show how this nonlinear, generally non-convex 

estimation problem in the time domain can be transformed into a linear least-squares 

problem in the CDT domain.

B. Related works

Previously proposed methods include maximizing cross-correlation [17], lp correlation [18], 

maximizing the magnitude of difference between measured and template signals [19], 

entropy [20] and mutual information based methods [21][22]. All these approaches assume 

that the only difference between the measured and template signals is the time delay, in 

addition to noise. In real applications, however, signals may undergo complex parameterized 

changes. In radar related estimation problems, for example, motion of the target object 

introduces linear dispersion (also called Doppler stretch) along with the time delay. In such 

cases the above mentioned techniques may produce erroneous estimates.

Several subspace based methods [23] [24] [25] [26] have been proposed to jointly estimate 

time delay and Doppler parameters. Most of the subspace methods exploit narrowband 

approximation of the signals so that the Doppler effect can be modeled as frequency shift, 

and hence, can be estimated explicitly. A search over a parameter space is still required for 

time delay estimation, which is computationally expensive. Colonnese et al. [27] proposed a 

generalized method of moments (GMM) for estimating shift/translation, i.e. location 

parameters. Applying the GMM to parameters other than shift requires a transformation 

function to convert it to a location parameter; for example, a transformation realizing 

exponential warping of the independent axis can be applied to turn a scale parameter into a 

location one. Moreover, similar to subspace methods the GMM based approach requires 

computationally expensive search to estimate the parameters. Joint estimation of time delay 

and Doppler stretch has also been studied in the literature where the estimation techniques 

involve maximizing the ambiguity function between the measured and the template signals 

[28] [29] [30]. In most cases, ambiguity function-related techniques yield non-convex 

optimization problems for which global minima may be difficult to produce. The proposed 
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method described in this paper involves minimizing Wasserstein distance which yields to a 

convex problem.

The Wasserstein metric is a well developed concept in the optimal transport theory [31], 

which measures the difference between two distributions by the optimal cost of rearranging 

one distribution into the other. It has been proven to be a suitable tool to model and solve 

problems in the areas of signal processing and machine learning [9]. Nichols et al. [4] 

proposed an estimator based on the Wasserstein distance for estimating the time delay, but 

they did not address the linear dispersion or other forms of transformation. In [32], Engquist 

and Froese first used this metric in the seismic inversion problems. Then, the idea of using 

the Wasserstein distance to identify a geophysical model from the observations was 

exploited in [5] and [33], where the convexity property of the Wasserstein metric in the 

context of model identification was utilized. In this paper, we incorporate the CDT, a new 

transformation technique, along with the Wasserstein distance so that the estimation problem 

becomes a linear least squares problem in the transform space.

In a prior work [8] the cumulative distribution transform (CDT) was introduced as a useful 

means of modeling and subsequently classifying observed data. The CDT is a fundamentally 

nonlinear mapping of the locations of the signal values with respect to a particular reference. 

Put another way, computations performed in the CDT domain alter the independent variable 

of the signal(s) to produce a desired effect (e.g., matching one signal to another). The 

advantages of the CDT include its invertibility, ease of computation, and its ability to render 

certain classification problems linearly separable in transform space (see again, [8]).

C. Outline and overview of contributions

The main contribution of this paper is to describe a Wasserstein distance minimization-

approach to parametric signal estimation. The mathematical approach is aided by the CDT 

[8] to help develop a generic closed form solution to the problem. The solution is general 

enough to encompass a variety of mass (signal) transport phenomena. In the following 

sections, we briefly review the definitions of the Wasserstein distance and the CDT, derive 

two important lemmas to formulate an expression for the estimator, discuss details of 

implementation, and introduce a strategy for mitigating the influence of noise on the 

estimates. We will conclude with both numerical and experimental examples comparing the 

CDT based estimator against some standard techniques. In section VII, we present a source 

localization example where the location of a crack is determined on a metal plate using the 

estimated TDOAs of the acoustic signals received by the sensors. Our analysis shows that in 

most cases the accuracy is improved when using the proposed technique, but most 

importantly, in all cases the computational cost is orders of magnitude lower than competing 

methods.

D. Note about notation

Throughout the manuscript, we deal with real signals s,r,z etc. assuming these to be square 

integrable in their respective 1D domains. That is, we assume that ∫Ωs|s(t) |2dt < ∞, where Ωs 

is the domain over which s is defined. In addition, we at times make use of the common 
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notation: ‖s‖2 = < s, s > = ∫Ωs|s(t) |2dt . Some necessary symbols used throughout the 

manuscript are described in Table I.

II. ESTIMATION AS A TRANSPORT PROBLEM

First, let gp(t) be a differentiable and strictly increasing mapping (i.e. gp′ = dgp/dt > 0
between Ω = [0, 1] and Ωz, where p refers to a parameter vector. It is easy to see that gp is 

one-to-one and hence invertible. For example, polynomials gp(t) = ∑k = 0
K − 1 pktk of different 

degrees will be used in the estimation problem described in this paper. This polynomial is 

able to capture events such as time delay and dispersion in the physics of wave propagation. 

Moreover, such polynomial model of the transformation gp(t) is commonly used in many 

signal processing applications [34] [35] [36]. In applications where gp(t) is unknown, 

polynomial approximations are often used to model the transformation [37].

The goal in our estimation problem is to then find the parameter vector p that generated 

some measured, normalized data r(t) = B(zg(t) + η(t)) where η(t) is a noise process (see 

again section V). Typical estimation techniques try to solve this problem by finding the 

parameters of a model, e.g. sg(t) = gp′ (t)s(gp(t)) that best matches the measured signal r(t) [38] 

[39]. Alternatively, this problem can also be stated as finding the parameter vector p such 

that some measure of a ‘match’ between rf(t) = fp′ (t)r(fp(t)) and s(t) is maximized, where 

fp(t) = gp
−1(t). In this paper, we adopt the alternative approach as it helps generating closed 

form solution (discussed in section IV) for our estimation problem even when gp(t) is a 

higher order polynomial. Here we propose to solve the signal estimation problem by finding 

the parameters of gp(t) such that the Wasserstein distance [9] between rf(t) and s(t) is 

minimized:

W 2(rf, s) = inf
ℎ ∫Ωs

|ℎ(u) − u |2s(u)du (4)

where W(.,.) is the Wasserstein distance between two PDFs and

∫inf(Ωr)

ℎ(t)
fp′(u)r(fp(u))du = ∫inf Ωs

t
s(u)du . (5)

Thus, we have implicitly defined a “match” as the minimum distance h(u)−u, for all possible 

h(·), over which the original signal values s(t) must be moved in order to form rf(t). The 

quantity (4) features prominently in the field of optimal mass transport where the minimizer 

is used to define the optimal transport map h(u) for moving the “mass” s(u) over a distance 

h(u) − u [9].

We note that because we are looking at 1D signals s(t), there is only one h satisfying the 

equation above. Moreover, by Lemma III.1 (see next section) we will never need to 

explicitly compute h, instead, its influence is embedded in the respective CDTs of the 

relevant signals.

Rubaiyat et al. Page 5

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In what follows we demonstrate the benefits of defining the cost function in this manner for 

the parameter estimation problem.

III. THE CUMULATIVE DISTRIBUTION TRANSFORM

In this section we show that using the cumulative distribution transform (CDT) [8] we can 

derive a solution to the signal estimation problem expressed in equation (4) above. Let s0(y), 

y ∈ Ωs0 define a reference signal pattern defined on the domain Ωs0 which is in general 

different from the signal domain Ωs. Without loss of generality we use s0(y) = 1 and Ωs0 = 

[0, 1] in this paper. The transform of s(t) is then defined to be the function s(y) that solves

∫inf Ωs

s(y)
s(u)du = ∫inf Ωs0

y
s0(u)du . (6)

Now define the cumulative distribution functions (CDFs) S(t) = ∫−∞
t s(u)du and 

S0(y) = ∫−∞
y s0(u)du . Note that because s(t), s0(y) > 0 for t ∈ Ωs, y ∈ Ωs0, it follows that S, S0 

are one to one continuous maps. Furthermore, if s, s0 are continuous, S, S0 will be 

differentiable [8]. Therefore, an alternative expression for s  is

s(y) = S−1 S0(y) . (7)

The CDT is therefore seen to inherit the domain of the reference signal. Moreover, given our 

particular choice of reference, s0(y) = 1, S0(y) = y and s(y) = S−1(y) . That is to say, the CDT 

is the inverse of the cumulative distribution function of s(t). This definition is similar to the 

Quantile Function [40] [41] in statistics, although the similarity does not hold if non-uniform 

reference s0(y) is used to calculate the CDT. The inverse formula can then be defined as

s(t) = (s−1)′(t)s0(s−1(t)) (8)

where s−1(t) = S(t) . Fig. 2 illustrates the process of calculating the CDT for a normalized, 

strictly positive quantity s(t) and uniform reference signal s0(y). Physically, the CDT is a 

coordinate transformation acting on the independent variable (in this case time) in such a 

way as to preserve the total signal energy while morphing the distribution s0(y) into the 

distribution s(t). Note that this definition is slightly different from that used in [8] where the 

CDT was defined in terms of the coordinate deviation s(y) − y . In summary, the CDT and 

inverse CDT map continuous positive PDFs to diffeomorphism, and vice versa [8].

Given these definitions, we can now describe the proposed cost function (4) in the CDT 

domain. The following lemma [4] helps link the Wasserstein distance between s and r, and 

‖s − r‖ℓ2
2

Lemma III.1.

Let s and r  be the CDTs of s and r, respectively. We then have that W 2(s, r) = ‖s − r‖L2
2 .
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Proof: Given, s and r  are the CDTs of s and r, respectively. That is:

s′(y)s(s(y)) = r′(y)r(r(y)) = s0(y)

Let ℎ′(t)s(ℎ(t)) = r(t) . Plugging t = r(y) into this equation, we have r(r(y)) = ℎ′(r(y))s(ℎ(r(y)))
and s(y) = ℎ(r(y)) .

W 2
2(s, r) = ∫Ωr

(ℎ(u) − u)2r(u)du

= ∫Ωs0
(ℎ(r(y)) − r(y))2r′(y)r(r(y))dy

= ∫Ωs0
(s(y) − r(y))2s0(y)dy

= ‖s − r‖L2
2

The lemma above simply states that for 1D signals which are PDFs, the CDT naturally 

embeds the Wasserstein distance. As in the computations all the signals are discrete, L2 

(norm of functions on real line) will be replaced by 2 (norm of sequences) in what follows. 

Therefore, in discrete cases we have,

W 2(s, r) = ‖s − r‖ℓ2
2

In addition, we also have the following useful functional composition lemma.

Lemma III.2.

Let r  and rf be the CDTs of signals r and rf respectively, where rf = fp′ r ◦ fp The CDT of rf 

is then given by rf = fp
−1 ◦ r .

Proof: Consider again the reference signal s0(y) and the signal r(t). The relationship 

between these two signals can be defined in terms of CDT as,

∫inf(Ωr)

r(y)
r(u)du = ∫inf(Ωs0)

y
s0(u)du (9)

Similarly, can we relate rf(t) and s0(y) via

∫inf(Ωrf)

rf(y)
rf(u)du = ∫inf(Ωs0)

y
s0(u)du . (10)

We replace rf(t) with fp′ (t)r(fp(t)) (where fp(t) = gp−1(t)), in which case

∫fp−1(inf(Ωr))

rf(y)
fp′(u)r(fp(u))du = ∫inf(Ωs0)

y
s0(u)du . (11)
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Applying the change of variables fp(u) = y and dy = fp′ (u)du to the left hand side,

∫inf Ωr

fp rf(y)
r(y)dy = ∫inf Ωs0

y
s0(u)du . (12)

From Eqn. (9) and (12) it can be stated,

∫inf Ωr

fp rf(y)
r(y)dy = ∫inf Ωr

r(y)
r(u)du . (13)

For this statement to be true, the upper bound of the left hand side must be equal to the 

upper bound of the right hand side, i.e. fp rf(y) = r(y) . Since fp(t) = gp−1(t) and gp(t) are 

invertible, we can finally write rf = fp
−1 ◦ r = gp ◦ r .

Simply stated, the CDT composition lemma says that changes along the independent 

variable (e.g., shifts in time t−τ or dispersions ωt) become changes in the dependent variable 

in transform domain (refer to Fig. 3b). Fig. 3 illustrates the relationships between the signals 

and the transforms for a signal undergoing parametric change. Each of the constituent CDTs 

transforms their respective signals into the reference signal s0(y). Similarly, the mapping 

fp(t) transforms r(t) into rf(t).

A. Numerical Implementation of the CDT

Recall that the CDT is defined for continuous-time signals in contiguous, finite domain. 

Here we describe the numerical method for approximating the CDT given discrete data. As 

the CDT s(y) is the inverse of the CDF of s(t) for a particular choice of reference signal 

(s0(y) = 1 for y ∈ [0,1]), we need to compute the cumulative function first.

Let s = [s1, s2,...,sN]T be a N-point discrete-time signal, where s[n] = sn, ∀n = 1, 2,...,N is the 

nth sample of s. Then the numerical approximation of the cumulative function is given by,

S[n] = ∑
i = 1

n
s[n], n = 1, 2, …, N (14)

The CDT is then calculated by taking the inverse of the CDF using interpolation.

IV. SIGNAL ESTIMATION IN CDT DOMAIN

This section will demonstrate the use of CDT in estimating signal parameters. We will 

highlight the relevance of the transform with respect to time delay, linear dispersion, and 

quadratic dispersion. For each case, we will leverage lemmas III.1 and III.2 above, so that 

the cost function in (4) becomes
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W 2(rf, s) = ‖fp
−1 ◦ r − s‖ℓ2

2 = ‖gp ◦ r − s‖ℓ2
2 . (15)

It is evident that when gp(t) is a monotonically increasing polynomial, the problem above is 

simply a linear least squares problem. The advantage of signal estimation in the CDT 

domain is that only the function gp(t) needs to be computed before proceeding to the 

estimation problem. We note the following specific examples that can be derived from the 

above.

A. Time delay estimation

In the time delay estimation problem gp(t) = t − τ, hence the cost function (15) becomes,

W 2(rf, s) = ‖r − τ − s‖ℓ2
2 .

The translation value τ that minimizes the equation above is then given by:

τ = 1
|Ωs0| ∫

Ωs0

[r(u) − s(u)]du
(16)

Note that, as already mentioned in [4] the problem above is convex on τ, hence a global 

minimizer is possible and given in closed form. Furthermore, utilizing the fact that the center 

of mass of s can be estimated by μs = ∫Ωsts(t)dt = ∫Ωs1 − S(t)dt one can also show that 

1
|Ωs0|∫Ωs0s(u)du = μs and thus the solution of the time delay problem is also given by

τ = μr − μs .

B. Linear Dispersion Estimation

In the linear dispersion problem we have that gp(t) = ωt, and thus

W 2(rf, s) = ‖ωr − s‖ℓ2
2 . (17)

This problem is convex on ω and possesses closed form solution. The minimizer for the 

equation above (following linear least squares on ω) is

ω = < s, r >
‖r‖ℓ2

2 (18)

where < ·,· > denotes the inner product.
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C. Time delay and Linear Dispersion estimation

In the joint estimation of time delay and linear dispersion we have that gp(t) = ωt − τ, thus 

gp ◦ r = ωr − τ . Hence, the cost function (15) becomes,

W 2 rf, s = ‖ωr − τ − s‖ℓ2
2 = ‖αr + β − s‖ℓ2

2
(19)

where, α = ω, and β = −τ. Once again, this is a linear least squares problem, from which ω 
and τ can readily be recovered. The closed form solution to this problem is given by,

[α, β]T = XTX −1XTs (20)

where X ≡ [ r , 1 ] is an N × 2 matrix.

D. Quadratic dispersion estimation

In the quadratic dispersion estimation problem we have gp(t) = κt2, so gp ◦ r = κr2 .
Consequently

W 2(rf, s) = ‖κr2 − s‖ℓ2
2 . (21)

Again we have convexity with the solution being

κ = < s, r2 >
‖r2‖ℓ2

2 (22)

E. Quadratic dispersion with time delay

The quadratic dispersion with time delay can be expressed as gp(t) = κt2 − τ. Therefore the 

Wasserstein distance is:

W 2(rf, s) = ‖κr2 − τ − s‖ℓ2
2 = ‖αr2 + β − s‖ℓ2

2
(23)

Similar to joint time delay and linear dispersion estimation described in IV-C, this problem 

is also convex and possesses closed form solution which is given by

[α, β]T = XTX −1XTs (24)

where X ≡ r
2
, 1 , α = κ, and β = − τ .

F. Higher order polynomial

For any general polynomial, i.e. gp(t) = ∑k = 0
K − 1 pktk, gp ∘ r = ∑k = 0

K − 1 pkrk . Thus, the cost 

function in (15) becomes,
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W 2 rf, s = ‖ ∑
k = 0

K − 1
pkrk − s‖

ℓ2

2
(25)

which can be stated as a linear least squares problem,

p = argmin
p

‖X p − s ‖ℓ2
2

(26)

Where p = p0, p1, …, pK − 1
T , X ≡ 1 , r , r

2
, …, r

K − 1
. The Hessian of (26) is 2XTX 

which is positive semi-definite. Therefore the estimation problem described in equation (26) 

is convex. Moreover, the columns of matrix X are linearly independent, that means Hessian 

is positive definite and XTX is invertible. Hence, (26) possesses closed form solution which 

is given by,

p = XTX −1XTs (27)

In this section, we have shown that the estimation problem, while non-linear in time domain, 

can be transformed into a linear least squares problem with closed form solution using CDT. 

In the next section we will address the influence of noise in the estimation process and a 

strategy to mitigate it.

V. SIGNAL ESTIMATION IN NOISE

In the previous sections, we defined the CDT, provided the relationship between the CDTs 

of signals related by a transformation of the independent variable, and then demonstrated 

linearity of the Wasserstein cost function with respect to the signal parameters that define 

several such transformations. These relationships were derived without explicit 

consideration of the corrupting noise source and how it influences the associated estimation 

problem.

In this section, we consider the impact of additive Gaussian noise on the CDT and on the 

subsequent parameter estimation. Assume the received signal is corrupted by zero mean, 

i.i.d Gaussian noise values, η(t) ∼ N(0, σ2) so that the measured data are zη(t) = zg(t) + η(t) 
and

r(t) = B zη (t) = zg(t) + η(t) 2

‖zg(t) + η(t)‖ℓ2
2 . (28)

The normalization therefore results in three terms, two of which involve the signal noise. 

This additional signal “mass” alters the Wassserstein distance and biases the resulting signal 

parameter estimates. In what follows we propose a simple solution for removing the 

influence of the additive noise directly in the signals’ CDFs.
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A. Noise corrected CDF

Using Eqn. (28) as a starting point, in expectation the effects of additive, zero-mean 

Gaussian noise on the CDF are modelled as (detailed in the supplementary material)

E[R(t)] = ℰzSg(t) + σ2 t − t1
ℰz + σ2 tN − t1

, t1 ≤ t ≤ tN . (29)

Here, Sg(t) and R(t) are the CDFs associated with sg(t) = B(zg)(t) and r(t) = B(zη)(t) 

respectively and the term ℰz = ‖zg(t)‖ℓ2
2  is the total energy of the noise free signal. An 

expression for the noise corrected CDF in expectation is then obtained from Eqn. (29) as

Sg(t) = E[R(t)] ℰz + σ2 tN − t1 − σ2 t − t1
ℰz

(30)

Where ℰz + σ2 tN − t1  is the expected energy of noisy signal (see supplementary material). 

Alternatively we can define the signal-to-noise ratio SNR = ℰz/σ2 tN − t1  in which case 

(30) becomes

Sg(t) =
E[R(t)][SNR + 1] − t − t1

tN − t1
SNR , t1 ≤ t ≤ tN

(31)

In short, the influence of additive, i.i.d noise is seen as the addition of a constant slope to the 

CDF. Moreover, under our chosen normalization scheme (3), this slope is the noise variance. 

Thus, a simple strategy for denoising in the CDT domain is to first estimate σ2 using a 

“noise only” portion of the signal, and then apply Eqn. (30). This method is effectively 

filtering the signal in the CDF domain.

To illustrate, consider a Gaussian pulse subject to the coordinate transformation gp(t) = ωt − 

τ with ω = 2, τ = 2. The noise free input signal PDF is therefore s(t) = A2exp −t2/2bw
2 .

which, after the transformation, becomes sg(t) = A2ωexp −(ωt − τ)2/2bw
2 . For this example 

the corresponding CDFs can be determined analytically and are shown in Fig. 4 for A = bw 

= 1. The noisy signal was taken as zg(t) = sg1/2(t) + η(t) where each η(t) N 0, σ2  with σ = 

0.15. The associated CDF R(t) and noise corrected version (Sg(t)) are also shown. The SNR 

for this example was taken as SNR = ℰz/σ3(tN − t1)) = 4. The noise corrected CDF(Sg(t)) is 

seen to match almost exactly the true CDF Sg(t) .

B. Distribution of the CDT

Even after the expected noise is removed via (30), there will remain residual fluctuations 

that will impact our parameter estimates. The joint PDF of the values r(y) will dictate the 

degree to which the cost function (15) can be expected to produce good estimates.
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Following the derivation described in the supplementary material, the distribution for the 

CDT values associated with each observation in the signal zη(tk), k = 1 ··· N is shown to be 

approximated by the PDF

pRk rk = e−
S rk − S sk

2

2Σ2 sk2πΣ sk

∂S rk
∂rk

,
1 ≤ k ≤ N .

(32)

where the variance

Σ2 tk = σ4 2k + 4λk
ℰzη

2 (33)

is a function of the total noisy signal energy, ℰzη = ∑kzη2 tk , and the cumulative sum of the 

noise-free signal, λk = σ−2∑i = 1
k z2 ti . Note that both mean and variance in (32) are 

evaluated at the fixed, noise-free CDT values sk (as opposed to the independent variable rk .
Both can be obtained by simply interpolating the functions S tk , Σ tk S sk , Σ sk . The 

resulting distribution is a peaked function that is largely symmetric and centered on the 

noise-free CDT s(y) .

As an example, consider signals for which the CDF is well-approximated by the logistic 

model

S(t) = 1
1 + e−at + b . (34)

This is the exact CDF for the logistic distribution, however has also been used to model 

other CDFs [42]. For appropriate choice of a, b this model almost exactly captures the 

behavior of the CDF for signals such as those shown in Fig. 4. Using the general expression 

(32) with this logistic model, we can readily obtain the distribution of CDT values.

We also examined the empirical distribution of the r(y) via Monte Carlo simulation. To this 

end we simulated 1500 realizations of the Gaussian pulse of the previous example, using the 

parameter values ω = 2, τ = 9, A = 1, bw = 2. The associated normalized signals r(t) each 

consisted of N = 200 points sampled at dt = 0.05s and where each additive noise value was 

taken independently from N(0, σ2) with σ2 = 0.023. The CDT r(y) was then estimated for 

each realization. The resulting empirical PDF of the CDT values is shown in Fig. 5 along 

with the predicted distribution given by Eqn. (32) with a = 1.68, b = 7.54 and plotted as a 

function of the dimensionless reference variable yk = k/N, k = 1 ··· N.

The analytical distribution captures precisely the behavior shown in empirically in Fig. 4, 

that is to say, the distributions for CDT values near y = 0, 1 are skewed while those near the 

middle of the CDT curve are approximately normally distributed. The difference between 

simulation and theory near y = 1 is due to the fact that the inverse logistic (logit) 
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transformation is only valid for 0 < R(t) < 1, however our derivation (described in the 

supplementary material) assumed constant noisy signal energy, leaving the possibility of 

values R(t) > 1 near the end of the signal.

Nonetheless, the uncertainty in the estimate is indeed well-approximated by a Gaussian 

distribution as evidenced by Fig. 5 and the functional form of (32). Moreover, for signals in 

additive, i.i.d. Gaussian noise, the proposed cost function (4) yields a maximum likelihood 

estimate (MLE) of the parameters. As such, the estimate is guaranteed to reach the Cramer-

Rao lower bound (CRLB) asymptotically as N → ∞. The CRLB places a lower bound on 

the covariance of the parameter estimates and is given by

C(pi, pj) = F( p )−1
(35)

where F( p ) is the Fisher Information Matrix (FIM). For signals zg(t) in additive, i.i.d. 

Gaussian noise the FIM is defined as [1]

F( p ) ≡ Fij

= 1
σ2Δt ∫ts

tf ∂zg(t)
∂pi

dt ∫ts

tf ∂zg(t)
∂pj

dt . (36)

Carrying out the integrals and subsequent inversion for the Gaussian pulse of the previous 

example then yields the full covariance matrix (35). We are most interested in the diagonal 

elements C(pi, pi), i = 1 ··· P as these represent the variances of the associated parameter 

estimates. In what follows we compare our estimates to the CRLB for several of the cases 

described in the prior section.

VI. IMPACT OF SNR ON QUALITY OF THE ESTIMATOR

Here we explore the quality of the CDT-based estimation procedure through a series of 

numerical experiments. Specifically, we compare the quality of the various estimators 

described in section (IV) in terms of mean square error (MSE) as a function of SNR.

The signal of interest is taken as the apodized sinusoid

z(t) = Ae− t − tc
2/(2bw2 )sin(2πft) (37)

of width bw and frequency f. The SNR can be well-approximated by

SNR = A2 πbw
2σ2T

(38)

so long as the signal length T is large enough to include the entire non-zero portion of the 

pulse envelope. In our examples we will take A = bw = f = 1 and set tc = 0. We are again 

assuming that the received signals are corrupted by zero mean additive Gaussian noise, η(t) 
∼ N(0, σ2).
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A. Time Delay Estimation

From Eqn. (16) one can estimate the delay as the difference in the average values of the 

CDTs r , s  taken over the domain Ωs0 = [0, 1]. Computationally, we have simply

τ = 1
N ∑

i = 1

N
r ui − s ui (39)

where the CDTs are defined on the discrete grid ui = i/N, i = 1 ··· N. These estimates can 

then be compared to those obtained via the more familiar cross-correlation estimator applied 

in the time domain [4]. To this end we simulated 1000 realizations of the signal zn(t) for 

varying noise levels and a delay of τ = 0.2575 s. The linear dispersion was fixed at ω = 1.

To evaluate the performance of the estimator we compute mean squared error (MSE) and 

compare the results with cross-correlation (XC) based estimator. Although cross-correlation 

is known to be an MLE for delay estimates in additive Gaussian noise [21], it is a discrete 

estimator. To implement a continuous delay estimator, an optimization problem is designed 

that provides maximum likelihood estimates,

τ = argmax
τ

− ∑
i = 0

N − 1
zη ti z ti − τ (40)

To solve this optimization problem we exploit a gradient based nonlinear programming 

solver fmincon in MATLAB [43]. As fmincon solves minimization problems, equation (40) 

is written as,

τ = argmin
τ

− ∑
i = 0

N − 1
zη ti z ti − τ (41)

As equation (41) is a non-convex problem, this gradient based solver may get stuck in local 

minima. To resolve this issue, another MATLAB function GlobalSearch can be integrated, 

which repeatedly runs local solver fmincon with random starting point to generate global 

optimal solution. Therefore, in our experiments two approaches are adopted to solve this 

optimization problem: (i) using fmincon only, and (ii) using GlobalSearch and fmincon 
together. To compare with a subspace based method, the ESPRIT (estimation of signal 

parameters via rotational invariance techniques) based time delay estimation technique has 

been implemented following the approach described in [23]. The MSE for different delay 

estimators are plotted in Fig. 6. We also plot the CRLB as baseline. The plot shows that the 

performance of the proposed CDT based estimator is similar to the cross-correlation and 

ESPRIT estimators, although none of the techniques have reached the CR bound. The MLE 

obtained via global optimum search reaches the bound, but the estimation using local solver 

without GlobalSearch shows very poor performance.
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B. Joint Estimation of Time Delay and Linear Dispersion

In this example we considered the joint estimation problem for both time delay τ = 0.2575s 
and linear dispersion (time scale) ω = 0.75. Again, the estimation problem (19) possesses the 

closed form solution given in section IV-C. The MSE of the joint delay and linear dispersion 

estimates for different estimators are plotted in Fig. 7. For comparison, the cross-correlation 

and ESPRIT based estimators are used again to estimate the delay parameter only. In this 

case, both XC and ESPRIT estimators perform poorly as these techniques do not take linear 

dispersion into account. Another subspace based method, the MUSIC (multiple signal 

classification) algorithm discussed in [23], has been implemented to estimate time delay 

when both delay and dispersion are present. The time delay estimates from the ESPRIT 

estimator have been used in the initialization stage of this algorithm. Although this method 

shows very good performance in significantly high SNR (15 dB), the proposed technique 

outperforms it in highly noisy cases. Again, as this algorithm requires narrowband 

approximation of the signal, it gives incorrect estimates of the linear dispersion parameter 

(ω) for transient signals used in these experiments. Hence, only time delay (τ) estimates are 

reported for MUSIC algorithm in Fig. 7. For joint time delay and linear dispersion 

estimation, the another commonly used approach is to locate the peak of Wide-band 

Ambiguity Function (WBAF) of the received signal [28] [29] [30]. The WBAF between the 

measured signal zη(t) and the known signal z(t) is given by [28],

Azη, z(τ, ω) = ω∫
−∞

∞
zη(t)z*(ωt − τ)dt (42)

where (*) denotes the complex conjugation which does not have any impact in our 

experiments as real valued signals are used. Then the joint estimates of τ and ω are given by,

τ, ω = argmax
τ, ω

|Azη, z(τ, ω)|2

which can also be written as,

τ, ω = argmin
τ, ω

− |Azη, z(τ, ω)|2 (43)

Similar to time delay estimation discussed in VI-A, both the local and global solvers have 

been exploited to estimate optimum τ and ω using equation (43). While global solver 

performs better than the local solver, the proposed CDT based estimator yields better 

estimation of the delay parameter (τ) than both solvers (Fig. 7). In case of linear dispersion 

(ω) estimation, it does not outperform the global solver, but the results are still competitive. 

In both (τ and ω estimates) cases, CDT estimator outperforms local solver based estimator.

The concept of convexity can help understand the superior performance of the proposed 

technique over the WBAF based estimator. Fig. 8 illustrates that in CDT based estimator we 

are dealing with a convex problem while −|Azη,z(τ,ω)|2 is clearly non-convex with several 

local minima. Although GlobalSearch is designed to handle this kind of problem, it is not 

always accurate to find the global minimal point. It should also be noted that global solver is 
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computationally very expensive as it runs several local solvers. The solution provided by the 

CDT based estimator, on the other hand, is closed form, hence computational cost is very 

low. Even (b) running single local solver takes more time than the proposed estimator. The 

MUSIC algorithm also requires an iterative search over parameter space. Moreover, it uses 

the result of ESPRIT algorithm for initialization, which contributes to the computational 

cost. As a result, MUSIC based estimation is also a computationally expensive technique 

relative to the proposed approach. Fig. 9 shows the average times taken by CDT, MUSIC, 

and WBAF based estimators to jointly estimate the time delay (τ) and the linear dispersion 

(ω) parameters.

C. Quadratic Dispersion & Delay

As a final illustration we consider the problem of jointly estimating both the quadratic 

dispersion coefficient (κ) and time delay (τ), i.e. gp(t) = κt2 − τ with κ = 0.5 and τ = 

1.2575s. As discussed in section VI-C, the proposed estimation approach described by 

equation (23) possesses closed form solution which is given by equation (24). Fig. 10 shows 

the MSE of the estimates of time delay and quadratic dispersion coefficients jointly 

estimated using the proposed approach. The plots show that CDT based estimator could not 

reach CR bounds. But the performance of time delay estimation using proposed estimator is 

better than the cross-correlation based estimator, as cross-correlation does not correct the 

effect of quadratic dispersion.

VII. APPLICATION: SOURCE LOCALIZATION

As we have mentioned, the estimation approach we have described is appropriate for signals 

undergoing an invertible transformation of the independent variable, i.e, z(t) gp′ (t)z(gp(t)) .
This is a reasonable model in situations where the signal becomes distorted as it propagates 

through a medium.

One such situation is the propagation of acoustic signals in solids. Fig. 11 shows a metal 

plate with crack emanating from the end of a horizontal “slot”. As the crack propagates it 

gives off acoustic emissions, loosely defined as a spatially localized release of energy. The 

result is a short elastic wave “pulse”, similar to those used in the preceding numerical 

examples. By measuring these pulses at different locations on the plate and estimating time 

difference of arrival one can in principle localize the source i.e., the crack tip. In this 

experiment we used four fiber-optic strain sensors arranged in a diamond pattern, (see Fig. 

11) [44]. Sample time series from an acoustic emission event are also shown in Fig 11.

The challenge is that such signals are difficult to detect and are affected by more than just a 

time delay during propagation. For example, dispersion is known to influence such pulses 

during transit [45]. By including dispersion in the model we hypothesize an improved ability 

to estimate the time delay. Moreover, because this estimation problem reduces to linear 

least-squares in the CDT domain, the inclusion of this additional term incurs no 

computational penalty (see again Fig. 9) Using the estimation procedure outlined herein, we 

estimated time delay of arrival among the four sensors. Based 10 on the obtained delays, we 

then used the source localization algorithm described in [46] to estimate the location of the 

crack tip. Fig. 12 shows the results of these estimates for six different data sets. Specifically, 
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we show the cost function associated with the localization algorithm for a typical realization, 

along with the estimated minimum which should denote the location of the acoustic 

emission (i.e., the crack tip). The localization algorithm depends on delay estimates among 

the four sensors shown as black numbers. To obtain the required delay estimates we used the 

delay-only estimator (section VI-A) as well as the joint delay and linear dispersion estimator 

(section VI-B).

For each of the six data sets, the addition of linear dispersion in the signal model yielded a 

more well-defined cost function and provided modest improvement in localizing the source 

of the emission. In fact, one of the location estimates obtained using the “delay only” 

approach placed the crack tip at the edge of the plate. The source localization results are 

compared to those obtained using the cross-correlation and the WBAF gives off acoustic 

emission pulses which can be measured at different locations on the plate (right). The time 

delay of arrival between recorded pulses can then provide the location of the crack tip. based 

estimators. Fig. 12 shows that the proposed CDT based technique outperforms both the 

estimators in estimating the location of the crack tip.

VIII. SUMMARY

We considered a class of signal estimation problems for which a positive valued signal is 

altered by a transformation of the independent variable. Such transformations are common 

in wave propagation, where the energy of a signal or field is modified by the medium 

through which it travels, but is ultimately conserved.

We proposed using the Wasserstein distance between the modified received signal and the 

model signal as a cost function for estimating the parameters that govern the transformation. 

The idea is to select those parameters that minimize the amount of work it takes to transform 

the model signal into the received signal. It was then shown that by using the cumulative 

distribution transform (CDT) the Wasserstein distance becomes a linear, convex function of 

the desired parameters and possesses a closed form (least squares) solution.

A series of numerical experiments were then conducted to assess the quality of the estimator. 

The CDT was found empirically to be approximately Gaussian distributed, hence the 

Wasserstein estimator is an approximate MLE for this class of problem. Indeed, the 

proposed estimator performs well in comparison to other approaches in terms of estimator 

MSE. Moreover, because the estimator is linear in CDT space, the computational cost is 

orders of magnitude lower than competing methods.

The noise model used in the aforementioned experiments is assumed to be zero mean, i.i.d. 

Gaussian. While not considered explicitly, we expect other noise models to yield similar 

results. The reason is that the CDF is the summation of random variables, and with enough 

such variables the central limit theorem is expected to be applicable. Thus, even under other 

additive noise models, our CDT distribution will likely remain Gaussian (see Eqn. 32); this 

is a topic of ongoing work.
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The numerical experiments also demonstrated the proposed noise reduction method, which 

works by subtracting the i.i.d. noise cumulative distribution function (CDF) from the total 

noisy signal CDF prior to effecting the transformation into the CDT domain.

Finally, the estimator was used to localize the source of acoustic emissions in a thin metal 

plate. It was shown that including linear dispersion in the signal model offered modest 

improvement in the ability to localize the source without incurring a computational penalty.

IX. CONCLUSION

In this paper, we proposed a parametric signal estimation approach by minimizing 

Wasserstein distance between measured and model signals. This approach, aided by the use 

of the cumulative distribution transform [8], was shown to produce generic closed form 

solution to the estimation problem. Several numerical experiments showed that the proposed 

approach not only performs well in comparison to existing methods but also is significantly 

more computationally efficient compared to the competing methods.

In short, by using the CDT and the Wasserstein cost, one can easily and accurately estimate 

the parameters that govern the modification of signal energy during propagation. Future 

efforts will be aimed at gaining a deeper understanding of the statistical properties of the 

CDT and applying this technique in experiments focused on identifying properties of the 

medium through which a signal is traveling.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Estimation in signal processing applications: (a) radar system, and (b) source localization.
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Fig. 2: 
Steps of calculating the CDT of a signal s(t), given the uniform reference signal s0(y).
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Fig. 3: 
Example case relating the different signals and transforms used in the CDT. Let s0 be the 

reference signal, r be the measured signal, and rf be the manipulated signal. The transforms 

and their directions are also given. Plots in (b) show that the transformation (linear 

dispersion in this case) along the independent axis in signal space becomes a transformation 

along the dependent axis in CDT space.
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Fig. 4: 
CDFs associated with a Gaussian pulse before, S(t), and after, Sg(t), transformation by gp(t). 
Also shown are the noisy, R(t), and noise corrected, Sg(t), CDFs. The true and corrected 

CDFs match almost exactly, even for this relativelyhigh (SNR = 4) level of noise.
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Fig. 5: 
(a) Theoretical and (b) empirically obtained distributions for the CDT r(y) given a logistic 

CDF (Eqn. (34)) consistent with the example of Fig. 4. The distributions appear peaked with 

a single maximum and are well-approximated by a Gaussian function.
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Fig. 6: 
MSE in the delay estimates as a function of SNR. For comparison, the estimates produced 

using MLE, XC, ESPRIT, and the CRLB are also shown. In case of MLE, results for both 

local and global solvers are plotted.
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Fig. 7: 
MSE in the joint time delay (top) and linear dispersion (bottom) estimates obtained via 

linear least squares in the CDT domain as compared to the CRLB, XC, ESPRIT, MUSIC, 

and WBAF (using both local and global solvers). In case of XC, ESPRIT, and MUSIC 

algorithms, only delay estimates are reported.
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Fig. 8: 
Cost functions associated with (a) proposed CDT based estimator (green dot shows the 

global minimum point), and (b) joint time delay and linear dispersion estimation using 

WBAF.
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Fig. 9: 
Average elapsed time for CDT, MUSIC, and WBAF based estimators. Experiments were run 

using MATLAB version: 9.4.0 (R2018a) on a computer with an Intel Xeon(R) CPU E5-2630 

v3 processor running at 2.40 GHz using 32 GB of RAM.
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Fig. 10: 
MSE associated with the joint estimates of time delay (top) and quadratic dispersion 

(bottom) parameters
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Fig. 11: 
(left) Slotted aluminum plate with a crack emanating from the right end of the slot. As the 

crack propagates it gives off acoustic emission pulses which can be measured at different 

locations on the plate (right). The time delay of arrival between recorded pulses can then 

provide the location of the crack tip.
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Fig. 12: 
Typical cost function for the source localization problem superimposed on the physical plate 

dimensions. In this case the estimated source location provides the crack tip location 

(denoted ‘X’). Four fiber-optic strain sensors record the data and the location estimate is 

based on the delay estimates among the sensors as obtained via the cross-correlation (XC), 

WBAF and CDT. Shown are the locations that rely on the delay-only estimators (left) and 

the delay + linear dispersion estimator (right).
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TABLE I:

Description of symbols

Symbols Description

s Normalized, strictly positive signal

S Cumulative distribution function (CDF) of s

s0 Reference density function

s Cumulative distribution transform (CDT) of s

sg Generated from s under the action of gp

gp One-to-one, continuous function with parameter p

zg Measured signal (not normalized) in absence of noise

r B(zg + η); normalized measured signal with noise (η)

B Normalization scheme to transform raw signals into PDFs

rf Generated from r under the action of fp

fp gp−1

W (s1, s2) Wasserstein distance between density functions s1 and s2

IEEE Trans Signal Process. Author manuscript; available in PMC 2021 January 01.


	Abstract
	Introduction
	Estimation as a transport problem
	Related works
	Outline and overview of contributions
	Note about notation

	Estimation as a Transport Problem
	The Cumulative Distribution Transform
	Lemma III.1.
	Proof:

	Lemma III.2.
	Proof:

	Numerical Implementation of the CDT

	Signal Estimation in CDT Domain
	Time delay estimation
	Linear Dispersion Estimation
	Time delay and Linear Dispersion estimation
	Quadratic dispersion estimation
	Quadratic dispersion with time delay
	Higher order polynomial

	Signal Estimation in Noise
	Noise corrected CDF
	Distribution of the CDT

	Impact of SNR on Quality of the Estimator
	Time Delay Estimation
	Joint Estimation of Time Delay and Linear Dispersion
	Quadratic Dispersion & Delay

	Application: Source Localization
	Summary
	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Fig. 9:
	Fig. 10:
	Fig. 11:
	Fig. 12:
	TABLE I:

