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Abstract—Signal separation and extraction are important tasks
for devices recording audio signals in real environments which,
aside from the desired sources, often contain several interfering
sources such as background noise or concurrent speakers. Blind
Source Separation (BSS) provides a powerful approach to address
such problems. However, BSS algorithms typically treat all
sources equally and do not resolve uncertainty regarding the
ordering of the separated signals at the output of the algorithm,
i.e., the outer permutation problem. This paper addresses this
problem by incorporating prior knowledge into the adaptation
of the demixing filters, e.g., the position of the sources, in
a Bayesian framework. We focus here on methods based on
Independent Vector Analysis (IVA) as it elegantly and successfully
deals with the internal permutation problem. By including a
background model, i.e., a model for sources we are not interested
to separate, we enable the algorithm to extract the sources of
interest in overdetermined and underdetermined scenarios at a
low computational complexity. The proposed framework allows
to incorporate prior knowledge about the demixing filters in
a generic way and unifies several known and newly proposed
algorithms using a Bayesian view. For all algorithmic variants,
we provide efficient update rules based on the iterative projection
principle. The performance of a large variety of representative
algorithmic variants, including very recent algorithms, is com-
pared using measured Room Impulse Responses (RIRs).

Index Terms—Source Separation, Independent Vector Analy-
sis, ILRMA, Geometric Constraint, Independent Vector Extrac-
tion

I. INTRODUCTION

S
OURCE separation and signal extraction are essential

tasks for acoustic signal processing on a variety of devices

such as mobile phones, smart home assistants, hearing aids,

conference systems etc. For these tasks many algorithms

have been proposed in the recent years, e.g., [1], [2] which

can roughly be divided into two highly overlapping groups

originating from different paradigms: beamforming methods

[3] and Blind Source Separation (BSS) [2], [4], [5]. In this

paper, we focus on the latter one.

As a first class of BSS algorithms, we consider here algo-

rithms which are based on Independent Component Analysis

(ICA) [4], [6], and use the statistical independence of the

source signals to derive algorithms capable of separating

nongaussian sources. These methods are in general based on
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a linear instantaneous mixing and demixing model, which

makes them not directly applicable for reverberant enclosures

for which the recorded signals are filtered and superimposed

versions of the source signals, so that a convolutive mixture

model should be applied. As a solution, it has been proposed to

apply the ICA algorithm independently in different frequency

bins [7]. However, due to the well-known inner permutation

problem, i.e., the uncertainty about the assignment of the

demixed signals to the output channels in each frequency bin,

the ordering of the channels has to be recovered by repair

mechanisms [8]. For avoiding the inner permutation problem,

Independent Vector Analysis (IVA) [9] has been introduced,

which enforces statistical dependence between the frequency

bins of the demixed signals. For identifying the demixing

system, stable, fast and parameter-free update rules based on

the Majorize-Minimize (MM) principle have been proposed

in [10].

Another class of algorithms for multichannel source sepa-

ration is based on Multichannel NMF (MNMF) [11], which is

an extension of Nonnegative Matrix Factorization (NMF) [12].

The main idea here is to model the source signal spectrum by

a superposition of nonnegative basis vectors. This approach

is especially powerful if a distinct spectral structure can be

exploited, e.g., for music signals [13] or certain types of noise

signals [14].

An approach which synthesizes the ideas of IVA and

MNMF has been introduced as Independent Low Rank Matrix

Analysis (ILRMA) [15], [16]. ILRMA can either be under-

stood as a special case of MNMF using a rank-1 spatial model

or as IVA with a time-varying Gaussian source model [17]

whose variance is estimated via NMF. The benefits of this

approach are its faster convergence compared to MNMF and

the higher separation performance of sources with distinct

spectral structure, e.g., music signals. However, if applied

blindly, the permutation of the output channels remains ar-

bitrary. Clustering based on the associated identified spatial

models is difficult in a static and determined scenario, where

the number of sources and sensors is equal. If the sources are

moving or the scenario is underdetermined, i.e., there are more

sources than sensors, such a clustering-based method is likely

to fail.

For signal extraction, a Background (BG) model has been

proposed in [18] which leads to the Independent Vector Ex-

traction (IVE) algorithm. Here, one desired source is separated

from a set of other sources forming the BG, for which no

effort is spent to separate them. The same model has been

http://arxiv.org/abs/2001.05958v1
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used in [19] to derive an MM-based optimization scheme for

IVA in overdetermined scenarios. In both cases it is argued

that the coupling of the Sources Of Interest (SOI) and the

BG is only weakly expressed in the cost function, i.e., the

cost function consists of a part only depending on the SOI

filters and another part only depending on the BG filters.

As a remedy, an orthogonality constraint is imposed on the

demixing filters corresponding to SOIs and BG, which yields

the update rules for the BG filters. For the selection of the

SOI filters, a directional constraint and a supervised adaptation

based on a reference signal [20] has been suggested in [21]

for IVE. For [19] no such selection strategy exists so far.

Many ways have been proposed to incorporate spatial

prior knowledge about the sources into the adaptation of the

demixing filters of BSS algorithms to speed up convergence

or to ensure the extraction of a desired source [22]. A geo-

metric constraint has also been used in TRIple-N Independent

component analysis for CONvolutive mixtures (TRINICON)-

based signal extraction [23], [24], [25] and for IVA in [26]. An

optimization algorithm for spatially regularized ILRMA based

on vector-wise coordinate descent has recently been proposed

in [27].

Besides geometric constraints, [28] proposed to use spatial

models for the reverberant component of the observed sound

signals together with free-field models to obtain a full-rank

spatial covariance model. In [29], previously obtained demix-

ing filters are introduced as prior knowledge into BSS.

In this paper, we propose a novel generic Bayesian frame-

work for informed source separation based on IVA. This

framework allows to incorporate prior knowledge on the

demixing matrices in a generic way and provides fast con-

verging Iterative Projection (IP)-based update rules at a low

computational complexity at the same time. Various known

and novel algorithmic variants are identified as special cases

of the generic framework. Several strategies for incorporating

prior knowledge in the Bayesian sense are discussed and ex-

emplified by priors based on a free-field model, which allows

to steer spatial ones and nulls. A BG model is introduced,

which can also incorporate priors and allows for a significant

reduction of computational cost. For the SOIs, several source

models are discussed including NMF and fast and stable

update rules for all algorithmic variants based on the MM

principle are proposed. A new perspective is taken in the

derivation of the update rules for the BG filters based on

IP. The proposed framework allows the solution of the outer

permutation problem of BSS as well as signal extraction and

separation in determined and overdetermined scenarios and

signal extraction in underdetermined scenarios. This paper

is an extension of [30], where we discussed a very specific

realization of the generic Bayesian framework presented here.

In the following, scalar variables are typeset as lower-case

letters, vectors as bold lower-case letters, matrices as bold

upper-case letters and sets as calligraphic upper-case letters.

Id and 0d denote a quadratic identity or all-zero matrix,

respectively, of dimensions d× d, and 0d1×d2
denotes an all-

zero matrix of dimensions d1 × d2. (·)H and (·)T denote a

Hermitian (complex conjugate transpose) and transposed ma-

trix, respectively. Complex-conjugated quantities are marked

I, 0 Identity and all-zero matrix
f , F Frequency bin index and number of frequency bins
k, K Channel index and number of channels
l, L Iteration index and number of iterations
m, M Microphone index and number of microphones
n, N Time block index and number of blocks
ν, Nbases Basis index and number of bases
W, w Demixing matrix and demixing vector
P Precision matrix of spatial prior
J Cost function
A, a Mixing matrix and mixing vector
t, v Basis element and activation of NMF
C Microphone covariance matrix of frequency bin f
z BG signal vector
B, b BG filter matrix and vector
Q Number of sources
r Estimated demixed signal variance
U(·|·) Upper bound
V Weighted microphone covariance matrix
x Microphone signal vector
s SOI signal vector
q Source signal vector
y Demixed signal vector

BM,K BG filter submatrix
y Broadband demixed signal vector

z Broadband BG signal vector
Y ,X Set of demixed signals and microphone signals
W Set of demixing matrices
[N ], [F ] Index set of time blocks and frequency bins
hf (ϑ) Free-field steering vector for direction ϑ

TABLE I
NOTATIONS USED

by (·)∗ and the derivative of a function w.r.t. its argument

is denoted by (·)′. The set {1, 2, . . . , N} is denoted by [N ].
The notation of important variables is given in Tab. I for later

reference.

The remainder of the paper is structured as follows: Sec. II

defines the signal model, the probabilistic model for the SOIs

and the BG and introduces prior Probability Density Functions

(PDFs). The fundamental principle of MM algorithms is

described in Sec. III. In the same section, an upper bound

for the previously derived cost function is constructed and

optimized, and update rules for the demixing filters based on

the iterative projection principle are proposed. Experimental

results are presented in Sec. IV. The paper is concluded in

Sec. V.

II. MODELS

The following section introduces the underlying source

models for SOIs and BG signals, the probabilistic model for

the demixing system including prior PDFs which allow to

incorporate prior knowledge about the demixing filters.

A. Signal Model

We consider an acoustic scene in an enclosure comprising

M microphones and Q simultaneously active acoustic point

sources observed by the microphones as a convolutive mixture.

In this contribution, we are interested in separating K ≤ Q
SOIs out of the observed mixture of Q sources. The remaining

sources, if there are any, are associated with the so-called

Background (BG) in the following.
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With f ∈ [F ] denoting the frequency bin index and n ∈ [N ]
the discrete time index, we assume a linear time-invariant

mixing model in the Short-Time Fourier Transform (STFT)

domain

xf,n = Afqf,n, (1)

with the source signal vector

qf,n = [q1,f,n, . . . , qQ,f,n]
T ∈ C

Q, (2)

the microphone signal vector

xf,n = [x1,f,n, . . . , xM,f,n]
T ∈ C

M (3)

and the mixing matrix containing the acoustic transfer func-

tions at frequency bin f from the source positions to the

microphones

Af ∈ C
M×Q. (4)

Note that the number of sources Q, the number of microphones

M and the number of SOIs K can be different in general.

In the following, the demixing model is introduced as

illustrated in Fig. 1. The SOIs and the BG signals are obtained

by

yf,n = Wfxf,n (5)

where the demixing matrix applied in frequency bin f

Wf =

[
WSOI

f

Bf

]

∈ C
M×M (6)

contains two parts: One set of filters extracting the SOIs sf,n

WSOI
f =

[
w1

f , . . . ,w
K
f

]H ∈ C
K×M , (7)

and another set of filters

Bf =
[

b1
f , . . . ,b

M−K
f

]H

=
[

B
M,K
f −IM−K

]

∈ C
M−K×M

(8)

estimating the BG signals zf,n. Note that Bf is structured

according to the model proposed in [18] with the identity

matrix IM−K and a submatrix B
M,K
f capturing the free

parameters of Bf , which have to be identified together with the

SOI filters WSOI
f . For a given time frame n and frequency bin

f , the vector of output signals yf,n =
[
sT
f,n, z

T
f,n

]T
contains

the vector of demixed SOIs denoted as

sf,n = WSOI
f xf,n = [s1,f,n, . . . , sK,f,n]

T ∈ C
K , (9)

and the vector of BG signals denoted as

zf,n = Bfxf,n = [z1,f,n, . . . , zM−K,f,n]
T ∈ C

M−K . (10)

Note that only if K < M holds, BG signals can be extracted

by the assumed M ×M demixing matrix Wf .

For the determined case, i.e., K = M , no BG signals are

estimated and the demixing matrix separates only the SOIs

Wf = WSOI
f . Furthermore, we define the broadband signal

vector of the kth SOI and BG signal at time frame n

sk,n = [sk,1,n, . . . , sk,F,n]
T
, zk,n = [zk,1,n, . . . , zk,F,n]

T ∈ C
F .

With the definitions

sn =
[
sT
1,n, . . . , s

T
K,n

]T ∈ C
KF (11)

W
SOI
1

B
M,K
1

−IM−K

W
SOI
1

B
M,K
1

−IM−K

W
SOI
F

B
M,K
F

−IM−K

•
•
•

f ↓

x1,n

• •
•

xM,n

=

•
•
•

=

×

•
•
•

×

s1,n

• •
•

sK,n

z1,n

• •
•

zM−K,n

Fig. 1. Illustration of the demixing process. The demixing matrix Wf

is applied in each frequency bin separately to the broadband vectors of
microphone signals xk,n, k ∈ [M ]. The results are the extracted SOIs sk,n,

k ∈ [K], and the BG signals zk,n, k ∈ [M −K].

and

zn =
[
zT
1,n, . . . , z

T
M−K,n

]T ∈ C
(M−K)F (12)

we can write the signal vector containing all output signals as

y
n
=
[
sT
n, z

T
n

]T ∈ C
MF . (13)

Note that for the determined case, i.e., M = K , y
n

= sn
holds.

B. Probabilistic Model of the Demixing System

For treating the identification of the demixing matrix as a

Bayesian estimation problem, we derive the posterior density

of the demixing matrices in the following. Before starting

the derivation we define the set of all demixing matrices

W =
{
Wf ∈ CM×M |f ∈ [F ]

}
, the set of all demixed signal

vectors Y =
{

y
n
∈ CMF |n ∈ [N ]

}

and the set of all micro-

phone observations X =
{
xf,n ∈ CM |f ∈ [F ], n ∈ [N ]

}
.

Using these definitions, the joint posterior of demixing

matrices W and demixed signals Y can be written as

p(W ,Y|X ) = p(W ,Y)p(X|W ,Y)
p(X )

∝ p(W)p(Y|W)p(X|W ,Y). (14)

We choose the following likelihood function for frequency bin

f and time step n, under the assumption that Wf is invertible

p
(
xf,n

∣
∣W ,yf,n

)
= δ

(

xf,n −W−1
f yf,n

)

, (15)

where δ(·) denotes the Dirac distribution. From (15) a sim-

plistic likelihood for all frequency bins f ∈ [F ] and time steps

n ∈ [N ] can be constructed by using an i.i.d. assumption

p(X|W ,Y) =
N∏

n=1

F∏

f=1

δ
(

xf,n −W−1
f yf,n

)

. (16)

Moreover, a simplistic probabilistic model for the sources can

be formulated under the assumption of independence between

all time frames as

p(Y|W) =
N∏

n=1

p
(

y
n

)

=
N∏

n=1

p (zn)
K∏

k=1

p
(
sk,n

)
, (17)
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where in the rightmost term the realistic assumption of mutual

statistical independence of the SOIs and the independence of

the SOIs from the BG sources is included. Note that p (zn)
and p(sk,n) are multivariate PDFs capturing all frequency

bins. Now, the posterior of the demixing matrices is computed

by marginalizing the demixed signals Y out of the joint

posterior (14)

p(W|X ) ∝ p(W)

∫

p(Y|W)p(X|W ,Y)dy
1
. . . dy

N
. (18)

Inserting the models (16) and (17) yields

p(W|X ) ∝ p(W)

N∏

n=1

∫

p(y
n
)

F∏

f=1

δ
(

xf,n −W−1
f yf,n

)

dy
n
.

Applying the rules for a linear transform of complex random

variables [31] to the transform y
f,n

= Wfxf,n and using the

sifting property of the Dirac distribution yields finally

p(W|X ) ∝ p(W)
F∏

f=1

| detWf |2N
N∏

n=1

p (zn)
K∏

k=1

p(sk,n).

(19)

Optimizing the posterior for the demixing matrices consider-

ing the logarithm of (19) yields the following Maximum A

Posteriori (MAP) problem

W = argmax
W

log p(W)

N
+ 2

F∑

f=1

log | detWf | . . .

· · · −
K∑

k=1

Ê
{
G
(
sk,n

)}
+ Ê {log p (zn)} . (20)

Here, we introduced the score function

G(sk,n) = − log p(sk,n) and the averaging operator

Ê {·} = 1
N

∑N

n=1(·) for a concise notation.

C. Models for SOIs

In the following, we want to introduce various widely-used

models p(sk,n) for the SOIs.

1) Super-Gaussian PDF: A popular and flexible source

model for IVA, containing many others as a special case, is

the generalized Gaussian distribution [32]

p
(
sk,n

)
∝ exp

(

−‖sk,n‖β2
)

, (21)

where β ∈ R+ the shape parameter and ‖ · ‖2 the Euclidean

norm. The corresponding score function is given as (discarding

constant terms)

G(sk,n) = ‖sk,n‖β2 . (22)

2) Time-varying Gaussian PDF: A Gaussian PDF with

time-varying broadband signal variance σ2
k,n [32]

p
(
sk,n

)
∝ exp

(

−
‖sk,n‖22
σ2
k,n

)

, (23)

is another popular choice, where the corresponding score

function is given as (discarding constant terms)

G(sk,n) =
‖sk,n‖22
σ2
k,n

. (24)

3) Nonnegative Matrix Factorization: If the source signal

spectrum is structured, e.g., for music signals, or if prior

knowledge about the source spectrum is available, an NMF-

based source model is promising. Hereby, independence over

all frequency bins is assumed [15]

p
(
sk,n

)
=

F∏

f=1

NC
(
sk,f,n|0, σ2

k,f,n

)
(25)

where the circularly-symmetric complex Gaussian distribution

NC
(
sk,f,n|0, σ2

k,f,n

)
=

1

πσ2
k,f,n

exp

(

−|sk,f,n|
2

σ2
k,f,n

)

(26)

for each time-frequency bin has been chosen [16]. The fre-

quency bin-wise signal variance σ2
k,f,n = E{|sk,f,n|2} is

modeled as

σ̂2
k,f,n =

(
Nbases∑

ν=1

tk,f,νvk,ν,n

)β

, (27)

where β ∈ R+ is a user-defined parameter. Hereby,

ν ∈ [Nbases] indexes the basis vectors, tk,f,ν denotes the el-

ement of the νth basis vector corresponding to frequency bin

f and source k and the associated activation at time instant

n is denoted by vk,ν,n. The resulting score function reads

(discarding constant terms)

G (sn) =

F∑

f=1

K∑

k=1

(

log σ2
k,f,n +

|sk,f,n|2
σ2
k,f,n

)

. (28)

An in-depth discussion of different source models for ILRMA,

where NMF source models are commonly used, can be found

in [33].

D. Background Model

We model the BG signals, collected in set

Z =
{
zf,n ∈ C

M |f ∈ [F ], n ∈ [N ]
}

, to be independent

over all frequency bins and time steps for simplicity

p(Z) =
N∏

n=1

p (zn) =

N∏

n=1

F∏

f=1

p (zf,n) . (29)

Furthermore, we model the BG signals at each time-frequency

bin to be multivariate complex Gaussian distributed

p (zf,n) =
1

πM−K | detRf |
exp

(

−zH
f,nR

−1
f zf,n

)

, (30)

where Rf denotes its covariance matrix. Note that we do not

aim at separating the BG signals and neither aim at estimating

their covariance matrix. Note that (30) puts no restrictions on

the BG model except for Gaussianity, so that, e.g., spatially

white noise as well as spatially correlated sound fields, notably

diffuse sound fields, are captured.

To simplify the derivation of the update algorithms for the

BG filters, we use an eigenvalue decomposition of the BG

signal covariance matrix

TH
fR

−1
f Tf = Λf . (31)
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Hereby, Tf ∈ C(M−K)×(M−K) denotes an orthonormal ma-

trix (i.e., TfT
H
f = IM−K ) containing the eigenvectors of Rf

and Λf denotes a diagonal matrix containing its eigenvalues.

Note that such a decomposition always exists for covariance

matrices. As all eigenvalues are real-valued and positive, Λf

can be decomposed as

Λf = DfDf , (32)

where Df ∈ R(M−K)×(M−K) denotes the matrix square root

of Λf . Note that the entries of Df are again all real-valued

and positive, hence, Df is invertible.

Using the relations (31) and (32), the covariance matrix Rf

can be transformed into an identity matrix

D−1
f TH

fR
−1
f TfD

−1
f = IM−K . (33)

By using (33), we obtain

p (zf,n) =
1

πM−K | detRf |
exp

(
−z̃H

f,nz̃f,n
)
, (34)

with

z̃f,n = DfT
H
f zf,n = DfT

H
fBfxf,n = B̃fxf,n. (35)

Here, we defined B̃f = DfT
H
fBf . Taking the i.i.d. assump-

tion (29) w.r.t. time and frequency of the BG signals into

account, the PDF of all BG signals Z is obtained as

p(Z) ∝ exp



−
F∑

f=1

N∑

n=1

z̃H
f,nz̃f,n



 (36)

= exp



−
F∑

f=1

N∑

n=1

M−K∑

k=1

(b̃k
f )

Hxf,nx
H
f,nb̃

k
f



 (37)

= exp



−N
F∑

f=1

M−K∑

k=1

(b̃k
f )

HCf b̃
k
f



 . (38)

Hereby, b̃k
f denote the modified BG filter vectors, defined

analogously to (8) and Cf = Ê

{

xf,nx
H
f,n

}

the microphone

signal covariance matrix. Hence, we obtain the following term

contributing to the cost function (neglecting constant terms)

log p(Z) = −N
F∑

f=1

M−K∑

k=1

(b̃k
f )

HCf b̃
k
f = −NJBG(W). (39)

E. Priors

The prior of the demixing matrices is chosen to be the

product of marginal PDFs for each SOI filter wk
f , the BG

filter matrix Bf and frequency bin f

p(W) =

F∏

f=1

p(Wf ) =

F∏

f=1

p (Bf )
∏

k∈I
p
(
wk

f

)
. (40)

In the following, we will discuss separately the priors for

the SOI and the BG filters and will give the overall term

contributing to the cost function.

1) SOIs: In many cases no prior knowledge is available for

some of the channels or the optimization of the corresponding

demixing filters should not be constrained. Hence, we only

incorporate prior knowledge for a subset I ⊆ [K] of the

demixing filters of the SOIs and choose uninformative priors

for k /∈ I. In the following, we will present two different

priors for the SOI filters based on Gaussian PDFs.

The first option for a prior for the k-th channel is chosen

to be a zero-mean complex multivariate Gaussian PDF with

precision matrix Pk
f and weighting factor γ̃k,f

p
(
wk

f

)
=

√

(γ̃k,f )M detPk
f√

πM
exp

(
−γ̃k,f (wk

f )
HPk

fw
k
f

)
.

(41)

The weighting factor γ̃k,f controls here and similarly for the

other priors the impact of the prior on the overall model, i.e.,

it is a user-defined parameter. In the following, we want to

discuss different choices for Pk
f yielding different priors for

the demixing filters. To construct these priors, we use a free-

field model and define the steering vector as

[hf (ϑi)]m =

[

exp

(

j
2πµf

cs
‖rm − r1‖2 cosϑi

)]

m

, (42)

where rm denotes the position of the mth microphone, µf

the frequency in Hz corresponding to frequency bin f , ϑi the

direction of the source and cs the speed of sound. Using this

definition, we define the precision matrix yielding a spatial

null

Pk
f,Null = λNull

Tik IM +
∑

i:ϑi∈Θk

λNull
i hf (ϑi)hf (ϑi)

H, (43)

where Θk denotes the set of constrained Direction of Arrivals

(DOAs) and λNull
i is a weight defining the influence of the

constraint in direction ϑi, while λNull
Tik controls the penalty

on the filters energy. The intuition behind this choice can be

understood if the argument of (41) is rearranged

(wk
f )

HPk
f,Nullw

k
f = · · · (44)

· · · = λNull
Tik ‖wk

f‖22 +
∑

i:ϑi∈Θk

λNull
i ‖hf (ϑi)

Hwk
f‖22.

The first term represents the filters power and can be seen

as a Tikhonov regularizer. The second term gives the length

of the projection of the filters wk
f onto the steering vectors

hf (ϑi). Hence, this prior favors solutions with small filter

energy and good angular alignment to the steering vectors

hf (ϑi). Similarly, the precision matrix yielding a spatial one

is given as

Pk
f,One = λOne

Tik IM −
∑

i:ϑi∈Θk

λOne
i hf (ϑi)hf (ϑi)

H, (45)

where λOne
i and λOne

Tik are weighting parameters.

As an alternative to (41), we present another prior for the

channels k ∈ IEuc based on the Euclidean distance between

the current filter estimate and the target filter vector

p
(
wk

f

)
=

√

(γ̃Euc
k,f )

M

√
πM

. . . (46)

. . . exp
(
−γ̃Euc

k,f (w
k
f − hf (ϑk))

H(wk
f − hf (ϑk))

)
.
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Microphone signals X

Source Model

BSSSignal Extraction BG

Demixed Signals Y
Prior Knowledge

K = MQ > M ,K ≤M K < M

Θk Θk ΘBG

Fig. 2. Relation of proposed algorithmic variants. Depending on Q, K and
M , different algorithmic variants can be chosen: determined source separation,
signal extraction or overdetermined BSS using a BG model.

Hereby, we used the the steering vector hf (ϑk) defined in (42).

In this contribution, we discuss practical realizations of the

priors on the demixing vectors in the form of spatial priors

which will also be the main focus in this paper. However, it

should be noted that the proposed framework can be used for

any prior which can be represented in the form of (41) or (46).

Note that (43) and (46) have been first introduced in [27] and

[30], respectively.

2) Background: Analogously to the priors for the SOIs

(41), we choose the prior for the transformed BG filters to

be

p
(

B̃f

)

=





√

(γ̃BG
f )M detPBG

f√
πM





M−K

. . .

. . . exp

(

−γ̃BG
f

M−K∑

k=1

(b̃k
f )

HPBG
f b̃k

f

)

, (47)

where we assumed independence between all channels and

impose the same constraint by choosing PBG
f according to (43)

for all BG channels. Note that the independence assumption

applies here to the filters, not to the BG signals. This can

be justified by considering filters associated with independent

source positions to be independent as well. The constrained

directions for the BG are collected in the set ΘBG. Thereby,

one or multiple spatial nulls can be controlled, e.g., to avoid

the occurrence of the SOIs in the BG.

3) Overall Prior: Joining the priors for SOIs and BG yields

the overall log prior term (neglecting constant terms) (cf. (40))

log p(W) = −N
F∑

f=1

(

γBG
f

M−K∑

k′=1

(b̃k′

f )HPBG
f b̃k′

f . . . (48)

· · ·+
∑

k∈I
γk,f (w

k
f )

HPk
fw

k
f +

∑

k∈IEuc

γ̃Euc
k,f‖wk

f − hf (ϑk)‖22

)

,

where we introduced the notation γBG
f =

γ̃BG
f

N
, γk,f =

γ̃k,f

N

and γEuc
k,f =

γ̃Euc
k,f

N
for convenience in the following. The term

contributing to the cost function is given by

NJprior(W) = − log p(W). (49)

F. Generic Cost Function

Taking the negative of the MAP problem (20) and using

(39) and (48) yields the generic cost function

JIBSS(W) =

K∑

k=1

Ê
{
G
(
sk,n

)}
− 2

F∑

f=1

log |detWf | . . .
︸ ︷︷ ︸

JBSS(W)

· · ·+ JBG(W) + Jprior(W). (50)

The cost function JIBSS consists of three parts: The BSS cost

function JBSS, a component corresponding to the BG JBG and

a term representing the priors Jprior of SOIs and BG. Fig. 2

gives an overview of different tasks addressed by the generic

cost function (50).

G. Relation to BSS

By choosing an uninformative prior over the demixing

matrices p(W) = const. and the number of SOIs equal to

the number of microphones K = M , the cost function for

non-informed determined IVA is obtained [2]

JBSS(W) =

K∑

k=1

Ê
{
G
(
sk,n

)}
− 2

F∑

f=1

log |detWf | . (51)

Hence, the proposed framework includes the prior work based

on IVA (and ICA as a special case of IVA) [7], [9], [10], [32]

and its many extensions [16], [19], [27], [30].

III. DERIVATION OF UPDATE RULES

In the following, we develop an optimization algorithm

based on the MM principle for the general informed BSS

cost function JIBSS(W) (50). We will start with the fun-

damental MM principle and then construct an upper bound

of the informed BSS cost function JIBSS. Finally, we will

provide update rules and summarize the proposed algorithmic

framework.

A. Majorize-Minimize Principle

The main idea of Majorize-Minimize (MM) algorithms is

to define an upper bound for the cost function which is easier

to optimize than the cost function itself and which fulfills

two conditions: majorization and tangency (see [34] for an

accessible in-depth introduction).

Let W(l) denote the set of estimated demixing matrices at

iteration l ∈ [L] with L as the total number of iterations. Then

the majorization property of the upper bound U
(
W|W(l)

)
can

be expressed as

J(W) ≤ U
(

W|W(l)
)

. (52)
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wopt w(1) w(0)

1

2

3

U
(w
|w

(1
) )U

(w|w
(0)

)

w →

J
→

J U(w|w(l))

Fig. 3. Illustration of optimization based on the MM principle. Here, a one-
dimensional cost function is used for illustration. The cost function J is shown
as a solid line and the upper bounds U(w|w(l)) for l = 0, 1 as dotted lines.

Furthermore, the global minimizer wopt and the minimizer of U(w|w(0)) are
shown as vertical lines.

Equality holds iff W =W(l), i.e.,

J
(

W(l)
)

= U
(

W(l)|W(l)
)

, (53)

which represents the tangency condition. The upper bound is

chosen such that its optimization is easily possible

W(l+1) = argmin
W

U
(

W|W(l)
)

, (54)

where W(l+1) denotes the minimizer. As minimization does

not increase the function value of the upper bound, the

following downhill property [34] is obtained by using the

tangency and majorization property of the upper bound

J
(

W(l+1)
)

≤ U
(

W(l+1)|W(l)
)

(55)

≤ U
(

W(l)|W(l)
)

= J
(

W(l)
)

.

Hence, by iteratively optimizing the upper bound and ensuring

tangency to the cost function, the cost function values are

ensured to be non-increasing.

This optimization principle is illustrated in Fig. 3.

B. Construction of Upper Bound

The problem of optimizing the informed BSS cost function

JIBSS will now be shifted to optimizing a surrogate, an upper

bound UIBSS.

Let W(l)
k =

{

w
k,(l)
f ∈ CK |f ∈ [F ]

}

be the set of all

demixing vectors for channel k at iteration l. For supergaussian

PDFs (for the discussion of the time-varying Gaussian PDF

see below), characterized by the score function G(sk,n), the

following inequality has been proven in [10]

Ê
{
G(sk,n)

}
≤ Rk(W(l)

k ) +
1

2

F∑

f=1

(
wk

f

)H
Vk

f

(

W(l)
k

)

wk
f .

(56)

All discussed SOI models can be written solely in dependence

of the norm of the broadband SOI signal rk,f,n(W(l)
k ), i.e.,

G̃(rk,f,n(W(l)
k )) = G(sk,n). For the supergaussian and the

time-varying Gaussian SOI model, the weighting factor de-

pends on the estimated broadband signal energy of source k
at time instant n

rk,n

(

W(l)
k

)

=
∥
∥
∥s

(l)
k,n

∥
∥
∥
2
=

√
√
√
√

F∑

f=1

∣
∣
∣
∣

(

w
k,(l)
f

)H

xf,n

∣
∣
∣
∣

2

, (57)

i.e., rk,f,n = rk,n ∀f . The term Rk(W(l)
k ) in (56) given as

Rk

(

W(l)
k

)

= Ê

{

G̃
(

rk,n,f

(

W(l)
k

))

. . . (58)

· · · −
rk,n,f

(

W(l)
k

)

G̃′
(

rk,n,f

(

W(l)
k

))

2

}

is independent of W and Vk
f

(

W(l)
k

)

denotes the weighted

sensor signals’ covariance matrix

Vk
f

(

W(l)
k

)

= Ê
{
φ(rk,f,n)xf,nx

H
f,n

}
, (59)

where

φ(rk,f,n) =
G̃′
(

rk,f,n

(

W(l)
k

))

rk,f,n

(

W(l)
k

) (60)

denotes the corresponding weighting factor.

The weighting factor φ(rk,n) for the generalized Gaussian

distribution (21) and the time-varying Gaussian PDF (23) can

be expressed as (see [32])

φ(rk,n) = (rk,n)
β−2

. (61)

For the NMF source model, we obtain for the weighting factor

φ(rk,f,n) =
1

(
∑Nbases

ν=1 tk,f,νvk,ν,n

)β
. (62)

Note that the weighting factor φ(rk,n,f ) is frequency-

dependent in the case of the NMF source model.

The inequality (56) transforms the optimization of a general

nonlinear function dependent on all frequency bins into the

optimization of the sum of quadratic functions, each of which

dependent only on one frequency bin. The dependency be-

tween the frequency bins is solely expressed by the weighting

φ(rk,n) of the microphone correlation matrix in (59).

By inserting the inequality (56) into the BSS cost function

(51), we obtain the following upper bound for the BSS cost

function JBSS

UBSS

(

W|W(l)
)

=
F∑

f=1

[
K∑

k=1

(

1

2

(
wk

f

)H
Vk

f

(

W(l)
k

)

wk
f . . .

· · ·+ 1

F
Rk

(

W(l)
k

)
)

− 2 log | detWf |
]

, (63)

with JBSS(W) = UBSS

(
W|W(l)

)
iff W =W(l).

For the case of a Gaussian source distribution, the upper

bound is identical to the cost function (a similar relation holds

for the NMF source model described in Sec. II-C3)

JBSS

(

W|W(l)
)

= UBSS

(

W|W(l)
)

, (64)
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where Rk

(

W(l)
k

)

= 0.

An upper bound of the cost function for informed BSS

JIBSS(W) can be obtained by adding the cost function of the

prior Jprior (49) and the cost function of the BG JBG (39) on

both sides of the inequality

JIBSS(W) ≤ UIBSS

(

W|W(l)
)

(65)

= UBSS

(

W|W(l)
)

+ JBG(W) + Jprior(W),

with JIBSS(W) = UIBSS

(
W|W(l)

)
iff W = W(l), i.e., the

upper bound fulfills the requirements of majorization and

tangency.

C. Optimization of Upper Bound

In the following we will derive analytic expressions for the

minimum of the upper bound w.r.t. the demixing matrices

W(l+1) = argmin
W

UIBSS

(

W|W(l)
)

(66)

and derive iterative update rules which allow the computation

of the minimizerW(l+1). To simplify the following derivation,

we transform the log-det term of the upper bound (63) to have

all BG filters in the transformed representation (35)

log | detWf | = log

∣
∣
∣
∣
det

[
IK 0M−K×K

0K×M−K TfD
−1
f

] [
WSOI

f

B̃f

]∣
∣
∣
∣

= log

∣
∣
∣
∣
det

[
WSOI

f

B̃f

]∣
∣
∣
∣
+ const. (67)

Hence, the transformed filters yield the same optimum as the

orignal filters.

1) Without Constraints: For the unconstrained channels,

i.e., for k /∈ I and k /∈ IEuc, we obtain the following

conditions by setting the derivative of the upper bound (65)

w.r.t. each of the SOI filters to zero [10]
(

w
q
f

)H

Vk
f

(

W(l)
k

)

wk
f

!
= δkq, k, q ∈ [K] (68)

where δ denotes the Kronecker Delta. Similarly, for the

BG filters we obtain by differentiating (65) the following

conditions for the relation between the SOI filters k ∈ [K]
and the BG filters k′ ∈ [M −K]

(
wk

f

)H
Cf b̃

k′

f

!
= 0 (69)

and for the relation between the BG filters
(

b̃
q
f

)H

Cf b̃
k′

f

!
= δk′q, q ∈ [M −K]. (70)

However, this condition is not investigated further in the

following, as the estimation of the BG signals is not our aim.

By collecting all the vector-wise constraints in (69), we can

write

WSOI
f Cf B̃

H
f

!
= 0K×(M−K). (71)

Now, we insert B̃f = DfT
H
fBf

WSOI
f CfB

H
fTfDf

!
= 0K×(M−K) (72)

and multiply with D−1
f TH

f from the right, which yields the

following condition between SOI and BG filters

WSOI
f CfB

H
f

!
= 0K×(M−K). (73)

2) With Constraints: For the channels constrained by the

quadratic constraint (41), i.e., k ∈ I, we obtain as conditions

for the SOI channels by optimizing (65)

(

w
q
f

)H [

Vk
f

(

W(l)
k

)

+ γk,fP
k
f

]

wk
f

!
= δkq . (74)

For the relation between the SOI and the BG channels we

obtain

WSOI
f

[
Cf + γBG

f PBG
f

]
BH

f

!
= 0K×(M−K). (75)

Note that the conditions (74) and (75) generalize the previ-

ously known conditions (68) and (70) in the sense that the

weighted correlation matrix Vk
f and the microphone signal

correlation matrix Cf are regularized by the precision matrices

Pk
f and PBG

f , which allow incorporation of many types of prior

knowledge on SOIs and/or BG as discussed in Sec. II-E.

D. Update Rules

In the following, we will present update rules which identify

solutions to the conditions (68), (73), (74) and (75) presented

in the previous paragraph.

1) Demixing Filters: In the unconstrained case the SOI

filters can be optimized by ensuring orthogonality between

the output signals [10]

w̃
k,(l+1)
f =

(

W
k,(l)
f V

k,(l)
f

(

W(l)
k

))−1

ek, (76)

where ek denotes a canonical basis vector with a one at the

kth position, and normalization

w
k,(l+1)
f =

w̃
k,(l+1)
f

√
(

w̃
k,(l+1)
f

)H

V
k,(l)
f

(

W(l)
k

)

w̃
k,(l+1)
f

. (77)

This procedure is called IP and will be used to derive gen-

eralized update rules for the other algorithmic variants in the

following. The channels constrained by (41), i.e., k ∈ I are

updated by

w̃
k,(l+1)
f =

(

W
(l)
f

[

V
k,(l)
f

(

W(l)
k

)

+ γk,fP
k
f

])−1

ek, (78)

w
k,(l+1)
f =

w̃
k,(l+1)
f

√
(

w̃
k,(l+1)
f

)H [

V
k,(l)
f

(

W(l)
k

)

+ γk,fPk
f

]

w̃
k,(l+1)
f

.

(79)

For the channels constrained by (46), i.e., k ∈ IEuc, we use

the update rules proposed by [27]

uk
f =

(

W
(l)
f Ṽ

k,(l)
f

)−1

ek (80)

ũk
f = γEuc

k,f

(

Ṽ
k,(l)
f

)−1

hf (ϑk) (81)

pk,f = (uk
f )

HṼ
k,(l)
f uk

f (82)

p̃k,f = (uk
f )

HṼ
k,(l)
f ũk

f (83)

w̃
k,(l+1)
f ←







u
k
f√

pk,f
+ ũk

f , if p̃k,f = 0

p̃k,f

2pk,f

(

−1 +
√

1 +
4pk,f

|p̃k,f |2
)

uk
f + ũk

f , else.

(84)
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Algorithm Index →
1 2 3 4 5 6 7 8 9 10 11 12 13

K M M M M 1 1 1 M M M 1 1 1
Optimization type GD IP IP IP IP IP IP IP IP IP IP IP IP
Spatial One/Null One One One Null One One Null One One Null One One Null
Quadratic prior (41) ✕ ✕ X X ✕ X X ✕ X X ✕ X X

Euclidean prior (46) ✕ X ✕ ✕ X ✕ ✕ X ✕ ✕ X ✕ ✕

BG model ✕ ✕ ✕ ✕ X X X ✕ ✕ ✕ X X X

BG prior ✕ ✕ ✕ ✕ ✕ ✕ X ✕ ✕ ✕ ✕ ✕ X

SOI model SG ———————– SG/TVG ——————— ———————— NMF ———————
Proposed [26] — New — [30] ———- New ———– [27] —————— New ——————-

TABLE II
OVERVIEW OVER ALGORITHMIC VARIANTS EVALUATED IN THE EXPERIMENTS. WE USED THE FOLLOWING ABBREVIATIONS: GRADIENT DESCENT (GD),

ITERATIVE PROJECTION (IP), SUPERGAUSSIAN (SG) AND TIME-VARYING GAUSSIAN (TVG).

To calculate the update of the BG filters B
M,K
f in the

unconstrained case, (73) can be solved for B
M,K
f by inserting

the parametrization of the BG filters, which yields

B
M,K
f =

(
E2Cf (W

SOI
f )H

) (
E1Cf (W

SOI
f )H

)−1
. (85)

Hereby, we defined

E1 = [IK ,0K×M−K ] and E2 = [0M−K×K , IM−K ].
(86)

Note that these update rules coincide with those proposed

by [19], but are rigorously derived here from the iterative

projection perspective, which also makes the incorporation of

priors possible. Similarly, the updates for the constrained case

are obtained by generalization of (85) as

B
M,K
f =

(
E2

[
Cf + γBG

f PBG
f

]
(WSOI

f )H
)
· · ·

· · ·
(
E1

[
Cf + γBG

f PBG
f

]
(WSOI

f )H
)−1

. (87)

2) Update of Demixed Signal Variance: The update of the

variance parameter rk,n,f can be done directly based on the

demixed signals for each iteration in case of the generalized

Gaussian or time-varying Gaussian source model by (57). For

the NMF source model, the elements tk,f,ν of the basis vectors

and the elements vk,ν,n of the activation vector have to be

updated in addition to the demixing filters. The update rules

are given by [16]

tk,f,ν ← tk,f,ν

√
√
√
√
√
√

∑

n∈[N ] |yk,f,n|2vk,ν,n
(

rkn,f

)−2

∑

n∈[N ] vk,ν,n

(

rkn,f

)−1 (88)

and

vk,ν,n ← vk,ν,n

√
√
√
√
√
√

∑

f∈[F ] |yk,f,n|2tk,f,ν
(

rkn,f

)−2

∑

f∈[F ] tk,f,ν

(

rkn,f

)−1 . (89)

E. Practical Aspects

In this paragraph, we discuss some aspects which are

relevant for a practical realization of the above algorithmic

variants. To avoid distortion of the signals by the scaling

ambiguity in each frequency bin, the minimal distortion prin-

ciple can be applied [35]. To avoid numerical instability of

the algorithmic variants relying on an NMF SOI model, [15]

proposed to normalize all estimated quantities in each iteration

(see [15] for details). The proposed algorithmic framework is

summarized in Alg. 1.

IV. EXPERIMENTS

In this section, we evaluate different algorithmic variants

resulting from the proposed framework and compare them

with several baseline algorithms from the literature. In this

experimental study, we will focus on signal extraction, i.e.,

the separation from one source out of the observed mixture. In

addition, the challenging case of an underdetermined scenario,

i.e., Q > M is addressed in the experiments in the following.

However, also the extraction of multiple sources from the

mixture and source separation for the determined case, i.e.,

K = M , and the overdetermined case, i.e., K > M , are

covered by the framework. We do not evaluate the determined

case here as this has been subject to many experimental studies

in the literature [9], [32]. We also do not investigate the

overdetermined case, as this can be considered as an easier

problem than the underdetermined scenario. A discussion for

the overdetermined case without the incorporation of prior

knowledge can be found in [19].

The discussed methods vary w.r.t. the used SOI model, the

exploitation of a BG model, the optimization method and the

applied priors. Method 1 is based on gradient descent and a

supergaussian source model and has been proposed in [26].

The rest of the discussed algorithmic variants all use IP for

optimization and are evaluated for different SOI models: the

supergaussian, the time-varying Gaussian and the NMF SOI

model. For each of these SOI models, we discuss the priors

(41) with (45) and (46) constraining one channel by a spatial

one and the prior (41) with (43) constraining all channels but

one with a spatial null. Furthermore, we discuss for all source

models the incorporation of the BG model in two different

variants: 1) unconstrained BG with a spatial one constraint

for the SOI ((41) with (45) or (46)) and 2) unconstrained SOI,

but BG with a spatial null constraint (47). Tab. II summarizes

the 13 algorithmic variants discussed in the following. The

variants 4 and 8 are published in [30] and [27], respectively,

and represent further baselines in our experimental study. Note

that [19], which is a special case of the proposed framework,

has been shown to be superior to [18] by comprehensive

experiments. Hence, we do not repeat these experiments here.
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Algorithm Index →
1 2 3 4 5 6 7 8 9 10 11 12 13

Step size 0.05 γ,γEuc,γBG 0.5 1.5 0.5 2 2 50 5 3 5 2.5 2.5 100
Prior Weight 0.01 λTik 1 1 10−3 1 1 10−3 1 1 10−3 1 1 10−3

λOne
1 ,λZero

1 ✕ 2 1 ✕ 1.5 1 ✕ 1.5 1 ✕ 1 1
Nbases ✕ ✕ ✕ ✕ ✕ ✕ 2 2 2 2 2 2

L 2500 L 100 100 100 100 100 100 100 100 100 100 100 100

TABLE III
PARAMETERS USED IN THE EXPERIMENTS.
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Fig. 5. Geometric setup of the scenario used in the experiments. The M = 4
microphone positions are marked by crosses and the Q = 8 source positions
at 1m, 2m and 4m distance from the array are marked by circles.
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Fig. 6. Results of the number of bases Nbases for the algorithmic variants
using an NMF source model. The results for the approaches using a BG model
are depicted as solid lines, the others as dashed lines.

A. Experimental Setup

For the experiments we used a uniform linear array with

M = 4 microphones with a spacing of 4.2 cm. The micro-

phone signals are computed by convolving RIRs measured

in a living room environment with male and female speech

signals and adding white Gaussian noise such that an Signal-

to-Noise Ratio (SNR) of 30 dB at the microphones is obtained.

Two enclosures are considered in the following: Room 1

with a reverberation time of T60 = 0.2 s and Room 2 with

T60 = 0.4 s. We placed Q = 8 acoustic sources at 1m,

2m and 4m distance and at different angles relative to the

array for measuring the RIRs (see Fig. 5 for an illustration
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Algorithm 1 Informed BSS (generic pseudo code)

INPUT: X , L, {Θk}k∈I , {Θk}k∈IEuc , ΘBG

————————————————————————

INITIALIZATION:

yf,n = xf,n ∀f, n
if NMF Source Model then

tk,f,ν , vk,ν,n ∼ U(0, 1) ∀k, f, n, ν
end if

if M ≤ K then

W
(0)
f = IM ∀f

else

W
(0)
f =

[
IK 0K×(M−K)

0(M−K)×K −IM−K

]

∀f
end if

————————————————————————

for l = 1 to L do

for k = 1 to K do

Calculate φ(rk,f,n) ∀n by (61) or (62)

for f = 1 to F do

Calculate Vk
f (W

(l)
k ) = Ê

{

φ(rk,f,n)xf,nx
H
f,n

}

if k ∈ I or k ∈ IEuc then

Update wk
f by (78), (79) or by (80)-(84)

else if k /∈ I then

Update wk
f by (76) and (77)

end if

if M > K then

if ΘBG 6= ∅ then

Update B
M,K
f by (87)

else

Update B
M,K
f by (85)

end if

end if

Assemble Wf =

[ [
w1

f , . . . ,w
K
f

]H

[

B
M,K
f −IM−K

]

]

end for

end for

if NMF Source Model then

Normalize [15]

end if

end for

Scale demixing filters Wf ← diag
{

(Wf )
−1
}

Wf

for n = 1 to N do

for f = 1 to F do

Extract SOIs sf,n = WSOI
f xf,n

end for

end for

————————————————————————

OUTPUT: SOIs sf,n∀f, n
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Fig. 7. Influence of the shape parameter β of the SOI model on the
performance of Methods 2-13 in terms of SDR improvement.

of the geometric setup of the measurements). All sources and

microphones have been placed at the same height of 1.4m.

The microphone signals are computed from a set of 4 female

and 4 male speech signals of 20 s duration at a sampling

frequency of 16 kHz. The microphone signals are transformed

into the STFT domain using a von Hann window of length

2048 and 50% overlap. For the SOI source models, we set

β = 1 in (61) and (62). The performance of the investigated

methods is measured in terms of the improvement (denoted

by ∆) of the Signal-to-Distortion Ratio (SDR), Signal-to-

Interference Ratio (SIR) and Signal-to-Artefact Ratio (SAR)

[36] w.r.t. the unprocessed microphone signals, respectively,

and in terms of averaged runtime per iteration for all 20

permutations of the source signals.

In the following, we aim at extracting a source q (see

Fig. 5) out of the reverberant mixture of all sources. To obtain

representative results, we repeat the experiment 20 times and

permute the positions of the speech sources in each trial.

The performance of the algorithms is assessed by using the

improvement for the measures proposed by [36], where the

separation of the SOI from the mixture of all other signals

is evaluated. The user-defined parameters are chosen for each

algorithmic variant separately by a parameter sweep such that

the best results are obtained on average for the extraction of

source q = 2 for all 20 permutations (the choice of q = 2 is

arbitrary here). Furthermore, the parameters have been chosen

such that the outer permutation has been resolved, i.e., the

desired source signal indeed appeared at the selected output

channel. The weighting parameters λ and γ have chosen to

be equal for all frequency bins and channels. The obtained

parameters are summarized in Tab. III.

B. Target Direction and Acoustic Environment

The influence of different target DOAs (corresponding to

sources q = 1, 2, 3) and of different acoustic environments

is investigated in the following. To this end, the geometric

setup, corresponding to Fig. 5, is used in the two different

rooms described above for measuring the RIRs and for each

of these acoustic conditions source q = 1, 2, 3 is extracted.

This experiment is again repeated for 20 permutations of

the association between source positions and source signals

and the median of the results is taken as a statistic, which
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Fig. 8. Influence of different noise levels on the discussed algorithmic variants
in terms of SDR improvement.

is presented in Fig. 4. The results of Room 1 are depicted

as solid lines, the results of Room 2 as dashed lines. First

of all, it can be seen that the extraction of source q = 3
yielded the best results in terms of SDR improvement for most

algorithms, which may be explained by the geometric setup in

which not many sources are contained in the angular region of

source q = 3. Furthermore, the performance of all algorithms

degrades for Room 2, which has a higher reverberation time.

This effect is typical for algorithms which perform spatial

filtering. Also the assumption of free-field propagation used

for the construction of the priors is violated for an increasing

reverberation time. While the performance of most of the

algorithms dropped only slightly, for the Methods 4, 7, 10, 13

a large drop can be observed. These methods have in common

that they rely on the prior (41) or (47) steering a spatial null.

This spatial null constraint is imposed on all channels but one,

instead of the priors steering a spatial one, which just impose a

constraint on a single channel. As the free-field assumption is

violated for increasing reverberation time, this has a larger

effect on the methods using a prior steering a spatial null

as this violated assumption is used multiple times. However,

even for the methods with the large drop in the performance

measures, SIR improvement is achieved.

C. Runtime, Source Models and SNR

In terms of average runtime per iteration, Method 1 and 5-

7 cause the lowest computational costs, followed by Methods

11-13. Hereby, the computational efficiency of the Methods

5-7 and 11-13 results from the usage of a BG model. The

computational cost of the Methods 2-4 and 8-10 is much

higher than their counterparts using a BG model. In terms

of computational efforts to be spent until convergence, the

gradient-based Method 1 is computationally much more costly

as the number of iterations until convergence is much larger

(about the factor 20− 25) than for the IP-based methods.

The influence of the number of bases Nbases for the Methods

8-13 relying on an NMF source model is shown in Fig. 6. It

can be seen that for all methods Nbases = 2 basis vectors

provide satisfying results (see also, e.g., [16]).

The influence of the shape factor β of the SOI models is

discussed in terms of achieved SDR improvement in Fig. 7.

The values β = 0, 0.5, 1, 1.5, 2 have been evaluated here (for

the NMF-based methods β = 0 is not evaluated as this would

correspond to φ(rk,n,f ) = 1 ∀n, f, k), where the value β = 1
corresponds to a Laplacian distribution and β = 2 to the time-

varying Gaussian distribution (23) w.r.t. the IVA SOI models.

In case of the NMF SOI model, a time-varying Gaussian SOI

model is obtained for β = 1. Inspection of Fig. 7 shows that

a choice of β = 1 yields good results for all algorithms. For

some algorithmic variants the values of β = 0.5 or β = 1.5
are slightly better. In all cases, we obtain for the choice of

β = 0 or β = 2 worse results. This is especially severe for

Method 4, which relies on a prior steering a spatial one based

on (41).

The performance of the discussed algorithmic variants w.r.t.

varying noise levels is shown in Fig. 8. Here, we varied the

additive noise, such that an SNR of 0 dB, 10 dB, 20 dB and

30 dB is achieved at the microphones. Unsurprisingly, for an

SNR of 0 dB all algorithms produce the worst results. For the

other noise levels, a detrimental effect due to the additive noise

can be observed for the algorithms relying on an NMF SOI

model, whereas the other methods are only slightly affected

by the noise level. The detrimental effect of the increasing

noise level is especially severe for Methods 8, 9, 10, which

are using an NMF source model and no BG model.

D. Summary

In this experimental study, we discussed different algorithms

based on IVA for source extraction, where the desired source is

selected by a spatial constraint. In general, Methods 8-13 based

on an NMF source model yielded better results than Methods

1-7 (see Fig. 4). As another general outcome, it can be

observed that methods using a spatial null constraint degraded

severely for increasing reverberation time. The influence of

varying noise levels was not severe for most SNRs (see Fig. 8).

The methods based on IP showed much lower computational

complexity than the baseline using gradient descent [26] (see

Fig. 4). The computational complexity can be further reduced

significantly by the use of an BG model without sacrificing

performance. By comparing the results shown in Fig. 4, it

can be seen there is no single best-performing algorithm: For

the TVG/SG source model, the proposed Algorithms 4 and 7

relying on a prior steering a spatial null perform especially

well for T60 = 0.2 s and degrades for larger T60. For the

algorithmic variants relying on an NMF source model, the

baseline Method 8 and the proposed Method 9, both steering

a spatial one, yield similar results in all cases. However, the

average runtime per iteration is slightly lower for the proposed

Method 9. The proposed BG-based Methods 11-13 obtained

for some acoustic setup very good results but degraded for

T60 = 0.4 s.

V. CONCLUSION

In this contribution, we presented a unifying and flexi-

ble generic framework for systematic incorporation of prior

knowledge on the demixing filters for IVA-based source

separation algorithms. The potential of the framework was

demonstrated for several exemplary priors representing ge-

ometric prior knowledge. As another generalization, a BG
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model is incorporated into the framework, which allows for

fast convergence of the corresponding algorithms at a low

computational cost if the number of SOIs is smaller than

the number of microphones, i.e., M > K . The derivation

of update rules for the BG filters from this perspective had

not been considered so far in the literature. For all proposed

algorithmic variants, we derived stable and fast update rules

with a low computational complexity based on the MM

principle and the IP approach, even including most recently

proposed update rules into the systematic framework.

The efficacy of the proposed algorithmic variants for real-

world applications is demonstrated by experiments using mea-

sured RIRs and by comparison with established state-of-the-art

baseline algorithms.

REFERENCES

[1] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A Con-
solidated Perspective on Multi-Microphone Speech Enhancement and
Source Separation,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, 2017.

[2] E. Vincent, T. Virtanen, and S. Gannot, Eds., Audio source separation

and speech enhancement. Hoboken, NJ: John Wiley & Sons, 2018.

[3] B. Van Veen and K. Buckley, “Beamforming: a versatile approach to
spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, Apr.
1988.

[4] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis.
New York: J. Wiley, 2001.

[5] S. Makino, T.-W. Lee, and H. Sawada, Eds., Blind speech separation,
ser. Signals and communication technology. Dordrecht: Springer, 2007.

[6] A. J. Bell and T. J. Sejnowski, “An Information-Maximization Approach
to Blind Separation and Blind Deconvolution,” Neural Computation,
vol. 7, no. 6, pp. 1129–1159, Nov. 1995.

[7] P. Smaragdis, “Blind Separation of Convolved Mixtures in the Frequency
Domain,” Neurocomputing Journal, vol. 22, pp. 21–34, 1998.

[8] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A Robust and Precise
Method for Solving the Permutation Problem of Frequency-Domain
Blind Source Separation,” IEEE Transactions on Speech and Audio

Processing, vol. 12, no. 5, pp. 530–538, Sep. 2004.

[9] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind Source Separation
Exploiting Higher-Order Frequency Dependencies,” IEEE Transactions

on Audio, Speech and Language Processing, vol. 15, no. 1, pp. 70–79,
Jan. 2007.

[10] N. Ono, “Stable and fast update rules for independent vector analysis
based on auxiliary function technique,” in IEEE Workshop on Appli-

cations of Signal Processing to Audio and Acoustics (WASPAA), New
Paltz, NY, USA, Oct. 2011, pp. 189–192.

[11] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Multichannel Ex-
tensions of Non-Negative Matrix Factorization With Complex-Valued
Data,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 21, no. 5, pp. 971–982, May 2013.

[12] D. D. Lee and H. S. Seung, “Algorithms for Non-negative Matrix Factor-
ization,” in NIPS’00 Proceedings of the 13th International Conference

on Neural Information Processing Systems, 2000, pp. 535–541.

[13] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative Matrix Factor-
ization with the Itakura-Saito Divergence: With Application to Music
Analysis,” Neural Computation, vol. 21, no. 3, pp. 793–830, Mar. 2009.

[14] T. Haubner, A. Schmidt, and W. Kellermann, “Multichannel Nonneg-
ative Matrix Factorization for Ego-Noise Suppression,” in 13th ITG-

Symposium Speech Communication. Oldenburg, Germany: VDE, Oct.
2018.

[15] D. Kitamura, “Effective Optimization Algorithms for Blind and Super-
vised Music Source Separation with Nonnegative Matrix Factorization,”
PHD Thesis, SOKENDAI (The Graduate University for Advanced
Studies), Mar. 2017.

[16] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, “De-
termined Blind Source Separation Unifying Independent Vector Analysis
and Nonnegative Matrix Factorization,” IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 24, no. 9, pp. 1626–1641,
Sep. 2016.

[17] T. Ono, N. Ono, and S. Sagayama, “User-guided independent vector
analysis with source activity tuning,” in IEEE International Conference

on Acoustic, Speech and Signal Processing (ICASSP), Kyoto, Japan,
Mar. 2012, pp. 2417–2420.
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Supervised Algorithms for Speech Enhancement on the Basis of In-
dependent Vector Extraction,” in 2018 16th International Workshop on

Acoustic Signal Enhancement (IWAENC), Tokyo, Sep. 2018, pp. 401–
405.

[22] L. Parra and C. Alvino, “Geometric source separation: merging convolu-
tive source separation with geometric beamforming,” IEEE Transactions

on Speech and Audio Processing, vol. 10, no. 6, pp. 352–362, Sep. 2002.
[23] Yuanhang Zheng, K. Reindl, and W. Kellermann, “BSS for improved

interference estimation for Blind speech signal Extraction with two
microphones,” in IEEE International Workshop on Computational Ad-

vances in Multi-Sensor Adaptive Processing (CAMSAP), Aruba, Dutch
Antilles, Netherlands, Dec. 2009, pp. 253–256.

[24] K. Reindl, S. Meier, H. Barfuss, and W. Kellermann, “Minimum Mutual
Information-Based Linearly Constrained Broadband Signal Extraction,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 22, no. 6, pp. 1096–1108, Jun. 2014.

[25] Y. Zheng, K. Reindl, and W. Kellermann, “Analysis of dual-channel
ICA-based blocking matrix for improved noise estimation,” EURASIP

Journal on Advances in Signal Processing, vol. 2014, no. 1, Dec. 2014.
[26] A. H. Khan, M. Taseska, and E. A. P. Habets, “A Geometrically

Constrained Independent Vector Analysis Algorithm for Online Source
Extraction,” in Latent Variable Analysis and Signal Separation, E. Vin-
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