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A metric on the space of finite sets of trajectories
for evaluation of multi-target tracking algorithms

Ángel F. García-Fernández, Abu Sajana Rahmathullah, Lennart Svensson

Abstract—In this paper, we propose a metric on the space
of finite sets of trajectories for assessing multi-target tracking
algorithms in a mathematically sound way. The main use of
the metric is to compare estimates of trajectories from different
algorithms with the ground truth of trajectories. The proposed
metric includes intuitive costs associated to localization error
for properly detected targets, missed and false targets and track
switches at each time step. The metric computation is based on
solving a multi-dimensional assignment problem. We also propose
a lower bound for the metric, which is also a metric for sets of
trajectories and is computable in polynomial time using linear
programming. We also extend the proposed metrics on sets of

trajectories to random finite sets of trajectories.

Index Terms—Metrics, sets of trajectories, multiple target
tracking, random finite sets.

I. Introduction

The main goal of multiple target tracking (MTT) is to esti-
mate a collection of trajectories, which represent the evolution
of target states over time, from noisy sensor observations
[1]. To evaluate the quality of estimates provided by different
algorithms, one needs a distance function that quantifies the
error between the ground truth, which represents the true
trajectories, and the estimate. In order to design such a distance
function, first we need a space, where both the ground truth
and the estimate lie. In the typical MTT models, targets are
born, move and die [1]. Therefore, a natural and minimal
representation of the ground truth and its estimates is a
set of trajectories [2], where a trajectory is a sequence of
target states with a time of appearance and a certain length.
Second, it is desirable that the distance function1 should be
a mathematically consistent metric on the selected space and,
therefore, it meets the properties of non-negativity, identity,
symmetry and triangle inequality [4] [3, Sec. 6.2.1].

Besides the above fundamental properties, there are MTT-
specific features that should be quantified in the metric on the
space of sets of trajectories. For the closely related problem
of multi-target filtering, which aims to estimate the current
set of targets without forming trajectories, the optimal sub-
pattern assignment (OSPA) metric [5], [6] has played an
important role over the past years. Given two sets of targets,
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1The terms metric and distance are often used interchangeably [3] but, in
this paper, a distance does not necessarily meet the metric properties.

OSPA matches all the targets in the smallest set to different
targets in the other set to define a localization error. The rest
of the targets in the largest set are penalized as cardinality
error. However, traditional MTT performance assessment has
been based on different concepts such as localization error
for properly detected targets and costs for missed targets
and false targets [7, Sec. 13.6], [8]–[11]. These aspects have
been quantified in a mathematically consistent way by the
generalized OSPA (GOSPA) metric [12]. The GOSPA metric
also avoids the spooky effect that appears in optimal estimation
of multiple targets using the OSPA metric [13].

For metrics on sets of trajectories, besides the above men-
tioned costs at each time step, there is the additional challenge
posed by the temporal dimension of the trajectories. For
instance, it is possible that, for a single trajectory in the ground
truth, we get multiple estimated trajectories that form the best
assignment at different time steps, due to their closer distance.
This is referred to as track switching in the literature and
should be penalised [7, Sec. 13.6].

In the following, we proceed to review several distance
functions to evaluate MTT algorithms [6], [14]–[21]. Though
these distance functions are not defined on the space of sets of
trajectories [2], it is straightforward to extend the ideas to sets
of trajectories, and we discuss these distances in the context
of the space of sets of trajectories for comparison.

The OSPA for tracks (OSPA-T) [16] distance function was
proposed as an extension of OSPA to sequences of sets of
labeled targets, whose states include unique labels besides
the physical state. However, OSPA-T returns counter-intuitive
results [14], [15] and is not a metric [14]. Another distance
function that handles track switches is OSPA with track swaps
(OSPA-TS), proposed in [15, Sec. IV], but it is limited to a
fixed and known number of trajectories with equal lengths.
Another related distance function is the OSPA for multiple
tracks (OSPA-MT) [14], but this function does not have a clear
interpretation in terms of track switches, localization error, and
missed and false targets. In computer vision, distance functions
that penalize track switches are commonly used [17]–[20].
The most popular distance function in this field is called the
classification of events, activities and relationships for multi-
object tracking (CLEAR MOT) [17]. CLEAR MOT is not a
metric and penalises track switches in a heuristic manner.

As an improvement of the aforementioned cost functions,
Bento and Zhu made several contributions in [21]. They first
propose a family of distances, which are very general and are
not required to be metrics. The switching cost in this family
has the advantage that is defined very generally. We refer
to this family as Bento’s family of distances. Then, Bento
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and Zhu define a ’natural and computable’ distance, which
is computable in polynomial time using linear programming
(LP), and then provide conditions for these distances to be
metrics [21, Thm. 5]. We refer to the metrics that meet the
conditions described in [21, Thm. 5] as Bento’s family of
metrics, or simply Bento’s metrics. Note that Bento’s family
of distances contains metrics that do not belong to Bento’s
family of metrics.

In all Bento’s metrics, ∗-trajectories are added to both the
ground truth and the estimated set so that both sets have
the same cardinality. Then, all trajectories in one set are
assigned to trajectories in the other set via permutations and
the switches are based on how these permutations change over
time. Bento’s metrics are flexible in the choice of switching
penalty, which can be chosen depending on the application
at hand. Nevertheless, calculating switches based on permu-
tations of both real and ∗-trajectories is inherent in Bento’s
metrics and may provide counter-intuitive results, if the aim
is to count the number of track switches, as illustrated in
Section II-D. Another limitation of Bento’s metrics is the lack
of the parameter p in the OSPA/GOSPA metrics, which is
important to design optimal estimators [22]–[24].

In this paper, we propose a mathematically consistent metric
on the space of finite sets of trajectories, in which the objective
is to penalize localization errors for properly detected targets,
costs for false and missed target, as well as the number of track
switches [25], [26]. We do so by extending the GOSPA metric
(with parameter α = 2) [12] to trajectories where targets in one
set are assigned to targets in the other set if they are properly
detected, but they are left unassigned if they correspond to
a missed or a false targets. Track switches are based on
the changes in the assignments/unassignments of trajectories
across time and are penalised based on their number, which
requires the introduction of the concept of half-switches. It
should be noted that Bento’s metrics use the associations to
∗-trajectories to represent unassigned targets, but the switching
cost is based on the change in permutations across time,
not the change of assignments/unassignments across time.
The two approaches are not equivalent as the mapping from
permutations to assignments/unassignments also depends on
the considered sets of trajectories. We also show in Appendix
A that the proposed metric does not belong to Bento’s family
of metrics, though this family may be generalised to include
our metric, e.g., by treating switches between different indices
differently, as suggested in [21].

To compute the proposed metric, we need to solve a multi-
dimensional assignment problem [27], [28], which can be effi-
ciently solved by the Viterbi algorithm [29] for problems with
few trajectories. Inspired by Bento’s LP metric, we propose a
lower bound on our metric by relaxing the binary constraint
in the metric definition, making the lower bound an LP. This
lower bound is also a metric and, due to the LP property,
it can be computed in polynomial time [30], which makes it
applicable to sets with a large number of trajectories. Similar
LP relaxations of more complex multi-dimensional assignment
problems have also been used in multiple hypothesis tracking
[31]–[33].

A characteristic of all the above-mentioned metrics is that

they assume that the ground truth and the estimate are known
sets of trajectories. However, when we evaluate algorithms
using the Bayesian framework via Monte Carlo simulations,
these quantities are modelled as random variables. The final
contribution of this paper is to extend the proposed metric to
random finite sets (RFSs) of trajectories [2], as was done in
GOSPA for RFSs of targets [12]. This is important for sound
evaluation of algorithms using Monte Carlo simulation and to
design optimal estimators.

The outline of the paper is as follows. In Section II, we
formulate the problem and discuss the challenges in designing
a metric for sets of trajectories. Section III presents the
proposed metric based on multi-dimensional assignments and,
in Section IV, we present the LP metric and its decomposition
in terms of localization costs for properly detected targets, and
costs for missed targets, false targets and track switches. We
extend the metric to RFS of trajectories in Section V and, in
Section VI, we analyze the proposed metric implementations
via simulations. Finally, conclusions are drawn in Section VII.

II. Problem formulation and background

In this section, we formulate the problem of designing a
metric for sets of trajectories, review the GOSPA metric and
explain the challenges to design a suitable metric.

A. Space and fundamental properties

Our objective is to design a metric on the space of finite
sets of trajectories that has an intuitive interpretation and is
computable in polynomial time. Below we unfold the problem.

In MTT, the ground truth and its estimate are collections
of trajectories, where each trajectory is a sequence of states
representing the evolution of the target states over time where
the start and end times of the individual trajectories can vary.
Both the ground truth and the estimates can be represented as
sets of trajectories [2]. In the set of trajectories representation,
each trajectory X ∈ X = {X1, . . . , XnX

} is of the form
(ω, x1:ν), where ω ∈ N is the initial time of the trajectory,
ν ∈ N is its length and x1:ν = (x1, . . . , xν) denotes a
finite sequence that contains target states x1, . . . , xν ∈ RN

at ν consecutive time steps starting from ω. Given a single
trajectory X = (ω, x1:ν), the set τk(X) is the state of the
trajectory at time step k [2]:

τk(X) ,

{

{xk+1−ω} ω ≤ k ≤ ω + ν − 1

∅ otherwise
. (1)

In order to design the metric, we consider trajectories in
the time interval from time 1 to T . We therefore consider
trajectories such that (ω, ν) belongs to the set I(T ) =
{(ω, ν) : 1 ≤ ω ≤ T and 1 ≤ ν ≤ T − ω + 1}, and let Υ be
the set of all finite sets of such trajectories. In this paper, when
we refer to a set of trajectories we refer to a set of trajectories
up to time step T .

The above-mentioned trajectory representation is designed
to fit the standard RFS multi-target tracking (MTT) models,
which contain birth and death events, but no possibility to
resurrect [1]. Though not required for standard MTT models,
which are the main focus of this paper, the representation
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Figure 1: Examples to illustrate the switching cost: (a) no switch, (b) no switch but cost for missed target at time 5, (c) one switch and (d) two switches.

can be easily generalised to handle trajectories with gaps, by
representing single trajectories as ((t1, x

1:i1
1 ), ..., (tn, x

1:in
n )),

where tj is the start time of the j-th segment of the trajectory,
ij its duration, which meets tj + ij < tj+1, and n is the
number of trajectory segments. The metric we propose is also
valid for such representations by defining (1) for this case and,
like Bento’s metrics, it can then handle sets of trajectories with
gaps.

A metric on the space of sets of trajectories is a function
d (·, ·) : Υ×Υ → [0,∞) that satisfies the non-negativity, sym-
metry, identity and the triangle inequality [34, Sec. 2.15]. We
emphasize here that the triangle inequality property, despite
its abstractness, has a major practical importance in algorithm
assessment [3, Sec. 6.2.1]. Suppose, for instance, that there
are two estimates Y and Z for a ground truth X, and that
the metric indicates that the estimate Z is close to both the
ground truth X and the other estimate Y. Then, according to
intuition, the estimate Y should also be close to the ground
truth X. This property is ensured by the triangle inequality.

B. GOSPA metric

In this section, we review the GOSPA metric between two
sets of targets x = {x1, ..., xnx

} and y =
{
y1, ..., yny

}
, as

it will be a foundation of the metric for sets of trajectories.
For α = 2 [12], the GOSPA metric can be written in terms of
an assignment set θ between sets {1, .., nx} and {1, ..., ny}.
That is, θ ⊆ {1, .., nx}×{1, .., ny} such that (i, j) , (i, j′) ∈ θ
implies j = j′ and (i, j) , (i′, j) ∈ θ implies i = i′. Let Γx,y

be the set of all possible assignment sets.

Definition 1. Given a metric db (·, ·) in RN , a scalar c > 0,
and a scalar p with 1 ≤ p < ∞, the GOSPA metric (α = 2)
between sets x and y is [12, Prop.1]

d (x,y)

= min
θ∈Γx,y




∑

(i,j)∈θ

dpb (xi, yj) +
cp

2
(nx + ny − 2 |θ|)





1/p

.

(2)

In (2), the first term represents the localization error for
assigned targets (properly detected targets) to the power of
p. The second term represents the cost of unassigned targets,
which correspond to missed and false targets, to the power of
p.

In the metric for sets of trajectories, we will make use of
GOSPA for sets x and y with at most one element. For x and

y, with |x| ≤ 1 and |y| ≤ 1, the GOSPA metric (2) can be
written as

d (x,y) ,







min (c, db (x, y)) x = {x} ,y = {y}

0 x = y = ∅
c

21/p
otherwise.

(3)

In addition, the corresponding optimal assignment in (2) is

θ⋆ =

{

{(1, 1)} |x| = |y| = 1, d (x,y) < c

∅ otherwise.
(4)

Therefore, the targets in x and y are assigned if |x| = |y| = 1
and d (x,y) < c, and otherwise unassigned.

C. Challenges

Besides the fundamental properties explained in Section
II-A, there are specific features to be considered in metrics
for sets of trajectories. The properties that apply to metrics
for sets of targets, such as penalising localization errors for
properly detected targets and costs due to missed and false
targets, are also relevant for metrics on sets of trajectories
[12]. However, there are additional challenges posed by the
temporal connection of the target states in trajectories, which
should also be addressed. Below, we discuss these challenges
in detail using examples. We use the notation X for the ground
truth set and Y for the estimated set.

In the space of finite sets of targets, the concepts of
localization error, missed targets and false targets are important
[11], and can be quantified by the GOSPA metric, see Section
II-B. These concepts can be extended to sets of trajectories
by considering the target states of the trajectories at each time
instant and summing the GOSPA costs across time. Let us
analyse this use of GOSPA using the examples in Figures 1(a)
and 1(b), in which states are uni-dimensional and there are
two different estimates of target states Y = {Y1} for the same
ground truth X = {X1}. Assuming ∆ ≪ c, it can be observed
that from time 1 to 4, the states of the ground truth in both the
examples have identical localization costs. However, at time
step 5, the target in Figure 1(a) has been properly detected as
before, whereas in Figure 1(b) it has been missed. If ∆ ≥ c,
the interpretation is that the target in X has been missed at
all the time steps and Y has false targets at all time steps in
Figure 1(a) and from time 1 to 4 in Figure 1(b).

Even though the concepts of localization error for properly
detected targets, missed and false targets are relevant to sets
of trajectories, it is not sufficient to use the sum of GOSPA
costs across time as a cost function. We also need to take
the temporal dimension of the trajectories into account, which
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leads to the difficult problem of penalizing track switches [35]–
[37]. In traditional MTT performance evaluation methods,
track switches are usually counted [25], [26], so our objective
is to design a metric with this property. Below, we provide
two examples to illustrate this.

Consider the examples in Figures 1(a) and 1(c). We argue
that the estimate in Figure 1(a) is better than the one in Fig-
ure 1(c) as the latter has estimated the trajectory in two parts,
and, as ∆ → 0, Y and X become identical in Figure 1(a) but
not in Figure 1(c). However, the sum of GOSPA costs across
time yields the same localization error for both estimates. The
problem is that the localization cost does not consider how
trajectories are connected across time, which prevents it from
penalizing Y for splitting tracks in Figure 1(c).

Now, consider the examples in Figure 2. Assuming δ ≫ c,
where δ is the distance indicated in the figure, and ∆ ≪ c,
from a point of view of counting the number of track switches,
we argue that the estimate Y in Figure 2(b) is better than the
estimate Y in Figure 2(a). The reason is that both estimates
provide the same localization costs at all time steps. However,
in Figure 2(a), both X1 and X2 change association of estimates
across time while, in Figure 2(b), only X2 changes association.
Nevertheless, in some applications, it may be more important
to penalise the track fragmentation in Figure 2(b) more than
the double track switch in Figure 2(a).

There are other desirable properties, besides the above,
that the metric should have for the MTT applications we
have in mind. Other applications may have different desirable
properties. First, if we flip the time axis, or translate both sets
of trajectories in time or space, without changing the distance
between them, the costs should remain the same. Second, it
is useful that the metric satisfies a clustering property, which
enables efficient metric computation in large problems, see
Section IV-D. That is, if we have a pair of sets X1 and
Y1 in one area, and another pair of sets X2 and Y2 in a
far away area, then, the metric (to the p-th power) between
X = X1 ∪X2 and Y = Y1 ∪Y2 should be the sum of the
metrics (to the p-th power) between X1 and Y1, and X2 and
Y2. In particular, this implies that the costs (to the p-th power)
for localization, false targets, missed targets and track switches
between X and Y should be the sum of the corresponding
costs (to the p-th power) between X1 and Y1, and X2 and
Y2. This is intuitively appealing since the overall estimation
error then aggregates the error in well separated regions. The
clustering property implies that assuming δ ≫ c and ∆ ≪ c,
the cost in Figure 1(d) should be double the cost (for p = 1)
in Figure 1(c). The reason is that Figure 1(d) contains two
clusters, and within each cluster, any metric provides identical
values due to the symmetry property.

Finally, a metric for sets of trajectories must be independent
of the indexing of the elements in X and Y. That is, these
indices are not track IDs and, in all previous examples, we can
interchange any Xi with Xj , and Yi with Yj , without affecting
the metric.

D. Bento’s family of metrics

Among the distance functions for sets of trajectories that
are available in the literature [6], [14]–[16], [18]–[21], only

X1

X2

Y1

Y2

∆

δ

∆

(a)

X1

X2

Y1

Y2 Y3

∆

δ

∆

(b)

Figure 2: Example to illustrate track switches, δ ≫ c and ∆ ≪ c. We argue
that there are fewer track switches in (b) than in (a), since, in the latter, only
X2 in the ground truth changes association.

Bento’s metrics [21] address the problem of track switches for
an unknown number of trajectories.

The main difference between Bento’s metrics and the pro-
posed metric is how they handle track switches so we proceed
to explain the track switching penalty in [21]. Bento’s metrics
add ∗-trajectories to both the ground truth and the estimate so
that both sets have the same cardinality. ∗-symbol states are
also appended to the real trajectories at the time instants they
do not exist, such that all trajectories with their ∗-extensions
have the same length. Then, target states in the ground truth
are associated with the targets in the estimate at every time
step. This association is performed by permuting the indices
of the trajectories in one set (including ∗-trajectories), and the
switching cost only depends on how this permutation changes
over time. A joint optimisation over all possible permutations
across all time steps gives the metric value. We proceed to
discuss three relevant metrics in the family.

We first consider a switching cost that returns the value one
if there is a change in the permutations at two consecutive
time steps and zero if there are no changes, which is referred
to as Kcount in [21]. We refer to the resulting metric as the B1
metric. The B1 metric is very important in [21] as it is the base
for Bento’s LP metrics, which are computable in polynomial
time. Another alternative, which we refer to as the B2 metric
and that also admits an LP version2, is to sum the number
of switches in the permutations at two consecutive time steps.
This corresponds to the Hamming metric over permutations,
where the Hamming metric between two permutations π =
(π1, ..., πn) and σ = (σ1, ..., σn) of (1, ..., n) is [38]

H (π, σ) = |{i : πi 6= σi}| . (5)

The use of the Cayley metric as the switching cost in Bento’s
metrics could be interesting in some applications but has the
drawback that there is no corresponding LP relaxation so its
use is limited to scenarios with a small number of trajectories.

A drawback of B1 and B2 is that they do not meet the
clustering property, which is useful for fast computation in
large problems. For B1, this follows directly from its definition.
We proceed to explain why this is the case for B2. According
to this property, we recall that the switching cost in Figure 1(d)
should be twice the switching cost in Figure 1(c). In Fig-
ure 1(c), Bento’s metrics add two ∗-trajectories, X2 and X3, to
X and, one, Y3, to Y. For B2, the optimal permutation from
times 1 to 3 is [1,2,3] and from times 4 to 5 is [2,1,3], where

2Note that the LP version of B1 uses the matrix 1-norm and the LP version
of B2 uses the component-wise matrix 1-norm, which must be divided by 2
to get the correspondence between switching penalties using permutation and
matrix notation. The LP version of B2 is used in the simulations in [21].
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the ith component of the permutation vector indicates the index
of the element in Y associated with Xi [21] [6]. In Figure 1(d),
Bento’s metrics add three ∗-trajectories to X and three more to
Y. Then, for B2, the optimal permutation from times 1 to 3 is
[1,3,2,4,5,6] and from times 4 to 5 is [2,1,3,4,5,6]. That is, in
Figure 1(c), two elements of the optimal permutation change
but, in Figure 1(d), three elements of the optimal permutation
change. In the B2 metric, Figure 1(d) has a switching cost that
is 3/2 the switching cost of Figure 1(c). Bento’s metric with
Cayley switching cost scales well in this example.

In addition, if instead of considering Figure 1(d), we con-
sider a scenario which includes two replicas of the trajectories
in Figure 1(c) in distant regions, the clustering property
implies that this scenario has double switching cost compared
to the scenario in Figure 1(c), which is the case for B2. There
may be applications, in which it is desired to penalise this
scenario and Figure 1(d) differently, as B2 does.

In the case represented in Figure 2(a), Bento’s metrics add
two ∗-trajectories to X and, two more to Y. Assuming that
the switching cost is small, the optimal permutations for B2 at
times 1 and 2 correspond to [1,2,3,4] and, at times 3 and 4, to
[2,1,3,4]. We can see that there is a change in the permutation,
from [1,2,3,4] to [2,1,3,4], which is penalised by B2. Let
us consider Figure 2(b). Now, Bento’s metrics add three ∗-
trajectories to X and two to Y. The optimal permutations for
B2 are [1,2,3,4,5] at times 1 and 2 and [1,3,2,4,5] at times
3 and 4. B2, and also B1, therefore penalise both situations
in the same way. This is not desired from a point of view of
counting track switches, since there is no track switch for X1

in Figure 2(b) but there is track switch for both X1 and X2 in
Figure 2(a). Nevertheless, other Bento’s distances can penalise
these examples differently, and, for some applications, it may
be desired to penalise these two cases equally, as in B2.

III. Metric for sets of trajectories based on

multi-dimensional assignments

In Section III-A, we present a metric for sets of trajectories,
based on the multi-dimensional assignment problem [28],
that penalises localization costs for properly detected targets,
missed and false targets, and track switches. In Section III-B,
we explain how this metric addresses the examples in Section
II-C. Section III-C discusses how to compute the metric.

A. Multi-dimensional assignment metric

In this section, we present the metric for sets of trajectories
based on multi-dimensional assignments, which is given in
Definition 2. We first introduce some additional notation.

We use xk
i and yk

j to denote the sets of targets that
describe the state of the trajectories Xi and Yj at time step k,
respectively. That is,

xk
i = τk (Xi) (6)

yk
j = τk (Yj) (7)

where τk (·) is defined in (1). Note that these sets contain at
most one element.

In the proposed metric, each target set xk
i can be as-

signed to another target set yk
j at the same time step

or be left unassigned. We use ΠX,Y to denote the set
of all possible assignment vectors between the index sets
{1, . . . , nX} and {0, . . . , nY}. That is, the assignment vector
πk = [πk

1 , ..., π
k
nX

] ∈ ΠX,Y at time k is a vector πk ∈
{0, . . . , nY}nX such that its ith component πk

i = πk
i′ = j > 0

implies that i = i′. Here, πk
i = j 6= 0 implies that trajectory

i in X is assigned to trajectory j in Y at time k and πk
i = 0

implies that trajectory i in X is unassigned at time k.
The above definition of assignment vectors ensures that no

two distinct indexes in {1, . . . , nX} are assigned to the same
j ∈ {1, . . . , nY}. However, multiple indexes in {1, . . . , nX}
can be assigned to the index 0 implying that the corresponding
trajectories are unassigned. Let π̃k ⊆ {1, . . . , nY} denote the
set of indexes of Y that are left unassigned, according to πk.
The multi-dimensional assignment metric is then defined as
follows.

Definition 2. For 1 ≤ p < ∞, cut-off parameter c > 0,
switching penalty γ > 0 and a base metric db(·, ·) in the single
target space RN , the multi-dimensional assignment metric
d
(c,γ)
p (X,Y) between two sets X and Y of trajectories is

d(c,γ)p (X,Y) , min
πk∈ΠX,Y

k=1,...,T

(
T∑

k=1

dkX,Y(X,Y, πk)p

+

T−1∑

k=1

sX,Y

(
πk, πk+1

)p

) 1
p

(8)

where the costs (to the p-th power) for properly detected
targets, missed targets and false targets at time step k are

dkX,Y

(
X,Y, πk

)p
=

∑

(i,j)∈θk(πk)

d
(
xk
i ,y

k
j

)p

+
cp

2

(∣
∣τk (X)

∣
∣+
∣
∣τk (Y)

∣
∣− 2

∣
∣θk
(
πk
)∣
∣
)

(9)

with

θk
(
πk
)
=
{

(i, πk
i ) : i ∈ {1, . . . , nX},

∣
∣xk

i

∣
∣ =

∣
∣
∣y

k
πk
i

∣
∣
∣ = 1, d

(

xk
i ,y

k
πk
i

)

< c
}

(10)

and the switching cost (to the p-th power) from time step k to
k + 1 is given by

sX,Y(πk, πk+1)p = γp
nX∑

i=1

s
(
πk
i , π

k+1
i

)
(11)

s
(
πk
i , π

k+1
i

)
=







0 πk
i = πk+1

i

1 πk
i 6= πk+1

i , πk
i 6= 0, πk+1

i 6= 0
1
2 otherwise.

(12)

Equation (9) is the GOSPA metric to the p-th power without
the minimization, see (2). Instead of minimizing over a target-
level association θk, the target-level association is determined
by the trajectory-level association πk, while excluding associ-
ations between pairs of targets whose distance is larger than
c, see (10). It should be noted that, for (i, j) ∈ θk, xk

i



6

and yk
j contain precisely one element and their distance is

smaller than c, so d
(
xk
i ,y

k
j

)
coincides with db (·, ·) evaluated

at the corresponding vectors, see (3), which corresponds to
the localization error. Therefore, (9) represents the sum of the
costs (to the p-th power) that correspond to localization error
for properly detected targets (indicated by the assignments in
θk
(
πk
)
), number of missed targets (

∣
∣τk (X)

∣
∣−
∣
∣θk
(
πk
)∣
∣) and

false targets (
∣
∣τk (Y)

∣
∣−
∣
∣θk
(
πk
)∣
∣) at time step k.

The term (11) represents the switching cost (to the p-th
power) between time steps k and k+1. The term s

(
πk
i , π

k+1
i

)

corresponds to no switch when there are no changes in the
assignments, a full switch when there is change from one
non-zero to another non-zero assignment, and a half switch
when there is a change from a zero to a non-zero assignment
or vice versa. The concept of half switches is an intrinsic
part of a metric that penalises track switches based on assign-
ments/unassignments to ensure the symmetry of the metric,
as will be illustrated in Section III-B. The parameter γ is the
switching penalty. The larger the value of γ is, the higher a
track switch costs.

Therefore, the metric d
(c,γ)
p (·, ·) in (8) consists of p-th root

of the sum of the cost (to the p-th power) for localization
errors for properly detected targets, missed targets, false targets
and switching costs across all time steps k = 1, ..., T , and the
assignments that determine these costs are obtained by solving
a joint optimization problem over all time steps. The proof that
d
(c,γ)
p (·, ·) is a metric in the space Υ of sets of trajectories is

provided as a special case of the proof of the LP metric, which
is given by Proposition 2 in Section IV.

B. Examples

We proceed to illustrate how the proposed metric works
in the examples of Section II-C. Let us first consider Fig-
ure 1(a). The optimal assignments at each time step for X1

are (π1, ..., π5) = (1, 1, 1, 1, 1), as X1 is always associated to
Y1. There is no change in the assignments so there is no track
switch, as desired. In Figure 1(c), the assignments for X1 are
(1,1,1,2,2), as X1 is associated to Y1 during the first three time
steps and to Y2 later on. Clearly, there is a switch from index
1 to 2, which should be penalised.

Due to the symmetry property of metrics, the switching
penalty must be the same if we consider the assignments from
Y to X or from X to Y. Interestingly, if we consider the
assignments Y to X in Figure 1(c), we have (1,1,1,0,0) for
Y1 and (0,0,0,1,1) for Y2. Now, we have two switches from
assigned to unassigned (or the other way round). As the value
of the metric must be the same if we penalise the assignments
of X or Y, the cost of a switch that considers an unassignment
must be half the cost of a switch from assigned to assigned and
it is therefore referred to as half-switch. Equation (12) ensures
that the proposed metric satisfies this property. Note that the
fragmented estimated trajectory in Figure 1(c) is considered a
track switch according to our metric definition.

In the proposed metric, the assignments for X1 in Fig-
ure 1(b) are (1,1,1,1,1). It should be noted that, as in Bento’s
family, the proposed metric can also assign trajectories that
no longer exist. We argue that these assignments capture the

cases that an estimated trajectory has a delay or starts before
the ground truth and is therefore not considered a track switch.
In this case, our metric penalises localization error for the first
four time steps, plus a missed target at time 5, but no track
switch.

In Figure 1(d), the assignments for X1, X2 and X3 are
(1,1,1,2,2), (3,3,3,0,0) and (0,0,0,3,3). We now have one switch
and two half-switches, which make a total of two switches,
which is double the switching cost in Figure 1(c), as required
for clustering.

In Figure 2(a), the assignments for X1 and X2 are (1,1,2,2)
and (2,2,1,1). Thus, there are two switches, one for X1 and
another for X2. In Figure 2(b), the assignments for X1 and X2

are (1,1,1,1) and (2,2,3,3) so there is only one switch for X2.
Consequently, the proposed metric indicates that the estimate
in Figure 2(b) is more accurate than the one in Figure 2(a), as
desired from a point of view of counting switches.

C. Computation

The metric proposed in (8) is computed by solving a multi-
dimensional assignment problem. This problem can be solved
using the Viterbi algorithm [29], [39], but it is only efficient
for small problems (roughly nX, nY ≤ 10 in MATLAB).
The Viterbi solution scales linearly with the duration T ,
which means that it is tractable to compute (8) also for long
trajectories, as long as nX and nY are small.

One can also use methods such as the dual decomposition
[40], [41] to compute the assignment metric sub-optimally.
Nevertheless, in the next section, we show that it is possible
to get an accurate lower bound on the metric using linear
programming which can be computed in polynomial time and
is also a metric.

IV. LP metric for sets of trajectories

In this section, we first show that the metric in (8) can be
reformulated as an integer linear programming problem [42]
in Section IV-A. In Section IV-B, we explain that when the
integer constraints are relaxed, the result is an LP problem
which provides a lower bound of the metric, can be computed
in polynomial time, and is also a metric. We also explain the
metric decomposition and how to reduce the computational
burden in Sections IV-C and IV-D, respectively.

A. Integer linear programming formulation

In order to present the integer linear programming formula-
tion of the metric d

(c,γ)
p (X,Y), we introduce an equivalent

representation of the assignments vectors πk ∈ ΠX,Y in
(8) using binary weight matrices. Let WX,Y be the set of
all binary matrices W of dimension (nX + 1) × (nY + 1),
representing associations between X and Y, such that W k

satisfies the following properties:

nX+1∑

i=1

W k(i, j) = 1, j = 1, . . . , nY (13)

nY+1∑

j=1

W k(i, j) = 1, i = 1, . . . , nX (14)
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W k(nX + 1, nY + 1) = 0, (15)

W k(i, j) ∈ {0, 1}, ∀ i, j, (16)

where W k(i, j) represents the element in the row i and column
j of matrix W k. Then, W k(i, j) = 1 if xk

i is associated to yk
j .

If xk
i is unassigned, W k(i, nY + 1) = 1. If yk

j is unassigned,
W k(nX + 1, j) = 1. The first two properties ensure that no
two target indexes in {1, . . . , nX} are assigned to the same j
and vice versa.

There is a bijection between the sets ΠX,Y and WX,Y, such
that for πk ∈ ΠX,Y , W k ∈ WX,Y, i = 1, . . . , nX and j =
1, . . . , nY:

πk
i = j 6= 0 ⇔W k(i, j) = 1 (17)

πk
i = 0 ⇔W k(i, nY + 1) = 1 (18)

∄i ∈ {1, . . . , nX}, πi = j 6= 0 ⇔W k(nX + 1, j) = 1. (19)

To illustrate the above bijection, let us consider Figure 1(c),
where the assignment sequence of X1 is π = (1, 1, 1, 2, 2).
The corresponding weight matrices W k ∈ {0, 1}2×3 for
time k = 1, . . . , 5 are W k(1, 1) = 1 for k = 1, 2, 3,
W k(1, 2) = 1 for k = 4, 5 and W k(i, j) = 0 everywhere
else. For the example in Figure 1(d), W k ∈ {0, 1}4×4 is such
that W k(1, 1) = W k(2, 3) = W k(3, 4) = 1 for k = 1, 2, 3,
W k(1, 2) = W k(2, 4) = W k(3, 3) = 1 for k = 4, 5 and
W k(i, j) = 0 everywhere else.

Lemma 1. The multi-dimensional assignment metric

d
(c,γ)
p (·, ·) in (8) between two sets X and Y of trajectories

can be written as

d(c,γ)p (X,Y) = min
Wk∈WX,Y

k=1,...,T

(
T∑

k=1

tr
[(
Dk

X,Y

)†
W k
]

+
γp

2

T−1∑

k=1

nX∑

i=1

nY∑

j=1

|W k(i, j)−W k+1(i, j)|

) 1
p

, (20)

where Dk
X,Y is a (nX + 1) × (nY + 1) matrix whose (i, j)

element is

Dk
X,Y(i, j) = d

(
xk
i ,y

k
j

)p
(21)

where xk
nX+1 = ∅ and yk

nY+1 = ∅, tr(·) is the matrix trace

operator and (·)† denotes the matrix transpose.

The proof of the above lemma follows immediately from the
bijection defined between the sets ΠX,Y and WX,Y in (17),
(18) and (19), and noticing that (8) and (20) provide identical
localization and switching costs.

B. LP metric

In this section, we relax the binary constraints of matrices
W k for k = 1, ..., T in Lemma 1 and show that the result is
a metric that is computable in polynomial time using linear
programming.

Let WX,Y be the set of all matrices W k of dimension (nX+
1)× (nY + 1) such that W k satisfies (13), (14), (15) and

W k(i, j) ≥ 0, ∀i, j. (22)

The main difference to WX,Y is the relaxation of the constraint
in (16) and so WX,Y ⊂ WX,Y. The relaxation of the binary
constraints can be interpreted as making soft assignments of
trajectories from one set to the other. Below, we define a new
distance function, d̄(c,γ)p (X,Y) where the only difference to
d
(c,γ)
p (X,Y) in (20) is that the optimization is over W k in

WX,Y instead of WX,Y. Therefore it follows immediately that
d̄
(c,γ)
p (X,Y) ≤ d

(c,γ)
p (X,Y).

Proposition 2. For 1 ≤ p < ∞, c > 0 and γ > 0, the LP

relaxation of metric d
(c,γ)
p (X,Y) between sets X and Y of

trajectories is also a metric d̄
(c,γ)
p (X,Y), which is given by

d̄(c,γ)p (X,Y) = min
Wk∈WX,Y

k=1,...,T

(
T∑

k=1

tr
[(
Dk

X,Y

)†
W k
]

+
γp

2

T−1∑

k=1

nX∑

i=1

nY∑

j=1

|W k(i, j)−W k+1(i, j)|

) 1
p

, (23)

where the element (i, j) of matrix Dk
X,Y, Dk

X,Y(i, j), is given

by (21) and W k ∈ WX,Y is given by (13), (14), (15) and

(22).

The proof that d̄(c,γ)p (·, ·) is a metric on the space of sets
of trajectories is provided in Appendix B. In this appendix,
we also prove that the metric is computable in polynomial
time using LP [30]. When the solution to the LP metric is
given by integral matrices, it returns the same value as the
multi-dimensional assignment metric, and therefore, has the
same types of penalties for localization error for properly
detected targets and costs for missed, false targets and track
switches. For the examples in Figure 1 and Figure 2, both
the multi-dimensional assignment metric in (8) and the LP
metric in (23) provide the same values. It should be noted that
the assignment matrices in Proposition 2 are of dimensions
(nX+1)× (nY+1) which constitutes an important reduction
in dimensionality over matrices in Bento’s LP metrics [21],
whose dimensions are (nX +nY)× (nX+nY), for problems
with many trajectories in both sets.

We would also like to remark that if γ = ∞, the feasible
sets of (8) and (23) meet W 1 = ... = WT , and both (8) and
(23) become the same 2-D assignment problem, which has an
integral solution. This problem is fast to solve compared to
(23), but does not allow for track switching, so it is not the
most preferable choice to evaluate MTT algorithms.

C. Metric decomposition

In this section, we explain how the multi-dimensional as-
signment metric, with the formulation in Lemma 1, and the
LP metric decompose into costs for properly detected targets,
missed and false targets, and track switches. We first explain
the decomposition for the multi-dimensional assignment met-
ric.

As explained after Definition 2, properly detected targets in
X are those assigned to an estimate in Y according to θk in
(9). False targets are those targets in X that are not assigned
to an estimate in Y according to θk. Missed targets are those
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targets in Y that are not assigned to a target in X according
to θk. Then, d

(
xk
i ,y

k
j

)
represents the following costs:

• A localization error for a properly detected target if i ≤
nx, j ≤ ny,x

k
i 6= ∅,yk

j 6= ∅, d
(
xk
i ,y

k
j

)
< c.

• A missed target if i ≤ nx, j ≤ ny,x
k
i 6= ∅,yk

j = ∅ or
i ≤ nx, j = ny + 1.

• A false target if i ≤ nx, j ≤ ny,x
k
i = ∅,yk

j 6= ∅ or
i = nx + 1, j ≤ ny .

• The sum of a missed and a false target cost, each with
a cost d

(
xk
i ,y

k
j

)p
/2, if i ≤ nx, j ≤ ny,x

k
i 6= ∅,yk

j 6=
∅, d

(
xk
i ,y

k
j

)
= c.

We denote the sets of indices (i, j) that belong to each of
the previous categories at time step k as T k

1 , T k
2 , T k

3 and T k
4 .

Then, we have

d(c,γ)p (X,Y)

= min
Wk∈WX,Y

k=1,...,T

(
T∑

k=1

lk
(
X,Y,W k

)p

+

T∑

k=1

mk
(
X,Y,W k

)p
+

T∑

k=1

fk
(
X,Y,W k

)p

+

T−1∑

k=1

sk
(
W k,W k+1

)p

)1/p

(24)

where

lk
(
X,Y,W k

)p
=

∑

(i,j)∈Tk
l

Dk
X,Y(i, j)W k (i, j)

mk
(
X,Y,W k

)p
=

cp

2

∑

(i,j)∈Tk
2 ∪Tk

4

W k (i, j)

fk
(
X,Y,W k

)p
=

cp

2

∑

(i,j)∈Tk
3 ∪Tk

4

W k (i, j)

sk
(
W k,W k+1

)p
=

γp

2

nX∑

i=1

nY∑

i=1

∣
∣W k (i, j)−W k+1 (i, j)

∣
∣

represent the costs (to the p-th power) for properly detected
targets, missed targets, false targets and track switches at time
step k, given trajectory level assignments W 1:T . Note that the
set T k

4 appears in both mk(·) and fk(·), and one of its elements
contributes cp

2 to each, so its overall contribution is cp. That
is, the cost of a missed/false target is cp

2 . Once we compute
the optimal assignment W 1:T at a trajectory level, we can
report the decomposition of the metric in terms of these costs.
For the LP metric, we have the same decomposition but the
assignments are soft.

D. Computational aspects

In this section, we explain two ways of accelerating metric
calculation. We first proceed to explain clustering.

Trajectories Xi and Yj will not be assigned to each other
(at a trajectory and target level) at any time step in the final
value of the metric if the following condition is met

• Dk
X,Y(i, j) = cp for all k such that τk (Xi) 6= ∅ and

τk (Yj) 6= ∅.

The reason is that leaving these trajectories unassigned has
the same cost as their assignment at a trajectory level (though
in both cases trajectories are unassigned at a target level).
Therefore, we can remove the possibility that these trajectories
are assigned at a trajectory level as it does not affect the metric.
Consequently, given X and Y, we can compute the pairs of
subsets in X and Y in which there can be assignments. One
way to do this is to compute the adjacency matrix of the
bipartite graph formed by the trajectories, using the condition
stated above and determine the disjoint components, e.g., using
the reverse Cuthill-McKee algorithm [43]. It should be noted
that this type of spatial clustering cannot be applied to B1 and
B2 metrics, see example in Figure 1(d) discussed in Section
II-D.

In a given cluster, we can also speed up metric calculation
by considering a shorter time window. In a cluster with sets
of trajectories, X and Y, we can calculate the minimum and
maximum times at which there can be assignments (at a trajec-
tory and target levels) using the criteria explained above. The
parts of the trajectories that are outside this window provide
a penalty of cp/2 at the times at which they exist, without
track switching penalty. That is, their assignments outside the
considered time window are the ones at the window endpoints.
Then, we only need to solve the optimisation problem in the
time window in which there can be assignments.

V. Extension to random sets of trajectories

In the previous sections, we studied metrics between de-
terministic finite sets of trajectories. However, in the Bayesian
formulation of MTT, the ground truth is modelled as a random
quantity and the estimates are sets that depend deterministi-
cally on the observed data [1]. In MTT performance evaluation
using Monte Carlo simulation, the metric values are averaged
over several realizations of the observed data and possibly
the ground truth. In such scenarios, both the estimates and
the ground truth can be interpreted as random finite sets,
as they can change in each Monte Carlo run. It is therefore
important to have a metric on the space of random sets of
trajectories for performance evaluation. We proceed to extend
the proposed metrics for sets of trajectories to random finite
sets of trajectories.

Before introducing the metric, we review the set integral for
trajectories. Given a real-valued function π (·) on the single
trajectory space, its integral is [2], [44]

ˆ

π (X) dX =
∑

(ω,ν)∈I(T )

ˆ

π
(
ω, x1:ν

)
dx1:ν . (25)

The single trajectory integral goes through all possible start
times, lengths and target states of the trajectory.

Given a real-valued function π (·) on the space of sets of
trajectories, its set integral is [2]
ˆ

π (X) δX =

∞∑

n=0

1

n!

ˆ

π ({X1, ..., Xn}) dX1:n (26)

where X1:n = (X1, ..., Xn). If π (·) is a multitrajectory
density, then, π (·) ≥ 0 and its set integral is one. An RFS
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of trajectories is uniquely characterised by its multitrajectory
density.

Let π(X,Y) be the joint multitrajectory density of the ran-
dom sets of trajectories X and Y [3]. This joint multitrajectory
density characterises the joint distribution of the two RFS X

and Y. The expected value of the metric (23) to the power of
p is

E
[

d̄(c,γ)p (X,Y)
p
]

=

ˆ ˆ

d̄(c,γ)p (X,Y)
p
π (X,Y) δXδY

=

∞∑

n=0

∞∑

m=0

1

n!

1

m!

ˆ ˆ

d̄(c,γ)p ({X1, ..., Xn} , {Y1, ..., Ym})p

× π ({X1, ..., Xn} , {Y1, ..., Ym}) dX1:ndY1:m. (27)

Then, we prove in Appendix C, the following lemma.

Lemma 3. Given 1 ≤ p′ < ∞,
(

E
[
d̄
(c,γ)
p (X,Y)p

′
])1/p

′

and
(

E
[
d
(c,γ)
p (X,Y)p

′
])1/p

′

are metrics on the space of random

finite sets of trajectories with finite moment E
[

|·|p
′/p
]

.

Lemma 3 considers that both RFS X and Y of trajectories

meet E
[

|X|p
′/p
]

< ∞ and E
[

|Y|p
′/p
]

< ∞, which implies

that the metric is finite. For p′ = p, this condition implies that
the RFSs have a finite mean number of trajectories.

In addition, for p′ = p, we can decompose the metrics on
RFS as follows. For each X and Y, we denote W k

X,Y the

optimal assignment obtained when computing d
(c,γ)
p (X,Y).

Then, we can use the metric decomposition in (24) to obtain
(

E
[
d(c,γ)p (X,Y)p

])1/p

=

[
T∑

k=1

(

E
[

lk
(
X,Y,W k

X,Y

)p
]

+ E
[

mk
(
X,Y,W k

X,Y

)p
]

+E
[

fk
(
X,Y,W k

X,Y

)p
])

+

T−1∑

k=1

E
[

sk
(

W k
X,Y,W k+1

X,Y

)p]
]1/p

(28)

where the first, second and third expectations are the average
cost (to the p-th power) of the localization error for properly
detected targets, missed targets and false targets at time step k,
respectively, and the last expectation is the average switching
cost from time step k to k + 1.

The metrics on RFSs, and their decompositions, can be used
to evaluate algorithms based on Monte Carlo runs, where the
expectations are approximated by the average over the outputs.
The decomposition is useful to analyse the differences between
different filters, see for example [2], [44]–[47]. The metrics on
RFSs are also useful to compute optimal estimators [12], [13].
It should be noted that it usually aids to select p′ = p = 2
in Lemma 3 to obtain computable optimal estimators. In this
case, when we set the Euclidean metric as the base metric
db(·, ·) on RN in (3), we get a sum of squares form inside the
expectation. For the OSPA/GOSPA metrics with known target
number, we can obtain the best estimator for p′ = p = 2 [22].

VI. Simulation results

In this section, we present simulation results to analyse
the results of the metric for varying parameter values. The
metric has also been used in [2], [45]–[47], along with its
decomposition, to assess and compare multiple target tracking
algorithms3.
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(b) Measurements

Figure 3: The positional components of the ground truth (a) and the measure-
ments (b) observed across time. The circles and crosses in (a) indicate the
appearance and end times of the trajectories, respectively.

Here, we illustrate the behaviour of the LP metric, given
by Proposition 2, for varying values of c and γ using an
MTT example. We also compare the values returned by the
LP metric to Bento’s metrics with switching cost based on 1-
norm and component-wise 1-norm. We have set p = 1 and db
as Euclidean distance in the metric for these simulations.

We consider a multiple target tracking scenario, where we
use the notation, models and the Bayesian closed form solution
for sets of trajectories in [2]. We consider a target state x ∈ R2

that consists of one-dimensional position and velocity for ease
of illustration. The targets can be born from 2 similar single-
target densities,

β1(x) = β2(x) = N

(

x;

[
0
0

]

,

[
25 0
0 1

])

.

The probabilities that there are 0, 1 (from either of the
densities) or 2 new born targets at each time are 0.85, 0.1
and 0.05, respectively. The probability for a target to survive
to the next time instant is 0.9, and the corresponding state is
governed by the state transition density

g(xk|xk−1) = N

(

xk;

[
1 1
0 1

]

xk−1,
1

10

[
1/3 1/2
1/2 1

])

.

We consider a batch duration of T = 22.
We consider the standard measurement model [1]. We

obtain positional measurements of the targets from the sensors
with probability pD = 0.95 with the target measurements

generated according to N
(

·;
[
1 0

]
xk, 10−3

)

. We observe
Poisson clutter, which is uniformly distributed in the interval
(−10, 10) and there is an average of 1 clutter measurement
per scan.

The position components of the targets in the ground truth
and the observed measurements are shown in Figures 3(a)
and Figure 3(b), respectively. For the considered models, the

3MATLAB code of the proposed LP metric is provided at
https://github.com/Agarciafernandez/MTT.
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(a) Y with localized states
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(b) Y with localized states and a false track
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(c) Y with localized states, two switches and a
false track
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(d) Y with localized states and two switches
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(e) Y with localized states, a missed target and
a false track
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(f) Y with localized states and two half switches

Figure 4: Possible hypotheses for the ground truth in Figure 3(a) based on the measurements in Figure 3(b).

filtering multi-trajectory density, on the RFS of trajectories, is
a multi-Bernoulli mixture [2], which can be expanded so that
the probability of existence of each Bernoulli component is
either zero or one [48], which is referred to as MBM01. Each
mixture component of the MBM01 represents a global hy-
pothesis. The filtering recursion to obtain the multi-trajectory
density in MBM01 form is given in [2], and could be extended
to sets of labelled trajectories without changes in the filtering
recursion [2, Sec. IV.A]. The starting times, deaths and mean
positions for the trajectories of some of the global hypotheses
are shown in Figure 4. We have considered these hypotheses
as we think they are insightful to illustrate the behaviour of
the metric.

We first analyze the LP metric between the ground truth
and the posterior mean of these hypotheses. We want to point
out that the LP metric and the multi-dimensional assignment
metric, computed by the Viterbi algorithm, returned the same
values for these scenarios. The results are presented in Table I.
As can be seen from the tables and the figures, for fixed c,
when the switching cost parameter γ is increased, the metric

values increase for the cases with full or half switches in
Figures 4(c), 4(d), and 4(f). Similarly, for fixed γ, when c is
increased, the metric values increase for the cases with missed
and/or false targets in Figures 4(b), 4(c) and 4(e). For the case
in Figure 4(c) which has two track switches and a false track,
the metric value increases for increase in both c and γ. It can
also be observed that the case in Figure 4(a) is always returned
as the most accurate one irrespective of the parameters choice,
which agrees with intuition.

Table I also contains the results for Bento’s metric with
1-norm and component-wise 1-norm denoted d1

B and d
comp
B ,

respectively. We recall that these metrics correspond to the
LP relaxation of the B1 and B2 metrics explained in Section
II-D. It can be immediately observed that for the cases in
Figures 4(a), 4(b) and 4(e) which have no track switches,
the values are identical between the Bento’s metrics and the
proposed LP metric.

There are differences in the metric values for the scenarios
in Figure 4(c), 4(d) and 4(f). For the case in Figure 4(f), there
is one track switch (or two half switches from the perspective

Table I: LP metric d̄
(c,γ)
p and Bento’s metrics d1

B
and d

comp
B between the estimates in Figure 4 and the ground truth in Figure 3(a) for varying c and γ.

c = 5 c = 10

Figure
γ = 5 γ = 10 γ = 5 γ = 10

d̄
(c,γ)
p d1

B d
comp
B d̄

(c,γ)
p d1

B d
comp
B d̄

(c,γ)
p d1

B d
comp
B d̄

(c,γ)
p d1

B d
comp
B

4(a) 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2
4(b) 13.2 13.2 13.2 13.2 13.2 13.2 18.2 18.2 18.2 18.2 18.2 18.2
4(c) 21.7 16.7 21.7 31.7 21.7 31.7 26.7 21.7 26.7 36.7 26.7 36.7
4(d) 16.7 11.7 16.7 26.7 16.7 26.7 16.7 11.7 26.7 26.7 16.7 26.7
4(e) 15.8 15.8 15.8 15.8 15.8 15.8 23.3 23.3 23.3 23.3 23.3 23.3
4(f) 13.5 13.5 18.5 18.5 18.5 27.2 13.5 13.5 18.5 18.5 18.5 28.5
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of Y) between time steps 7 and 8. This switch contributes
γ as the switching cost to the proposed LP metric, d̄

(c,γ)
p

and Bento’s metric with 1-norm d1B, thus resulting in identical
metric values. However, dcomp

B also includes the switches in the
∗-trajectories, similar to the case in Figure 2(b), and therefore
has a higher switching cost leading to a higher metric value.

For the cases in Figures 4(c) and 4(d), there are two
track switches between time steps 11 and 12, which implies a
switching cost of 2γ in the proposed metric d̄

(c,γ)
p . This value

also matches with d
comp
B , as the switches are only between the

real trajectories and it counts all the switches. However, in d1B,
the switching cost contribution is γ regardless of the number
of switches (if non-zero) at a particular time, which is not the
expected behaviour.

VII. Conclusion

In this paper, we have proposed a multi-dimensional as-
signment metric that quantifies the distance between two sets
of trajectories. This metric captures the localization error for
properly detected targets, missed targets, false targets and track
switches. The penalty over the track switches is based on the
changes in the sequence of assignments/unassignments. This
characteristic leads to the concept of half switches, which
avoids the addition of ∗-trajectories and the penalty of track
switches that involve ∗-trajectories.

When the number of trajectories is small, the metric can be
computed using the Viterbi algorithm. For larger problems, we
have proposed a bound to the multi-dimensional assignment
metric, which is also a metric and can be computed using
linear programming. For all the results presented in the paper,
the linear programming metric is identical to the multi-
dimensional assignment metric. We have also extended these
metrics to the space of random sets of trajectories, which is
useful to performance evaluation and optimal estimator design.

While we think our metric captures the main penalties
associated to multiple target tracking estimates in a mathe-
matically consistent and intuitive way, metric design for sets of
trajectories is an open area of research. Different metrics could
be designed for different types of applications. For example,
new metrics could be designed based on Bento’s metrics,
generalising Bento’s metrics or completely new approaches.
It may also be possible to generalise both Bento’s families
of distances and metrics to also include our metric, e.g., by
extending the switching cost to be dependent on trajectories
indices, and treat switches between different indices differently,
as suggested in [21].
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Supplementary material of "A
metric on the space of finite sets of

trajectories for evaluation of
multi-target tracking algorithms"

Appendix A

In this appendix, we show that the proposed metric does not
belong to Bento’s family of metrics. Bento’s family of metrics
only includes switching costs K (·) that are bi-invariant on
permutations [38, Chap. 6]. This implies that any reordering
of the indices of the elements in X and in Y does not change
the value of the metric, and we therefore have a function for
sets of trajectories.

In addition, we should note that not all members of Bento’s
family of distances are functions over sets of trajectories, as
this family does not set constraints on the switching cost,
which can make a distance depend on the indexing on the
elements of the set. If we constrain this family of distances
to have bi-invariant switching cost, to define functions on sets
of trajectories, then the following proof also shows that our
metric does not belong to Bento’s family of distances.

We should first note that two metrics are identical if and only
if they take the same values for all sets of trajectories. Unless
the localization and missed/false target costs are identical, for
the same assignments/permutations, it is easy to construct
examples with trajectories of length 1 where the metrics
take different values. To ensure identical localization and
missed/false target costs for equivalent assignments we can
choose p = 1 and c = 2M , M as defined in [21], and use the
same base metric db (·, ·).

In this section, we will consider cases in which localization
costs dominate the switching costs in the metric computation.
That is, the entries of the assignments/permutations that cor-
respond to existing trajectories in both sets are decided based
on the locations of the trajectories at that time step. In these
examples, the difference (apart from p) can only arise in the
possible value of the switching cost, as the localization and
missed/false target costs are fixed and equivalent in Bento’s
families and in the proposed metric, with the above choices
of parameters.

We consider the three scenarios in Figure 5, in which
localization costs dominate switching costs, where our met-
ric returns three different switches: Scenario a) has two
switches (switching cost 2γ), b) one switch (cost γ) and c)
1.5 switches (cost 1.5γ), considering that localization costs
dominate switching cost, e.g., γ ≪ c.

X1

X2

Y1

Y2

∆

∆

δ

(a)

X1

X2

X3

Y1

∆

∆

δ

δ2

(b)

X1

X2

Y1

Y2

∆

∆

δ

(c)

Figure 5: Scenarios for the counterexample in Appendix A. We consider δ ≫

c, δ2 ≫ c and ∆ = 0, which implies that localization errors are zero.

Given two sets of trajectories X and Y, the corresponding
sequence of permutations in Bento’s distances is denoted as
Σ = (σ (1) , ..., σ (T )) and each permutation is of length |X|+
|Y| [21]. We will show that no permutations σ (1) , σ (2) in
Bento’s family of metrics can provide these switching errors
with the same localization and missed and false target costs.
As K (·) is bi-invariant in Bento’s metrics, without loss of
generality, we can consider that σ (1) = [1, 2, 3, 4] and analyse
the output for different values of σ (2).

1) Figure 5 (a): Only σ (2) = [2, 1, 3, 4] and σ (2) =
[2, 1, 4, 3] produce a zero localization cost, as the proposed
metric. Therefore, so that the minimum over these permuta-
tions agrees with the switching cost of the proposed metric,
we must have that

min [K (σ (1) , [2, 1, 3, 4]) ,K (σ (1) , [2, 1, 4, 3])] = 2γ,

where σ (1) = [1, 2, 3, 4].
2) Figure 5 (b): Our metric produces 0 localization costs,

4 costs associated to missed targets and one track switch. In
order to have the same costs in Bento’s metrics for localization
and missed targets, we must have that the second element in
σ (2) is 1. In addition, to obtain the switching cost γ, the first
element in σ (2) must be different from 2 since we know from
Example a) that the switching costs for σ (2) = [2, 1, 3, 4]
and σ (2) = [2, 1, 4, 3] are both higher or equal than 2γ.
The other possible values for σ (2) all produce the same
localization/missed costs, and the minimum switching cost
among all those values for σ (2) must therefore be γ:

min [K (σ (1) , [3, 1, 2, 4) ,K (σ (1) , [3, 1, 4, 2)

K (σ (1) , [4, 1, 2, 3) ,K (σ (1) , [4, 1, 3, 2)] = γ,

where σ (1) = [1, 2, 3, 4].
3) Figure 5 (c): The proposed metric produces 0 localiza-

tion costs, 1 missed target cost, and 1.5 switches. In order to
have the same costs for localization, missed and false targets
with Bento’s metrics, the second element in σ (2) must be
1. In addition, as in Example b), the first element in σ (2)
cannot be 2, as this case was covered in Example a) and the
switching cost was higher or equal than 2γ. Then, the rest of
possible values of σ (2) produce the same localization cost,
and therefore the minimum over the switching costs must be
1.5γ so that it agrees with our metric

min [K (σ (1) , [3, 1, 2, 4) ,K (σ (1) , [3, 1, 4, 2)

K (σ (1) , [4, 1, 2, 3) ,K (σ (1) , [4, 1, 3, 2)] = 1.5γ,

where σ (1) = [1, 2, 3, 4]. In Examples (b) and (c), we have
the same minimization problem for Bento’s metrics but it
must produce two different outputs to agree with our metric.
As this is not possible, this shows that our metric cannot
be recovered by Bento’s metrics. The proof is also valid for
Bento’s distances with a bi-invariant K (·), which ensures that
the family of distances are defined over sets of trajectories.

Appendix B

In this appendix, we first prove that d̄(c,γ)p (·, ·) in (23) is a
metric in Section B-A. Then, in Section B-B, we prove that
d̄
(c,γ)
p (·, ·) in (23) can be computed using LP.
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A. Proof of metric properties

The non-negativity, identity and symmetry properties of the
metric in (23) are immediate from the definition. Below we
prove the triangle inequality. The proof in this section is done
for the LP metric, where the optimization is over W k ∈
WX,Y. The proof is analogous for the multi-dimensional
assignment metric in (20), where the optimisation is over
W k ∈ WX,Y ⊂ WX,Y, and therefore also holds for the multi-

dimensional assignment metric d
(c,γ)
p (X,Y), see Lemma 1.

We denote the objective function in (23) as
d̄
(c,γ)
p (X,Y,W 1:T ) as a function of the W matrices. The

outline of the proof is as follows: We assume that we have
three sets of trajectories X, Y and Z. Let W ⋆

X,Y ∈ WX,Y,
W ⋆

X,Z ∈ WX,Z and W ⋆
Z,Y ∈ WZ,Y be the weight matrices

that minimize d̄
(c,γ)
p (X,Y,W 1:T

X,Y), d̄
(c,γ)
p (X,Z,W 1:T

X,Z) and

d̄
(c,γ)
p (Z,Y,W 1:T

Z,Y) respectively. We construct a matrix
WX,Y ∈ WX,Y from W ⋆

X,Z ∈ WX,Z and W ⋆
Z,Y ∈ WZ,Y as

W k
X,Y(i, j)

=







1−
nY∑

j=1

W k
X,Y(i, j) i = 1, . . . , nX, j = nY + 1

1−
nX∑

i=1

W k
X,Y(i, j) i = nX + 1, j = 1, . . . , nY

0 i = nX + 1, j = nY + 1
nZ∑

l=1

W ⋆k
X,Z(i, l)W

⋆k
Z,Y(l, j) otherwise.

(29)

and show that

d̄(c,γ)p (X,Y,W 1:T
X,Y) ≤ d̄(c,γ)p (X,Z) + d̄(c,γ)p (Z,Y). (30)

Combining the above result with the fact that d̄(c,γ)p (X,Y) ≤

d̄
(c,γ)
p (X,Y,W 1:T

X,Y), we get the triangle inequality

d̄(c,γ)p (X,Y) ≤ d̄(c,γ)p (X,Z) + d̄(c,γ)p (Z,Y). (31)

To prove (30), we show that for any WX,Z ∈ WX,Z and
WZ,Y ∈ WZ,Y, and WX,Y ∈ WX,Y constructed according
to (29), the following result holds:

d̄(c,γ)p (X,Y,W 1:T
X,Y)

≤ d̄(c,γ)p (X,Z,W 1:T
X,Z) + d̄(c,γ)p (Z,Y,W 1:T

Z,Y). (32)

To show that (32) holds, we show two separate inequalities for
the switching and the localization cost using WX,Y in (29) and
we bring them together towards the end.

1) Switching cost inequality: For the switching cost, we
show that
nX∑

i=1

nY∑

j=1

|W k
X,Y(i, j)−W k+1

X,Y(i, j)|

≤
nX∑

i=1

nZ∑

l=1

∣
∣
∣
∣
W k

X,Z(i, l)−W k+1
X,Z (i, l)

∣
∣
∣
∣

+

nY∑

j=1

nZ∑

l=1

∣
∣
∣
∣
W k

Z,Y(l, j)−W k+1
Z,Y (l, j)

∣
∣
∣
∣
. (33)

Starting with the left-hand side of (33),

nX∑

i=1

nY∑

j=1

|W k
X,Y(i, j)−W k+1

X,Y(i, j)|

=

nX∑

i=1

nY∑

j=1

∣
∣
∣
∣

nZ∑

l=1

(

W k
X,Z(i, l)W

k
Z,Y(l, j)

−W k+1
X,Z (i, l)W k+1

Z,Y (l, j)

)∣
∣
∣
∣

(34)

≤
nX∑

i=1

nY∑

j=1

nZ∑

l=1

∣
∣
∣
∣
W k

X,Z(i, l)W
k
Z,Y(l, j)

−W k+1
X,Z (i, l)W k+1

Z,Y (l, j)

∣
∣
∣
∣
. (35)

For the above inequality, we have used the inequality of the
absolute value norm:

∣
∣
∑

l al
∣
∣ ≤

∑

l

∣
∣al
∣
∣. Then, we can write

nX∑

i=1

nY∑

j=1

|W k
X,Y(i, j)−W k+1

X,Y(i, j)|

≤
nX∑

i=1

nY∑

j=1

nZ∑

l=1

[∣
∣
∣
∣
W k

X,Z(i, l)−W k+1
X,Z (i, l)

∣
∣
∣
∣

×

(
W k

Z,Y(l, j) +W k+1
Z,Y (l, j)

)

2

+

∣
∣
∣
∣
W k

Z,Y(l, j)−W k+1
Z,Y (l, j)

∣
∣
∣
∣

(
W k

X,Z(i, l) +W k+1
X,Z (i, l)

)

2

]

.

(36)

For the proof of the inequality in (36), notice that for
a1, a2, b1, b2 ≥ 0,

|a1a2 − b1b2| =
1

2

∣
∣
∣
∣
(a1 − b1)(a2 + b2) + (a1 + b1)(a2 − b2)

∣
∣
∣
∣

≤
∣
∣a1 − b1

∣
∣
(a2 + b2)

2
+
∣
∣a2 − b2

∣
∣
(a1 + b1)

2
. (37)

Note that in (36), using
∑nY

j=1

(
Wk

Z,Y(l,j)+Wk+1
Z,Y (l,j)

)

2 ≤ 1 and
∑nX

i=1

(
Wk

X,Z(i,l)+Wk+1
X,Z (i,l)

)

2 ≤ 1, we get the result in (33).
2) Localization cost inequality: First, we show two inter-

mediate results:

W k
X,Y(i, nY + 1) = W k

X,Z(i, nZ + 1)

+

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, nY + 1), (38)

W k
X,Y(nX + 1, j) = W k

Z,Y(nZ + 1, j)

+

nZ∑

l=1

W k
X,Z(nX + 1, l)W k

Z,Y(l, j). (39)

We prove below that the difference between the right-hand
and left-hand sides of (38) is zero.

W k
X,Z(i, nZ + 1) +

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, nY + 1)

−W k
X,Y(i, nY + 1)
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= W k
X,Z(i, nZ + 1) +

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, nY + 1)

−

(

1−
nY∑

j=1

W k
X,Y(i, j)

)

(40)

= W k
X,Z(i, nZ + 1) +

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, nY + 1)

−

(

1−
nY∑

j=1

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, j)

)

(41)

= W k
X,Z(i, nZ + 1) +

nZ∑

l=1

nY+1∑

j=1

W k
X,Z(i, l)W

k
Z,Y(l, j)− 1

= W k
X,Z(i, nZ + 1) +

nZ∑

l=1

W k
X,Z(i, l)

nY+1∑

j=1

W k
Z,Y(l, j)− 1

= W k
X,Z(i, nZ + 1) +

nZ∑

l=1

W k
X,Z(i, l)− 1 (42)

=

nZ+1∑

l=1

W k
X,Z(i, l)− 1 = 0. (43)

Similar proof holds for (39) as well.
We use (38) and (39) in the below derivation of the

localization cost.

tr
[(
Dk

X,Y

)†
W k

x,y

]
=

nX+1∑

i=1

nY+1∑

j=1

Dk
X,Y(i, j)W k

X,Y(i, j)

=

nX∑

i=1

nY∑

j=1

Dk
X,Y(i, j)W k

X,Y(i, j)

+

nY∑

j=1

Dk
X,Y(nX + 1, j)W k

X,Y(nX + 1, j)

+

nX∑

i=1

Dk
X,Y(i, nY + 1)W k

X,Y(i, nY + 1)

+Dk
X,Y(nX + 1, nY + 1)W k

X,Y(nX + 1, nY + 1)
︸ ︷︷ ︸

=0

(44)

=

nX∑

i=1

nY∑

j=1

Dk
X,Y(i, j)

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, j)

+

nY∑

j=1

Dk
X,Y(nX + 1, j)W k

Z,Y(nZ + 1, j)

+

nY∑

j=1

Dk
X,Y(nX + 1, j)

nZ∑

l=1

W k
X,Z(nX + 1, l)W k

Z,Y(l, j)

+

nX∑

i=1

Dk
X,Y(i, nY + 1)W k

X,Z(i, nZ + 1)

+

nX∑

i=1

Dk
X,Y(i, nY + 1)

nZ∑

l=1

W k
X,Z(i, l)W

k
Z,Y(l, nY + 1).

(45)

We substitute the values for Dk
X,Y(i, j) in the first, third

and the fifth summation terms as in (21) and use the triangle
inequality of the base metric dkX,Y (i, j) = Dk

X,Y(i, j)1/p.

For the second and fourth summation, we use the equalities:
Dk

X,Y(nX+1, j) = Dk
Z,Y(nZ+1, j) and Dk

X,Y(i, nY+1) =

Dk
X,Z(i, nZ + 1). Then,

tr
[(
Dk

X,Y

)†
W k

X,Y

]

≤
nX∑

i=1

nY∑

j=1

nZ∑

l=1

(
dkX,Z(i, l) + dkZ,Y(l, j)

)p
W k

X,Z(i, l)W
k
Z,Y(l, j)

+

nY∑

j=1

Dk
Z,Y(nZ + 1, j)W k

Z,Y(nZ + 1, j)

+

nY∑

j=1

nZ∑

l=1

(
dkX,Z(nX + 1, l) + dkZ,Y(l, j)

)p

×W k
X,Z(nX + 1, l)W k

Z,Y(l, j)

+

nX∑

i=1

Dk
X,Z(i, nZ + 1)W k

X,Z(i, nZ + 1)

+

nX∑

i=1

nZ∑

l=1

(
dkX,Z(i, l) + dkZ,Y(l, nY + 1)

)p

×W k
X,Z(i, l)W

k
Z,Y(l, nY + 1). (46)

We observe that the right-hand side has the form

tr
[(
Dk

X,Y

)†
W k

X,Y

]
≤
∑

i,l,j

(ai,l + bl,j)
p +

∑

j

(0 + bj)
p

+
∑

l,j

(al + bl,j)
p +

∑

i

(ai + 0)p +
∑

i,l

(ai,l + bl)
p. (47)

This structure of the localization cost inequality simplifies
the triangle inequality proof when we apply the Minkowski
inequality. Note that we have not included the range of the
indexes for notational clarify.

3) Proof for (32): Using (47) and (33), we show the
following result for the objective function in the overall LP
cost in (23)

d̄(c,γ)p (X,Y,W 1:T
X,Y)

≤

(
T∑

k=1

∑

i,l,j

(ai,l + bl,j)
p +

∑

j

(0 + bj)
p +

∑

l,j

(al + bl,j)
p

+
∑

i

(ai + 0)p +
∑

i,l

(ai,l + bl)
p

+
T−1∑

k=1

nX∑

i=1

nZ∑

l=1

γp

2

∣
∣
∣
∣
W k

X,Z(i, l)−W k+1
X,Z (i, l)

∣
∣
∣
∣

︸ ︷︷ ︸

an+0

+

T−1∑

k=1

nY∑

j=1

nZ∑

l=1

γp

2

∣
∣
∣
∣
W k

Z,Y(l, j)−W k+1
Z,Y (l, j)

∣
∣
∣
∣

︸ ︷︷ ︸

0+bn

) 1
p

. (48)

Now, we use the Minkowski inequality [49, pp. 165]:
(
∑

m

[
am + bm

]p
) 1

p

≤

(
∑

m
apm

) 1
p

+

(
∑

m
bpm

) 1
p

for p ≥ 1

and am, bm ≥ 0. Note that in the above inequality, we have
several am’s and bm’s that are 0.

d̄(c,γ)p (X,Y,W 1:T
X,Y)
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≤

(
T∑

k=1

[
∑

i,l,j

api,l +
∑

j

0p +
∑

l,j

apl +
∑

i

api +
∑

i,l

api,l

]

+
T−1∑

k=1

nX∑

i=1

nZ∑

l=1

γp

2

∣
∣
∣
∣
W k

X,Z(i, l)−W k+1
X,Z (i, l)

∣
∣
∣
∣

) 1
p

+

(
T∑

k=1

[
∑

i,l,j

bpl,j +
∑

j

bpj +
∑

l,j

bpl,j +
∑

i

0p +
∑

i,l

bpl

]

+
T−1∑

k=1

nY∑

j=1

nZ∑

l=1

γp

2

∣
∣
∣
∣
W k

Z,Y(l, j)−W k+1
Z,Y (l, j)

∣
∣
∣
∣

) 1
p

. (49)

Let us revisit (46) to simplify
∑

ap and
∑

bp in the above
terms.
∑

i,l,j

api,l +
∑

j

0p +
∑

l,j

apl +
∑

i

api +
∑

i,l

api,l

=

nX∑

i=1

nY∑

j=1

nZ∑

l=1

dkX,Z(i, l)
pW k

X,Z(i, l)W
k
Z,Y(l, j)

+

nY∑

j=1

nZ∑

l=1

dkX,Z(nX + 1, l)pW k
X,Z(nX + 1, l)W k

Z,Y(l, j)

+

nX∑

i=1

Dk
X,Z(i, nZ + 1)W k

X,Z(i, nZ + 1)

+

nX∑

i=1

nZ∑

l=1

dkX,Z(i, l)
pW k

X,Z(i, l)W
k
Z,Y(l, nY + 1). (50)

Combining the first and last summations and using
∑nY+1

j=1 W k
Z,Y(l, j) = 1 and using

∑nY

j=1 W
k
Z,Y(l, j) ≤ 1 in

the second summation, we get
∑

i,l,j

api,l +
∑

j

0p +
∑

l,j

apl +
∑

i

api +
∑

i,l

api,l

≤
nX∑

i=1

nZ∑

l=1

dkX,Z(i, l)
pW k

X,Z(i, l)

+

nZ∑

l=1

dkX,Z(nX + 1, l)pW k
X,Z(nX + 1, l)

+

nX∑

i=1

Dk
X,Z(i, nZ + 1)W k

X,Z(i, nZ + 1) (51)

=tr
[(
Dk

X,Z

)†
W k

X,Z

]
. (52)

Similarly we can show that
∑

i,l,j b
p
l,j+

∑

j b
p
j +
∑

l,j b
p
l,j+

∑

i 0
p +

∑

i,l b
p
l ≤ tr

[(
Dk

Z,Y

)†
W k

Z,Y

]
. Substituting these

values in (49), we get (32).

B. Proof for computability using LP

The proof for the computability of the metric in (23) using
LP is along the same lines as in [21, Theorem 10]. First, note
that to compute the metric in (23), it is enough to solve the
following optimization problem:

argmin
Wk∈WX,Y

k=1,...,T

T∑

k=1

tr
[(
Dk

X,Y

)†
W k
]

+
γp

2

T−1∑

k=1

nX∑

i=1

nY∑

j=1

|W k(i, j)−W k+1(i, j)|. (53)

The objective function in the above problem can be written in
linear form as

argmin
Wk∈WX,Y

k=1,...,T

e1,...,eT−1∈R

T∑

k=1

tr
[(
Dk

X,Y

)†
W k
]
+

γp

2

T−1∑

k=1

ek (54)

by introducing variables ek ∈ R for k = 1, . . . , T − 1 to the
optimization problem with constraints

ek ≥
nX∑

i=1

nY∑

j=1

|W k(i, j)−W k+1(i, j)|. (55)

Note that, except the constraints in (55), all the other con-
straints in (13), (14), (15) and (22) are linear. We can write the
optimisation problem in linear form by introducing additional
variables Hk(i, j) ∈ R for k = 1, . . . , T − 1 with the
constraints:

ek ≥
nX∑

i=1

nY∑

j=1

Hk(i, j), (56)

Hk(i, j) ≥ W k(i, j)−W k+1(i, j),
i = 1, . . . , nX

j = 1, . . . , nY
, (57)

Hk(i, j) ≥ W k+1(i, j)−W k(i, j),
i = 1, . . . , nX

j = 1, . . . , nY
. (58)

Appendix C

In this appendix, we prove Lemma 3. The proof is
analogous for d̄

(c,γ)
p (·, ·) and d

(c,γ)
p (·, ·). We consider

RFSs X and Y of trajectories with joint multitrajectory
density π (X,Y). By the properties of the metric, we

have that d̄
(c,γ)
p (X,Y)

p′

≤ (cpT max (|X| , |Y|))p
′/p ≤

(cpT )
p′/p

(

|X|p
′/p

+ |Y|p
′/p
)

. Then, E
[

d̄
(c,γ)
p (X,Y)

p
]

≤

(cpT )p
′/p
(

E
[

|X|p
′/p
]

+ E
[

|Y|p
′/p
])

. The right-hand side

is finite since the moments E
[

|X|p
′/p
]

and E
[

|Y|p
′/p
]

are

assumed finite, which implies that p′

√

E
[

d̄
(c,γ)
p (X,Y)p

′

]

is

finite.
We need to prove the following properties to show

that p′

√

E
[

d̄
(c,γ)
p (X,Y)

p′

]

is a metric: definiteness, non-

negativity, symmetry and the triangle inequality. The definite-
ness, non-negativity and symmetry properties are observed
directly from the definition. It should be noted that, for
metrics in a probability space, the definiteness between random
variables is in the almost sure sense [50, Sec. 2.2]. We proceed
to prove the triangle inequality.

Let us consider three RFS X, Y and Z of trajectories

with joint density π (X,Y,Z) and finite moments E
[

|X|p
′/p
]

,

E
[

|Y|p
′/p
]

, and E
[

|Z|p
′/p
]

. We first apply the triangle in-
equality for the metric on sets of trajectories to obtain

p′

√

E
[

d̄
(c,γ)
p (X,Y)p

′

]
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≤ p′

√

E

[(

d̄
(c,γ)
p (X,Z) + d̄

(c,γ)
p (Z,Y)

)p′
]

. (59)

Let us now consider the Lp′

space of functions on three sets
of trajectories, which is

Lp′

=

{

f : ‖f‖p′ =

(
ˆ

|f (X,Y,Z)|p
′

δXδYδZ

)1/p′

< ∞

}

,

where f (·) is a function with adequate units such that the
set integral is well-defined. Given f, g ∈ Lp′

, the Minkowski
inequality for Lp′

spaces is [51]

‖f + g‖p′ ≤ ‖f‖p′ + ‖g‖p′ . (60)

We define

f (X,Y,Z) = d̄(c,γ)p (X,Z)π (X,Y,Z)
1/p′

g (X,Y,Z) = d̄(c,γ)p (Z,Y) π (X,Y,Z)
1/p′

which implies that

‖f‖p′ =
p′

√

E
[

d̄
(c,γ)
p (X,Y)

p′

]

‖g‖p′ =
p′

√

E
[

d̄
(c,γ)
p (Z,Y)p

′

]

‖f + g‖p′ =
p′

√

E

[(

d̄
(c,γ)
p (X,Z) + d̄

(c,γ)
p (Z,Y)

)p′
]

.

Applying the Minkowski inequality (60) to (59), we obtain

p′

√

E
[

d̄
(c,γ)
p (X,Y)

p′

]

≤ p′

√

E
[

d̄
(c,γ)
p (X,Z)

p′

]

+ p

√

E
[

d̄
(c,γ)
p (Z,Y)

p′

]

.

This completes the proof of the triangle inequality and of
Lemma 3.
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