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Algorithms for Globally-Optimal Secure Signaling

over Gaussian MIMO Wiretap Channels Under

Interference Constraints
Limeng Dong, Sergey Loyka, Yong Li

Abstract—Multi-user Gaussian MIMO wiretap channel is con-
sidered under interference power constraints (IPC), in addition
to the total transmit power constraint (TPC). Algorithms for
global maximization of its secrecy rate are proposed. Their
convergence to the secrecy capacity is rigorously proved and a
number of properties are established analytically. Unlike known
algorithms, the proposed ones are not limited to the MISO
case and are proved to converge to a global rather than local
optimum in the general MIMO case, even when the channel
is not degraded. In practice, the convergence is fast as only
a small to moderate number of Newton steps is required to
achieve a high precision level. The interplay of TPC and IPC is
shown to result in an unusual property when an optimal point
of the max-min problem does not provide an optimal transmit
covariance matrix in some (singular) cases. To address this
issue, an algorithm is developed to compute an optimal transmit
covariance matrix in those singular cases. It is shown that this
algorithm also solves the dual (nonconvex) problems of globally
minimizing the total transmit power subject to the secrecy
and interference constraints; it provides the minimum transmit
power and respective signaling strategy needed to achieve the
secrecy capacity, hence allowing power savings.

I. INTRODUCTION

Ever-growing number of wireless users and their traffic,

open system architectures and aggressive frequency re-use as

well as operation in unlicensed bands envisioned in 5G sys-

tems [1] create significant potential for inter-user interference,

which needs to be carefully controlled and mitigated. Multiple

antennas offer a significant potential for doing so in the space

domain, especially in the context of massive MIMO [2].

This approach to interference mitigation and control has been

investigated earlier in the context of cognitive radio (CR) [3],

where secondary users are allowed to use the same bandwidth

as primary users (who are the license holders) but are required

to cause no significant interference to them. On the other

hand, open system architectures and co-existence of several

users in the same bandwidth in combination with the broadcast

nature of wireless channels make transmissions vulnerable to

eavesdropping of confidential information (e.g. e-commerce

and e-health, mobile banking, Internet transactions, etc.) so
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that some form of secrecy protection is needed. In this context,

physical-layer security approach has emerged as a valuable

complement to the traditional cryptography-based approach

for modern wireless networks [4]-[6]. In this approach, the

secrecy of communications is ensured at the physical layer

by exploiting the properties of wireless communication chan-

nels so that no transmitted information can be recovered by

malicious eavesdroppers. Wiretap channel (WTC) is widely

used as a model of secrecy communications and its secrecy

capacity became the key metric of performance [4]-[9].

A. Literature review

Using this approach in combination with MIMO systems

offers significant new opportunities for enhancing the secrecy

of multi-user wireless systems via space-domain processing.

The MIMO WTC model became a popular tool to study

physical-layer security, where the transmitter (Tx) sends confi-

dential information to the receiver (Rx) while an eavesdropper

(Ev) observes the transmission. The main performance metric,

which is an ultimate upper bound to reliable and secret

communications, is the secrecy capacity, defined operationally

as the maximum achievable rate on the Tx-Rx link subject

to the reliability (low error probability) and secrecy (low

information leakage on the Tx-Ev link) criteria [4]-[6]. The

secrecy capacity of Gaussian MISO (multiple-input single-

output) WTC has been established in [7] and further extended

to the full MIMO case in [8][9], where the optimality of

Gaussian signaling has also been established.

Hence, finding the secrecy capacity amounts to finding an

optimal input (transmit) covariance matrix. This problem is

still open analytically in the general case since the under-

lying optimization problem is not convex and hence very

hard to solve, either numerically or analytically, while some

special cases (MISO, full-rank MIMO, rank-1 MIMO, weak

eavesdropper, identical right singular vectors of Rx and Ev

channels, etc.) have been solved [7]-[13]. The two Tx antennas

case was studied in details in [14], the massive MIMO setting

was considered in [15][16], and finite-alphabet signaling was

also studied [17]; an overview of recent results can be found

in [5][6][17].

The Gaussian MISO WTC with multiple eavesdroppers was

considered in [18], where the original non-convex problem

was transformed to a quasi-convex one that can be solved as

a sequence of convex feasibility problems using the bisection

method. This MISO case with multiple Evs was also studied

in [19], including a deterministic channel uncertainty model,

where the original non-convex problem was transformed to a

http://arxiv.org/abs/2007.13187v1
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convex semi-definite one using determinantal inequality and

the fact that optimal covariance is of rank-1 so that the in-

equality becomes equality; this new problem can be efficiently

solved using existing convex solvers. The MISO channel with

multi-eavesdroppers and stochastic channel uncertainty was

studied in [20]. Unfortunately, the multi-Ev studies above

did not establish the optimality of Gaussian signaling (but

rather assumed it) and they cannot be extended to the full

MIMO case since there exists no equivalent scalar channel

anymore and optimal covariance is not necessarily rank-1.

New approaches are needed. In this respect, the multi-Ev case,

where eavesdroppers are not cooperative, is equivalent to a

compound WTC whose operational capacity was established

in [21][22] by demonstrating that Gaussian signaling is opti-

mal. However, an optimal Tx covariance matrix is not known

in the general case either.

Since there is no closed-form solution in the general case,

even for a single eavesdropper, a number of numerical algo-

rithms have been developed to maximize secrecy rates [23]-

[25]. As the original problem is non-convex, these algorithms

use some form of convexification, where the non-convex part

of the objective (the Ev part) is expanded in a Taylor series

and only first two terms are kept (i.e. the non-convex part

is linearized, either explicitly or implicitly) [23]-[25]. Then,

the approximated but convex problem is solved, an expansion

point is iteratively updated and the process is repeated. The

fundamental difficulty with this approach is that, even if the

algorithm can be proved to converge, a convergence point

is just a Karush-Kuhn-Tucker (KKT) point, but, due to the

non-convex nature of the original (not approximate) problem,

the KKT conditions are not sufficient for global optimality.

Hence, a convergence point of these algorithms can be a local

rather than global maximum, an inflection point, a local or

even global minimum [44]-[46]. All these algorithms lack

provable convergence to a global optimum due to the non-

convex nature of the original problem and no way is known

to overcome this fundamental difficulty. Furthermore, the gap

to a global optimum is not known either.

Using a different approach, an algorithm with provable

convergence to a global optimum in the general MIMO case

(with single eavesdropper) was proposed in [26]. The key

idea was to avoid any form of convexification/approximation

or alternating optimization (for which proving convergence

to a global optimum is out of reach), but rather to use the

max-min formulation in [8][9], without any approximations.

However, this algorithm cannot be used in interference-

constrained environments (e.g. CR) due to three fundamental

issues: (i) while the feasible set is isotropic under the Tx

power constraint (TPC) alone (no limits on eigenvectors, only

on the sum of eigenvalues of the Tx covariance matrix), it

is not isotropic anymore when interference power constraints

(IPC) are added and this has a dramatic impact on the KKT

conditions and numerical algorithms used to solve them; (ii)

any of the constraints, including TPC, can be inactive under

IPCs while the TPC is always active without IPC; furthermore,

it is not known in advance which constraint is active and

which is not so that an algorithm is required to determine this

automatically; finally, (iii) a global convergence proof must

include the interference constraints and the fact that some of

them may be inactive.

An interference-constrained Gaussian MISO WTC with a

single Ev was studied in [27]. It was shown that Gaussian

signalling is optimal and the operational secrecy capacity can

be expressed as a quasi-convex optimization problem, which

can be subsequently reduced to a sequence of convex feasi-

bility problems [27] and they can be further solved using ex-

isting convex solvers. An imperfect channel state information

(CSI) was accounted for in [28]. Secrecy rate maximization

of interference-constrained MISO (single-antenna Rx) WTC

under single or multiple non-cooperative Evs and various

channel assumptions (fixed, quasi-static or ergodic fading with

full or partial channel state information) was studied in [29]-

[32]; artificial noise and various beamforming solutions were

proposed to maximize the secrecy rate.

However, it is not known whether these solutions are opti-

mal, i.e. achieve the secrecy capacity, and what is the actual

gap to the capacity. In addition, all these studies are limited

to the MISO case, i.e. single-antenna receivers, and cannot

be extended to the full MIMO case due to the fundamental

limitations of the approach they use, i.e. transforming a

MISO channel into an equivalent scalar channel and reducing

(or relaxing) the original non-convex problem to a convex

or quasi-convex one. In the full MIMO case, there is no

equivalent scalar channel, beamforming is not an optimal

strategy in general, the original problem is not convex and

it is not known how to transform it into an equivalent convex

or quasi-convex problem.

B. Contributions

Thus, a new approach is needed to deal with the full MIMO

WTC under interference constraints. Unlike the previous

studies in [27]-[32], in this paper we target capacity-achieving

signaling over the full MIMO WTC under interference con-

straints and to this end develop an algorithm with provable

convergence to a global optimum.

The proposed algorithm is based on the max-min secrecy

capacity characterization originally developed in [8][9] under

the TPC alone and later extended to the joint constraints

(TPC+IPC) in [33], where the optimality of Gaussian sig-

naling was established in the general MIMO case under the

joint constraints and the max and max-min secrecy capacity

characterizations of [8][9] were shown to hold as well (even

though the feasible set under the joint constraints is not

isotropic).

However, no analytical solutions to either the max or max-

min problems above are known in the general case (some

special cases have been solved in [33][34], but the general

case remains an open problem). No algorithmic solution

with provable convergence to global optimum under the joint

constraints is known either. Therefore, a numerical algorithm

is needed to solve the problems and thus to find an optimal Tx

covariance matrix and the secrecy capacity. Such algorithm is

proposed in the present paper. The distinct features of this new

algorithm are that (i) it finds globally-optimum (i.e. capacity-

achieving) transmit covariance matrix, (ii) its convergence to

a global (rather than local) optimum is rigorously proved, and

(iii) it is of polynomial complexity.
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It should be emphasized that the standard max-only for-

mulation of the secrecy rate maximization problem, which is

dominant in the current literature, see e.g. [23]-[25], does not

allow one to build an algorithm with guaranteed convergence

to a global optimum in the general case due to the lack of

problem’s convexity (which makes provable global conver-

gence out of reach, see e.g. [35][44]-[46]). Algorithms based

on the max-only formulation face a fundamental difficulty

since they may get trapped in a local optimum and hence their

performance may be rather poor. For example, we show in Fig.

5 that the Taylor expansion-based sub-optimal algorithm as in

[25] does get trapped at local optima (or stationary points),

far away from the global one, resulting in poor performance

and hence should be used with caution (or avoided at all)

when the original problem is not convex. In general, non-

convex problems are NP-hard (of exponential complexity)

and the best one can hope for is convergence to a stationary

point, which can be a local (rather than global) maximum,

an inflection point or even a local minimum [44]-[46]. A

convergence point may also depend on initial (starting) point,

so that some bad initial points may result in bad results

(e.g. a local minimum rather than maximum). The only

known exception to this is the MISO case, where problem

re-formulation is possible to a quasi-convex or some other

tractable form, but this re-formulation is not possible in the

general MIMO case (since there exists no equivalent scalar

channel). On the other hand, the max-min characterization of

[8][9][33], while appearing to be more complicated due to

two conflicting optimizations, is in fact more tractable due to

its convex-concave nature.

In this paper, we use the max-min characterization to

construct an algorithm with provable convergence to a global

optimum in the general MIMO case. This algorithm includes

three key components: (i) the residual-form Newton method,

(ii) the barrier method and (iii) backtracking line search.

The barrier method is needed to absorb inequality constraints

into the objective function, while the residual-form Newton

method, in combinations with backtracking line search, gen-

erates a sequence of points which converge to a globally-

optimal max-min point for which the objective value is the

secrecy capacity. When combined properly, they are proved

to converge to a globally-optimal solution with any desired

accuracy. In practice, only a small to moderate number of

Newton steps is needed to achieve a high precision level.

While the algorithm above computes the secrecy capacity

via a saddle-point of the max-min problem, its optimal covari-

ance matrix is not necessarily a maximizer of the secrecy rate

and hence cannot be used for globally-optimal (i.e. capacity-

achieving) signaling in the general case. This unusual effect is

entirely due to the interplay between TPC and IPC and cannot

be found under the TPC alone, as in [8][9][26]. To address this

issue, we establish general properties of the secrecy capacity

as a function of Tx power and, based on it, develop an iter-

ative bisection algorithm in Section IV (Algorithm 2), which

evaluates numerically an optimal covariance in the general

case with any desired accuracy and prove its convergence.

Numerical experiments show that the proposed algorithms

converge fast in practice and achieve higher secrecy rates

(significantly higher when the channel is not degraded and its

negative eigenmode is dominant) than the known sub-optimal

algorithms.

Motivated by energy efficiency issues, dual problems of

minimizing globally the total transmit power subject to se-

crecy and interference power constraints are considered in

Section V. Since these problems are not convex, standard tools

of convex optimization do not apply and they are difficult to

solve (where ”solve” means finding global rather than local

optimum). Yet, Proposition 6 shows that Algorithm 2 solves

these problems as well. This provides the globally-minimum

Tx power and respective signaling strategy needed to achieve

a target secrecy rate under interference constraints.

Collectively, the two proposed algorithms evaluate the

secrecy capacity and globally-optimal signaling strategy to

achieve it in the interference-constrained multi-user Gaus-

sian MIMO wiretap channel in the general case. This is

substantially different from the known algorithms in [23]-

[25][27][28], which either operate over a MISO channel only

or which converge to a stationary (KKT) point only, which can

be a local rather than global maximum, an inflection point,

a local or even global minimum, and for which a proof of

convergence to a global optimum is out of reach.

The rest of the paper is organized as follows. Section II

introduces the channel model and gives its operational secrecy

capacity; the model is general enough to include per-antenna

power constraints as well. The algorithm for global maxi-

mization of secrecy rates over interference-constrained multi-

user Gaussian MIMO wiretap channel is developed in Section

III and its convergence is rigorously proved. Based on this

algorithm, Section IV presents a bisection-based algorithm

to evaluate numerically an optimal Tx covariance with any

desired accuracy in the general case and its convergence

is proved. Dual problems of minimizing the total transmit

power subject to secrecy and interference power constraints

are considered in Section V and Algorithm 2 is shown to solve

these problems as well. Finally, numerical experiments to

illustrate algorithms’ performance and practical convergence

are given in Section VI.

Notations: bold lower-case letters (a) and capitals (A)

denote vectors and matrices respectively; A ≥ 0 denotes

positive semi-definite matrix A; AT is transposition while A+

is Hermitian conjugation; tr(A) is the trace; vec(A) is the

vector obtained by stacking all columns of matrix A on top of

each other and veh(A) is the vector obtained by vectorizing

only the lower triangular part of A; diag(A) is a diagonal

matrix with the same diagonal entries as in A; E {·} is a

statistical expectation; ⊗ is the Kronecker product; |a| and

|A| are the Euclidian norm of vector a and determinant of

matrix A; I is the identity matrix of appropriate size.

II. CHANNEL MODEL AND SECRECY CAPACITY

Let us consider the standard Gaussian MIMO WTC model

as shown in Fig. 1, where the transmitter (Tx) sends confiden-

tial information to the receiver (Rx) while N eavesdroppers

(Ev), who may be just other users in a multi-user system,

intercept the transmission; the Evs are assumed to be cooper-

ative, which is the most conservative assumption in terms of
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Fig. 1. A block diagram of the Gaussian multi-user MIMO wiretap channel
under interference constraints. H1, H2i and H3j are the channel matrices
to the Rx, each Ev and PR respectively; x is the Tx signal; y1, y2i and y3j

are the received signal at the Rx, each Ev and PR respectively; ξ1, ξ2i and
ξ3j are respective noise components.

secrecy1. The objective is to ensure reliable communications

between the Tx and Rx (the reliability criterion) while keeping

the Evs ignorant about transmitted information (the secrecy

criterion). In an interference-constrained (IC) multi-user en-

vironment, such as cognitive radio, the interference generated

by the Tx to primary receivers (PR), who represent licensed

users of the system, must not exceed certain thresholds. The

secrecy capacity is defined operationally as the largest trans-

mission rate on the Tx-Rx link subject to the reliability and

secrecy criteria [4]-[9], where the reliability criterion ensures

arbitrary low error probability at the Rx while recovering the

transmitted message; the secrecy criterion ensures arbitrary

low information leakage to the Evs. The Tx has m antennas,

while the Rx and each Ev have n1 and n2i (i = 1, 2, ..., N )

antennas, respectively. In the discrete-time AWGN MIMO

channel model, the signals received by the Rx and each Ev

can be expressed as

y1 = H1x+ ξ1, y2i = H2ix+ ξ2i (1)

where y1(2i) are the respective received signals at Rx (i-th
Ev), x is the transmitted signal, ξ1(2i) represent zero-mean

unit-variance i.i.d. noise at the Rx (i-th Ev) end; H1(2i) are the

channel matrices collecting channel gains from the Tx to the

Rx (i-th Ev). In addition to this and following the interference-

constrained model, there are K PRs equipped with n3j (j =
1, 2, ...,K) antennas each. The received signal at j-th PR is

similarly expressed as

y3j = H3jx+ ξ3j (2)

where H3j and ξ3j are the channel matrix and zero-mean unit-

variance i.i.d. noise. For future use, let Wk = H+
k Hk, k =

1, 2 and let W3j = H+
3jH3j , j = 1, 2, ...,K . We assume that

the full channel state information (CSI) is available to the

Tx, Rx and each Ev (which is motivated by modern adaptive

system design, where channel is estimated at the Rx and send

back to the Tx via a feedback link; when Evs are just other

users in the system, they also share their CSI with the base

station).

1This cooperation is possible in e.g. cloud radio access networks (C-RAN),
where users’ baseband data is centrally stored and processed [41]-[43] and
hence a malicious user (super-Ev) can exploit it for eavesdropping.

Overall, the transmission is subject to the TPC and multiple

IPCs, so that any Tx covariance matrix R = E {xx+} must

be in the following feasible set SR:

SR = {R ≥ 0 : tr(R) ≤ PT , tr(W3jR) ≤ PIj ∀j} (3)

where PT , PIj are the maximum allowed transmit and

interference powers at the Tx and each PR respectively, termed

here the TPC and IPC powers. The IPC

tr(W3jR) = tr(H3jRH+
3j) ≤ PIj , j = 1, 2..K, (4)

ensures that the total interference power at the jth PR does not

exceed the IPC power PIj so that this PR’s performance is not

distorted. This type of interference constraints has been widely

adopted in the literature for regular systems (no secrecy)

[3][49]-[51] as well as for secrecy systems [18][23][27]-

[32]. In this multi-user environment, the secrecy capacity of

the interference-constrained WTC is defined operationally as

the largest achievable rate on the Tx-Rx link subject to the

secrecy, reliability, transmit and interference power constraints

simultaneously. Note that per-antenna power constraints (as in

e.g. [47][48]), in addition to or instead of the TPC, can also be

accommodated by setting some W3j to be diagonal matrices

with 0-1 entries.

A. Secrecy Capacity of Interference-Constrained MIMO WTC

Since the Evs are cooperative, their received signals can be

aggregated into a single vector resulting in a single meta-Ev

as follows:

y2 = H2x+ ξ2 (5)

where y2, H2 are aggregated received signals and channel

matrices, respectively, y2 = [y+
21,y

+
22, ...,y

+
2N ]+, H2 =

[H+
21,H

+
22, ...,H

+
2N ]+, ξ2 = [ξ+21, ξ

+
22, ..., ξ

+
2N ]+. While the

MISO case was considered in [27], its approach cannot be

extended to the full MIMO case since an optimal covariance

is not necessarily of rank-1 and there is no equivalent scalar

channel allowing quasi-convex reformulation of the original

non-convex problem.

A different approach was adopted in [33]: it is based

on the max-min characterization of the secrecy capacity

originally developed in [8][9] under the TPC alone and

its further extension to the case of the joint constraints

(TPC+IPC). This established the operational secrecy capacity

of the interference-constrained MIMO WTC above as follows

(Gaussian signaling is still optimal in this setting).

Theorem 1. The operational secrecy capacity of interference-

constrained Gaussian MIMO WTC in (1), (5) and (2) under

the TPC and the IPCs in (3) can be expressed as

C = max
R∈SR

C(R) = max
R∈SR

min
K∈SK

f(R,K) (P1) (6)

where

C(R) = ln |I+W1R| − ln |I+W2R|, (7)

f(R,K) = ln |I+K−1HRH+| − ln |I+W2R|, (8)
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and H = [H+
1 ,H

+
2 ]

+, SK is a set of noise covariance

matrices of the form

SK =

{
K : K =

[
I N

N+ I

]
,K ≥ 0

}
, (9)

where N = E{ξ1ξ+2 } is noise cross-covariance.

We emphasize that Theorem 1 characterizes the operational

secrecy capacity (the largest achievable secrecy rate) rather

than an information capacity defined formally as the difference

of two mutual information terms, as sometimes done in the

literature (without proving its operational significance). The

case of multiple non-cooperating Evs corresponds to a com-

pound WTC (see e.g. [21][22]) and is much more difficult for

analysis; its secrecy capacity is not known under interference

constraints in general (it is not even known whether Gaussian

signaling is optimal). The capacity above is a lower bound to

that of the non-cooperative case, since Evs cooperation, while

having no effect on the Rx error probability, cannot decrease

the information leakage and hence cannot increase the secrecy

capacity. However, if there exists a dominant Ev, as in [33,

Proposition 8], then Theorem 1 still holds, with W2 being

the channel Gram matrix of the dominant Ev.

Theorem 1 provides two equivalent characterizations of

the secrecy capacity: as a max problem or as a max-min

problem. While the first characterization appears to be easier

for numerical optimization and is indeed widely-used in the

existing literature [23]-[25], it makes it virtually impossible to

prove convergence to a global optimum since the max problem

is not convex (since C(R) is not concave, unless the channel

is degraded, see e.g. [8]), and hence its KKT conditions are

not sufficient for global optimality. Provable convergence to

a global optimum in this case is out of reach [35][44]-[46].

Here, we adopt a different approach based on the max-

min representation of the secrecy capacity in (6), denoted

below as (P1). While this representation involves 2 conflicting

optimizations, it is actually easier for numerical optimization,

since both optimizations are convex as f(R,K) is concave

in R for any fixed K and is convex in K for any fixed R

(see [8][12][33] for further details) and, hence, the respective

KKT conditions for both optimizations are jointly sufficient

for global optimality. This opens up a path to develop an iter-

ative algorithm, based on this representation, with a probable

convergence to a global (rather than local) optimum.

We caution the reader that while the optimal values of the

max and max-min problems in (6) are the same, the respective

optimal covariances are not necessarily the same, i.e. R∗ 6=
R′ and C = C(R∗) > C(R′) in those cases (see (34)-(38)

for an example), where R∗ and (R′,K′) are optimal points

of the max and max-min problem respectively,

R∗ = arg max
R∈SR

C(R),

(R′,K′) = arg max
R∈SR

min
K∈SK

f(R,K) (10)

In some (singular) cases, the difference can be significant (see

Fig. 5 and 8). This phenomenon never appears without IPCs

(under the TPC alone), as in [8][9][26], where both problems

always share the same optimal covariance matrix, R∗ = R′.

To address this issue, Algorithm 2 is developed in Section

IV, which computes iteratively an optimal covariance matrix

R∗ in these singular cases. Its convergence is also proved.

Finally, it should also be noted that R∗ is not necessarily

unique (see e.g. Example 2 in [34]), which motivates the

power minimization problem (P4) in (49).

III. CAPACITY-ACHIEVING SIGNALING UNDER

INTERFERENCE CONSTRAINTS

In this section, we propose an iterative algorithm to solve

(P1) numerically and prove its convergence to a global op-

timum. Performing separately max and min optimizations

in the max-min part of (6) immediately faces a serious and

fundamental difficulty of achieving or proving convergence

of the algorithm due to its oscillatory behaviour, which is

due to conflicting (max-min) optimization operations. To

overcome this difficulty, we use the residual form of Newton

method where both optimizations (max and min) are done

simultaneously, so that the residual of the KKT conditions

is reduced at each iteration and it converges monotonically to

zero as the algorithm progresses (see e.g. [35] for more details

on this general approach). This opens up a way to a provable

convergence to a global optimum, which is out of reach for

the max problem in (6) due to its non-convex nature.

We develop below an iterative algorithm, which is able

to handle any number of interference constraints and which

does not require advance knowledge of which constraint is

active and which is not. This algorithm is based on the max-

min representation of the secrecy capacity in (6) and includes

the barrier method, the residual-form Newton method and the

backtracking line search, see e.g. [35] for more details on these

algorithms. Unlike generic convex optimization algorithms or

solvers, our algorithm here is specifically tailored for secrecy

rate maximization in multi-user Gaussian MIMO WTC under

interference constraints. Its convergence to a global optimum

is rigorously proved, even when the WTC is not degraded and

hence the max problem in (6) is not convex. This is a distinct

advantage not found in other known algorithms, e.g. in [23]-

[25], where either no convergence at all is proved or where

only convergence to a stationary point is proved, which is not

necessarily a global maximum, as discussed above.

The key idea of the barrier method is to substitute the orig-

inal objective function f(R,K) by a modified one ft(R,K),
which includes additional barrier terms as follows:

ft(R,K) = f(R,K) + I1(R) + I2(R)

+
∑

j

I3j(R)− I4(K) (11)

where t > 0 is the barrier parameter and

I1(R) = t−1 ln |R|, (12)

I2(R) = t−1 ln(PT − tr(R)), (13)

I3j(R) = t−1 ln(PIj − tr(W3jR)), (14)

I4(K) = t−1 ln |K|. (15)
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so that all inequality constraints are absorbed in the respective

barrier terms I1 − I4. Note that the domain of ft(R,K) is

R ∈ S′
R,K ∈ S′

K where

S′
R = {R ∈ SR : R > 0, tr(R) < PT , tr(W3j) < PIj},

S′
K = {K ∈ SK : K > 0}, (16)

i.e. R, K are strictly inside of the original feasible sets

SR, SK (but may approach the boundary arbitrary closely

- this is a key feature of the barrier method). Note also that

ft(R,K) is convex-concave in the right way, i.e. concave in R

for any fixed K and convex in K for any fixed R, so that the

respective optimization problems are convex and their KKT

conditions are jointly sufficient for global optimality.

In the proposed algorithm, we use the residual-form Newton

method to compute an optimal point {R(t),K(t)} of (P2)

below for a fixed t in an iterative way and with high accuracy.

To facilitate implementation, we use real rather than complex

variables. To reduce the number of variables and improve the

efficiency, we exploit the symmetry of R and K and use

x = veh(R) and y = vec(N) as independent variables to

represent R and K, where vec(N) operator stacks all columns

of N on top of each other and veh(R) does so for the lower-

triangular part of R. Since vec(N) is used as independent

variables to represent K, the equality constraint in (9) is

satisfied automatically. The original max-min problem (P1)

in (6) is transformed into the following unconstraint problem:

(P2) max
x

min
y

ft(R,K) (17)

so that its KKT conditions are simply the stationarity condi-

tions:

r(z) = ∇zft = 0 (18)

where

z =

[
x

y

]
, r(z) =

[
∇xft
∇yft

]
(19)

are the aggregate vector of the variables and the residuals

respectively. In the residual-form Newton method, the opti-

mality condition r(z) = 0 is iteratively solved using 1st-order

approximation of r(z) at each step (which corresponds to the

second-order approximation of the objective):

r(zk +∆z) = r(zk) +Dr∆z + o(∆z) = 0. (20)

where zk and ∆z are the current variables and their updates

respectively at iteration k, and where Dr is the derivative of

r(z), i.e. the Hessian of ft(x,y):

Dr =

[
∇2

xxft ∇2
xyft

∇2
yxft ∇2

yyft

]
. (21)

Closed-form expressions for gradients and Hessians are given

in the Appendix. By ignoring o(∆z), (20) can be reduced to

a system of linear equations in ∆z:

r(zk) +Dr∆z = 0 (22)

which can be solved numerically using any of the existing (and

efficient) techniques. When Hessian Dr is non-singular, ∆z

in (22) has a unique solution. In our case, the non-singularity

of Dr at each step of the Newton method is rigorously

established below. After computing ∆z from (22), z is updated

as follows

zk+1 = zk + s∆z (23)

where k denotes the Newton iteration number (step) and where

s > 0 is the step size, which can be found via backtracking

line search (see e.g. [35] for a background on this method).

The Newton method in combination with the backtracking

line search is guaranteed to reduce the residual norm |r(z)| at

each step, which follows from the respective norm-reduction

property [35], so that for sufficiently small s, the residual norm

shrinks at each iteration approaching r(zk) = 0 as k increases.

After several iterations, the convergence becomes quadratic

(see [35] for related definitions and analysis) and hence very

fast, so that the optimal point (R(t),K(t)) of the problem

(17) can be approached with any desired accuracy in a small to

moderate number of steps. Following the barrier method, the

problem in (17) is solved for sequentially increasing t, where

the optimal point of the previous t serves as an initial point

for the new, increased t, thus minimizing the total number

of Newton iterations required [35]. It can be shown that

f(R(t),K(t)) → C as t → ∞ so that any desired accuracy

can be reached (see Proposition 2 below).

The proposed algorithm is shown below, where α is the

percentage of the linear decrease in the residual norm one is

willing to accept in the backtracking line search; β and η are

the parameters controlling reduction in step size s and increase

in barrier parameter t at each iteration of the respective loop of

the algorithm, ǫ is the target residual accuracy, t0 and tmax

are initial and maximum values of the barrier parameter; t
varies from t0 to tmax, where the latter controls the accuracy

of the barrier method so that the inaccuracy in the secrecy

capacity due to the barrier method does not exceed max{m+
1 + K,n1 + n2}/tmax. z0 = [xT

0 ,y
T
0 ]

T is an initial point

defined as follows

x0 = veh(PT I/a), y0 = 0

a = 2max{m, {tr(W3j)PT /PIj}}, (24)

so that R0 ∈ S′
R,K0 ∈ S′

K. Note that R0 represents

isotropic signaling satisfying all power constraints and K0

represents uncorrelated noise. Numerical experiments show

that this initial point results in fast convergence in all stud-

ied cases. While the barrier method generates a sequence

of {R(t),K(t)} which are strictly inside the feasible set

(e.g. non-singular), they may approach the boundary arbitrary

closely, thus representing a rank-deficient solution. In this

case, non-zero but very small eigenvalues of R(t) can be

rounded off to zero facilitating low-complexity (low-rank)

implementation, which includes beamforming as a special

case.

A. Analysis of Algorithm 1

In this section, we prove the convergence of Algorithm 1

to a globally-optimal solution of the problem in (6) using the

steps of the convergence analysis in [35] and adapting them

properly to the current setting. First, from the residual norm-
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Algorithm 1 (for optimal secure signaling under interference

constraints)

Require z0, 0 < α < 0.5, 0 < β < 1, tmax > t0 > 0,

η > 1, ǫ > 0.

1. Set t = t0; compute r(z0) via (19).

repeat (barrier method)

2. Set k = 0.

repeat (Newton method)

3. Compute the Hessian matrix Dr via (21).

4. Compute update ∆z via (22).

5. Set s = 1.

repeat (backtracking line search)

6. s := βs.

7. Update zk+1 = zk + s∆z; compute r(zk+1)
until |r(zk+1)| 6 (1 − αs)|r(zk)| and Rk+1 ∈

S′
R,Kk+1 ∈ S′

K

8. k := k + 1.

until |r(zk)| 6 ǫ
9. Compute f(Rk,Kk), C(Rk).
10. Set z0 := zk as a new starting point.

11. Update t := ηt.
until t > tmax

12. Output: (Rk,Kk), f(Rk,Kk), C(Rk).

reduction property of the Newton method (see Sec. 10.3 in

[35]),

d

ds
|r(zk + s∆z)| = −|r(zk)| ≤ 0 (25)

so that the termination condition of the backtracking line

search in Algorithm 1 is satisfied for a sufficiently-small

s > 0,

|r(zk + s∆z)| = (1− s)|r(zk)|+ o(s) ≤ (1 − αs)|r(zk)|
(26)

where 0 < α < 0.5, and hence

|r(zk+1)| ≤ |r(zk)| (27)

so that {|r(zk)|} is a decreasing sequence that converges

(since it is bounded from below by 0); from (25), a conver-

gence point is 0 (otherwise, |r(z)| could be further reduced

as the inequality in (27) is strict if |r(zk)| > 0), i.e. to a point

that solves the KKT conditions. This point is globally-optimal

since the KKT conditions are sufficient for global optimality

of (P2) due to the convex-concave nature of ft(R,K), as

explained above.

It remains to show that, (i) at each step of the Newton

method, (22) can be solved to obtain update ∆z, and that

(ii) ft(R(t),K(t)) will approach f(R′,K′) = C arbitrary

closely as t increases, where (R′,K′) is an optimal (saddle)

point of (P1).

To establish first point, it is sufficient to show that the

Hessian Dr is non-singular at each Newton step

Proposition 1. Consider the max-min problem (P2) in (17).

Its Hessian Dr as defined in (21) is non-singular for each

t > 0, R ∈ S′
R,K ∈ S′

K.

Proof. See Appendix.

In fact, Proposition 1 ensures that the update equation (22)

has a unique solution at each Newton step. To demonstrate

second point, we give below a sub-optimality bound for the

barrier method, from which it follows that f(R(t),K(t)) →
C as t → ∞.

Proposition 2. For each t > 0, the gap of the barrier method

used in (17) can be upper bounded as follows:

|f(R(t),K(t)) − C| ≤ max(mR, nK)/t (28)

where R(t),K(t) are the optimal signal and noise covariance

matrices returned by the barrier method for a given t; nK =
n1 + n2, mR = m+ 1 +K and K is the number of IPCs.

Proof. To establish the bound, consider first the min part of

(P1) in (6) for a fixed R = R(t) > 0 and use the analysis

of the barrier method in Sec. 11.6 of [35] to obtain an upper

bound:

f(R(t),K(t)) ≤ min
K∈SK

f(R(t),K) + nK/t

≤ max
R∈SR

min
K∈SK

f(R,K) + nK/t (29)

where nK = n1 + n2 accounts for the constraint K ≥ 0.

Consider now the max part of (P1) for a fixed K = K(t) > 0
and use the same approach to obtain

f(R(t),K(t)) ≥ max
R∈SR

f(R,K(t))−mR/t

≥ min
K∈SK

max
R∈SR

f(R,K)−mR/t (30)

where mR = m+ 1 +K; m accounts for the positive semi-

definite constraint R ≥ 0, while 1 and K account for the

TPC and IPC respectively. Combining these two bounds, one

obtains

C −mR/t ≤ f(R(t),K(t)) ≤ C + nK/t (31)

from which (28) follows, where we have used the saddle-point

property of the problem (P1):

C = min
K∈SK

max
R∈SR

f(R,K) = max
R∈SR

min
K∈SK

f(R,K) (32)

which follows from Von Neumann mini-max theorem [33].

Note that the original objective f(R,K) is used in (28), not

the modified one ft. The bound in (28) can be used in practice

to set up tmax to meet a target accuracy ∆C in terms of the

achieved secrecy rate f(R(t),K(t)): if |C−f(R(t),K(t))| ≤
∆C is needed, then setting

tmax ≥ max(mR, nK)/∆C (33)

will satisfy this requirement.

IV. OPTIMAL COVARIANCE IN THE SINGULAR CASE

Algorithm 1 can be used to evaluate the secrecy capacity

in the general case by evaluating numerically f(R′,K′) = C
at saddle point (R′,K′) (i.e. the optimal point of the max-

min problem (P1) in (6)). However, R′ is not necessarily an

optimizer of C(R), i.e. not an optimal Tx covariance R∗ =
argmaxR∈SR

C(R), so that C(R′) < C(R∗) = f(R′,K′)
is possible. This happens when the TPC is inactive and,
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for all active IPCs, the sum
∑

j+ W3j is singular (i.e. the

intersection of their null spaces is not empty). The following

example [33] illustrates this point. Let

H1 = diag{1, 0}, H2 = diag{0, 1}, W3 = diag{1, 0}
(34)

It is straightforward to see that the saddle-point (R′,K′) is

K′ = I, R′ = diag{min(PT , PI), a} (35)

where a is any in the interval 0 ≤ a ≤ (PT − PI)+, so that

R′ is not unique if PT > PI . The optimal covariance is

R∗ = diag{min(PT , PI), 0} (36)

Thus, R∗ 6= R′ (unless a = 0) and

C = f(R′,K′) = ln(1 + min(PT , PI)) (37)

for any a. However, if one sets a = (PT − PI)+, then

C(R′) = ln
1 + min(PT , PI)

1 + (PT − PI)+
< C = C(R∗) (38)

where the inequality holds if PT > PI (negative C(R′) is

interpreted as zero rate). Hence, R′ is not an optimal transmit

covariance R∗ (one maximizing the secrecy rate C(R)). We

conclude that while the application of Algorithm 1 is possible

to find the secrecy capacity via C = f(R′,K′), it cannot be

used to find R∗ in the singular case, since R′ 6= R∗ is possible

and, furthermore, C(R′) < C = C(R∗) is also possible (as

a side remark, we note that this effect disappears if the IPCs

are removed, since the TPC is always active in this case).

Therefore, the singular case needs special treatment to

establish an optimal signaling strategy (optimal covariance),

not just the capacity. This is done below via Algorithm 2,

which incorporates Algorithm 1 and bisection search to find

an optimal covariance as well as the least Tx power required

to achieve the secrecy capacity (this may be smaller than the

TPC power PT in the singular case).

To this end, let C(PT ) be the secrecy capacity as a function

of TPC power PT , with all interference constraint powers

being fixed, and let

P0 = min{P : C(PT ) ≤ C(P ) ∀PT ≥ 0} (39)

so that C(PT ) ≤ C(P0) ∀PT ≥ 0, i.e. C(PT ) saturates

at C(P0) as PT increases; P0 = ∞ corresponds to no

saturation. It follows from the definition of P0 that PT,min =
min{PT , P0} is the minimum Tx power required to achieve

the capacity C(PT ). Note that PT,min < PT if PT > P0,

i.e. Tx power saving is possible and hence it is important to

evaluate P0 as well.

The following general properties of the function C(PT )
are needed below to construct an algorithm and to prove its

convergence. To the best of our knowledge, these properties

of the secrecy capacity never appeared in the literature before,

even without interference constraints. We will assume below

that C(P0) > 0, i.e. C(PT ) is not identically 0 for all PT

(which would be the case for a reversely-degraded channel).

Proposition 3. Let C(P0) > 0. The secrecy capacity C(PT )
as a function of TPC power PT (under fixed PIj) has the

following properties:

1. C(PT ) is a non-decreasing function of PT ; strictly-

increasing for any PT < P0.

2. C(PT ) is a concave, continuous function of PT .

3. If C(PT ) = C(P1) for some P1 > PT , then this holds for

any P1 > PT . Equivalently, if C(PT )
′
+ = 0, then C(P1)

′
+ = 0

for any P1 > PT , where C(PT )
′
+ is the right derivative;

additionally, C(PT )
′
+ = 0 for any PT ≥ P0.

4. If C(P1) < C(PT ) for some P1, then C(P2) < C(P1)
for any P2 < P1. Equivalently, if C(PT )

′
− > 0, then

C(P1)
′
− > 0 for any P1 < PT , , where C(PT )

′
− is the left

derivative; additionally, C(PT )
′
− > 0 for any PT ≤ P0, i.e.

C(PT ) is strictly increasing for any PT < P0.

Proof. See Appendix

Thus, C(PT ) is concave, non-decreasing, and strictly-

increasing for PT < P0. The rate of increase slows down

with PT . Note that for PT > P0, the capacity C(PT ) can be

achieved with smaller Tx power P0. We will need below the

following result to deal with the singular case.

Proposition 4. Let µ(PT ) be a Lagrange multiplier, as a

function of TPC power PT , responsible for the TPC in (P1).

Then, µ(PT ) > 0 for any PT < P0, i.e. the TPC is always

active below P0, and µ(PT ) = 0 for any PT > P0.

Proof. See Appendix.

Based on this Proposition, we are now able to construct

an iterative algorithm to evaluate optimal covariance in the

singular case numerically with any desired accuracy. The key

idea for the PT ≥ P0 case (which is necessary for singularity)

is to identify the saturation point P0 and to apply Algorithm 1

with TPC power P slightly less than P0 (so that µ(P ) > 0 and

hence the TPC is active thus avoiding the singularity in this

way), which achieves the secrecy rate arbitrary close to the

capacity C(PT ) = C(P0) as P approaches P0 from below,

and gives a covariance matrix achieving this secrecy rate as

well.

Algorithm 2 (optimal signaling in the singular case)

Require δ, ǫ
1. Compute C = f(R′,K′) using Algorithm 1 for a given

PT .

2. Set Pmin = 0, Pmax = PT , P = PT /2.

3. Compute f(R′,K′) under new TPC tr(R) ≤ P using

Algorithm 1.

repeat (bisection search)

4. If f(R′,K′) < (1 − ǫ)C, set Pmin = P ; otherwise,

set Pmax = P .

5. Set P = (Pmin + Pmax)/2.

6. Compute f(R′,K′) under TPC tr(R) ≤ P using

Algorithm 1.

until Pmax − Pmin 6 δPT

7. Compute f(R′,K′) under TPC tr(R) ≤ Pmin using

Algorithm 1.

8. Output R′, C(R′), ∆C = C−C(R′), PT,min = Pmin,

∆P = Pmax − Pmin.

Algorithm 2 returns nearly-optimal covariance R′ as well

as its achieved secrecy rate C(R′) and its distance ∆C to
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the secrecy capacity C. In addition, the algorithm returns

an approximate value of PT,min = min{PT , P0}, i.e. the

minimum Tx power required to achieve C(PT ), as well as

its accuracy ∆P . Note that ∆C and ∆P can be made as

small as necessary by setting sufficiently small δ and ǫ (this

follows from the continuity of all functions involved as well

as the compactness of the feasible set for any finite PT , in

addition to the nature of the bisection).

The condition in Line 4 is set to account for numerical

imprecision effects in computing f(R′,K′). While in theory

one can set ǫ = 0, this can result in numerical instability in

practice in some cases. Typical values of ǫ range between

10−2 (1% accuracy) to 10−6; δ controls the accuracy of

computed PT,min and δ = 10−2 corresponds to 1% accuracy

with respect to PT .

A. Analysis of Algorithm 2

Here we provide a convergence analysis of Algorithm 2

to justify the claims above. To simplify the discussion, we

consider first the case of ǫ = 0 and neglect the numerical im-

precision effects (in particular, the imprecision of Algorithm 1,

whose accuracy can be very high even for a small number of

Newton steps), which is a standard assumption in the literature

(see e.g. convergence analysis in [35]). The convergence of

sufficiently small but non-zero ǫ > 0 will follow from the

continuity of all functions involved.

Let Pmin,k, Pmax,k and Pk be the power values set in Line

4 and 5 of Algorithm 2, i.e. at k-th iteration of the bisection.

Note that, due to the nature of the bisection, ∆k = Pmax,k −
Pmin,k is reduced by a factor of 2 at each step, so that

∆k = PT /2
k (40)

The following proposition gives further important properties.

Proposition 5. The following holds at k-th iteration of the

bisection in Algorithm 2 with ǫ = 0:

Pmin,k < Pk < Pmax,k ≤ PT (41)

and {Pmin,k}, {Pmax,k} are monotonically increasing and

decreasing sequences, respectively. If PT ≥ P0, then

Pmin,k < P0 ≤ Pmax,k ≤ PT (42)

If PT < P0, then

Pmin,k = PT (1− 2−k), Pmax,k = PT (43)

Proof. To prove first two inequalities in (41), use Pk =
(Pmin,k + Pmax,k)/2 and ∆k > 0 for any k. The last

inequality is by construction of the algorithm, i.e. from

Pmax,0 = PT and Pmax,k+1 ≤ Pmax,k, which follows from

the fact that either Pmax,k+1 = Pmax,k or Pmax,k+1 =
Pk < Pmax,k. Likewise, Pmin,k+1 ≥ Pmin,k , since either

Pmin,k+1 = Pmin,k or Pmin,k+1 = Pk > Pmin,k.

First inequality in (42) follows from Line 4 (with ǫ = 0),

which implies that Pmin,k = P iff f(R′,K′) = C(P ) < C =
C(P0) so that, from the monotonically-increasing property of

C(P ) in Proposition 3 and the initial condition Pmin,0 = 0,

Pmin,k < P0. second inequality in (42) is established in a

similar way.

If PT < P0, then Pmax,k = PT , since f(R′,K′) =
C(P ) = C = C(PT ) implies P = PT , from the

monotonically-increasing property of C(P ) in Proposition 3,

and the initial condition is Pmax,0 = PT . First equality in

(43) follows from second and ∆k = PT /2
k.

Since ∆k → 0 as k → ∞, it follows from Proposition 5

that

Pmin,k, Pmax,k, Pk → min{PT , P0} = PT,min (44)

so that the minimum required power PT,min can be evaluated

with any desired accuracy. Furthermore, the inaccuracy does

not exceed ∆k and, since ∆k = PT /2
k, the convergence

is exponentially fast, so that very few steps are required in

practice to achieve high accuracy. The number kδ of steps

needed to achieve the target accuracy δPT is, from ∆k ≤ δPT ,

kδ =

⌈
log2

1

δ

⌉
(45)

Further note that Line 7 of Algorithm 2 evaluates R′ under

tr(R) ≤ Pmin,kδ
< P0, where kδ is the total number

of bisections, so that µ(Pmin,kδ
) > 0 under this condition

(since, from Proposition 4, µ(P ) > 0 if P < P0) and hence

f(R′,K′) = C(R′) = C(Pmin,kδ
), i.e. R′ is a maximizer

of C(R) as well under the TPC power Pmin,kδ
. From the

continuity of C(P ), C(Pmin,kδ
) → C(PT ) as kδ → ∞, or

equivalently, ∆C → 0 as δ → 0, i.e. arbitrary high accuracy

can be achieved in terms of the secrecy rate as well, with

exponentially-fast convergence.

The case of non-zero ǫ > 0 can be considered in a similar

albeit more technical way. Let C−1(·) be the inverse function

of C(P ) and

P0ǫ = C−1((1 − ǫ)C(P0)) (46)

so that C(P0ǫ) = (1 − ǫ)C(P0). The same steps as in the

proof of Proposition 5 can be used to establish (41)-(42) with

P0ǫ in place of P0. Eq. (43) applies as long as Pmin,k <
PTǫ = C−1((1 − ǫ)C(PT )), after which (42) applies with

PTǫ in place of P0. Note that P0ǫ < P0, PTǫ < PT , and

P0ǫ → P0, PTǫ → PT as ǫ → 0, so that similar accuracy and

performance is expected for sufficiently small but non-zero ǫ.

V. DUAL PROBLEMS

Motivated by the energy efficiency issues (green com-

munications, battery life etc.), one is lead to consider the

following problem dual of (6), which is to minimize globally

the total Tx power subject to the secrecy and interference

power constraints:

(P3) min
(P,R)

P s.t. (P,R) ∈ S3 (47)

where the feasible set S3 is

S3 = {(P,R) : C(R) ≥ C0, R ≥ 0, tr(R) ≤ P,

tr(W3jR) ≤ PIj} (48)

and C0 is the target secrecy rate and C(R) ≥ C0 is the secrecy

constraint. Note that this problem is not convex in general,

since C(R) is not concave (unless the channel is degraded),
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and, hence, powerful tools of convex optimization cannot be

used to solve it numerically (i.e. to find a global optimum).

In addition to this problem, since an optimal covariance

R∗ of the max problem in (6) is not necessarily unique (see

e.g. Example 2 in [34]), a new problem emerges: among all

optimal covariances R∗, find one with the least trace (i.e. the

minimum Tx power):

(P4) min
R∈S∗

1

tr(R) (49)

where S∗
1 is the set of all optimal covariances R∗ of the max

problem in (6). Since an explicit characterization of this set is

not known in the general case (it is not even known whether

this set is convex), standard optimization tools (including

convex optimization) seem to be inapplicable, making this

problem difficult for a direct attack.

The following Proposition shows that these problems have

identical solutions and that Algorithm 2 solves both of them.

Proposition 6. Let P3 and P4 be the optimal values of (P3)

and (P4), and let C0 be the optimal value of (P1), i.e. C0 =
C(PT ). Then,

P3 = P4 = min{PT , P0},
R∗

3 = R∗
4, C(R∗

3) = C(R∗
4) = C(PT ) (50)

where R∗
3,R

∗
4 are optimal covariances of (P3) and (P4). If

PT ≥ P0, then P3 = P4 = P0 and Algorithm 2 also solves

(P3) and (P4). If PT < P0, then R∗
3 = R∗

4 = R∗ = R′ and

P3 = P4 = PT (Algorithm 1 is sufficient, Algorithm 2 is not

necessary in this case).

Proof. First, we show that P3 = P4 if C0 = C(PT ). Indeed,

it follows from (48) that (PT ,R
∗) ∈ S3. Hence,

P3 ≤ PT , tr(R∗
3) ≤ P3 ≤ PT , C(R∗

3) ≥ C(PT ) (51)

which implies that R∗
3 ∈ SR so that C(R∗

3) ≤ C(PT ). There-

fore, C(R∗
3) = C(PT ), i.e R∗

3 is also optimal for the max

problem in (6): R∗
3 ∈ S∗

1 . This implies tr(R∗
3) = P3 ≥ P4.

To show the opposite inequality, note that

C(R∗
4) = C(PT ) = C0, tr(R∗

4) = P4 (52)

and hence (P4,R
∗
4) ∈ S3 so that P3 ≤ P4. Therefore,

P3 = P4, as required. This also implies that R∗
4 is optimal

for (P3) (since tr(R∗
4) = P3) and that R∗

3 is optimal for

(P4) (since tr(R∗
3) = P4), i.e. R∗

3 = R∗
4 and hence problems

(P3) and (P4) have identical optimal values and optimal points

(covariances). This establishes (50)2.

To establish P3 = P4 = P0 if PT ≥ P0, observe that

C(P ) < C(P0) = C(PT ) = C0 for any P < P0 (from

(39)). Therefore, P3 = P4 ≥ P0. Since C(P0) = C(PT ) =
C(P3) = C(P4), it follows that P3 = P4 = P0 and hence

Algorithm 2 also solves (P3) and (P4).

If PT < P0 (which includes P0 = ∞), it follows from

Proposition 4 that the TPC is active and, from Proposition 3,

that C(PT ) is strictly increasing, which implies P3 = P4 =
PT and R∗

3 = R∗
4 = R∗ = R′, where the last equality implies

that Algorithm 1 also solves (P3) and (P4).

2We caution the reader that this does not imply that R∗ = R∗

3
since R∗

is not necessarily unique and there may exist one with tr(R∗) > P3 = P4.
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Fig. 2. Convergence of the Newton method for different values of t; PT = 5
dB, PI1 = PI2 = 2 dB, α = 0.3, β = 0.5, channel matrices are as in (53).

VI. NUMERICAL EXPERIMENTS

To validate the algorithms and demonstrate their perfor-

mance, extensive numerical experiments have been carried

out. We consider below some representative cases with 2

cooperative Evs and 2 PRs below, for both deterministic and

randomly-generated channels.

Example 1: Fig. 2 illustrates the convergence of Algorithm

1 for the channel in (53), i.e. the residual’s Euclidian norm

|r(zk)| versus the number k of Newton steps for various

values of t. Channel matrices H1, H21, H22, H31, H32 are

set as follows:

H1 =

[
0.32 0.66
1.24 0.58

]

H21 =

[
−0.58 −1.15
−0.37 −1.07

]
, H22 =

[
0.17 0.73
−0.07 −0.54

]

H31 =

[
1.47 0.32
−1.57 0.01

]
, H32 =

[
−0.83 0.38
1.16 −0.86

]
(53)

so that W31 and W32 are full rank (and hence the singularity

is ruled out so that R′ = R∗ in this case); the corresponding

eigenvalues of W1−W2 are (−2.53, 1.16), i.e. the channel is

non-degraded and ”hard” for optimization (since the negative

eigenmode is dominant). For all considered values of t, it

takes only about 8 to 23 Newton steps to reach the machine

precision level (around 10−12; recall that a globally-optimal

point corresponds to |r| = 0). Also note the presence of two

convergence phases: linear and quadratic. After the quadratic

(”water-fall”) phase is reached, the convergence is very fast.

In general, higher values of t, which provide smaller gap to

the capacity, require more steps to achieve the same precision,

even though moderately so.

Fig. 3 shows the achieved secrecy rate C(R(t)) and its

upper bound f(R(t),K(t)) under the same setting as in Fig.

2. While the attained secrecy rate and the upper bound do con-

verge to the secrecy capacity, the convergence is significantly

non-monotonic here, unlike that in Fig. 2, where the residual

is decreasing monotonically. It takes more steps for C(R(t))
to converge, as compared to f(R(t),K(t)), since the former
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Fig. 3. Achieved secrecy rate C(R(t)) and the upper bound f(R(t),K(t))
for the same setting as in Fig. 2, via Algorithm 1 (for given t) and stochastic
Monte-Carlo (MC) search.

is much more sensitive to R than the latter (due to the strong

negative eigenmode of W1−W2). While t = 103 is sufficient

to evaluate accurately the capacity via f(R(t),K(t)), it takes

t = 105 to get the same accuracy via C(R(t)) so we conclude

that, in addition to being convex-concave in the right way,

f(R(t),K(t)) is more robust (less sensitive) than C(R):
while using t = 103 entails no visible loss in precision for the

capacity estimate via f(R(t),K(t)), it induces a significant

loss (of about 50%) in attained secrecy rate C(R(t)).
For properly selected t, it takes a moderate number of 10

to 15 Newton steps for the algorithm to converge in terms of

achieved secrecy rates. In general, the numerical complexity

of Algorithm 1 follows that of the standard barrier method

[35]: the number of Newton steps for each value of t scales

as

O

(√
nv ln

1

ǫ

)
(54)

while the number of flops for each Newton step scales

as O(n3
v) so that the overall number of flops scales as

O(n3
v

√
nv ln ǫ

−1), i.e. polynomially in nv and logarithmically

in ǫ, where nv is the number of independent variables of the

max-min problem:

nv =
m(m+ 1)

2
+ n1

∑

j

n2j (55)

This should be contrasted with the complexity of the non-

convex max problem in (6): if the global optimum is found

using a generic non-convex optimization algorithm, the com-

plexity scales as

O
(
(1/ǫ)

n′

v

)
, n′

v = m(m+ 1)/2, (56)

i.e. exponentially large in n′
v, see e.g. [45][46], – a stark

contrast to (54), which scales sub-polynomially in nv .

We further remark that while higher values of t result in

higher precision for the achieved secrecy rate C(R(t)), they

also require more steps to reach the same precision level ǫ,
even though this number is still moderate.
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Fig. 4. Achieved secrecy rates C(R′) and f(R′,K′) via Algorithm 1 and
extensive MC search, averaged over 200 randomly-generated channels with 2
Evs and 2 PRs; PI1 = PI2 = 2 dB, ǫ = 10−8, δ = 10−3 , α = 0.3, β =
0.5, η = 5, tmin = 102, tmax = 105 .

Algorithm 1 was further validated by comparing its

achieved secrecy rates with those attained by extensive

stochastic Monte-Carlo (MC) search (where a large number,

e.g. 105, of covariance matrices were randomly generated

within the feasible set and the best one was selected as an

optimal covariance). As Fig. 3 shows, these two methods agree

well with each other.

Example 2: To further validate Algorithm 1, its perfor-

mance was evaluated on 200 randomly-generated channels

(from i.i.d. N(0, 1) distribution for each entry of each channel)

with different numbers of antennas. No significant difference

with Fig. 2 and 3 was found. The number of Newton steps to

reach the same precision is somewhat larger for larger number

of antennas but only moderately so, in agreement with (54).

Fig. 4 shows the averaged secrecy rates found via Algorithm

1 (i.e. C(R′) and f(R′,K′)) as well as via extensive MC

search, for different numbers of antennas at each node, with

2 Evs and 2 PRs present at each setting. Clearly, the results

of Algorithm 1 and MC search agree well with each other,

thus validating Algorithm 1.

Example 3: In this example, we demonstrate that while

max
R∈SR

C(R) = max
R∈SR

min
K∈SK

f(R,K) (57)

as Theorem 1 indicates, R′, which is a maximizer of f(R,K),
may not be a maximizer of C(R), i.e. it is not necessarily an

optimal covariance R∗ attaining the secrecy capacity, R∗ 6=
R′, as discussed above. In fact, the difference can be quite

significant. Let the channel matrices be as follows: H1, H21,

H22 as in (53), and set

H31 =

[
−0.23 −0.16
−0.05 −0.71

]
, H32 =

[
−0.47 0.09

]
(58)

so that W31 is full rank and W32 is rank deficient and hence

the singular case is possible. It is clear from Fig. 5 that R′

is not a maximizer of C(R) in the singular case, i.e. for

PT larger than about 11 dB (which corresponds to inactive

TPC and the active IPC channel matrix being singular) where
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Fig. 5. Secrecy rate as a function of the TPC power PT for H1, H21 , H22

as in (53) while H31 and H32 are as in (58), PI1 = PI2 = 5 dB. Note
that R′ is not always a maximizer of C(R) but the secrecy rate attained
by Algorithm 2 always agrees well with that of MC and f(R′,K′). Taylor-
based algorithm gets trapped at a local optimum, far away from the global
one, since the channel is not degraded.

C(R′) drops down significantly while f(R′,K′) returned

by Algorithm 1 is always a good estimate of the capacity.

Hence, R′ cannot be used for optimal signaling as an optimal

covariance under inactive TPC (this would entail about 70%

loss in achieved secrecy rate). Note also that Algorithm 2 is

able to find an optimal covariance even in the singular case

and its attained secrecy rate agrees well with that of extensive

Monte-Carlo search and that via f(R′,K′).

To demonstrate that sub-optimal algorithms (based on 1st

order Taylor expansion of the non-convex part of the max

problem) may get trapped at a local optimum that is far away

from the global one, the secrecy rate maximization algorithm

in [25], which is based on this strategy, was implemented

using the popular convex optimization toolbox CVX [52]

in each iteration. As Fig. 5 shows, it does get trapped in

a local optimum (close to 0), far away from the global

one, as expected from the discussion in the Introduction.

Hence, Taylor-based sub-optimal algorithms should be used

with caution (or avoided at all) when the original problem

is not convex (as in this example, where the channel is not

degraded and negative eigenmode dominates, making it ”hard”

for optimization).

Fig. 6 demonstrates the convergence of Algorithm 2 for the

setting of Fig. 5 with PT = 100 (20 dB), PI1 = PI2 = 3.16
(5 dB); ǫ = δ = 10−4. Note that the convergence is

exponentially fast so that only a few bisection steps is needed

and that both sequences converge monotonically to P0 =
14.09. Fig. 7 shows the convergence of attained secrecy rates

C(R′(Pmin,k)) and C(R′(Pmax,k)) for the same setting.

Note that C(R′(Pmax,k)) is initially significantly below the

capacity while f(R′(Pmax,k),K
′(Pmax,k)) = C = 2.17

for all k, confirming our earlier observation that R′ is not

necessarily a maximizer of C(R) while f(R′,K′) = C al-

ways holds. Algorithm 2 overcomes this problem by properly

reducing the TPC power PT to make the TPC active. In this
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Fig. 6. Convergence of Algorithm 2 for the setting of Fig. 5; PT = 100 (20
dB), PI1 = PI2 = 3.16 (5 dB); ǫ = δ = 10−4; estimated P0 = 14.09.
Note that the difference between Pmax,k and Pmin,k decreases sharply with
k and both sequences monotonically converge to P0, as expected from the
analysis.
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Fig. 7. Convergence of secrecy rates from Algorithm 2 for the set-
ting of Fig. 6. Note that both C(R′(Pmin,k)) and C(R′(Pmax,k))
converge to the capacity, where the former converges faster while
f(R′(Pmax,k),K

′(Pmax,k)) = C for all k, as expected.

process, both C(R′(Pmin,k)) and C(R′(Pmax,k)) converge to

the capacity, where the former converges faster (it takes only

6 iterations) while f(R′(Pmax,k),K
′(Pmax,k)) = C for all k,

as expected from the analysis. As a by-product, the minimum

Tx power P0 = 14.09 needed to achieve the secrecy capacity

C = 2.17 is also determined by Algorithm 2. Note that this

power is significantly smaller than the TPC power PT = 100,

hence allowing significant power savings.

Example 4: To further validate Algorithm 2, we compare

its performance with that of MC search for 200 randomly-

generated channels for which the singularity condition of Sec-

tion IV is satisfied, with m = n1 = 4, n21 = n22 = 3, n31 =
n32 = 2. Fig. 8 shows the respective averaged secrecy rates.

Note that the results of Algorithm 2 and MC search agree

well with each other while using R′ from Algorithm 1 alone

does not always maximize C(R), in agreement with Section

IV and Example 3; the gap is significant at high PT (e.g.



13

-5 0 5 10

P
T
 [dB]

0

0.2

0.4

0.6

0.8

1

1.2
S

ec
re

cy
 r

at
e 

(n
at

/s
/H

z)

f(R',K') by Algorithm 1

C(R') by Algorithm 1

C(R*) by Algorithm 2

C(R*) by MC

Fig. 8. Secrecy rate vs. the TPC power PT , averaged over 200 random
realizations of singular channels; PI1 = PI2 = −2 dB, ǫ = 10−4, δ =
10−3, α = 0.3, β = 0.5, η = 5, tmin = 102, tmax = 105. Note
that R′ is not always a maximizer of C(R) but the secrecy rate attained by
Algorithm 2 always agrees well with that of MC search and f(R′,K′).

10 dB). This shows a dramatic impact of IPC on algorithm’s

performance. This figure, along with Fig. 5, also shows that

Algorithm 1 alone is not sufficient and Algorithm 2 is really

needed to find an optimal covariance matrix in the singular

case. On the contrary, Algorithm 1 is sufficient to find the

capacity in the general case via f(R′,K′).

VII. CONCLUSION

Optimal secure signaling over multi-user MIMO wiretap

channels has been studied under interference constraints (e.g.

as in CR) in this paper. While several algorithms have been

presented in the literature for secrecy rate maximization in

this setting, they are either limited to the MISO setting

(single-antenna receiver) or suffer from the lack of provable

convergence to a global optimum and may get trapped in a

local optimum far away from the global one.

In this paper, we presented two algorithms for global

secrecy rate maximization under interference constraints in the

full multi-user MIMO setting with provable (global) conver-

gence to the secrecy capacity. These algorithms avoid using

approximation-based approach (as in all known algorithms)

and hence avoid the danger of being trapped in a local

optimum (or stationary point) far away from the global one.

This is accomplished by using the recent secrecy capacity

characterization in the interference-constrained setting as a

max-min problem, where both problems are convex. As a

by-product, the minimum transmit power needed to achieve

the secrecy capacity is also determined via Algorithm 2. This

algorithm also solves the dual problem of globally minimizing

the total Tx power subject to the secrecy rate constraint,

in addition to the IPCs. Numerical experiments validate the

convergence analysis and demonstrate fast convergence for

both algorithms as well as their superiority to the sub-optimal

algorithms known in the literature.

Finally, we remark that these algorithms can also be used to

evaluate the secrecy capacity and globally-optimal signaling

strategy under per-antenna power constraint, in addition to or

instead of the TPC. This can be accomplished by setting some

W3j to be diagonal matrices with 0-1 entries.

VIII. APPENDIX

A. Gradients and Hessians

While gradients and Hessians can be computed numerically

via finite differences, this results in lower efficiency in addi-

tion to a possible loss in precision (due to numerical ”noise”),

which affects negatively convergence of the algorithm. Hence,

we provide below analytical expressions for gradients and

Hessians obtained, after some manipulations, using the stan-

dard rules of matrix differential calculus (see e.g. [36][37]):

∇xft = DT
mvec(Z1 − Z2 + t−1R−1)

− 1

t
g1(R)veh(I)− 1

t

∑

j

g3j(R)wj ,

∇yft = D̃T
nvec((K+Q)−1 − (1 + t−1)K−1) (59)

where Q = HRHT , wj = veh(2W3j − diag(W3j)),

g1(R) = (PT − tr(R))−1,

g3j(R) = (PIj − tr(W3jR))−1,

Z1 = (I+HTK−1HR)−1HTK−1H,

Z2 = (I+W2R)−1W2, (60)

and Dm is the m2 ×m(m+1)/2 duplication matrix defined

from vec(R) = Dmveh(R) [37], D̃n is (n1 + n2)
2 × n1n2

reduced duplication matrix defined from dk = D̃ndk̃, where

dk = vec(dK), dk̃ = vec(dN), dK =

(
0 dNT

dN 0

)

Likewise, the Hessians are

∇2
xxft = −DT

m(Z1 ⊗ Z1 − Z2 ⊗ Z2 + t−1R−1 ⊗R−1)Dm

− 1

t
g1(R)2veh(I)veh(I)T − 1

t

∑

j

g3j(R)2wjw
T
j

∇2
xyft = −DT

m(HT (K+Q)−1 ⊗HT (K+Q)−1)D̃n

∇2
yyft = D̃T

n (−(K+Q)−1 ⊗ (K+Q)−1

+ (1 + t−1)K−1 ⊗K−1)D̃n (61)

B. Proof of Proposition 1

The proof is based on the following two Lemmas.

Lemma 1. Partial Hessian ∇2
xxft, ∇2

yyft are non-singular

for each t > 0, R ∈ S′
R,K ∈ S′

K.

Proof. First, since Q ≥ 0 and K > 0, then K+Q ≥ K > 0

so that

(K+Q)−1 ≤ K−1 (62)

and, using the properties of Kronecker products [38],

K−1 ⊗K−1 ≥ (K+Q)−1 ⊗ (K+Q)−1 (63)

so that

(1 + t−1)K−1 ⊗K−1 − (K+Q)−1 ⊗ (K+Q)−1

≥ t−1K−1 ⊗K−1 > 0. (64)
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Secondly, since D̃n is of full column rank, it follows that

D̃ny 6= 0 for any y 6= 0, so that

yT∇2
yyfty = yT D̃T

n ((1 + t−1)K−1 ⊗K−1

− (K+Q)−1 ⊗ (K+Q)−1)D̃ny > 0 (65)

where the inequality is due to (64), and thus ∇2
yyft > 0, as

required.

To prove the non-singularity of ∇2
xxft, first note that

HTK−1H ≥ W2 so that (HTK−1H)−1 ≤ W−1
2 and hence

Z1 ≥ Z2 as follows:

Z1 = (I+HTK−1HR)−1HTK−1H

= (R+ (HTK−1H)−1)−1

≥ (R+W−1
2 )−1

= (I+W2R)−1W2 = Z2. (66)

The case of singular HTK−1H and W2 can be considered

using the standard continuity argument (see e.g. [38]). Using

this equality and the property of Kronecker products, it fol-

lows that Z1⊗Z1 ≥ Z2⊗Z2, and, since t−1R−1⊗R−1 > 0,

Z1 ⊗ Z1 − Z2 ⊗ Z2 + t−1R−1 ⊗R−1 > 0 (67)

Since Dm is of full column rank [37], Dmy 6= 0 for any

y 6= 0, so that

yTDT
m(Z1 ⊗ Z1 − Z2 ⊗ Z2 + t−1R−1 ⊗R−1)Dmy > 0

and hence

DT
m(Z1 ⊗ Z1 − Z2 ⊗ Z2 + t−1R−1 ⊗R−1)Dm > 0 (68)

Applying all these inequalities to (61), one obtains ∇2
xxft <

0, as desired.

Lemma 2. The Hessian

Dr =

[
−T11 T12

T21 T22

]
(69)

is non-singular if partial Hessians T11,T22 are non-singular,

i.e. if T11,T22 > 0, where T11 = −∇2
xxft, T12 =

∇2
xyft, T21 = TT

12 = ∇2
yxft, T22 = ∇2

yyft.

Proof. Note that Dr is a square nT ×nT matrix, where nT =
m(1+m)/2+n1

∑N

i=1 n2i, so that proving its non-singularity

is equivalent to proving that |Dr| 6= 0. Using an expression

for the determinant of a partitioned matrix [38], we have

|Dr| = | −T11||T22 +T21T
−1
11 T12|

= (−1)nT |T11||T22 +TT
12T

−1
11 T12| (70)

where (70) follows since TT
12 = T21. According to Lemma 1,

T11,T22 > 0, so that |T11| > 0 and T22 +TT
12T

−1
11 T12 > 0

and hence |T22 + TT
12T

−1
11 T12| > 0, from which |Dr| 6= 0

follows.

Combining Lemma 1 and Lemma 2, we conclude that

the Hessian Dr is non-singular at each step of the Newton

method.

C. Proof of Proposition 3

Let SR(PT ) be the feasible set for a given TPC power

PT . 1st part of Property 1 follows from the fact that if R ∈
SR(PT ), then R ∈ SR(P1) for any P1 ≥ PT , i.e. if R is

feasible for TPC power PT , then it is also feasible for any

higher TPC power P1. 2nd part follows from Property 4.

The concavity can be proved by contradiction. Assume that

C(PT ) is not concave, i.e. there exist powers P1, P2 and

0 < θ < 1 such that

C(θP1 + (1− θ)P2) < θC(P1) + (1 − θ)C(P2) (71)

Now, consider power/time sharing between power levels P1

and P2, i.e. transmitting under TPC power P1 for θ fraction of

time and under TPC power P2 for 1−θ fraction of time, so that

the average Tx power does not exceed Pa = θP1+(1−θ)P2.

Let Rk be an optimal Tx covariance under the TPC power Pk,

k = 1, 2. Note that Rk ∈ SR(Pk) implies θR1+(1−θ)R2 ∈
SR(Pa), i.e. this power/time sharing is feasible under the TPC

power Pa and it achieves the secrecy rate equal to the right

hand side of (71), so that, from (71), C(Pa = θP1+(1−θ)P2)
is not the capacity - a contradiction. We remark that using the

standard optimization-based proof, as in e.g. [35] (Exercise

5.32), is not possible here since C(R) is not concave (unless

the channel is degraded). Continuity of C(PT ) follows from

its concavity [39].

To prove Property 3, observe that

C(P ) ≤ C(P2) ≤ C(P1) (72)

for any P ≤ P2 ≤ P1, since C(P ) is non-decreasing, and

hence

C(P ) = C(P2) = C(P1) (73)

if C(P ) = C(P1). It follows that C(P )′+ = 0 and thus

C(P1)
′
+ = 0 for any P1 ≥ P , since C(P )′+ is non-increasing

(since C(P ) is concave) so that, from Corollary 24.2.1 in [39],

C(P1) = C(P ) +

∫ P1

P

C(p)′+dp = C(P ) (74)

for any P1 ≥ P . 2nd statement follows from 1st one.

To prove Property 4, use Corollary 24.2.1 in [39] again,

C(PT ) = C(P1) +

∫ PT

P1

C(p)′−dp > C(P1) (75)

from which it follows that C(p)′− > 0 for some P1 ≤ p ≤ PT

and hence C(p)′− ≥ C(P1)
′
− > 0 for any p ≤ P1 so that

C(P1) = C(P2) +

∫ P1

P2

C(p)′−dp > C(P2) (76)

2nd part of this property follows from the fact that C(P )′− is

non-increasing (since C(P ) is concave).

D. Proof of Proposition 4

The proof is by contradiction as follows. First, note that

C(PT ) is an optimal value of the max-min problem (P1) in

(6). Consider now the same problem but without the TPC

(under the IPC only):

(P3) : max
R∈SR(∞)

min
K∈SK

f(R,K) (77)
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for which the respective KKT conditions are

∇Rf(R,K) +M1 −
K∑

j=1

µjW3j = 0, (78)

M1R = 0, µj(tr(W3jR)− PIj) = 0, (79)

tr(W3jR) ≤ PIj , R,M1 ≥ 0, µj ≥ 0, (80)

∇Kf(R,K)−M2 +Λ = 0, (81)

M2K = 0, K,M2 ≥ 0 (82)

where (78)-(80) and (81)-(82) are the KKT conditions for

maximization over R and minimization over K, respectively;

M1(2) ≥ 0 are (matrix) Lagrange multipliers responsible for

R ≥ 0 and K ≥ 0 constraints; Λ is Lagrange multiplier

responsible for the equality constraint in (9); µj ≥ 0 is

Lagrange multiplier responsible for j-th IPC; (78) and (81)

are the stationarity conditions with respect to R and K; the

equalities in (79) and (82) are the complementary slackness

conditions while the inequalities in (80) and (82) are the

primal and dual feasibility constraints.

On the other hand, the KKT conditions of the original

problem (P1) are

∇Rf(R,K) +M1 − µI −
∑

j

µjW3j = 0, (83)

M1R = 0, µ(tr(R) − PT ) = 0, µj(tr(W3jR)− PIj) = 0,
(84)

tr(R) ≤ PT , tr(W3jR) ≤ PIj , R,M1 ≥ 0, µ, µj ≥ 0
(85)

∇Kf(R,K)−M2 +Λ = 0, (86)

M2K = 0, K,M2 ≥ 0 (87)

where µ ≥ 0 is Lagrange multiplier responsible for the TPC.

Now note that any solution of the KKT conditions of (P1)

in (83)-(87) with µ(PT ) = 0 also solves (78)-(82) and hence

(P3) (since the KKT conditions are sufficient for optimality

in both cases). Thus, if µ(PT ) = 0, then

C(PT ) = C(∞) ≥ C(P0) > C(PT ) (88)

i.e. a contradiction, where the last inequality is from Property

1 in Proposition 3. Hence, we conclude that µ(PT ) > 0 for

any PT < P0. Once can further show that µ(PT ) = 0 for any

PT > P0: observe that C(PT )
′
− = C(PT )

′
+ = C(PT )

′ = 0 if

PT > P0 (since C(PT ) = C(P0) for any PT > P0 from the

definition of P0) and hence µ(PT ) = C(PT )
′ = 0.
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