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Abstract—The problem of direction of arrival (DOA) estima-
tion has been studied for decades as an essential technology
in enabling radar, wireless communications, and array signal
processing related applications. In this paper, the DOA estimation
problem in the scenario with gain-phase errors is considered, and
a sparse model is formulated by exploiting the signal sparsity in
the spatial domain. By proposing a new atomic norm, named
as GP-ANM, an optimization method is formulated via deriving
a dual norm of GP-ANM. Then, the corresponding semidefinite
program (SDP) is given to estimate the DOA efficiently, where
the SDP is obtained based on the Schur complement. More-
over, a regularization parameter is obtained theoretically in the
convex optimization problem. Simulation results show that the
proposed method outperforms the existing methods, including the
subspace-based and sparse-based methods in the scenario with
gain-phase errors.

Index Terms—Atomic norm, DOA estimation, semidefinite
program, gain-phase error, sparse signals.

I. INTRODUCTION

The estimation problem of the direction of arrival (DOA)
has been studied for decades in different applications en-
compassing radar, wireless communications, and array sig-
nal processing [1]. Traditionally, the DOA is estimated by
the discrete Fourier transform (DFT)-based methods [2]–[4],
where the antenna arrays provide spatial samplings. The DFT-
based methods realize the DOA estimation via the DFT of
received signals spatially sampled by the antenna array, with
its inherent sampling resolution characterized by the Rayleigh
criterion [5].

To overcome the resolution limit of the Rayleigh criterion,
different super-resolution methods for DOA estimation have
been proposed, and the subspace-based methods have been
widely used in the scenarios with multiple measurements
to estimate the covariance matrix of received signals in the
antenna array. For example, the multiple signal classification
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(MUSIC) method [6] and the estimating signal parameters
via rotational invariance techniques (ESPRIT) method [7],
where the MUSIC method estimate the DOA with the noise
subspace but the ESPRIT uses the signal subspace. Then,
the extension algorithms based on the MUSIC and ESPRIT
methods are proposed in the present papers, such as Root-
MUSIC method [8], space-time MUSIC method [9], G-
MUSIC method [10], higher order ESPRIT and virtual ES-
PRIT [11], etc. Ref. [12] also develops a frequency estimation
method in the continuous domain with sensor calibration and
off-grid problems.

Recently, to further improve the DOA estimation perfor-
mance, the compressed sensing (CS) methods have been
proposed by exploiting the signal sparsity in the spatial
domain [13]–[16]. Ref. [16,17] propose the CS-based DOA
estimation methods in the multiple-input and multiple-output
(MIMO) radar systems. A compressed sparse array scheme
is proposed in [18]. However, in the CS-based methods, the
dictionary matrix is formulated by discretizing the spatial
domain. Consequently, the corresponding dictionary matrix
is formulated using the discretized spatial angles. When the
DOAs are not exactly at the discretized angles, which in-
troduces the off-grid errors, and the off-grid methods have
been proposed to solve this problem [19]. For example,
the structured dictionary mismatch is considered, and the
corresponding sparse reconstruction methods are proposed
in [20]. A sparse Bayesian inference is given in [21] with
the off-grid consideration. Moreover, an iterative reweighted
method [22] estimates the off-grid and sparse signals jointly.
In [23], the line spectral estimation is investigated by the
Bayesian variational inference using multiple measurement
vector (MMV), which outperforms the state-of-the-art MMV
methods. Additionally, in [24], a multi-snapshot Newtonized
orthogonal matching pursuit (MNOMP) algorithm is given for
MMV scenario with relatively low computational complexity.
With the prior knowledge of the signal structure, a general
SDP method is proposed in [25] to recover the signal using
the positive trigonometric polynomials, and the perfect signal
reconstruction is achieved with sufficient prior information.

The super-resolution methods based on the sparse theory
and avoiding the discretization have been proposed. In [26],
total variation norm is introduced, and show that the exact
locations and amplitudes of the line spectrum can be recovered
by solving a convex optimization problem. Therefore, the
DOA estimation problem can also be described as a type
of line spectral estimation problem [27], and a generalized
method is proposed in [28] by formulating the sparse signal
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recovery problems over a continuously indexed dictionary.
Then, the atomic norm as a specific form of total variation
norm is formulated [29]–[32], and an upper bound on the
optimization of an atomic norm is given in [33]. Atomic
norm minimization (ANM) method [31] with multiple mea-
surement vectors (MMV) is proposed [34], and a Toeplitz
covariance matrix reconstruction approach is also given in [35]
to formulate a low-rank matrix reconstruction during the DOA
estimation. For the general antenna geometries, a method
based on total variation minimization is proposed in [36],
where the theoretic guarantee for DOA estimation is derived.
In [37], a family of nonconvex penalties is used to approximate
the rank norm, and an iterative reweighted strategy is also
proposed to achieve a better performance than the atomic norm
method.

However, the existing ANM methods assume the perfect
antenna array during the DOA estimation without considering
the inconsistent antennas, where a polynomial with steering
vector is formulated to estimate the DOA and will be mismatch
in the scenario with inconsistent array [26]. The quantized
noisy magnitudes are used to reconstruct the sparse signal
in [38], and an approximation is used for the problem of
sparse signal reconstruction for the approximate message
passing method. The Cramér-Rao lower bound (CRLB) with
quantization is given in [39], and the algorithm using atomic
norm soft thresholding is shown for the sparse reconstruction.
In the practical antenna array, the gain-phase errors among
antennas degrade the DOA estimation performance [40,41].
The CS-based method for the DOA estimation is proposed
in [42], and ref. [43] describes the localization method for the
near-field sources with gain-phase errors. However, the DOA
estimation based on the gridless sparse theory in the scenario
has not been proposed.

In this paper, the DOA estimation problem in the scenario
with gain-phase errors has been investigated. The technical
contributions of this paper are summarized below:

• A new atomic norm for DOA estimation with gain-
phase errors: By introducing additional parameters in
MMV, a new atomic norm is formulated, and the cor-
responding dual norm is theoretically obtained. An opti-
mization problem is formulated for the DOA estimation.

• An semidefinite program (SDP) problem for the new
atomic norm: To solve the new atomic norm efficiently,
an SDP problem is formulated by the Schur complement.

• Theoretical expressions for the regularization parame-
ter: In the atomic norm-based method, the regularization
parameter determines the DOA estimation performance
and is theoretically obtained to describe the reconstruc-
tion bound.

The remainder of this paper is organized as follows. The
DOA estimation model in the uniform linear array (ULA)
with gain-phase is formulated in Section II. The atomic norm-
based DOA estimation method is proposed in Section III.
The regularization parameter is theoretically obtained in Sec-
tion IV. The CRLB of DOA estimation is given in Section VI,
and the simulation results are shown in Section VII. Finally,
Section VIII concludes the paper.

Notations: diag{a} denotes a diagonal matrix and the
diagonal entries are from the vector a. (·)T and (·)H denote
the matrix transpose and the Hermitian transpose, respectively.
‖ · ‖1, ‖ · ‖2, ‖ · ‖F denote the `1 norm, the `2 norm, and the
Frobenius norm, respectively. ‖·‖∗ denotes the dual norm. IN
denotes an N ×N identity matrix. ⊗ denotes the Kronecker
product. Tr {·} denotes the trace of a matrix. R{a} denotes
the real part of complex value a. The boldface capital letters
denote the matrix, such as A, and the lower-case letters denote
the vector, such as a.

II. SYSTEM MODEL WITH GAIN-PHASE ERRORS

In an ULA system, the DOA is estimated from the received
signal by the antenna array, where a steering vector is used
to describe the gain and phase among the perfect antennas.
However, the gain-phase errors could cause the model mis-
match in characterizing the steering vector, which eventually
degrades the DOA estimation performance. Suppose the DOA
estimation problem for K signals in the ULA with unknown
gain-phase errors, and the received signal with P snapshots
(multiple measurements) can be expressed as

Y = GAS +N , (1)

where Y ∈ CN×P and N denotes the number of antennas, and
the spacing between neighboring antennas is d. The signals are
denoted by a matrix S ,

[
s0, s1, . . . , sK−1

]T
, where the k-th

signal is defined as sk ,
[
sk,0, sk,1, . . . , sk,P−1

]T
. The steer-

ing matrix is denoted as A ,
[
a(θ0),a(θ1), . . . ,a(θK−1)

]
,

where θk is the DOA of the k-th signal. The steering vector
is defined as

a(θ) ,
[
1, ejξ sin θ, . . . , ej(N−1)ξ sin θ

]T
, (2)

where ξ , 2πd
λ and λ denotes the wavelength. In the imperfect

ULA systems, the received signals are effected by the antenna
inconsistency, and we use a diagonal matrix G in (1) to de-
scribe the gain-phase errors. The diagonal matrix G ∈ CN×N
can be expressed as

G , (IN + diag{g}) diag{ejφ}, (3)

where we define g ,
[
g0, g1, . . . , gN−1

]T
as the gain-error

vector (gn ∈ R) and φ ,
[
φ0, φ1, . . . , φN−1

]T
as the phase-

error vector (φn ∈ [0, 2π)).
In this paper, by exploiting the signal sparsity in the

spatial domain, we will estimate the DOA parameters θ =[
θ0, θ1, . . . , θK−1

]T
from the received signal Y with the

unknown antenna inconsistency including the gain errors g and
the phase errors φ. To avoid the discretized grids in the spatial
domain, we will propose a new atomic norm and formulate
the DOA estimation problem as an optimization problem with
new atomic norm.

III. ATOMIC NORM-BASED GRIDLESS DOA ESTIMATION

A. Preliminary Atomic Norm

To improve the DOA estimation performance by exploit-
ing the signal sparsity, the ANM-based methods have been
proposed. Different from the exiting sparse-based methods
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using a dictionary matrix formulated by the discretized angles,
such as the `1 norm method [44]–[46], the mixed `2,0 norm
approximation [47], the ANM methods reconstruct the sparse
signals without discretizing the spatial domain, so the ANM
methods are the gridless sparse methods [48].

Usually, for the DOA estimation with perfect antennas, the
system mode is formulated as

Y = AS +N , (4)

so the atomic set is defined as [49]–[51]

A ,
{
a(θ)bT : θ ∈ [0, 2π), ‖b‖2 = 1

}
. (5)

Then, the DOA estimation in (4) is transferred into the
following optimization problem (ANM)

min
X

1

2
‖Y −X‖2F + τ‖X‖A, (6)

where the atomic norm is defined as

‖X‖A = inf {t > 0 : X ∈ t conv(A)} (7)

= inf

{∑
k

ck : X =
∑
k

cka(θ)bT, ck ≥ 0

}
.

Then, the ANM problem can be solved by SDP [19,27,52].

B. New Atomic Norm Method for DOA Estimation

1) The Definition of New Atomic Norm: Without the noise,
the received signal can be also expressed as

X = GAS =

K−1∑
k=0

(IN + diag{e})a(θk)sT
k. (8)

From the gain-phase model in (3), the antenna inconsistency e
in (8) is e = (1N + g) diag{ejφ}−1N , where 1N is a N ×1
vector with all the entries being 1.

Then, we propose a new atomic decomposition to describe
X in the scenario with gain-phase errors and to improve the
robustness, and it is defined as

‖X‖Ã,0 ,

{
K :X =

K−1∑
k=0

bk(diag{e}+ IN )a(θk)dT
k,

‖e‖2 ≤ Ce, ‖dk‖2 ≤ 1, bk ≥ 0

}
, (9)

where Ce is used to control the gain and phase errors. Note
that, the `2 norm for the gain-phase error ‖e‖2 ≤ Ce can
be easily extended to the sparse norm ‖e‖1 ≤ Ce. When we
have ‖e‖1 ≤ Ce, we can obtain ‖e‖2 ≤ Ce with ‖e‖1 ≥
‖e‖2. Therefore, the proposed atomic norm can be used in
the scenario with the sparse gain-phase errors, where only a
few antennas are inconsistent.

However, it is not computationally feasible to find the
minimum K in (9) by the atomic decomposition of X . A

new atomic norm `Ã is proposed by a convex relaxation of
`Ã,0, and is defined as

‖X‖Ã , inf

{∑
k

bk

∣∣∣∣X =
∑
k

bk(diag{e}+ IN )a(θk)dT
k,

‖e‖2 ≤ Ce, ‖dk‖2 ≤ 1, bk ≥ 0

}
(10)

= inf

{
‖b‖1

∣∣∣∣X =
∑
k

bk(diag{e}+ IN )a(θk)dT
k,

‖e‖2 ≤ Ce, ‖dk‖2 ≤ 1, bk ≥ 0

}
,

where b is defined as b ,
[
b0, b1, . . . , bK−1

]T
. This opti-

mization is named as Gain-Phase ANM (GP-ANM) to be
different from the existing ANM methods. From GP-ANM,
the novel DOA estimation method will be proposed, and
the corresponding algorithm will be given in the following
sections.

2) DOA Estimation Using GP-ANM: With the received
signals Y and the additive noise N , the DOA estimation
problem can be described by following optimization problem

min
X

1

2
‖Y −X‖2F + τ‖X‖Ã, (11)

where the first term is used to control the reconstruction
performance and the second one is for the sparsity of X . The
regularization parameter τ is adopted to control the balance
between the reconstruction performance and the sparsity. We
will show how to get the regularization parameter τ in the
following sections. The optimization problem in (11) is a
special case in [53], where a generalization of SDP over
infinite dictionary is investigated.

Before solving the optimization problem (11), we first
introduce the dual norm [51] for the proposed atomic norm.
We define the dual norm of atomic norm as

‖U‖∗Ã , sup
‖X‖Ã≤1

〈X,U〉, (12)

where atomic norm is given in (10).
Based on the dual norm, the dual problem of (11) can be

obtained from the following proposition

Proposition 1. For an optimization problem minX
1
2‖Y −

X‖2F + τ‖X‖Ã, where Y ∈ CN×P , X ∈ CN×P and τ ≥ 0,
the dual problem is

min
U

‖Y −U‖2F (13)

s.t. ‖U‖∗Ã ≤ τ,

where ‖U‖∗Ã denotes the dual norm of ‖U‖Ã.

Proof. Using a Lagrange multiplier U , we first formulate the
following Lagrange function of the optimization problem (11)
as

L(X,Z,U) ,
1

2
‖Y −Z‖2F + τ‖X‖Ã + 〈Z −X,U〉,

(14)
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where the inner product between matrices is defined as
〈X,Y 〉 , R{Tr(Y HX)}. Using the Lagrange function, the
dual problem of (11) is given as [54]

max
U

min
X,Z

L(X,Z,U) = max
U
{L1(U)− L2(U)} , (15)

where L1(U) , minZ
1
2‖Y −Z‖

2
F + 〈Z,U〉, and L2(U) ,

maxX {〈X,U〉 − τ‖X‖Ã}.
Then, with the definition of dual norm, L2(U) can be

simplified as

L2(U) = τ max
X

{〈
X,

1

τ
U

〉
− ‖X‖Ã

}
= τI

(
‖U‖∗Ã ≤ τ

)
, (16)

where the indicate function is defined as

I
(
‖U‖∗Ã ≤ τ

)
=

{
0, ‖U‖∗Ã ≤ τ
∞, otherwise

. (17)

Additionally, L1(U) can be obtained as

L1(U) = −1

2
‖Y −U‖2F +

1

2
‖Y ‖2F . (18)

Therefore, the dual problem in (15) can be simplified as
(13).

With the dual problem, we obtain a SDP problem to solve
(15) efficiently. The SDP problem is given as the following
proposition.

Proposition 2. With the gain-phase error vector e, the feasible
set of the dual problem (13) for DOA estimation with multiple
measurements is included by the following SDP problem, so
the dual problem (13) can be relaxed and simplified as

min
U∈CN×P

Q∈CN×N

‖Y −U‖F (19)

s.t.
[
Q U
UH τ2IP

]
� 0∑

n

Qn,n+k = 0 (k 6= 0)

Tr(Q) + (Ce + 2
√
N)Ce ‖Q‖2 − 1 ≤ 0

Q is Hermitian,

where the `2 norm of a matrix ‖Q‖2 is the largest singular
value of Q.

To show that the optimization problem (19) is a type of
SDP problem, we give the proof in Appendix A. The proof for
Proposition 2 is given in Appendix B. Note that the constraints
in the SDP problem (19) are sufficient to the dual norm
constraint in (13), so the denoised result U in (19) is only
a sufficient approximation of the optimal results in (13).

To estimate the DOA from the solution of (19), we can
formulate a quadratic ‖Ûa(θ)‖22, which is also a polynomial of
a(θ). Inspired by [31], we can estimate the DOA by searching
the peak of ‖Ûa(θ)‖22, so we get a straightforward corollary.

Corollary 3. The DOA polynomial is formulated as∥∥∥Ûa(θ)
∥∥∥2

2
≤ τ2

(
1− (Ce + 2

√
N)Ce‖Q̂‖2

)
, (20)

where Û and Q̂ are the solutions of the SDP problem in (19).
Additionally, the quantity 1− (Ce +2

√
N)Ce‖Q̂‖2 is positive.

Proof. From (64), we can find that for any θ, we have

‖Ûa(θ)‖22 ≤ τ2aH(θ)Q̂a(θ). (21)

Therefore, from the construction of Q̂ in (67), we obtain

‖Ûa(θ)‖22 ≤ τ2
(

1− (Ce + 2
√
N)Ce‖Q̂‖2

)
. (22)

Then, the DOA can be obtained by searching

the peak values of
∥∥∥Ûa(θ)

∥∥∥2

2
, which is closed to

τ2
(

1− (Ce + 2
√
N)Ce‖Q̂‖2

)
. The estimated DOAs

are denoted as θ̂k (k = 0, 1, . . . ,K − 1).
To estimate the other unknown parameters including e, bk,

dk, we formulate the following optimization problem

min
e,bk,dk

‖Y −
∑
k

bk(diag{e}+ I)a(θ̂k)dT
k‖F (23)

s.t. ‖e‖2 = Ce, ‖dk‖2 ≤ 1, bk ≥ 0.

Since the upper bound of the gain-phase errors e is used
in the proposed GP-ANM method to estimate the DOA, the
constraint ‖e‖2 = Ce is used for the estimation of unknown
parameters. For the gain-phase errors e, we can formulate the
following optimization problem

min
e

f(e) , ‖Y −
∑
k

bk(diag{e}+ I)a(θ̂k)dT
k‖2F (24)

s.t. ‖e‖2 = Ce.

f(e) can be rewritten as

f(e) = ‖Y − (diag{e}+ I)
∑
k

bka(θ̂k)dT
k︸ ︷︷ ︸

H

‖2F (25)

=

N−1∑
n=0

∥∥ȳn − (en + 1)h̄n
∥∥2

2
,

where ȳn denotes the n-th row of Y and h̄n is the n-th row of
H . Therefore, the Lagrange function for e with the Lagrange
parameter λe ≥ 0 can be obtained as

L(e) = f(e) + λe(‖e‖22 − C2
e ). (26)

With ∂L(e)
∂e∗ = 0, we can obtain the estimated gain-phase as

ên =
h̄

H
n(ȳn − h̄n)

λe + h̄
H
nh̄n

, (27)

where we choose λe to ensure that ‖e‖2 = Ce.
For the unknown parameter bk and dk, we can formulate

d′k = dkbk. With the estimated θ̂k and ê, we have

min
d′k

f(d′k) , ‖Y −
∑
k

(diag{ê}+ I)a(θ̂k)d
′T
k ‖2F . (28)

Then, we define D′ = [d′0,d
′
1, . . . ,d

′
K−1] and Â =

[a(θ̂0),a(θ̂1), . . . ,a(θ̂K−1)], and D′ can be estimated as

D̂
′

=
[
Â
†
(diag{ê}+ I)−1Y

]T
, (29)
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where † denotes the pseudo-inverse operation. Then, dk can
be estimated from the normalized d′k and bk is the normal-
ization coefficient. By alternatively estimating the unknown
parameterse, bk, dk. We can finally estimated all the unknown
parameters.

The details of the proposed method for the DOA estimation
is given in Algorithm 1. The computational complexity of the
proposed method is almost the same with the traditional atomic
norm minimization (ANM) method. Only a `2 norm for the
matrix Q is added in the SDP problem, so the computational
complexity is O(N3) more than the ANM method at each
iteration.

Algorithm 1 DOA Estimation Using GP-ANM
1: Input: received signal Y , noise variance σ2

n , the number of
antennas N , and the number of measurements (snapshots)
P .

2: Initialization: τ = ησn
√

4NP ln(N).
3: Formulate the SDP problem as (19), and obtain the matrix
Û .

4: Get the polynomial f(Û) =
∥∥∥Ûa(θ)

∥∥∥2

2
.

5: Use the peak searching of f(Û), and get the estimated
DOA θ̂.

6: The other unknown parameters can be obtained by the
alternative estimations in the problem (23).

7: Output: the estimated DOA θ̂.

IV. THE REGULARIZATION PARAMETER τ

In (11), the regularization parameter is important and has
a great effect on reconstructing the sparse signal, so we will
obtain the regularization parameter in this section.

Usually, the regularization parameter τ can be chosen
as [55]

τ ≈ ηE
{
‖N‖∗Ã

}
(η ≥ 1). (30)

To get E
{
‖N‖∗Ã

}
, we can obtain the following proposition

to determine the regularization

Proposition 4. The entries in N ∈ CN×P follow the zero-
mean Gaussian distribution with the variance being σ2

N and
the entries are independent. With the probability more than
1 − 2e−t

2/2, the upper bound of
{
‖N‖∗Ã

}
can be obtained

as

E {‖N‖∗A} ≤ min {bd1, bd2}Ce + σN

√
4NP lnN, (31)

where the definition of dual atomic norm is defined in (57),
bd1 ,

√
2σN

Γ((NP+1)/2)
Γ(NP/2) , and bd2 ,

(√
N +

√
P + t

)
σN.

The proof for Proposition 4 is given in Appendix C. Then,
the regularization parameter τ is

τ ≈ η
(

min {bd1, bd2}Ce + σN
√

4NP lnN
)
. (32)
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Fig. 1. The upper bound of E
{
‖N‖2

}
.

We will show that with the regularization parameter τ , the
probability of ‖N‖∗Ã ≥

τ
η can be obtained as

P
(
‖N‖∗Ã ≥

τ

η

)
(33)

= P

 sup
‖e‖2≤Ce
θ∈[0,2π)

∥∥NH [e+ a(θ)]
∥∥

2
≥ α+ β


≤ P

(
sup

‖e‖2≤Ce

∥∥NHe
∥∥

2
+ sup
θ∈[0,2π)

∥∥NHa(θ)
∥∥

2
≥ α+ β

)

≤ P

(
Ce ‖N‖F + sup

θ∈[0,2π)

∥∥NHa(θ)
∥∥

2
≥ α+ β

)

≤ 1

N2
+

(
1− 1

N2

)
z(N,P ),

where we define α , min {bd1, bd2}Ce, β , σN
√

4NP lnN
and

z(N,P ) =

2e−t
2/2,
√
N +

√
P + t ≤

√
2Γ((NP+1)/2)

Γ(NP/2)

Γ
(
NP/2,(

√
N+
√
P+t)

2
/2

)
Γ(NP/2) , otherwise

.

(34)

The incomplete Gamma function is defined as Γ(s, x) ,∫∞
x
ts−1e−t dt.

When we can choose t = 4, the probability of E {‖N‖2} ≤√
N +

√
P + 4 is more than 0.9993. In Fig. 1, we show the

two types of upper bounds, where the antenna number N is
10, and the number of measurements P is from 1 to 30. When
P ≤ 11, we have bd1 ≤ bd2, and bd1 > bd2 with P > 11.
Hence, for larger P , we choose bd2 as the tighter upper bound,
and for smaller P , we choose bd1.

Therefore, according to Theorem III.6 in [49], with proba-
bility 1− 1

N2 −
(
1− 1

N2

)
z(N,P ), the reconstruction error is

limited by ∥∥∥X̂ −X∗∥∥∥2

F
≤ τ2, (35)

where X̂ denotes the estimated X by minimizing the atomic
norm, and X∗ denotes the ground-truth X .
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V. SPARSE GAIN-PHASE ERRORS

In the scenario with only a few gain-phase errors, the gain-
phase errors are sparse. The proposed type of atomic norm
can be rewritten as

‖X‖Ã = inf

{
‖b‖1

∣∣∣∣X =
∑
k

bk(diag{e}+ IN )a(θk)dT
k,

‖e‖1 ≤ Ce, ‖dk‖2 ≤ 1, bk ≥ 0

}
,

where the `1 norm ‖e‖1 is used to describe the sparse gain-
phase errors. We formulate e′ , diag(e)a(θ) ∈ CN×1, then,
the `1 norm of e′ can be simplified as

‖e′‖1 = ‖ diag(e)a(θ)‖1 = ‖e‖1 ≤ Ce.

Therefore, the corresponding dual norm can be obtained as

‖U‖∗Ã = sup
‖X‖Ã≤1

〈X,U〉 (36)

= sup
‖e‖1≤Ce
θ∈[0,2π)

∥∥UH [e+ a(θ)]
∥∥

2
,

where we reuse the notation e instead of e′ to avoid introduc-
ing additional symbol e′.

If ‖e‖2 ≤ 1√
N
Ce, we have ‖e‖1 ≤ Ce. Therefore, we can

obtain

‖U‖∗Ã ≤ sup
‖e‖2≤ Ce√

N

θ∈[0,2π)

∥∥UH [e+ a(θ)]
∥∥

2
(37)

≤ sup
θ∈[0,2π)

τ2

[(
2 +

1√
N

)
Ce‖Q‖2 + aH(θ)Qa(θ)

]
.

Similarly, the SDP problem with the `1 norm in atomic norm
can be obtained as

min
U∈CN×P

Q∈CN×N

‖Y −U‖F (38)

s.t.
[
Q U

UH τ2IP

]
� 0∑

n

Qn,n+k = 0 (k 6= 0)

Tr(Q) +

(
2 +

1√
N

)
Ce ‖Q‖2 − 1 ≤ 0

Q is Hermitian,

which can be solved efficiently.

VI. CRLB FOR DOA ESTIMATION WITH GAIN-PHASE
ERRORS

For the DOA estimation problem Y = GAS + N , we
use A ,

[
a(θ0),a(θ1), . . . ,a(θK−1)

]
to denote the steering

matrix, and we assume n = vec{N} ∼ CN (0, σ2
nI). We

consider K unknown signals S =
[
s0, s1, . . . , sK−1

]T
, and

we assume s follows the zero mean Gaussian distribution
with E(ssH) = B and s ∼ CN (0,B), where s , vec{S}.
Then, in this section, the CRLB will be derived theoretically

to indicate the DOA estimation performance of the proposed
method.

The received signal can be written in a vector form as

y , vec{Y } = (I ⊗GA)s+ n, (39)

where G , diag{g}. Therefore, with the DOA parameter
θ ,

[
θ0, θ1, . . . , θK−1

]T
and the gain-phase error g ,[

g0, g1, . . . , gN−1

]T
, and the received signal follows the Gaus-

sian distribution

y ∼ CN (0,C), (40)

where C , (I ⊗GA)B[I ⊗ (GA)H] + σ2
nI . The probability

density function of Gaussian distribution y ∼ CN (0,C) can
be expressed as

f(x) =
1

πN det{C}
e−y

HC−1y. (41)

The Fisher information matrix F can be written as

F ,

[
F 1,1 F 1,2

F 2,1 F 2,2

]
, (42)

where we have

F 1,1 = −E
{
∂ ln f(y;θ, g)

∂θ∂θ

∣∣∣∣θ, g} , (43)

F 1,2 = −E
{
∂ ln f(y;θ, g)

∂θ∂g

∣∣∣∣θ, g} , (44)

F 2,1 = −E
{
∂ ln f(y;θ, g)

∂g∂θ

∣∣∣∣θ, g} , (45)

F 2,2 = −E
{
∂ ln f(y;θ, g)

∂g∂g

∣∣∣∣θ, g} . (46)

The entries of Fisher information matrix F are given in
Appendix D.

The CRLB of DOA estimation can be expressed as

var{θ} ≥
K−1∑
k=0

[
F−1

]
k,k

. (47)

However, in the parameter estimation problems, when the
dimension of the unknown parameter is high, the FIM will be
singular or very nearly so, especially in the case with sparse
reconstruction, where the number of samples is much less than
that in the oversampling scenario. The derivation of CRLB
using F−1 can be only obtained by assuming that the FIM is
positive defined [56]. In our problem of sparse estimation with
unknown gain-phase errors, the Fisher information matrix is
singular, and it is inconvenient to obtain the inverse of the
Fisher information matrix, so we use a lower bound of FIM
to describe the estimation performance as [57]

var{θ} ≥
K−1∑
k=0

F−1
k,k . (48)
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TABLE I
SIMULATION PARAMETERS

Parameter Val1ue
The signal-to-noise ratio (SNR) of received signal 20 dB

The number of pulses P 5

The number of antennas N 10

The number of signals K 3

The space between antennas d 0.5 wavelength
The detection DOA range [−70°, 70°]

The standard deviation of gain error σA 0.15

The standard deviation of phase error σP 10 in degree

TABLE II
DOA ESTIMATION

Methods Signal 1 Signal 2 Signal 3 RMSE (deg)

Ground-truth −56.8889° −7.6806° 5.9595° –
ANM −56.4480° 5.6840° 28.7000° 232

MUSIC −56.4900° −7.6020° 6.0900° 0.06076

SOMP −56.3640° −8.2460° 5.7400° 0.2144

SBL −56.0000° −7.0000° 5.6000° 0.4608

Proposed method −56.6860° −7.6300° 5.9640° 0.01458

VII. SIMULATION RESULTS

The simulation parameters are given in Table I. The number
of Monte Carlo simulations is 103. We consider the DOA
estimation in the scenario with much few measurements
(snapshots) P = 5. The minimum separation between signals
in degree is ∆ ≥ 10°. All the simulation results are obtained
on a PC with Matlab R2018b with a 2.9 GHz Intel Core i5
and 8 GB of RAM. The code of proposed algorithm will be
available online after that the paper is accepted.

The gain errors among antennas are generated by a Gaussian
distribution

gn ∼ N (0, σ2
A), n = 0, 1, . . . , N − 1, (49)

where σ2
A denotes the variance of gain errors. The phase errors

in degree also follow a Gaussian distribution

φn ∼ N (0, σ2
P), n = 0, 1, . . . , N − 1, (50)

where σ2
P denotes the variance of phase errors. Then, the

normalized gain for the n-th antenna with gain-phase error
is (1 + gn)ejφn . Hence, the parameter Ce can be chosen as
the one with C2

e ≥ N(σ2
A + σ2

P) = 0.514.
First, we try to estimate 3 signals from the received signals,

and the ground-truth DOAs are −56.8889°, −7.6806°, and
5.9595°. When the ANM method is adopted, the DOAs
are estimated by the polynomial of the ANM method. As
shown in Fig. 2, the polynomial of ANM method is given.
Since the antennas in the array have gain-phase errors, the
polynomial has multiple peak values, and the DOAs cannot be
estimated well. The estimated DOAs are −56.4480°, 5.6840°,
and 28.7000°, so the estimation error is much large. However,
when the proposed method with GP-ANM is adopted, we can
obtain the polynomial in Fig. 3. The peak values are well dis-
tinguished, and the estimated DOAs are−56.6860°,−7.6300°,
and 5.9640°. Therefore, the proposed method outperforms the
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Fig. 2. The polynomial in ANM method.
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Fig. 3. The polynomial in the proposed method.

traditional ANM method in the DOA estimation with gain-
phase errors.

With the simulation parameters in Table I, the probability
of signal reconstruction is shown in Fig. 4 with the different
number of antennas, and this figure is different from the
direct performance of DOA estimation, such as the root
mean square error (RMSE) of DOA estimation. When the
number of antennas increases, the probability that the sparse
reconstruction signal can approach the ground-truth signal is
also improved. Therefore, a high probability that the sparse
signal can be reconstructed with limited error can be achieved
by selecting an appropriate regularization parameter τ .
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Fig. 4. The probability for signal reconstruction in (35).
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Fig. 5. The spatial spectrum for DOA estimation.

Additional, we compare the DOA estimation performance
of the proposed method with existing methods, including MU-
SIC, simultaneous orthogonal matching pursuit (SOMP) [58],
and sparse Bayesian learning (SBL) [45] methods. MUSIC
method is a subspace-based method and has been widely used
in the DOA estimation with better performance and robustness.
SOMP method is the sparse-based method and has been widely
used in the sparse reconstruction problem. SBL method is
a sparse method and has great reconstruction performance
but has high computational complexity. The DOA estimation
performance is measured by the RMSE. RMSE is defined as

RMSE ,

√√√√ 1

KNmc

Nmc−1∑
nmc=0

K−1∑
k=0

(
θnmc,k − θ̂nmc,k

)2

, (51)

where Nmc denotes the number of Monte Carlo simulations,
and K denotes the number of signals in one simulation.
θnmc,k is the ground-truth DOA of the k-th signal during the
nmc-th simulation, and θ̂nmc,k is the corresponding estimated
DOA. In this paper, we assume that the number of signals
can be estimated precisely using the traditional methods, such
as Akaike information theoretic criteria (AIC) and minimum
description length (MDL) [59]–[61]. The RMSEs of ANM,
MUSIC, SOMP, SBL and the proposed method are shown in
Table. I. The RMSE of proposed method is 0.01458 in deg, and
76% better than MUSIC. Additionally, since the multiple peak
values in the polynomial of ANM method, the DOA cannot be
estimated well and the RMSE of ANM method is much larger
than other methods. In the SBL method, the spatial angle is
discretized into grids with the grid size being 0.5° to have
a comparable computational time with the proposed method.
The spatial spectrums of these 4 methods are shown in Fig. 5,
where we can see that the spectrum of SBL is much better
than that of MUSIC method. SOMP and proposed methods
are the sparse-based method, so we show the reconstruction
results in the figure of spatial spectrum. The spatial spectrum
of proposed method is much close to the ground-truth DOA.

Then, to show the DOA estimation performance with dif-
ferent variances of grain-phase errors, we give the DOA
estimation performance with different variances in Fig. 6 and
Fig. 7, where Fig. 6 uses the traditional ANM method and
Fig. 7 uses the proposed method. When the variance of the
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Fig. 6. The DOA estimation with different gain-phase errors using the
proposed method (ANM).
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Fig. 7. The DOA estimation with different gain-phase errors using the
proposed method (Proposed method).

gain-phase error is small, both ANM and proposed methods
can approach the CRLB in DOA estimation. However, when
the variance of the gain-phase error is large, the ANM method
degrades the RMSE significantly. The proposed method can
also keep the estimation performance well. Therefore, with
the GP-ANM, the effect of gain-phase error can be reduced
effectively.

For different SNRs, the DOA estimation performance is
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Fig. 8. The DOA estimation with different SNRs.
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Fig. 9. The DOA estimation performance compared with ICMRA, SR-GAG
and G-SDP-L1 methods.

shown in Fig. 8, where the SNR is from 0 dB to 30 dB. When
the SNR is higher than 15 dB, the estimation performance is
almost the same. MUSIC method can achieve better estimation
performance than the ANM, SOMP, and SBL methods in
the scenario with gain-phase errors. The proposed method
achieves the best estimation performance among these meth-
ods when the SNR is higher than 5 dB. Since the CRLB does
not consider the gain-phase error, the CRLB can be further
improved with higher SNR, but the estimation performance
has platform effect and cannot be improved when SNR is
higher than 20 dB. Moreover, as shown in Fig. 8, when the
SNR of the received signal is 20 dB, the RMSEs of the DOA
estimation using the ANM method, the SOMP method, the
SBL method, the MUSIC method and the proposed method
are 5.741°, 2.144°, 0.735° 0.639° 0.391°, respectively. With
the gain-phase errors, the ANM method cannot estimate the
DOA accurately, but the MUSIC method as a robust method
can achieve a higher DOA resolution than the ANM method.
Compared with the ANM method, the proposed method can
improve the DOA resolution about 5.35° in the scenario with
the standard derivation of gain error being σA = 0.15 and the
that of phase error being σP = 10 in degree. Additionally, the
DOA estimation performance of the proposed method is also
compared with the improved covariance matrix reconstruction
approach (ICMRA) [37], soft recovery approach for general
antenna geometries (SR-GAG) [36], and a generalization of
SDP formulation of `1 norm optimization problem (G-SDP-
L1) [53]. The ICMRA method is based on the low-rank
reconstruction, where a covariance matrix of the received
signals is used for the DOA estimation. In the simulation
section, the number of antennas is 10 and the snapshots are 5,
so the covariance matrix cannot be accurately estimated. The
SR-GAG method is proposed for a general antenna geometry.
When this method is applied to the system model considered
in this paper, the method will be the same with the ANM
method, since the antenna geometry is ULA. The G-SDP-L1
method is a general case of gauge function and atomic norm,
but this extension cannot describe the gain-phase errors well.
Moreover, these methods have not considered the gain-phase
errors in the system model. Therefore, better performance can
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Fig. 10. The DOA estimation with different gain errors.
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Fig. 11. The DOA estimation with different phase errors.

be achieved by the proposed method.
When we keep the standard deviation of phase errors σP as

10 in degree, and change that of gain errors, the corresponding
RMSE of DOA estimation is shown in Fig. 10. σA changes
from 0 to 0.3, and the estimation error is only improved from
0.33 to 0.32 using the proposed method. However, the existing
methods degrade the DOA estimation performance signifi-
cantly with larger gain errors. Moreover, keeping σA = 0.15,
we change σP from 0 to 20 in degree, and the DOA estimation
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Fig. 12. The DOA estimation performance compared with the SBL method.
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Fig. 13. The DOA estimation with different minimum signal separations.

performance is shown in Fig. 11. As shown in this figure, the
proposed method achieves the best estimation performance
among these methods. Therefore, in the scenario with gain-
phase errors, the proposed method can work well. Moreover,
with only the gain errors, the DOA estimation performance of
the proposed method is also compared with that of the SBL
method, as shown in Fig. 12. “SBL (on-grid)” is the DOA
estimation performance with the signal angles being at the
discretized angles exactly in the spatial domain, and “SBL
(off-grid)” means that the signals can be not precisely at the
discretized angles. As shown in Fig. 12, when the signals are
on-grid, the SBL method outperforms the proposed method
in the scenario with small gain-phase errors. However, in the
scenario with large gain-phase errors or the off-grid signals,
the estimation performance of the SBL method is worse than
that of the proposed method.

In the super-resolution methods, the minimum separation
between signals is important and shows the ability of super-
resolution, so we show the DOA estimation performance
with different minimum separations in Fig. 13. With larger
separation, the correlation between the received signal can
be reduced so that the better estimation performance can
be achieved. Additionally, the number of measurements is
vital for the complexity consideration, and the corresponding
estimation performance is shown in Fig. 14. The proposed
can outperform the existing methods when the number of
measurements is more than 3.

With different numbers of antennas and signals, the DOA
estimation performance is shown in Fig. 15 and Fig. 16,
respectively. As shown in these two figures, when the number
of antennas is more than 10 or the number of signals is less
than 4, the proposed method can achieve better estimation
performance. Furthermore, the computational time is shown
in Table III, the proposed method has relative higher compu-
tational complexity. As shown in the results of this section, the
proposed method can generally achieve better DOA estimation
performance in the scenario with gain-phase errors.

VIII. CONCLUSIONS

The DOA estimation problem has been considered in the
scenario with gain-phased errors, and the GP-ANM has been
proposed to formulate the optimization problem. Then, the
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Fig. 14. The DOA estimation with different numbers of measurements.
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Fig. 15. The DOA estimation with different numbers of antennas.

TABLE III
COMPUTATIONAL TIME

ANM MUSIC SOMP SBL Proposed method
Time (s) 2.3047 0.0319 0.0501 0.0780 1.0840

SDP formulation has been derived to solve the DOA estima-
tion problem efficiently, and the corresponding regularization
parameter has been obtained theoretically. Simulation results
show that the proposed DOA estimation method outperforms
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Fig. 16. The DOA estimation with different numbers of signals.
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the existing methods in the scenario with gain-phase errors.
Future work will focus on the generalized atomic norm in the
applications with imperfect antennas.

APPENDIX A
THE SDP PROOF FOR THE OPTIMIZATION PROBLEM (19)

First, in the constraint Tr(Q)+(Ce+2
√
N)Ce ‖Q‖2−1 ≤ 0,

both the norm operation ‖Q‖2 and the trace operation Tr(Q)
are convex functions, so this constraint is a convex constraint.
The optimization problem (19) is a convex optimization prob-
lem.

Then, to show that the constraint Tr(Q) + (Ce +
2
√
N)Ce ‖Q‖2−1 ≤ 0 is a SDP constraint, we can formulate

a semidefinite matrix[
(1− Tr(Q))I (Ce + 2

√
N)CeQ

H

(Ce + 2
√
N)CeQ (1− Tr(Q))I

]
� 0, (52)

with the Schur complement theory, if and only if we have

(1− Tr(Q))I � 0 (53)

(1− Tr(Q))2C2
e I − (Ce + 2

√
N)2QHQ � 0. (54)

From (54), for arbitrary vector t, we can obtain a function
f(t) , tH

[
(1− Tr(Q))2I − (Ce + 2

√
N)2C2

eQ
HQ
]
t ≥ 0,

and formulate an optimization problem

min
t

f(t) (55)

s.t. ‖t‖2 = Ct,

where Ct is a positive constant. From (55), the minimum value
of f(t) can be achieved as f(‖t‖2qmax), where qmax is an
eigenvector corresponding to the maximum eigenvalue λmax
of QHQ. Hence, (54) is satisfied, if and only if, for arbitrary
t, we have f(‖t‖2qmax) ≥ 0.

Since ‖Q‖22 = λmax, we can simplify f(‖t‖2qmax) as

f(‖t‖2qmax) = ‖t‖2qH
max(1− Tr(Q))2I‖t‖2qmax

− ‖t‖2qH
max(Ce + 2

√
N)2C2

eQ
HQ‖t‖2qmax (56)

= ‖t‖22(1− Tr(Q))2 − ‖t‖22(Ce + 2
√
N)2C2

e q
H
maxQ

HQqmax

= ‖t‖22(1− Tr(Q))2 − ‖t‖22(Ce + 2
√
N)2C2

e ‖Q‖22.

f(‖t‖2qmax) ≥ 0 is equal to (56)≥ 0 and implies that Tr(Q)+
(Ce + 2

√
N)Ce ‖Q‖2−1 ≤ 0, which is the constraint in (19).

Finally, the constraint Tr(Q)+(Ce+2
√
N)Ce ‖Q‖2−1 ≤ 0

in (19) is equal to the semidefinite matrix condition in (52),
so the optimization problem (19) is a convex SDP problem.

APPENDIX B
THE PROOF FOR PROPOSITION 2

In the dual problem (13), with the atomic norm definition
having a gain-phase error e in (10), the dual norm ‖U‖∗Ã can

be expressed as

‖U‖∗Ã = sup
‖X‖Ã≤1

〈X,U〉 (57)

(a)
= sup
‖b‖1≤1
θk∈[0,2π)
‖dk‖2≤1
‖e‖2≤Ce

〈
K−1∑
k=0

bk(diag{e}+ I)a(θk)dT
k,U

〉

= sup
‖b‖1≤1
θk∈[0,2π)
‖dk‖2≤1
‖e‖2≤Ce

K−1∑
k=0

〈
bk(diag{e}+ I)a(θk)dT

k,U
〉

(b)
= sup
‖b‖1≤1
θk∈[0,2π)
‖dk‖2≤1
‖e‖2≤Ce

K−1∑
k=0

R
{
dT
kU

Hbk(diag{e}+ I)a(θk)
}

(c)
= sup
‖b‖1≤1
θk∈[0,2π)
‖e‖2≤Ce

K−1∑
k=0

bk
∥∥UH(diag{e}+ I)a(θ)

∥∥
2

(d)
= sup
‖b‖1≤1
θk∈[0,2π)
‖e‖2≤Ce

∥∥UH [e+ a(θ)]
∥∥

2
‖b‖1

= sup
‖e‖2≤Ce
θ∈[0,2π)

∥∥UH [e+ a(θ)]
∥∥

2
,

where (a) is from the definition of atomic norm with gain-
phase errors, (b) is obtained with the definition of inner
product between matrices, and (c) is given by

dk =
UT(diag{e}H + I)a∗(θk)∥∥UT(diag{e}H + I)a∗(θk)

∥∥
2

. (58)

For the equation (d), we formulate e′ , diag(e)a(θ) ∈ CN×1,
where we use the steering vector a(θ) (θ ∈ [0, 2π)) and a
vector e ∈ CN×1 (‖e‖2 ≤ Ce). Then, the `2 norm of e′ can
be simplified as

‖e′‖22 = ‖ diag(e)a(θ)‖22 (59)

= eH diag(a∗(θ)) diag(a(θ))e = ‖e‖22 ≤ C2
e .

Therefore, we have

sup
θk∈[0,2π)
‖e‖2≤Ce

∥∥∥∥∥∥UH diag{e}a(θ)︸ ︷︷ ︸
e′

+UHa(θ)

∥∥∥∥∥∥
2

= sup
θk∈[0,2π)
‖e′‖2≤Ce

∥∥UH [e′ + a(θ)]
∥∥

2
. (60)

Then, the following equality in (d) can be obtained, where
we just reuse the notation e instead of e′ in (60) to avoid
introducing additional symbol e′.

Then, for the constraint ‖U‖∗Ã ≤ τ , we build the following
positive semidefinite matrix[

Q U

UH W

]
� 0, (61)
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where Q and W are the Hermitian matrices. With the Schur
complement, when W is invertible, the matrix is positive
semidefinite if and only if we have

Q � 0, (62)

Q−UW−1UH � 0. (63)

Therefore, for any vector t ∈ CN×1, we have tHQt ≥
tHUW−1UHt. By selecting W = τ 2IP , we obtain∥∥UHt

∥∥2

2
≤ τ2tHQt. (64)

When the gain-phase errors are considered, we formulate t =
a(θ) + e, and we have∥∥UH [e+ a(θ)]

∥∥2

2
≤ τ2 [e+ a(θ)]

H
Q [e+ a(θ)] (65)

= τ2
(
eHQe+ 2R{eHQa(θ)}+ aH(θ)Qa(θ)

)
≤ τ2

(
Ce

(Qe)H

‖Qe‖2
Qe+ 2R{eHQa(θ)}+ aH(θ)Qa(θ)

)
≤ τ2

(
Ce‖Qe‖2 + 2Ce‖Qa(θ)‖2 + aH(θ)Qa(θ)

)
= τ2

(
Ce

√
‖Qe‖22 + 2Ce

√
‖Qa(θ)‖22 + aH(θ)Qa(θ)

)
Since ‖e‖2 ≤ Ce and Q � 0, we have ‖Qe‖22 ≤ C2

e ‖Q‖22,
where ‖Q‖2 , λmax(Q), and λmax(Q) is the largest singular
value of Q. Additionally, we have ‖Qa(θ)‖22 ≤ N‖Q‖22.
Therefore, we can simplified (65) as∥∥UH [e+ a(θ)]

∥∥2

2
≤ τ2

[
(Ce + 2

√
N)Ce‖Q‖2 + aH(θ)Qa(θ)

]
.

(66)

When Q satisfies the following condition∑
n

Qn,n+k = 0 (k 6= 0) (67)

Tr(Q) + (Ce + 2
√
N)Ce ‖Q‖2 − 1 ≤ 0,

we have
∥∥UH [e+ a(θ)]

∥∥2

2
≤ τ2. Therefore, substitute into

(57) and the constraint ‖U‖∗Ã ≤ τ is satisfied, then, the dual
problem (13) can be simplified as the SDP problem in (19).
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The entries of N follow the zero-mean Gaussian distribu-
tion with the variance being σ2

N. The dual norm of N with
the definition in (57) can be simplified as

E
{
‖N‖∗Ã

}
= E

 sup
‖e‖2≤Ce
θ∈[0,2π)

∥∥NH [e+ a(θ)]
∥∥

2


≤ E

{
sup

‖e‖2≤Ce

∥∥NHe
∥∥

2

}
+ E

{
sup

θ∈[0,2π)

∥∥NHa(θ)
∥∥

2

}
≤ CeE {‖N‖2}+ σN

√
4NP lnN, (68)

where E
{

supθ∈[0,2π)

∥∥NHa(θ)
∥∥

2

}
≤ σN

√
4NP lnN is ob-

tained from Lemma 5.1 of [55]. Additionally, we can obtain
the upper bound of E {‖N‖2} as two types. The first type is

formulated based on E {‖N‖2} ≤ E {‖N‖F }. Since ‖N‖F
follows chi distribution ‖N‖F ∼ χNP , we can obtain

E {‖N‖F } =
√

2σN
Γ((NP + 1)/2)

Γ(NP/2)
, (69)

where the gamma function is defined as Γ(x) ,∫∞
0
zx−1e−z dz. Then, we have

E {‖N‖2} ≤ E {‖N‖F } =
√

2σN
Γ((NP + 1)/2)

Γ(NP/2)
, bd1.

(70)

With the probability more than 1−2e−t
2/2, the second type

of upper bound can be formulated as

E {‖N‖2} ≤
(√

N +
√
P + t

)
σN , bd2, (71)

where the upper bound is obtained from Theorem 5.35 of [62].
Finally, the upper bound of E

{
‖N‖∗Ã

}
can be obtained as

E {‖N‖∗A} ≤ min {bd1, bd2}Ce + σN
√

4NP lnN. (72)

APPENDIX D
THE ENTRIES OF FISHER INFORMATION MATRIX

For the Fisher information F =

[
F 1,1 F 1,2

F 2,1 F 2,2

]
, the entries

can be obtained as follows:
• The k1, k2-th entry of Fisher information matrix F 1,1 can

be obtained as

F 1,1
k1,k2

=
∂ ln det{C}
∂θk1∂θk2

+ E
{
∂yHC−1y

∂θk1∂θk2

}
, (73)

where the first term can be obtained as

∂ ln det{C}
∂θk1∂θk2

= Tr

{
∂C−1 ∂C

∂θk1

∂θk2

}
(74)

= Tr

{
∂C−1

∂θk2

∂C

∂θk1

}
+ Tr

{
C−1 ∂C

∂θk1∂θk2

}
,

and the second term is

E
{
∂yHC−1y

∂θk1∂θk2

}
= Tr

{
∂C−1

∂θk1∂θk2
C

}
. (75)

Therefore, F 1,1
k1,k2

can be simplified as

F 1,1
k1,k2

= Tr

{
C−1 ∂C

∂θk1
C−1 ∂C

∂θk2

}
. (76)

• The k1, k2-th entry of Fisher information matrix F 1,2 can
be obtained as

F 1,2
k1,k2

=
∂ ln det{C}
∂θk1∂gk2

+ E
{
∂yHC−1y

∂θk1∂gk2

}
, (77)

where the first term is simplified as

∂ ln det{C}
∂θk1∂gk2

= Tr

{
∂C−1 ∂C

∂θk1

∂gk2

}
(78)

= Tr

{
∂C−1

∂gk2

∂C

∂θk1

}
+ Tr

{
C−1 ∂C

∂θk1∂gk2

}
,
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and the second term is

E
{
∂yHC−1y

∂θk1∂gk2

}
= Tr

{
∂C−1

∂θk1∂gk2
C

}
. (79)

Therefore, F 1,2
k1,k2

can be simplified as

F 1,2
k1,k2

= Tr

{
∂C

∂θk1
C−1 ∂C

∂gk2
C−1

}
. (80)

• Similarly, we can get the k1, k2-th entry of Fisher infor-
mation matrix F 2,1 as

F 2,1
k1,k2

= −E
{
∂ ln f(y;θ, g)

∂gk1∂θk2

∣∣∣∣θ, g}
= Tr

{
∂C

∂gk1
C−1 ∂C

∂θk2
C−1

}
. (81)

• The k1, k2-th entry of Fisher information matrix F 2,2 can
be obtained as

F 2,2
k1,k2

= Tr

{
C−1 ∂C

∂gk1
C−1 ∂C

∂gk2

}
. (82)

From the entries of block matrices F 1,1,F 1,2, F 2,1 and
F 2,2, we can find that the expressions of ∂C

∂θk
and ∂C

∂gk
must

be calculated, so we can obtain the expressions as follows:
• For ∂C

∂θk
, we have

∂C

∂θk
=

(
I ⊗G ∂A

∂θk

)
B(I ⊗ (GA)H)

+ (I ⊗GA)B

(
I ⊗ ∂AH

∂θk
GH
)

(83)

where ∂A
∂θk

is expressed as ∂A
∂θk

=
[
0, ∂a(θk)

∂θk
,0
]
, and

∂a(θk)
∂θk

can be obtained easily.
• For ∂C

∂gk
, we can obtain

∂C

∂gk
=

(
I ⊗ ∂G

∂gk
A

)
B(I ⊗ (GA)H),

where ∂G
∂gk

can be obtained easily.

REFERENCES

[1] L. Zheng, M. Lops, and X. Wang, “Adaptive interference removal
for uncoordinated radar/communication coexistence,” IEEE Journal of
Selected Topics in Signal Processing, vol. 12, no. 1, pp. 45–60, Feb
2018.

[2] L. Liu and H. Liu, “Joint estimation of DOA and TDOA of multiple
reflections in mobile communications,” IEEE Access, pp. 3815 – 3823,
2016.

[3] S. Burintramart, T. K. Sarkar, Y. Zhang, and M. Salazar-Palma, “Non-
conventional least squares optimization for DOA estimation,” IEEE
Trans. Antennas Propag., vol. 55, no. 3, pp. 707–714, 2007.

[4] S. Kim, D. Oh, and J. Lee, “Joint DFT-ESPRIT estimation for TOA and
DOA in vehicle FMCW radars,” IEEE Antennas Wirel. Propag. Lett.,
vol. 14, pp. 1710–1713, 2015.

[5] W. Rueckner and C. Papaliolios, “How to beat the Rayleigh resolution
limit: A lecture demonstration,” American Journal of Physics, vol. 70,
no. 6, p. 587, 2002.

[6] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, Mar.
1986.

[7] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[8] M. D. Zoltowski, G. M. Kautz, and S. D. Silverstein, “Beamspace Root-
MUSIC,” IEEE Trans. Signal Process., vol. 41, no. 1, pp. 344–364, Jan.
1993.

[9] E. D. D. Claudio, R. Parisi, and G. Jacovitti, “Space time MUSIC:
Consistent signal subspace estimation for wideband sensor arrays,” IEEE
Trans. Signal Process., vol. 66, no. 10, pp. 2685–2699, May 2018.

[10] P. Vallet, X. Mestre, and P. Loubaton, “Performance analysis of an
improved MUSIC DoA estimator,” IEEE Trans. Signal Process., vol. 63,
no. 23, pp. 6407–6422, Dec 2015.

[11] N. Yuen and B. Friedlander, “Asymptotic performance analysis of
ESPRIT, higher order ESPRIT, and virtual ESPRIT algorithms,” IEEE
Trans. Signal Process., vol. 44, no. 10, pp. 2537–2550, Oct 1996.

[12] Y. C. Eldar, W. Liao, and S. Tang, “Sensor calibration for off-the-grid
spectral estimation,” Applied and Computational Harmonic Analysis,
2018.

[13] W. Xiong, M. Greco, F. Gini, G. Zhang, and Z. Peng, “SFMM design
in colocated CS-MIMO radar for jamming and interference joint sup-
pression,” IET Radar, Sonar Navig., vol. 12, no. 7, pp. 702–710, 2018.

[14] W. T. Li, Y. J. Lei, and X. W. Shi, “DOA estimation of time-modulated
linear array based on sparse signal recovery,” IEEE Antennas Wirel.
Propag. Lett., vol. 16, pp. 2336–2340, 2017.

[15] Z. Yang and L. Xie, “Exact joint sparse frequency recovery via opti-
mization methods,” IEEE Trans. Signal Process., vol. 64, no. 19, pp.
5145 – 5157, Oct. 2016.

[16] Y. Yu, A. P. Petropulu, and H. V. Poor, “Measurement matrix design for
compressive sensing-based MIMO radar,” IEEE Trans. Signal Process.,
vol. 59, no. 11, pp. 5338 – 5352, Nov. 2011.

[17] P. Chen, L. Zheng, X. Wang, H. Li, and L. Wu, “Moving target detection
using colocated MIMO radar on multiple distributed moving platforms,”
IEEE Trans. Signal Process., vol. 65, no. 17, pp. 4670–4683, sep 2017.

[18] M. Guo, Y. D. Zhang, and T. Chen, “DOA estimation using compressed
sparse array,” IEEE Trans. Signal Process., vol. 66, no. 15, pp. 4133–
4146, Aug 2018.

[19] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7465–7490,
Nov 2013.

[20] Z. Tan, P. Yang, and A. Nehorai, “Joint sparse recovery method
for compressed sensing with structured dictionary mismatches,” IEEE
Transactions on Signal Processing, vol. 62, no. 19, pp. 4997–5008, Oct
2014.

[21] Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation
using sparse bayesian inference,” IEEE Trans. Signal Process., vol. 61,
no. 1, pp. 38–43, Jan. 2012.

[22] J. Fang, J. Li, Y. Shen, H. Li, and S. Li, “Super-resolution compressed
sensing: An iterative reweighted algorithm for joint parameter learning
and sparse signal recovery,” IEEE Signal Process. Lett., vol. 21, no. 6,
pp. 761–765, jun 2014.

[23] J. Zhu, Q. Zhang, P. Gerstoft, M.-A. Badiu, and Z. Xu, “Grid-less
variational Bayesian line spectral estimation with multiple measurement
vectors,” Signal Processing, vol. 161, pp. 155–164, Aug. 2019.

[24] J. Zhu, L. Han, R. S. Blum, and Z. Xu, “Multi-snapshot Newtonized
orthogonal matching pursuit for line spectrum estimation with multiple
measurement vectors,” Signal Processing, vol. 165, pp. 175–185, Dec.
2019.

[25] K. V. Mishra, M. Cho, A. Kruger, and W. Xu, “Spectral super-resolution
with prior knowledge,” IEEE Transactions on Signal Processing, vol. 63,
no. 20, pp. 5342–5357, Oct 2015.

[26] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory
of super-resolution,” Communications on Pure and Applied Mathemat-
ics, vol. 67, no. 6, pp. 906–956, 2014.

[27] B. N. Bhaskar, G. Tang, and B. Recht, “Atomic norm denoising with
applications to line spectral estimation,” IEEE Trans. Signal Process.,
vol. 61, no. 23, pp. 5987–5999, Dec 2013.

[28] R. Heckel and M. Soltanolkotabi, “Generalized line spectral estimation
via convex optimization,” IEEE Trans. Inf. Theory, vol. 64, no. 6, pp.
4001–4023, June 2018.

[29] Y. Castro and F. Gamboa, “Exact reconstruction using Beurling minimal
extrapolation,” Journal of Mathematical Analysis and Applications, vol.
395, no. 1, pp. 336 – 354, 2012.

[30] M. Unser, “A unifying representer theorem for inverse problems and
machine learning,” 2019.

[31] Y. Chi and M. F. Da Costa, “Harnessing Sparsity over the
Continuum: Atomic Norm Minimization for Super Resolution,”
arXiv:1904.04283 [cs, eess, math], Aug. 2019. [Online]. Available:
http://arxiv.org/abs/1904.04283

http://arxiv.org/abs/1904.04283


IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

[32] Y. Chi, “Guaranteed blind sparse spikes deconvolution via lifting and
convex optimization,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 10, no. 4, pp. 782–794, June 2016.

[33] O. Teke and P. P. Vaidyanathan, “On the role of the bounded lemma in
the SDP formulation of atomic norm problems,” IEEE Signal Process.
Lett., vol. 24, no. 7, pp. 972–976, July 2017.

[34] Z. Yang and L. Xie, “Enhancing sparsity and resolution via reweighted
atomic norm minimization,” IEEE Trans. Signal Process., vol. 64, no. 4,
pp. 995–1006, feb 2016.

[35] X. Wu, W. Zhu, and J. Yan, “A Toeplitz covariance matrix reconstruction
approach for direction-of-arrival estimation,” IEEE Trans. Veh. Technol.,
vol. 66, no. 9, pp. 8223–8237, Sep. 2017.

[36] M. Barzegar, G. Caire, A. Flinth, S. Haghighatshoar, G. Kutyniok, and
G. Wunder, “Estimation of angles of arrival through superresolution –
a soft recovery approach for general antenna geometries,” 2017.

[37] X. Wu, W. Zhu, and J. Yan, “A high-resolution doa estimation method
with a family of nonconvex penalties,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 6, pp. 4925–4938, June 2018.

[38] J. Zhu, Q. Yuan, C. Song, and Z. Xu, “Phase retrieval from quantized
measurements via approximate message passing,” IEEE Signal Process.
Lett., vol. 26, no. 7, pp. 986–990, July 2019.

[39] H. Fu and Y. Chi, “Quantized spectral compressed sensing: Cramer-
rao bounds and recovery algorithms,” IEEE Transactions on Signal
Processing, vol. 66, no. 12, pp. 3268–3279, June 2018.

[40] A. Liu, G. Liao, C. Zeng, Z. Yang, and Q. Xu, “An eigenstructure
method for estimating DOA and sensor gain-phase errors,” IEEE Trans.
Signal Process., vol. 59, no. 12, pp. 5944–5956, Dec 2011.

[41] W. Xie, C. Wang, F. Wen, J. Liu, and Q. Wan, “DOA and gain-phase
errors estimation for noncircular sources with central symmetric array,”
IEEE Sensors Journal, vol. 17, no. 10, pp. 3068–3078, May 2017.

[42] B. Hu, X. Wu, X. Zhang, Q. Yang, and W. Deng, “DOA estimation based
on compressed sensing with gain/phase uncertainties,” IET Radar, Sonar
Navigation, vol. 12, no. 11, pp. 1346–1352, 2018.

[43] J. Xu, B. Wang, and F. Hu, “Near-field sources localization in partly
calibrated sensor arrays with unknown gains and phases,” IEEE Wireless
Communications Letters, vol. 8, no. 1, pp. 89–92, Feb 2019.

[44] X. Xu, X. Wei, and Z. Ye, “DOA estimation based on sparse signal
recovery utilizing weighted l1-norm penalty,” IEEE Signal Process.
Lett., vol. 19, no. 3, pp. 155–158, Mar. 2012.

[45] H. Bai, M. F. Duarte, and R. Janaswamy, “Direction of arrival estimation
for complex sources through `1 norm sparse Bayesian learning,” IEEE
Signal Process. Lett., vol. 26, no. 5, pp. 765–769, May 2019.

[46] J. Yin and T. Chen, “Direction-of-arrival estimation using a sparse
representation of array covariance vectors,” IEEE Trans. Signal Process.,
vol. 59, no. 9, pp. 4489–4493, Sep. 2011.

[47] M. M. Hyder and K. Mahata, “Direction-of-arrival estimation using a
mixed `2,0 norm approximation,” IEEE Trans. Signal Process., vol. 58,
no. 9, pp. 4646–4655, Sep. 2010.

[48] Y. Chi and Y. Chen, “Compressive two-dimensional harmonic retrieval
via atomic norm minimization,” IEEE Transactions on Signal Process-
ing, vol. 63, no. 4, pp. 1030–1042, Feb 2015.

[49] S. Li, D. Yang, G. Tang, and M. B. Wakin, “Atomic norm minimization
for modal analysis from random and compressed samples,” IEEE Trans.
Signal Process., vol. 66, no. 7, pp. 1817–1831, April 2018.

[50] Z. Yang and L. Xie, “Exact joint sparse frequency recovery via opti-
mization methods,” IEEE Trans. Signal Process., vol. 64, no. 19, pp.
5145–5157, Oct 2016.

[51] Y. Li and Y. Chi, “Off-the-grid line spectrum denoising and estimation
with multiple measurement vectors,” IEEE Trans. Signal Process.,
vol. 64, no. 5, pp. 1257–1269, March 2016.

[52] S. Li, M. B. Wakin, and G. Tang, “Atomic norm denoising for
complex exponentials with unknown waveform modulations,” CoRR,
vol. abs/1902.05238, 2019. [Online]. Available: http://arxiv.org/abs/
1902.05238

[53] H. Chao and L. Vandenberghe, “Semidefinite representations of gauge
functions for structured low-rank matrix decomposition,” SIAM Journal
on Optimization, vol. 27, no. 3, pp. 1362–1389, 2017.

[54] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[55] S. Li, D. Yang, G. Tang, and M. B. Wakin, “Atomic norm
minimization for modal analysis from random and compressed
samples,” CoRR, vol. abs/1703.00938, 2017. [Online]. Available:
http://arxiv.org/abs/1703.00938

[56] Z. Ben-Haim and Y. C. Eldar, “On the constrained Cramér–Rao bound
with a singular Fisher information matrix,” IEEE Signal Process. Lett.,
vol. 16, no. 6, pp. 453–456, June 2009.

[57] B. Z. Bobrovsky, E. Mayer-Wolf, and M. Zakai, “Some classes of global
Cramer-Rao bounds,” The Annals of Statistics, vol. 15, no. 4, pp. 1421–
1438, 1987.

[58] J. Determe, J. Louveaux, L. Jacques, and F. Horlin, “On the noise
robustness of simultaneous orthogonal matching pursuit,” IEEE Trans.
Signal Process., vol. 65, no. 4, pp. 864–875, Feb 2017.

[59] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 33, no. 2, pp. 387–392, April 1985.

[60] C. M. Cho and P. M. Djuric, “Detection and estimation of DOA’s of
signals via Bayesian predictive densities,” IEEE Trans. Signal Process.,
vol. 42, no. 11, pp. 3051–3060, Nov 1994.

[61] E. Fishler, M. Grosmann, and H. Messer, “Detection of signals by
information theoretic criteria: General asymptotic performance analysis,”
IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1027–1036, May 2002.

[62] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” arXiv e-prints, p. arXiv:1011.3027, Nov 2010.

Peng Chen (S’15-M’17) was born in Jiangsu, China
in 1989. He received the B.E. degree in 2011 and
the Ph.D. degree in 2017, both from the School
of Information Science and Engineering, Southeast
University, China. From Mar. 2015 to Apr. 2016, he
was a Visiting Scholar in the Electrical Engineering
Department, Columbia University, New York, NY,
USA.

He is now an associate professor at the State
Key Laboratory of Millimeter Waves, Southeast Uni-
versity. His research interests include radar signal

processing and millimeter wave communication.

Zhimin Chen (M’17) was born in Shandong, China,
in 1985. She received the Ph.D. degree in infor-
mation and communication engineering from the
School of Information Science and Engineering,
Southeast University, Nanjing, China in 2015. Since
2015, she has been with Shanghai Dianji University,
Shanghai, China, where she is a Professor. Her
research interests include array signal processing,
vehicle communications and millimeter-wave com-
munications.

Zhenxin Cao (M’18) was born in May 1976. He
received the M. S. degree in 2002 from Nanjing
University of Aeronautics and Astronautics, China,
and the Ph.D. degree in 2005 from the School
of Information Science and Engineering, Southeast
University, China. From 2012 to 2013, he was a
Visiting Scholar in North Carolina State University.

Since 2005, he has been with the State Key
Laboratory of Millimeter Waves, Southeast Univer-
sity, where he is a Professor. His research interests
include antenna theory and application.

http://arxiv.org/abs/1902.05238
http://arxiv.org/abs/1902.05238
http://arxiv.org/abs/1703.00938


IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

Xianbin Wang (S’98-M’99-SM’06-F’17) is a Pro-
fessor and Tier-I Canada Research Chair at Western
University, Canada. He received his Ph.D. degree in
electrical and computer engineering from National
University of Singapore in 2001.

Prior to joining Western, he was with Commu-
nications Research Centre Canada (CRC) as a Re-
search Scientist/Senior Research Scientist between
July 2002 and Dec. 2007. From Jan. 2001 to July
2002, he was a system designer at STMicroelectron-
ics, where he was responsible for the system design

of DSL and Gigabit Ethernet chipsets. His current research interests include
5G technologies, Internet-of-Things, communications security, machine learn-
ing and locationing technologies. Dr. Wang has over 300 peer-reviewed journal
and conference papers, in addition to 26 granted and pending patents and
several standard contributions.

Dr. Wang is a Fellow of Canadian Academy of Engineering, a Fellow of
IEEE and an IEEE Distinguished Lecturer. He has received many awards and
recognitions, including Canada Research Chair, CRC President’s Excellence
Award, Canadian Federal Government Public Service Award, Ontario Early
Researcher Award and five IEEE Best Paper Awards. He currently serves
as an Editor/Associate Editor for IEEE Transactions on Communications,
IEEE Transactions on Broadcasting, and IEEE Transactions on Vehicular
Technology and He was also an Associate Editor for IEEE Transactions
on Wireless Communications between 2007 and 2011, and IEEE Wireless
Communications Letters between 2011 and 2016. Dr. Wang was involved in
many IEEE conferences including GLOBECOM, ICC, VTC, PIMRC, WCNC
and CWIT, in different roles such as symposium chair, tutorial instructor, track
chair, session chair and TPC co-chair.


	I Introduction
	II System Model With Gain-Phase Errors
	III Atomic Norm-Based Gridless DOA Estimation
	III-A Preliminary Atomic Norm
	III-B New Atomic Norm Method for DOA Estimation
	III-B1 The Definition of New Atomic Norm
	III-B2 DOA Estimation Using GP-ANM


	IV The regularization parameter 
	V Sparse Gain-Phase Errors
	VI CRLB For DOA Estimation With Gain-Phase Errors
	VII Simulation Results
	VIII Conclusions
	Appendix A: The SDP Proof for the Optimization Problem (19)
	Appendix B: The Proof for Proposition 2
	Appendix C: The Proof for Proposition 4
	Appendix D: The entries of Fisher information matrix
	References
	Biographies
	Peng Chen (S'15-M'17)
	Zhimin Chen (M'17)
	Zhenxin Cao (M'18)
	Xianbin Wang (S'98-M'99-SM'06-F'17)


