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Solving Complex Quadratic Systems With
Full-Rank Random Matrices

Shuai Huang , Sidharth Gupta , and Ivan Dokmanić , Member, IEEE

Abstract—We tackle the problem of recovering a complex signal
x ∈ C

n from quadratic measurements of the form yi = x∗Aix, where
Ai is a full-rank, complex random measurement matrix whose
entries are generated from a rotation-invariant sub-Gaussian dis-
tribution. We formulate it as the minimization of a nonconvex loss.
This problem is related to the well understood phase retrieval prob-
lem where the measurement matrix is a rank-1 positive semidefinite
matrix. Here we study the general full-rank case which models a
number of key applications such as molecular geometry recovery
from distance distributions and compound measurements in phase-
less diffractive imaging. Most prior works either address the rank-1
case or focus on real measurements. The several papers that address
the full-rank complex case adopt the computationally-demanding
semidefinite relaxation approach. In this paper we prove that the
general class of problems with rotation-invariant sub-Gaussian
measurement models can be efficiently solved with high probability
via the standard framework comprising a spectral initialization
followed by iterative Wirtinger flow updates on a nonconvex loss.
Numerical experiments on simulated data corroborate our theo-
retical analysis.

Index Terms—Complex quadratic equations, sub-Gaussian
matrices, rotation invariance, spectral initialization.

I. INTRODUCTION

SYSTEMS of quadratic equations model many problems
in applied science, including phase retrieval [1]–[4], the

unlabeled distance geometry problem (uDGP) [5], [6], the turn-
pike and beltway problems [6]–[8], unknown view tomogra-
phy [9]–[11], blind channel estimation [12], [13], power flow
analysis and power system state estimation [14]. Phase retrieval,
in particular, has motivated considerable recent research on
quadratic equations. The phaseless measurements are given
as yi = |a∗

i x|2 = x∗aia∗
i x, with the measurement matrices aia∗

i
being rank-1 positive semidefinite matrices. In this paper we
study a different measurement model with full-rank measure-
ment matrices. Such measurements arise in a number of the
aforementioned applications.

In combinatorial optimization problems such as the uDGP [5],
[6] and the nanostructure problem [15], [16], the goal is to
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reconstruct the relative locations of a set of points from their
unlabeled pairwise distances. The distribution yi of the distance
i can be formulated as a quadratic form with respect to the
point density [6], with the measurement matrix being high-rank.
Unknown view tomography aims to reconstruct a 3D density
map from a collection of 2D projection images with unknown
view angles. When the view angles are assumed to be uniformly
distributed on the unit sphere, rotation invariant features can be
estimated from 2D projection images and later used for recon-
struction [11]. Many of these features can be written as quadratic
forms with respect to high-rank measurement matrices.

A variety of combinatorial graph problems can be formu-
lated as quadratic problems with high-rank measurement ma-
trices [17], including the problem of finding the minimum
energy spin configuration of atoms located on a grid in quantum
physics [18], and the problem of minimizing the number of
connections between layers of a circuit board in very-large-
scale-integrated (VLSI) circuit design [19]. Furthermore, in an
electric transmission network consisting of nodes (buses) and
edges (transmission lines), power flow analysis tries to compute
the complex voltage at all nodes given measured or specified
system variables at selected nodes and edges. This task is then
cast as solving a system of quadratic equations with respect to
the complex voltages [14] with the measurement matrix being
sparse and with rank greater than one. For noisy measurements
the task is known as power system state estimation.

These problems can be modeled as systems of quadratic
equations where the measurement matrices are not necessarily
rank-1 or real. Recovery of a signal from its complex quadratic
measurements is naturally formulated as a nonconvex optimiza-
tion problem, where solving for the globally optimal solution
is in general intractable. Recent works on nonconvex quadratic
problems such as phase retrieval [20], [21], phase synchroniza-
tion [22], [23], and low-rank matrix recovery [24] have shown
that a globally optimal solution can be recovered from suffi-
cient measurements with high probability when iid Gaussian
measurement vectors or matrices are used. Light transport in
random media can be modeled by an iid complex Gaussian
matrix, and dedicated hardwares like optical processing units
(OPU) have been used to produce rapid (20 kHz) random pro-
jections of high-dimensional data in the million range [25]. In
the calibration experiment where the calibration signals are con-
trolled and known, the phases of the calibration measurements
can be recovered and used to estimate the complex Gaussian
measurement vectors [26]. This application bridges the gap
between well-understood random measurement theories and real

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2587-8501
https://orcid.org/0000-0003-0312-2938
https://orcid.org/0000-0001-7132-5214
mailto:shuai.huang@emory.edu
mailto:gupta67@illinois.edu
mailto:dokmanic@illinois.edu


HUANG et al.: SOLVING COMPLEX QUADRATIC SYSTEMS WITH FULL-RANK RANDOM MATRICES 4783

applications. It further motivates the question of what other types
of measurement vectors or matrices also enjoy such favorable
properties. In particular, extending the Gaussian measurement
model to the sub-Gaussian case has recently attracted consider-
able interests [27]–[30]. Deriving the theory for other ensembles
such as Bernoulli [28], [30] has the potential to explain a wider
range of applications.

Building upon our earlier work on random Gaussian measure-
ments in [31], we show that our results hold for a slightly larger
class of measurement matrices which we term rotation-invariant
sub-Gaussian matrices. In this case the signal of interest x ∈ C

n,
the full-rank sub-Gaussian measurement matrices Ai ∈ C

n×n,
the measurement yi ∈ C are all in the complex domain and we
have

yi = x∗Aix, i = 1, . . . , m. (1)

We propose to recover a globally optimal solution via the stan-
dard framework comprising a spectral initialization and iterative
Wirtinger flow (WF) updates. We prove that when the number of
measurements m exceeds the signal length n by some sufficiently
large constant C, i.e. m > Cn, the signal x can be recovered up
to a global phase shift with high probability.

A. Prior Art

Similar quadratic equation problems have been studied in
other contexts. Candès et al. [21] cast the phase retrieval problem
as a system of structured quadratic equations and solved it via
WF with a linear convergence rate. As this is a non-convex
problem, they used a suitably constructed spectral initializer,
z(0), for the Gaussian measurement model. Spectral initialization
for phase retrieval was originally proposed in [20]. It produces
z(0) which is close to a globally optimal solution with high prob-
ability when sufficient measurements are available. The works
of [32], [33] subsequently showed that adapting the loss and
truncating the measurements adaptively in the initialization and
gradient stages could lead to improved performance. Although
the spectral initialization was originally developed for random
Gaussian measurements, it can also be adapted to work with
other types of measurements [6], [34].

Additionally, as shown in the proofs of the WF approach [21],
in phase retrieval some of the entries of the measurement matrix
are correlated. This makes it impossible to use some of the
well-established random matrix theory [35]. In our measurement
model, the matrix entries are pairwise uncorrelated and have zero
mean, which leads to a different and much simplified proof to
establish the convergence guarantees.

Lu and Li [36] studied generalizations of spectral initialization
in the real case and focused on the asymptotic behavior of the
initializer with respect to the sampling ratio m/n in the high-
dimensional limit. Moving beyond the Gaussian measurement
model, Ghods et al. [37] proposed a linear spectral estima-
tor for general nonlinear measurement systems. The works of
Wang and Xu [38], [39] addressed a generalized phase retrieval
problem where Ai is a Hermitian matrix. They used algebraic
methods [40] to find the number of measurements needed for
a successful recovery. Here we build upon these results and

show that both the initialization and convergence proofs can be
derived using the Bernstein-type inequalities for the full-rank
rotation-invariant sub-Gaussian measurement model in (1).

Solving systems of quadratic equations is closely related to
low-rank matrix recovery—it is equivalent to recovering a rank-
1 positive semidefinite (PSD) matrixX = xx∗ with yi = 〈Ai, X〉
[41], [42]. The nonconvex low-rank constraint on X can be
relaxed to the convex minimum nuclear norm constraint. Alter-
natively, Carlsson and Gerosa [43] proposed to directly search
for a PSD matrix with known rank k and used it to perform
phase retrieval from Fourier measurements. The works of [44]–
[47] focused on establishing sufficient conditions that warrant
such a semidefinite convex relaxation. However, recovering the
relaxed X is computationally demanding even for moderate-size
problems. To address this issue, Yurtsever et al. [48] modified
the conditional gradient method by performing a small random
sketch of X that can be used to recover X later. On the other
hand, the works in [24], [49]–[51] approached the problem
directly by factoring the unknown matrix as M = UV T , where
U ∈ R

n1×k,V ∈ R
n2×k and M ∈ R

n1×n2 are all real matrices, and
searching for U and V instead. When M is positive semidefinite
and the measurement operator satisfies the restricted isometry
property [52], Zheng and Lafferty focused on the Gaussian
measurement model and proved that M could be recovered with
guarantees [50]. Tu et al. improved upon [50] and proposed
the Procrustes Flow approach for the more general case where
n1 �= n2 [51]. Our contribution to this line of work lies not
just in going from the real case to the complex case in the
rotation-invariant sub-Gaussian model (which requires technical
interventions at every step), but also in establishing new proofs
based on (and including) Lemma 3 that offer a simpler way to
obtain the recovery guarantees.

Furthermore, recent works on low-rank matrix recovery
showed that the nonconvex problem enjoys a globally optimal
landscape [53]–[56]. For low-rank square, PSD matrix recovery,
Bhojanapalli et al. [53] proved that there are no spurious local
minima when using incoherent linear measurements defined by
the RIP condition. In this case, a global convergence guarantee
can be obtained for stochastic gradient descent from random ini-
tialization. Park et al. [54] later generalized it to the non-square
case. Via a geometric analysis on the Hessian of the objective
function, Ge et al. [55] proposed a way to find directions in
which local minima can be “improved”. Recent developments
on using various nonconvex optimization approaches to solve
low-rank matrix factorization can be found in the review paper
by Chi et al. [57].

In this work we complement these results by studying the
complex signal recovery problem: we aim to recover a complex
signal x ∈ C

n from its complex quadratic measurements up to a
global phase shift.

B. Paper Outline

The paper is organized as follows. In Section II-B, we extend
the derivations from [20] to the rotation-invariant sub-Gaussian
measurement model. We show that the spectral initialization
concentrates around a global optimum with high probability and
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compute the associated concentration bounds. In Section III,
we analyze the regularity condition and derive new results for
the rotation-invariant sub-Gaussian measurement model. The
two results are then combined to give the main theorem of this
paper. Computational experiments are presented in Section IV.
The proofs of the lemmas are given in the Appendix.

II. PROBLEM FORMULATION

A. Rotation-Invariant Sub-Gaussian Measurement Model

For convenience, let ri ∈ R
2n2

denote the real and imaginary
coefficients of the entries of Ai. The m coefficient vectors ri for
1 ≤ i ≤ m are independent and identically distributed following
a multivariate rotation-invariant sub-Gaussian distribution [35],
[58].
� The distribution of ri does not change under unitary trans-

forms [58]. It follows that the probability density function
p(ri ) depends only on the norm ‖ri‖2. Without loss of
generality, we also assume E[r2

ik] = 1, ∀ k = 1, . . . , 2n2.
� The coefficient vector ri is a sub-Gaussian random vec-

tor [35, Definition 5.22] such that the one-dimensional
marginals gT ri are sub-Gaussian random variables for all
g ∈ R

2n2
. In particular, every single entry rik is also sub-

Gaussian by definition.
We shall refer to the model given by (1) as the rotation-

invariant sub-Gaussian measurement model, which is a gener-
alization of the Gaussian measurement model from our earlier
work [31]. Some examples of matrices in this model are given
in Section IV-A.

Instead of solving the system of quadratic equations in (1)
directly, we formulate it as a minimization problem. Namely, we
minimize the following loss function f (z) to obtain the recovered
signal z:

f (z) =
[

1

m

m∑
i=1

∣∣z∗Aiz − yi

∣∣2] . (2)

Clearly, for any solution z0 to (1) we have f (z0) = 0. Although
we do not prove it here, one can expect that with sufficiently
many “generic” measurements the map from z to [y1, . . . , ym]T is
injective up to a global phase. Such results have been rigorously
proven for the phase retrieval problem [59], [60].

Suppose we are given a “good” initialization point z(0) (finding
such a point is discussed in Section II-B). The solution is then
updated iteratively via Wirtinger flow (WF):

z(t+1) = z(t ) − η∇f (z), (3)

where η > 0 is some suitable step size, and ∇f (z) can be
computed as

∇f (z) =
(

∂ f

∂z

)∗
= 1

m

m∑
i=1

(
z∗A∗

i z − x∗A∗
i x
)

Aiz

+ (
z∗Aiz − x∗Aix

)
A∗

i z. (4)

If x is a global minimum of f (z), then xe jφ is also a global
minimum for any φ ∈ (0, 2π ]. Consequently, it is standard to

define the squared distance between the recovered solution z
and the true solution x as

dist2 (z, x) = min
φ∈(0,2π]

∥∥z − xe jφ
∥∥2

2

= ‖z‖2
2 + ‖x‖2

2 − 2|z∗x|, (5)

where z∗x = |z∗x|e jφz∗x and the minimum is achieved when φ =
φmin := −φz∗x.

B. Spectral Initialization

Spectral initialization is widely used in problems with
quadratic measurements to obtain an initialization that is close
to a global optimum. Similar to [20], [21], we show that the
spectral initializer, z(0), is close to a global optimizer x with high
probability and can be used to initialize the WF update in (3). The
rationale behind the spectral initialization strategy is that we can
get a good estimate S of 2xx∗ using sufficient measurements. The
spectral initializer z(0) can then be constructed from the leading
left or right singular vectors of S.

Unlike in the phase retrieval problem, which uses the Hermi-
tian matrix 1

m

∑m
i=1 yiaia∗

i as the estimate of I + 2xx∗ (I is the
identity matrix), we propose the following estimation of 2xx∗

under the rotation-invariant sub-Gaussian measurement model

S = 1

m

m∑
i=1

yiAi, (6)

where yi = x∗A∗
i x is the complex conjugate of yi. To understand

this intuitively, note that the expectation of S is

E [S] =
∑

rc

xrxc · E
[

1

m

m∑
i=1

Ai,rc · Ai

]
. (7)

Let A(R)
i,rc and A(I )

i,rc denote the real and imaginary coefficients of
the (r, c)-th entry Ai,rc. Since all the coefficients of the matrix
entries in Ai are generated from a rotation-invariant distribu-
tion, any two coefficients are also rotation-invariant, pairwise
uncorrelated and “by assumption” have unit variance. Using [58,
Proposition 4.1.1], we have:

Pr
(

A(R)
i,rc ∈ R

)
= Pr

(
−A(R)

i,rc ∈ R

)
(8)

Pr
(

A(R)
i,rcA(R)

i,kl ∈ R

)
= Pr

(
−A(R)

i,rcA(R)
i,kl ∈ R

)
, (9)

where (r, c) �= (k, l ). It is easy to verify that E

[
A(R)

i,rc

]
=

E

[
A(R)

i,kl

]
= 0 and E

[
A(R)

i,rcA(R)
i,kl

]
= 0 so that

E

[
A(R)

i,rcA(R)
i,kl

]
= E

[
A(R)

i,rc

]
· E
[
A(R)

i,kl

]
= 0, (10)

meaning that the coefficients A(R)
i,rc and A(R)

i,kl are pairwise uncor-
related, and so are “any” two different coefficients of the entries
in Ai. Using (10), it is easy to check that

E
[
Ai,rc · Ai,rc

] = 2 (11)

E
[
Ai,rc · Ai,kl

] = 0, (12)
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Fig. 1. The complex signal to be recovered is x = [
1 e

π
2 j eπ j e

3π
2 j 1 e

π
2 j eπ j e

3π
2 j]T . We estimate 2xx∗ with varying number of measurements. The estimate S

becomes increasingly accurate with more measurements.

where r �= k or c �= l . HenceE
[

1
m

∑m
i=1 Ai,rcAi

]
is a matrix with

the (r, c)-th entry equaling to 2 and the rest of the entries being
zeros. Thus

E [S] = 2xx∗ . (13)

The following lemma implies that the matrix S concentrates
around E[S] in spectral norm with high probability when m is
sufficiently large.

Lemma 1: Under the rotation-invariant sub-Gaussian mea-
surement model given by (1), for every ν > 0, when the number
of measurements satisfies m > Cn for some sufficiently large
constant C := C(ν), we have for fixed unit vectors p, q ∈ C

n

that ∥∥∥∥∥ 1

m

m∑
i=1

p∗A∗
i q · Ai − 2qp∗

∥∥∥∥∥ < ν, (14)

with probability at least 1 − 20 exp(−m · C1(C, ν)), where
C1(C, ν) > 0 is some constant depending on C and ν.

Note that the statement of Lemma 1 is slightly more general
than what we need right now, since it allows p �= q (here we
set both to x

‖x‖2
). This will be useful in the later sections. As

derived in Appendix A-A, the concentration proof hinges on the
rotation invariance of the measurement matrices Ai [58]: If we
define B = RA with R ∈ C

n×n being a complex unitary matrix,
the real and imaginary coefficients of the entries in B have the
same joint distribution as those of A.

Lemma 1 implies that S is close to 2xx∗ already for “reason-
able” finite values of m (see Fig. 1), and the likelihood that this
is not the case decays exponentially with m. Let {u0, v0} be the
“leading” left and right singular vectors of S, both u0 and v0 are
highly correlated with x

‖x‖2
with high probability, which is made

precise in the proof of the below Lemma 2. We can then use
either u0 or v0 to construct the spectral initializer z(0). Here we
shall pick v0 in the following discussion.

1) When the norm of x is known and fixed, the spectral
initializer is

z(0) = ‖x‖2 · v0 . (15)

2) When the norm of the signal is unknown, we can estimate it
from the quadratic measurements. Using (13), we compute
the following:

E

[
1

2m

m∑
i=1

yiyi

]
= E

[
1

2
x∗Sx

]
= ‖x‖4

2. (16)

When m is sufficiently large, we prove that 1
2m

∑m
i=1 yiyi

is close to its expectation ‖x‖4
2 with high probability (see

the proof of Lemma 2 in Appendix A-B). Based on this
result, we can scale one of the leading singular vectors v0

of S to get our spectral initializer,

z(0) =
(

1

2m

m∑
i=1

yiyi

) 1
4

· v0 . (17)

Since v0 is also the leading eigenvector of S∗S we can use
the power iteration to compute it and avoid a full singular
value decomposition (SVD) of S. We initialize it with some
random unit-norm vector, v(0)

0 , and compute the following power
iteration until convergence

v(t+1)
0 = S∗Sv(t )

0∥∥∥S∗Sv(t )
0

∥∥∥
2

, (18)

whose computational complexity is O(n2), as opposed to the
O(n3) complexity of a full SVD.

One interpretation of spectral initialization is that we are
computing an approximate least-squares estimate of the matrix
xx∗ in the subspace spanned by the measurement matrices. With
this guiding principle we can adapt the spectral initialization to
other types of measurements. For example, in our work on the
uDGP [6] we constructed an orthonormal basis for the matrix
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Fig. 2. The loss function, Loss(z), gives rise to the basin of attraction around a
global optimizer x, where Wirtinger flow updates can be used to recover x with
high probability when there are sufficient measurements.

subspace spanning the measurement matrices. The measure-
ments can be interpreted as projections of xx∗ on to this basis.
The least-squares estimate of xx∗ and the corresponding spectral
initialization can then be easily obtained.

The following lemma states that the distance between the
spectral initializer z(0) and a global optimizer x is small with
high probability when m is sufficiently large.

Lemma 2: Under the rotation-invariant sub-Gaussian mea-
surement model given by (1), when the number of complex
quadratic measurements satisfies m > Cn for some sufficiently
large constant C, for every δ ∈ (0, 24), there exists a global
optimizer x of the loss in (2) such that the distance between
the spectral initializer z(0) and x obeys

dist2
(
z(0), x

) ≤ 51

24
δ‖x‖2

2, (19)

with probability at least 1 − 20 exp(−m · C1(C, δ)), where
C1(C, δ) > 0 is some constant depending on C and δ.

As a consequence of Lemma 2, no matter how small a δ we
choose, we can guarantee that z(0) is O(δ)-close to a global
optimizer x with high probability by increasing the number
of measurements. As illustrated in Fig. 2, suppose ρ‖x‖2 is
the size of the neighborhood around x where a simple local
optimization method such as WF can be used to recover x with
high probability. Such a neighborhood around x is referred to
as “basin of attraction” in [32]. Our goal is then to balance
the trade-off between making δ small enough so that z(0) falls
within the basin of attraction and reducing the required number
of measurements.

III. CONVERGENCE ANALYSIS

Let x0 denote a global optimizer, and P the set of all vectors
that differ from x0 by some phase shift φ:

P = {
x0e jφ : φ ∈ (0, 2π ]

}
.

In order to determine the neighborhood size ρ‖x‖2, we study the
convergence behavior of the WF iterates in the neighborhood

E (ρ) of P, defined as

E (ρ) = {z | dist(z, x) ≤ ρ‖x‖2, x ∈ P } ,

where dist(z, x) = ∥∥z − xe jφmin
∥∥

2 is computed as in (5). The
objective function f (z) is said to satisfy the regularity condition
RC(α, β, ρ) if the following holds for all z ∈ E (ρ) [21],

Re
(〈∇f (z), z − xe jφmin〉) ≥ 1

α
dist2(z, x) + 1

β
‖∇f (z)‖2

2, (20)

for the choice of constants α > 0, β > 0, ρ > 0. The regularity
condition RC(α, β, ρ) can be derived straightforwardly by de-
manding that the WF step takes us closer to a global optimizer.
More precisely, it ensures that the WF iterate (3) with a step size
η ∈ (0, 2

β

)
converges linearly to a global optimizer x when the

descent is initialized within the neighborhood E (ρ) [21, Lemma
7.10]:

dist2
(
z(t), x

) ≤
(

1 − 2η

α

)t

dist2
(
z(0), x

)
. (21)

One of the main challenges in going from the real to the
complex case lies in the more complicated definition of the
regularity condition and the related convergence analysis. Note
that in the real case the regularity condition reads simply

〈∇f (z), z − x〉 ≥ 1

α
dist2(z, x) + 1

β
‖∇f (z)‖2

2 .

Following the strategy from the Wirtinger flow paper [21] to
lower-bound the left-hand side of (20) would result in com-
plicated derivations involving the computation of the Hessian
matrix. We show below how, thanks to our measurement model,
we can greatly simplify these derivations using the central
Lemma 3.

A. Establishing the Convergence Criterion

We now show that there exist choices of parameters α, β, ρ

such that the objective function f (z) introduced in (2) satisfies
the regularity condition RC(α, β, ρ) in (20) with high proba-
bility, and choose a set of parameter values such that spectral
initialization followed by WF succeeds with high probability.
The existence of good parameters is shown in three steps ac-
cording to (20) and (21):

1) Finding a positive lower bound on Re(〈∇f (z), z −
xe jφmin〉);

2) Finding an upper bound on ‖∇f (z)‖2
2;

3) Choosing a suitable set of (α, β, ρ)-values to obtain the
regularity condition RC(α, β, ρ) in (20).

The main tool in proving these steps is a matrix concentration
bound (a high-probability spectral norm bound) similar to the
one in Lemma 1. However, Lemma 1 is stated for a particular,
fixed choice of the unit vectors p, q. Since we want the above
bounds which imply the regularity condition to hold for all
vectors in E (ρ), it will be useful to strengthen Lemma 1 so
that it holds simultaneously for all choices of p and q.

Lemma 3: Under the rotation-invariant sub-Gaussian mea-
surement model given by (1), for every ν > 0, when the num-
ber of measurements m satisfies m > Cn for some sufficiently
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large constant C := C(ν), we have for all p, q ∈ C
n satisfying

‖p‖2 = 1, ‖q‖2 = 1 that∥∥∥∥∥ 1

m

m∑
i=1

p∗A∗
i q · Ai − 2qp∗

∥∥∥∥∥ < ν, (22)

with probability at least 1 − 20 exp(−m · C2(C, ν)), where
C2(C, ν) > 0 is some constant depending on C and ν.

In the standard phase retrieval measurement model [21], rows
and columns of the measurement matrices are correlated. This
is in particular the case for the (r, c)-th entry ai,rai,c and the
(c, r)-th entry ai,cai,r . We have

E
[
ai,rai,c · ai,cai,r

] = E
[|ai,r |2|ai,c|2

]
> 0 . (23)

As a consequence, the distribution of ai,rai,c · ai,cai,r is not cen-
tered. This precludes a result parallel to Lemma 3 which in our
case lets us establish the regularity condition in a straightforward
way.

With Lemma 2 and Lemma 3 in hand, we can now state our
main result.

Theorem 1: Under the rotation-invariant sub-Gaussian mea-
surement model given by (1), when the number of complex
quadratic measurements m > Cn for some sufficiently large
constant C,

1) There exists a choice of 1 > ν > 0, 1 > ρ > 0, α > 0,
and β > 0, such that RC(α, β, ρ) holds with probability at
least 1 − κ ′ · exp(−m · C2(C, ν)), where C2(C, ν) is some
constant depending C and ν, and κ ′ > 0 is an absolute
constant.

2) Under this choice of parameters, if the step size η is
chosen so that 0 < η ≤ 2

β
, the WF iterates (3) initialized

at the spectral initializer z(0) converge linearly to a global
optimizer x,

dist2 (z(t), x
) ≤

(
1 − 2η

α

)t

· ρ2‖x‖2
2, (24)

with probability at least 1 − κ · exp(−m · C3(C, ν, ρ)),
where κ > 0 is some absolute constant and C3(C, ν, ρ)
depends on C, ν and ρ, but not on m..

Proof: The main task in proving the theorem is to prove
Part 1 (the regularity condition). Once we establish that there
exists a choice of parameters such that the regularity condition
holds in the neighborhood of a global minimizer, Part 2 (linear
convergence to a global minimizer) follows simply by noting
that RC(α, β, ρ) implies

dist2
(
z(t+1), x

) ≤
(

1 − 2η

α

)
dist2

(
z(t), x

)
,

whenever z(t ) ∈ E (ρ).
Part 1: Establishing the regularity condition. We work as

follows:
a) Finding a positive lower bound on Re(〈∇f (z), z − xe jφmin〉)

in the neighborhood of x: We let h = ze− jφmin − x so that

Re (〈h,∇f (z)〉) = Re(〈∇f (z), z − xe jφmin〉), (25)

and equivalently look for a lower bound on Re(〈h,∇f (z)〉)
for all h, x ∈ C

n satisfying ‖h‖2

‖x‖2
≤ ρ. We proceed by showing

that E[Re(〈h,∇f (z)〉)] > 0, and that Re(〈h,∇f (z)〉) is close to
E[Re(〈h,∇f (z)〉)] with high probability, so that a strictly posi-
tive lower bound can be established with high probability when
m is sufficiently large. The expression (25) can be expanded as

Re (〈h,∇f (z)〉)

= 1

m

m∑
i=1

[
2 · Re

(
h∗A∗

i h · h∗Aih
)+3 · Re

(
h∗A∗

i h · h∗Aix
)

+ 3 · Re
(
h∗A∗

i x · h∗Aih
)+ 2 · Re

(
h∗A∗

i x · h∗Aix
)

+ Re
(
h∗A∗

i x · x∗Aih
)+ Re

(
x∗A∗

i h · h∗Aix
)]

.

(26)

We rely on the spectral norm bound in Lemma 3 to lower-bound
(26), by bounding each of the six terms in turn. Since the exact
same logic applies to all terms, we give details only for the
second one, 1

m

∑m
i=1 Re(h∗A∗

i x · h∗Aix). Let h = ‖h‖2 · ĥ, and
x = ‖x‖2 · x̂, where ‖̂h‖2 = 1 and ‖̂x‖2 = 1. By Lemma 3 we
have ∣∣∣∣∣ 1

m

m∑
i=1

Re(h∗A∗
i x · h∗Aix) − 2 · Re(h∗xh∗x)

∣∣∣∣∣
≤
∣∣∣∣∣ 1

m

m∑
i=1

h∗A∗
i x · h∗Aix − 2h∗xh∗x

∣∣∣∣∣
≤ ‖h‖2

2‖x‖2
2 ·
∥∥∥∥∥ 1

m

m∑
i=1

ĥ
∗
A∗

i x̂ · Ai − 2̂x̂h
∗
∥∥∥∥∥

≤ ν‖h‖2
2‖x‖2

2, (27)

for all h and x with probability at least 1 − 20 exp(−m ·
C2(C, ν)). From (5) we see that h∗x = z∗xe jφmin − ‖x‖2

2 =
|z∗x| − ‖x‖2

2 is a real number. We then have the following

1

m

m∑
i=1

Re(h∗A∗
i x · h∗Aix) ≥ 2(h∗x)2 − ν‖h‖2

2‖x‖2
2, (28)

also holds for all h and x with probability1 at least 1 −
20 exp(−m · C2(C, ν)). Repeating for every term in (26), for all
h, x ∈ C

n satisfying ‖h‖2

‖x‖2
≤ ρ, we find that

Re (〈h,∇f (z)〉)

≥ 4
[(‖h‖2

2 + h∗x
)2 + ‖h‖2

2

(‖x‖2
2 + x∗h

)]
− 2‖h‖2

2ν
(‖h‖2

2 + 3‖h‖2‖x‖2 + 2‖x‖2
2

)
≥ 4

[‖h‖2
2

(‖x‖2
2 + x∗h

)]
− 2‖h‖2

2ν
(‖h‖2

2 + 3‖h‖2‖x‖2 + 2‖x‖2
2

)
≥ 4

(
1 − ρ − ν

2

(
2 + 3ρ + ρ2

)) · ‖h‖2
2‖x‖2

2

= c1(ν, ρ) · ‖h‖2
2‖x‖2

2, (29)

holds with probability at least 1 − κ1 exp(−m · C2(C, ν)) where
κ1 > 0 is some absolute constant.

1The probability that (28) holds is no less than the probability that (27) holds.
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b) Finding an upper bound on ‖∇f (z)‖2
2 in the neighborhood

of x: We can rewrite ‖∇f (z)‖2 as follows,

‖∇f (z)‖2

=
∥∥∥∥∥ 1

m

m∑
i=1

(
h∗A∗

i h + h∗A∗
i x + x∗A∗

i h
)

Ai(h + x)

+ (
h∗Aih + h∗Aix + x∗Aih

)
A∗

i (h + x)

∥∥∥∥
2

. (30)

To upper-bound (30) we again rely on the spectral norm bound in
Lemma 3. Let h = ‖h‖2 · ĥ, and x = ‖x‖2 · x̂, where ‖̂h‖2 = 1
and ‖̂x‖2 = 1. We bound the second term (say) in (30) as follows∥∥∥∥∥ 1

m

m∑
i=1

h∗A∗
i x · Ai(h + x)

∥∥∥∥∥
2

− ∥∥2xh∗(h + x)
∥∥

2

≤
∥∥∥∥∥
(

1

m

m∑
i=1

h∗A∗
i x · Ai − 2xh∗

)
(h + x)

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

m

m∑
i=1

ĥ
∗
A∗

i x̂ · Ai − 2̂x̂h
∗
∥∥∥∥∥ · ‖h‖2‖x‖2 · ‖h + x‖2

≤ ν‖h‖2‖x‖2 · (‖h‖2 + ‖x‖2) , (31)

holds with probability at least 1 − 20 exp(−m · C2(C, ν)), im-
plying that ∥∥∥∥∥ 1

m

m∑
i=1

h∗A∗
i x · Ai(h + x)

∥∥∥∥∥
2

≤ (ν + 2)‖h‖2‖x‖2 · (‖h‖2 + ‖x‖2) , (32)

holds with at least the same probability. Repeating for all terms
in (30), we get

‖∇f (z)‖2
2 ≤ 4(2 + ν)2

(
ρ2 + 3ρ + 2

)2 · ‖h‖2
2‖x‖4

2

= c2(ν, ρ) · ‖h‖2
2‖x‖4

2, (33)

with probability at least 1 − κ2 exp(−m · C2(C, ν)) for all h, x ∈
C

n satisfying ‖h‖2

‖x‖2
≤ ρ, where κ2 > 0 is some absolute constant.

c) Choosing suitable ν, ρ and α, β: We have that (29) and (33)
hold simultaneously with probability at least 1 − κ ′ · exp(−m ·
C2(C, ν)) where κ ′ > 0 is some absolute constant.

In (29), c1(ν, ρ) > 0 is a sufficient condition to make
Re(〈h,∇f (z)〉) > 0 so that we could establish the regularity
condition.

1) If ν ≥ 1, we have c1(ν, ρ) ≤ − 5
2ρ − 1

2ρ2 < 0. Hence ν

needs to be less than 1.
2) Given some ν ∈ (0, 1), there exists a matching ρ ∈ (0, 1)

to ensure c1(ν, ρ) > 0. The chosen ν, ρ always lead to
c2(ν, ρ) > 0 in (33).

In other words, the radius of the convergence neighbourhood
E (ρ) could grow as large as ‖x‖2 when there are sufficient
measurements.

It remains to show that there exist α > 0, β > 0 so that

Re(〈h,∇f (z)〉) ≥ 1

α
‖h‖2 + 1

β
‖∇f (z)‖2

2, (34)

holds with probability at least 1 − κ ′ · exp(−m · C2(C, ν)) for
all h, x ∈ C

n satisfying ‖h‖2

‖x‖2
≤ ρ. Note that (34) is equivalent to

the regularity condition (20).
The parameters α and β can be chosen as follows.
1) From (21) we need 1 − 2η

α
≥ 0. Since η ∈ (0, 2

β

]
, ac-

cording to [21, Lemma 7.10], α and β should satisfy
4

αβ
≤ 1. Making the change of variable α = a/‖x‖2

2, β =
b · c2(ν, ρ)‖x‖2

2, we then require

4

ab
≤ c2(ν, ρ) . (35)

2) From (29) and (33), the regularity condition (20) will hold
if

c1(ν, ρ) · ‖h‖2
2‖x‖2

2 ≥ 1

α
‖h‖2

2 + 1

β
· c2(ν, ρ)‖h‖2

2‖x‖4
2

=
(

1

a
+ 1

b

)
‖h‖2

2‖x‖2
2,

(36)

or equivalently

1

a
+ 1

b
≤ c1(ν, ρ) . (37)

There exist many choices of a and b (and thus α and β) that
simultaneously satisfy (35) and (37), and consequently the reg-
ularity condition (20). For example, to get the best convergence
rate, we can choose a, b that maximize 4

αβ
= 4

c2(ν,ρ) · 1
ab subject

to (35) and (37):
� If c2(ν, ρ) ≥ c1(ν, ρ)2, we can choose

a = 2

c1(ν, ρ)
, b = 2

c1(ν, ρ)
. (38)

� If c2(ν, ρ) < c1(ν, ρ)2, we can choose a, b that solve

ab = 4

c2(ν, ρ)
, a + b ≤ 4c1(ν, ρ)

c2(ν, ρ)
. (39)

Part 2: Linear convergence to a global minimizer with spectral
initialization.

After ν, ρ, α, and β are chosen in Part 1, it remains to ensure
that the spectral initializer z(0) falls inside the neighbourhood
E (ρ) with high probability. Using Lemma 2, we have that

dist2
(
z(0), x

)
‖x‖2

2

≤ ρ2, (40)

holds with probability at least 1 − 20 exp
(−m · C1

(
C, 24

51ρ2
))

.
Note that choosing ρ ∈ (0, 1) naturally satisfies the constraint
imposed on 24

51ρ2 in Lemma 2, i.e. 24
51ρ2 ∈ (0, 24). Combin-

ing (34) and (40), we have that the WF update (3) linearly
converges to a global minimizer with probability at least 1 −
κ · exp(−m · C3(C, ν, ρ)), where κ > 0 is some absolute con-
stant and C3(C, ν, ρ) = min

{
C2(C, ν), C1

(
C, 24

51ρ2
)}

depends
on {C, ν, ρ}, but not on m. �

B. Choosing the {α, β, ρ}–Values for the Regularity Condition

Generally, for some ν ∈ (0, 1), one begins by choosing
a suitable ρ ∈ (0, 1) to obtain a positive lower bound on
Re(〈∇f (z), z − xe jφmin〉) as in (29). The values of α > 0, β > 0
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should be large enough to ensure the regularity condition holds
for all z ∈ E (ρ), and satisfy 4

αβ
≤ 1 so that the iterates z(t ) come

closer to x with each iteration.
As derived in the proof of Theorem 1, it is clear that there are

many choices for the values of {α, β, ρ} such that the initializer
z(0) ∈ E (ρ) and the objective function f (z) satisfies the regular-
ity condition (20) with high probability. For concreteness, we
shall showcase a particular choice of “good” parameter values.

If we choose ν = 0.01 and ρ = 0.2, it is easy to verify that

Re (〈h,∇f (z)〉) > 3|h‖2
2‖x‖2

2 (41)

‖∇f (z)‖2
2 < 120‖h‖2

2‖x‖4
2, (42)

where h = ze− jφmin − x. We can then choose α = 2
3 · 1

‖x‖2
2

and

β = 2
3 · 120‖x‖2

2 to obtain

Re (〈h,∇f (z)〉) >
3

2
‖h‖2

2‖x‖2
2 + 3

2
‖h‖2

2‖x‖2
2

>
1

α
‖h‖2

2 + 1

β
‖∇f (z)‖2

2 . (43)

When m is sufficiently large, the regularity condition holds for
all h satisfying ρ = ‖h‖2

‖x‖2
≤ 0.2 with high probability. We can

show that the following update converges linearly to a global
optimizer:

z(t+1) = z(t ) − η∇f (z), (3 revisited)

where 0 < η ≤ 2
β

.

IV. EXPERIMENTAL RESULTS

We perform numerical experiments to corroborate the theoret-
ical results. Theorem 1 states that the step size is upper-bounded
by 2

β
where β is one of the regularity condition parameters in

(20). In Section III-B β is proportional to the squared norm of
the signal to recover. Hence, in all experiments the step size is
chosen as 0.1

‖x‖2
2

where the signal norm, ‖x‖2
2, is estimated using

(16). The value of 0.1 was experimentally found to give a suitable
balance between convergence speed and reliability.2

A. Rotation-Invariant Sub-Gaussian Distributions

We next illustrate examples of rotation-invariant sub-
Gaussian distributions which we use in our experiments. Let

u = ‖s‖q
2 · s, (44)

where q ∈ [−1, 0], and s ∼ N(0, Id×d ), s �= 0. If q = −1, the
variable u is uniformly distributed on the sphere ‖u‖2 = 1. If
q ∈ (−1, 0), the pdf of u is

p(u) = 1

q + 1
‖u‖− qd

q+1

2 (2π )−
d
2 exp

(
−1

2
‖u‖

2
q+1

2

)
, (45)

(see Appendix A-D). If q = 0, then u = s follows the standard
multivariate Gaussian distribution. In the experiments, we fur-
ther scale u ∈ R

d with the scaling parameter γ > 0: r = γ · u

2Code available at https://github.com/swing-research/random_quadratic_
equations under the MIT License

Fig. 3. Closeness of spectral initialization with varying number of mea-
surements where the complex random measurement matrices are from the
rotation-invariant sub-Gaussian measurement model in Section IV-A.

so that the coefficient vector r satisfies μ2 = Var(ri ) = E[r2
i ]

= 1.

B. Closeness of Spectral Initializer

In this experiment we monitor how the distance between
the initialization and the true solution varies with the number
of measurements. We fix n = 100 and try different values of
m with m

n uniformly sampled between 1 and 10. We run 100
random trials for each m

n value and calculate the average relative
distance between the initialization and a global optimizer. In
each trial we generate a random signal x ∈ C

n and m complex
random rotation-invariant sub-Gaussian matrices from the same
distribution to produce m complex quadratic measurements. We
repeat this experiment with multiple distributions by varying the
q parameter in Section IV-A.

Distance between complex signals is defined in (5). We define
relative distance as dist(x,z(0) )

‖x‖2
where x is the original signal and

z(0) is the initialization. In Fig. 3 we can see that the spectral
initializer comes closer to a global optimizer as m

n increases.
The behavior is not affected by varying q.

C. Phase Transition Behavior

In this experiment we evaluate how the proposed approach
transits from a failure phase to a success phase as we increase
the number of measurements. We fix n = 100 and try different
values of m with m

n sampled uniformly between 1.5 and 5.5. We
again run 100 random trials for each m

n value and calculate the
success rate. Success is declared if the relative distance between
the recovered and true signal is less than 10−5. Again, in each
trial a random signal x ∈ C

n is reconstructed and multiple distri-
butions from Section IV-A are used to generate the measurement
matrices.
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Fig. 4. Success transition plot showing the empirical probability of success
based on 100 trials with varying number of measurements where the complex
random measurement matrices are from the rotation-invariant sub-Gaussian
model in Section IV-A.

The iterative WF reconstruction is terminated if the relative
distance between successive iterations is less than 10−6 or if
2500 iterations are completed. Here we define relative distance
between successive iterates as dist(z(t−1), z(t) )

‖x‖2
where z(t−1) and z(t )

are two solutions recovered from successive WF iterates and
x is the original signal. As the true signal and its norm are
unknown during the WF updates, (16) is used to estimate ‖x‖2.
Fig. 4 shows that approximately 4n measurements are needed to
successfully recover the signal for all tested values of q.3

D. Reconstruction of an Image

In this experiment we reconstruct an image via its complex
quadratic measurements given by (1). For image reconstruction
the iterative WF reconstruction is terminated if the distance
(5) between successive iterations is less than 10−6 or if 2500
iterations are completed.4 The measurement matrices are from
Section IV-A with q = 0, which corresponds to a complex
random Gaussian measurement model. We reconstruct the three
color channels of an image of size n = 22 × 15 = 330 pixels
separately when m

n = 4. Fig. 5 shows the absolute value of the
spectral initialization and the corresponding successful recon-
struction.

We define the relative error as ‖|z|−x‖
‖x‖ , where |z| is the absolute

value of the recovered image and x is the original image. We
further define relative distance as dist(x,z)

‖x‖2
. When m

n = 4, the
relative error of the spectral initialization is 0.34. The relative
distances between the three channels of the original image and
their respective spectral initializations are 0.53, 0.49 and 0.51.
The reconstruction relative error is 4.78 × 10−7. The relative

3We note that changing the numerical tolerance in the algorithm stopping
criterion can shift the curve.

4Note that we use distance rather than relative distance. This is a stricter
termination criteria when ‖x‖ > 1.

Fig. 5. Spectral initialization and the successful reconstruction of the
University of Illinois at Urbana-Champaign logo from its complex random
quadratic Gaussian measurements when m

n
= 4. A failed reconstruction when

m
n

= 1 is also shown. The image is of size n = 22 × 15 = 330 pixels.

Fig. 6. Reconstruction performance of the image from Fig. 5 with varying
number of measurements.

distances between the three channels of the original and their
respective reconstructions are 5.45 × 10−7, 7.73 × 10−7 and
8.66 × 10−7.

We also run our algorithm from the beginning to reconstruct
the same image for varying number of measurements. For each
value of m

n we draw a new set of measurement matrices, calculate
a new spectral initialization and use the drawn measurement
matrices and initialization for Wirtinger flow updates. Fig. 5
shows a failure case when m

n = 1 and Fig. 6 shows the relative
distances of the recovered images for each channel.

E. Comparison Between Spectral and Random Initializations

Random initialization has been shown to be a viable alter-
native to spectral initialization when solving the phase retrieval
problem [61]. We next compare the two initialization strategies
using the relative distance between the recovered signal and the
true signal. Once again we run 100 random trials for each m

n
value with n = 100. We separately analyze the behaviors of the
two initializations in the low-oversampling regime, m

n ∈ [1, 2],
and the high-oversampling regime, m

n ∈ [2, 5]. In each trial we
generate a random signal x ∈ C

n and m standard complex mul-
tivariate Gaussian measurement matrices to produce m complex
quadratic measurements. We compare our proposed spectral
initialization against a random initialization that is generated
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Fig. 7. The relative distances between the recovered signal and the true signal using spectral initialization and random initialization strategies: (a) the sampling
rate m

n
∈ [1, 2], (b) the sampling rate m

n
∈ [2, 5].

TABLE I
COMPARISON OF SVD AND THE POWER METHOD

from a standard complex Gaussian distribution. The spectral
initialization is computed using 10 power iterations. Both ini-
tializations are scaled so that their norms match the estimated
signal norm given by (16). The same termination criteria is used
as in Section IV-C.

The relative distances between the recovered signal and the
true signal using different initialization strategies are shown
in Fig. 7. We can see that when 1.1 ≤ m

n ≤ 1.7, the spectral
initialization with only 10 power iterations performs better than
the random initialization. When m

n ≥ 1.8, the two initialization
strategies perform almost equally well.

F. Computational Efficiency of Spectral Initialization

When computing the spectral initialization, the power method
is more computationally efficient than a full SVD. In our ex-
periments, we observed that using only 10 power iterations is
generally enough to get a good spectral initializer that matches
the performance of the exact SVD. In Table I we compare the full
SVD and the power method when m

n = 4 across 5 random trials
in terms of the runtimes and the relative distances between the
spectral initializers and the true signal. We used up to 24 cores
of a system with two 20-core IBM 2.4 GHz POWER9 CPUs and

up to 115.2 GB of RAM. We can see that the power method is
preferable since we are only interested in obtaining the leading
singular vector.

V. CONCLUSION

We addressed the problem of recovering a signal x ∈ C
n from

a system of complex random quadratic equations yi = x∗Aix, for
rotation-invariant sub-Gaussian measurement matrices {Ai}m

i=1.
Our analysis complements the existing results on quadratic equa-
tions with real measurements and rank-1 positive semidefinite
measurement matrices, and extends them to full-rank complex
matrices. Since our measurements matrices have uncorrelated
entries, the new proofs based on (and including) Lemma 3 can
be made much simpler than those for phase retrieval, where
the entries of measurement matrices are correlated. Our main
result has a standard form: we show that when the number of
complex measurements exceeds the length of x multiplied by
some sufficiently large C, then with high probability: 1) the
spectral initializer z(0) is close to a global optimizer; 2) the
WF iterates initialized with z(0) converge linearly to a global
optimizer. Numerical experiments corroborate the theoretical
analysis and show that a global optimum can be successfully
recovered when m is sufficiently large.

Recent phase retrieval works showed that a regularized spec-
tral initialization and WF update could improve the robustness
and performance of the recovery algorithm [32], [33], [62]. Chen
et al. further proved that vanilla gradient descent with random
initialization enjoys favorable convergence guarantees in solv-
ing the phase retrieval problem [61]. Recent works [53]–[56]
on the optimization landscape of the low-rank matrix recovery
problem give us reason to believe similar optimization land-
scape could also exist in this case. Our ongoing work involves
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extending the latest developments in phase retrieval to the afore-
mentioned rotation-invariant sub-Gaussian measurement model.
Perhaps more importantly, we hope to adapt our approach to
work with quadratic measurements obtained using general high-
rank complex matrices that arise in key applications discussed
in the introduction.

APPENDIX A
PROOFS FOR ROTATION-INVARIANT SUB-GAUSSIAN

MEASUREMENT MODEL

A. Proof of Lemma 1

Proof: Recall that we assume the real and imaginary coeffi-

cients of the entries have unit variance, E
[
A(R)

i,rc
2
]

= E

[
A(I )

i,rc
2
]

= 1 .

For fixed p, q, by rotation invariance, we can choose

p = e1 (46)

q = r1e jφ1 e1 + r2e jφ2 e2, (47)

where r1, r2 are non-negative real numbers satisfying r2
1 + r2

2 =
1. Let bi = r1e jφ1 Ai,11 + r2e jφ2 Ai,21, and Ãi denote the matrix Ai

with the (1, 1)-th and (2, 1)-th entries replaced by 0s. Then∥∥∥∥∥ 1

m

m∑
i=1

p∗A∗
i q · Ai − 2qp∗

∥∥∥∥∥
≤
∣∣∣∣∣ 1

m

m∑
i=1

biAi,11 − 2r1e jφ1

∣∣∣∣∣+
∣∣∣∣∣ 1

m

m∑
i=1

biAi,21 − 2r2e jφ2

∣∣∣∣∣
+
∥∥∥∥∥ 1

m

m∑
i=1

biÃi

∥∥∥∥∥
= |B1| + |B2| + ‖H‖
≤ |Re(B1)| + |Re(B2)| + |Im(B1)| + |Im(B2)| + ‖H‖, (48)

where H = 1
m

∑m
i=1 biÃi, B1 = 1

m

∑m
i=1 biAi,11 − 2r1e jφ1 , B2 =

1
m

∑m
i=1 biAi,21 − 2r2e jφ2 , Re(B1) denotes the real coeffi-

cient of B1 and Im(B1) denotes the imaginary coefficient
of B1.

For the first term of (48), we have:

|Re (B1)|

≤
∣∣∣∣∣ 1

m

m∑
i=1

r1 cos φ1
(|Ai,11|2 − 2

)∣∣∣∣∣+
∣∣∣∣∣ 1

m

m∑
i=1

Fi

∣∣∣∣∣ , (49)

where

Fi = r2 cos φ2

(
A(R)

i,21A(R)
i,11 + A(I )

i,21A(I )
i,11

)
− r2 sin φ2

(
A(R)

i,21A(I )
i,11 − A(I )

i,21A(R)
i,11

)
. (50)

One can verify that r1 cos φ1(|Ai,11|2 − 2) is a centered subex-
ponential random variable (cf. [35, Lemma 5.14]). Similarly, Fi

is also a centered subexponential random variable. Using the

Bernstein-type inequality [35, Proposition 5.16], we have:

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

r1 cos φ1
(|Ai,11|2 − 2

)∣∣∣∣∣ ≥ ν

12

)

≤ 2 exp

(
−m · min

{
cν2

144K2
1

,
cν

12K1

})
(51)

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Fi

∣∣∣∣∣ ≥ ν

12

)

≤ 2 exp

(
−m · min

{
cν2

144K2
2

,
cν

12K2

})
, (52)

where c > 0 is some absolute constant and K1 and K2 are the
respective subexponential norms. Combining (49), (51) and
(52), we then have

Pr
(
|Re (B1)| <

ν

6

)
≥ 1 − 4 exp

(−m · Ĉ1(ν)
)
, (53)

where Ĉ1(ν) is a constant depending on ν,

Ĉ1(ν) = min

{
cν2

144K2
1

,
cν

12K1
,

cν2

144K2
2

,
cν

12K2

}
. (54)

For the second, third and fourth term of (48), we obtain
similarly:

Pr
(
|Re (B2)| <

ν

6

)
≥ 1 − 4 exp

(−m · Ĉ2(ν)
)

(55)

Pr
(
|Im (B1)| <

ν

6

)
≥ 1 − 4 exp

(−m · Ĉ3(ν)
)

(56)

Pr
(
|Im (B2)| <

ν

6

)
≥ 1 − 4 exp

(−m · Ĉ4(ν)
)
, (57)

where Ĉ2(ν), Ĉ3(ν), Ĉ4(ν) are some constants depending on ν.
To compute an upper bound on the spectral norm ‖H‖ in (48),

we adapt an approach from [35, Theorem 5.39]. The idea is to
bound |u∗Hv| uniformly for all u, v ∈ C

n on the unit sphere
Sn−1. In order to take the union bound over us and vs, the unit
sphereSn−1 is first discretized using an ε-netNε [35, Definition
5.1], for ε ∈ [0, 1). For every fixed pair (u, v), we establish a
high-probability upper bound on |u∗Hv|, and then take the union
bound over (u, v) ∈ Nε × Nε , taking care of the adjustments so
that the result holds over Sn−1 × Sn−1.

a) Approximation: We first bound the error of approximating
‖H‖ using a (u, v) from Nε × Nε . Suppose u1, v1 ∈ Sn−1 is
chosen such that ‖H‖ = |〈Hv1, u1〉|, and choose u2, v2 ∈ Nε

that approximate u1, v1 as ‖u1 − u2‖2 ≤ ε, ‖v1 − v2‖2 ≤ ε. We
get

|〈Hv1, u1〉 − 〈Hv2, u2〉|
= |u∗

1H (v1 − v2) + (u∗
1 − u∗

2 )Hv2|
≤ ‖H‖‖u1‖2‖v1 − v2‖2 + ‖H‖‖u1 − u2‖2‖v2‖2

≤ 2ε‖H‖ . (58)

It follows that

|〈Hv2, u2〉| ≥ (1 − 2ε) · ‖H‖ . (59)
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Taking the maximum over all u2, v2 in the above inequality, we
obtain the bound

‖H‖ ≤ (1 − 2ε)−1 · max
(u2,v2 )∈Nε×Nε

|〈Hv2, u2〉| . (60)

We now choose ε = 1
4 . According to [35, Lemma 5.2], there ex-

ists a 1
4 -net with cardinality |N1/4| ≤ 9n. Since we are maximiz-

ing over (u, v) ∈ N1/4 × N1/4, the total cardinality is bounded as
|N1/4|2 ≤ 81n so that

‖H‖ ≤ max
(u,v)∈N1/4×N1/4

2|u∗Hv| . (61)

b) Concentration: For a fixed (u, v) ∈ N1/4 × N1/4, we have:∣∣∣∣∣ 1

m

m∑
i=1

biu∗Ãiv

∣∣∣∣∣ =
∣∣∣∣∣ 1

m

m∑
i=1

bi · Gi

∣∣∣∣∣
≤
∣∣∣∣∣ 1

m

m∑
i=1

(
b(R)

i G(R)
i − b(I )

i G(I )
i

)∣∣∣∣∣
+
∣∣∣∣∣ 1

m

m∑
i=1

(
b(R)

i G(I )
i + b(I )

i G(R)
i

)∣∣∣∣∣ , (62)

where Gi = ∑
kl ukvl · Ãi,kl . For the first term of (62), b(R)

i and
b(I )

i are linear combinations of the real and imaginary coefficients
of Ai,11 and Ai,21. On the other hand, G(R)

i and G(I )
i are linear

combinations of the coefficients of the entries in Ãi that do not
contain Ai,11 and Ai,21. We can check that b(R)

i G(R)
i − b(I )

i G(I )
i is

a centered subexponential random variable as before. Using the
Bernstein-type inequality[35, Proposition 5.16], we have:

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

b(R)
i G(R)

i − b(I )
i G(I )

i

∣∣∣∣∣ ≥ ν

12

)

≤ 2 exp

(
−m · min

{
cν2

144K2
3

,
cν

12K3

})
, (63)

where c > 0 is some absolute constant and K3 is the subexpo-
nential norm of b(R)

i G(R)
i − b(I )

i G(I )
i . We get a similar result for

the second term of (62),

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

b(R)
i G(I )

i + b(I )
i G(R)

i

∣∣∣∣∣ ≥ ν

12

)

≤ 2 exp

(
−m · min

{
cν2

144K2
4

,
cν

12K4

})
, (64)

where c > 0 is some absolute constant and K4 is the subexpo-
nential norm of b(R)

i G(I )
i + b(I )

i G(R)
i .

Combining (62), (63), (64), we have

Pr

(
2

∣∣∣∣∣ 1

m

m∑
i=1

bi · Gi

∣∣∣∣∣ <
ν

3

)
≥ 1 − 4 exp

(−m · Ĉ5(ν)
)
, (65)

where Ĉ5(ν) is a constant depending on ν and the measurement
model,

Ĉ5(ν) = min

{
cν2

144K2
3

,
cν

12K3
,

cν2

144K2
4

,
cν

12K4

}
. (66)

c) Union Bound: Taking the union bound over all unit
vectors (u, v) ∈ N1/4 × N1/4 with cardinality |N1/4|2 ≤ 81n, if
m ≥ Cn,

Pr

(
max

u,v∈N1/4×N1/4

2

∣∣∣∣∣ 1

m

m∑
i=1

biu∗Ãiv

∣∣∣∣∣ ≥ ν

3

)
≤ 81n · 4 exp

(−m · Ĉ5(ν)
)

≤ 4 exp
(−m · (Ĉ5(ν) − C−1 ln 81

))
. (67)

Using (60), we have

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

biÃi

∥∥∥∥∥ <
ν

3

)

≥ Pr

(
max

u,v∈N1/4×N1/4

2

∣∣∣∣∣ 1

m

m∑
i=1

biu∗Ãiv

∣∣∣∣∣ <
ν

3

)
≥ 1 − 4 exp

(−m · (Ĉ5(ν) − C−1 ln 81
))

. (68)

If m ≥ Cn, using (48) and combining all the bounds so far (53),
(55), (56), (57), (68), we get

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

p∗A∗
i q · Ai − 2qp∗

∥∥∥∥∥ < ν

)
≥ 1 − 20 exp (−m · C1(C, ν)) , (69)

where C1(C, ν) depends on C and ν, but not on m.

C1(C, ν) = min
{
Ĉ1(ν), Ĉ2(ν), Ĉ3(ν), Ĉ4(ν),

Ĉ5(ν) − C−1 ln 81
}

. (70)

When C is sufficiently large, we have that C1(C, ν) > 0 so that
both sides of (69) go to 1 as m → ∞. �

B. Proof of Lemma 2

Proof: Let {u0, v0} be the leading left and right singular
vectors of S, and τ0 be its largest singular value. Using Lemma
1, the following holds with probability at least 1 − 20 exp(−m ·
C1(C, δ)): ∣∣τ0 − u∗

0(2xx∗)v0

∣∣ = ∣∣u∗
0

(
S − 2xx∗) v0

∣∣
≤ ‖S − 2xx∗‖
≤ δ‖x‖2

2 . (71)

Hence, on this event, u∗
0(2xx∗)v0 ≥ τ0 − δ‖x‖2

2 and we have
with at least the same probability that

τ0 ≥ 1

‖x‖2
2

x∗Sx

= 1

‖x‖2
2

x∗ (S − 2xx∗) x + 2‖x‖2
2

≥ (2 − δ)‖x‖2
2 . (72)

In the following proof the spectral initializer z(0) is constructed
from v0. When z(0) is constructed from u0, the proof is similar.
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1) When the signal norm ‖x‖2 is known, we can choose z(0) =
‖x‖2 · v0 as the spectral initializer. Since |u∗

0x| ≤ ‖x‖2, we
have

2
∣∣x∗v0 · ‖x‖2

∣∣ ≥ 2|u∗
0x| · |x∗v0|

≥ u∗
0(2xx∗)v0

≥ τ0 − δ‖x‖2
2

≥ (2 − 2δ)‖x‖2
2 . (73)

Using (5), the squared distance between the spectral ini-
tializer z(0) = ‖x‖2v0 and x is then bounded as

dist2 (‖x‖2v0, x) = min
φ∈(0,2π]

∥∥‖x‖2v0 − xe jφ
∥∥2

2

= ‖x‖2
2‖v0‖2

2 + ‖x‖2
2 − 2|x∗v0 · ‖x‖2|

≤ 2‖x‖2
2 − (2 − 2δ)‖x‖2

2

= 2δ‖x‖2
2 ≤ 51

24
δ‖x‖2

2, (74)

with probability at least 1 − 20 exp(−m · C1(C, δ)).
2) When the signal norm ‖x‖2 is unknown, we estimate it

from R = 1
2 m

∑m
i=1 yiyi. By rotation invariance of the sub-

Gaussian matrix Ai, we can simply assume x = ‖x‖2e1 so
that

R = ‖x‖4
2

2 m

m∑
i=1

|Ai,11|2 . (75)

Using (51) in the proof of Lemma 1 (φ1 = 0 in this case),
we know that on the same event on which (71) holds (of
probability ≥ 1 − 20 exp(−m · C1(C, δ))), it also holds
that(

2 − δ

12

)
m ≤

m∑
i=1

|Ai,11|2 ≤
(

2 + δ

12

)
m . (76)

We thus have(
1 − δ

24

)
‖x‖4

2 ≤ R ≤
(

1 + δ

24

)
‖x‖4

2, (77)

and choose the spectral initializer as z(0) = 4
√

Rv0. Assum-
ing δ ∈ (0, 24) and using (73), we have that

dist2
(

4
√

Rv0, x
)

≤ 2
√

R + ‖x‖2
2 − (2 − 2δ) 4

√
R‖x‖2

≤ 2

√
1 + δ

24
‖x‖2

2 + ‖x‖2
2 − 2(1 − δ) 4

√
1 − δ

24
‖x‖2

2

≤
(

1 + δ

24

)
‖x‖2

2 + ‖x‖2
2 − 2(1 − δ)

(
1 − δ

24

)
‖x‖2

2

≤ 51

24
δ‖x‖2

2, (78)

with probability at least 1 − 20 exp(−m · C1(C, δ)).
�

C. Proof of Lemma 3

Proof: Let G(p, q) := 1
m

∑m
i=1 p∗A∗

i q · Ai − 2qp∗. We prove
that the bound on the spectral norm ‖G(p, q)‖ in (22) holds with
high probability for all unit vectors p, q by combining Lemma
1 with yet another union bound. Let p1, q1 ∈ Sn−1 such that

‖G(p1, q1)‖ = max
(p,q)∈Sn−1×Sn−1

‖G(p, q)‖ . (79)

Let p2, q2 ∈ Nε further obey p1, q1 as ‖p1 − p2‖2 ≤ ε, ‖q1 −
q2‖2 ≤ ε (they exist by the definition of an ε-net). We can write

‖G(p1, q1) − G(p2, q2)‖
= ‖G(p1, q1 − q2) + G(p1 − p2, q2)‖
≤ ‖G(p1, q1 − q2)‖ + ‖G(p1 − p2, q2)‖

= ‖q1 − q2‖2 ·
∥∥∥∥G

(
p1,

q1 − q2

‖q1 − q2‖2

)∥∥∥∥
+ ‖p1 − p2‖2 ·

∥∥∥∥G
(

p1 − p2

‖p1 − p2‖2
, q2

)∥∥∥∥
≤ (‖q1 − q2‖2 + ‖p1 − p2‖2

) · ‖G(p1, q1)‖
≤ 2ε‖G(p1, q1)‖, (80)

so that

‖G(p1, q1)‖ ≤ (1 − 2ε)−1‖G(p2, q2)‖ . (81)

Taking the maximum over all p2, q2 in the above inequality, we
get

‖G(p1, q1)‖ ≤ (1 − 2ε)−1 max
p2,q2∈Nε×Nε

‖G(p2, q2)‖. (82)

We again choose ε = 1
4 so that as in Lemma 1, |N1/4 × N1/4| =

|N1/4|2 ≤ 81n and

‖G(p1, q1)‖ ≤ max
p2,q2∈N1/4×N1/4

2‖G(p2, q2)‖. (83)

By Lemma 1, if m > Cn for some sufficiently large C,

Pr
(∥∥G(p2, q2)

∥∥ ≥ ν

2

)
≤ 20 exp

(
−m · C1

(
C,

ν

2

))
, (84)

for fixed unit vectors p2, q2. To get a result which holds for all p
and q, we take the union bound over N1/4 × N1/4. For m ≥ Cn,

Pr

(
max

p2,q2∈Nε×Nε

2‖G(p2, q2)‖ ≥ ν

)
≤ 81n · 20 exp

(
−m · C1

(
C,

ν

2

))
≤ 20 exp

(
−m ·

[
C1

(
C,

ν

2

)
− C−1 ln 81

])
. (85)

Using (83), we have

Pr
(∀p, q ∈ Sn−1, ‖G(p, q)‖ < ν

)
= Pr

(‖G(p1, q1)‖ < ν
)

≥ Pr

(
max

(p2,q2 )∈Nε×Nε

2‖G(p2, q2)‖ < ν

)
≥ 1 − 20 exp (−m · C2(C, ν)) , (86)
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where C2(C, ν) := C1(C, ν
2 ) − C−1 ln 81 > 0 for C sufficiently

large. �

D. Example of Rotation-Invariant Distributions

For completeness, we exhibit here one family of rotation-
invariant sub-Gaussian distributions. Consider the random vari-
able u = ‖s‖q

2 · s, where q ∈ (0, 1), and s ∈ R
d ∼ N(0, I), s �=

0. We have:

s = ‖u‖− q

q+1

2 · u . (87)

The entries of the Jacobian matrix J = ds/du are given as

∂si

∂ui
= ‖u‖− q

q+1

2

(
1 − q

q + 1
‖u‖−2

2 · u2
i

)
(88)

∂si

∂u j
= ‖u‖− q

q+1

2

(
− q

q + 1
‖u‖−2

2 · uiu j

)
, i �= j . (89)

The Jacobian matrix J is thus

J = ‖u‖− q

q+1

2

(
I − q

q + 1
‖u‖−2

2 · uuT

)
, (90)

with the determinant given by

det(J) = ‖u‖− qd

q+1

2 det

(
I − q

q + 1
‖u‖−2

2 · uuT

)
= ‖u‖− qd

q+1

2

(
1 − q

q + 1
‖u‖−2

2 · uTu
)

= 1

q + 1
‖u‖− qd

q+1

2 . (91)

We obtain the expression for the pdf as

p(u) = 1

q + 1
‖u‖− qd

q+1

2 (2π )−
d
2 exp

(
−1

2
‖u‖

2
q+1

2

)
. (92)

We can see that p(u) only depends on the norm ‖u‖2, and is
thus invariant under unitary transform. For q = −1 we obtain
a uniform distribution on the sphere, while q = 0 gives the
Gaussian distribution. In all cases, when q ∈ [−1, 0], it is easy
to check that the moments of the random variables generated
as above are suitably bounded (the tails decay faster than the
Gaussian) so that these random variables are sub-Gaussian.
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