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Abstract

The best pair problem aims to find a pair of points that minimize the distance
between two disjoint sets. In this paper, we formulate the classical robust princi-
pal component analysis (RPCA) as the best pair; which was not considered before.
We design an accelerated proximal gradient scheme to solve it, for which we show
global convergence, as well as the local linear rate. Our extensive numerical ex-
periments on both real and synthetic data suggest that the algorithm outperforms
relevant baseline algorithms in the literature.

1 Introduction

Let A ∈ Rm×n be a given matrix, the generalized low-rank recovery model can be written as

minL∈Rm×n F(A,L) + λR(L), (1)

where F(A,L) is a loss function, R(L)
def
=
∑n
i=1Ri(L) is a suitable regularizer, and λ > 0 is

a balancing parameter. By an appropriate choice of the loss function and the regularizer, (1) can
express a wide range of low-rank approximation problems of matrices. For example, by setting
F(A,L) = ‖A− L‖2F , λ = 1, andR(L) = ιrank(L)≤r(L) — the characteristic function (10) of the
set {L ∈ Rm×n : rank(L) ≤ r}, (1), specializes to:

minL∈Rm×n ‖A− L‖2F + ιrank(L)≤r(L), (2)

which is a best approximation formulation of the classical principal component analysis (PCA). The
solution to problem (2) is given by: L̂ = UHr(Σ)V >, where UΣV > = A is a singular value
decomposition (SVD) of A and Hr(·) is the hard-thresholding operator that keeps the r largest
singular values. Although PCA is vastly used and a successful designing tool in different engineering
applications, it can only handle the presence of uniformly distributed noise and is rather sensitive
to sparse outliers in the data matrix (Lin et al., 2010; Wright et al., 2009; Candès et al., 2011). To
overcome this shortcoming and to deal with sparse errors, (Chandrasekaran et al., 2011; Candès
et al., 2011) replaced the Frobenius norm in (2) by the `0 pseudo norm, and introduced the celebrated
principal component pursuit (PCP) problem:

minL∈Rm×n ‖A− L‖`0 + λrank(L). (3)

However, the above problem is non-convex and NP-hard. One of the most commonly used, tractable
surrogate reformulations of (3) is replacing the rank function with nuclear norm‖L‖? and `0 pseudo
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norm with `1-norm ‖A − L‖`1 (Cai et al., 2010; Recht et al., 2010). Exploiting this idea, Robust
PCA (RPCA) was introduced as a convex surrogate of the PCP problem (Wright et al., 2009; Lin
et al., 2010; Candès et al., 2011):

minL∈Rm×n ‖A− L‖`1 + λ‖L‖?. (4)

It was shown in (Chandrasekaran et al., 2011; Candès et al., 2011) that under a rank-sparsity inco-
herence assumption, problem (3) can be provably solved via (4), as the solutions of them lie close
to each other with high probability.

Besides (4), there are other formulations of RPCA. One of the most popular way is to introduce an
auxiliary variable, S, and add an additional constraint L+ S = A, which yields:

minL,S∈Rm×n ‖S‖`1 + λ‖L‖? subject to L+ S = A. (5)

This constrained formulation enables several avenues to solve RPCA, such as, the exact and inexact
augmented Lagrangian method of multipliers by Lin et al. (Lin et al., 2010), accelerated proximal
gradient method (Wright et al., 2009), alternating direction method (Yuan and Yang, 2013), alternat-
ing projection with intermediate denoising (Netrapalli et al., 2014), dual approach (Lin et al., 2009),
and SpaRCS (Waters et al., 2011), manifold optimization by Yi et al. (Yi et al., 2016) and Zhang and
Yang (Zhang and Yang, 2018), are a few popular ones. We refer to (Bouwmans and Zahzah, 2014)
for a comprehensive review of RPCA algorithms.

For the discussion above, A is fully observed with no data missing. One can consider that A is
partially observed, that is, there exists a projection operator (or simply a Bernoulli binary mask) PΩ

on the set of observed data entries Ω ⊆ [m]× [n] and is defined by

(PΩ[A])ij =

{
Aij (i, j) ∈ Ω,

0 otherwise.
(6)

The partial observed version of (5) reads

minL,S∈Rm×n ‖S‖`1 + λ‖L‖? subject to PΩ(L+ S) = PΩ(A). (7)

Besides (5) and (7), other tractable reformulations of (3) still exist. For example, if the rank and
target sparsity is user-inferred then it is common practice to relax the equality constraint in (5)
and consider it in the objective function as a penalty. This, together with explicit constraints on
the target rank, r, and target sparsity level, α, (user-inferred hyperparameters), leads to the GoDec
formulation (Zhou and Tao, 2011). One can also extend the above model to the case of partially
observed data that leads to a more general class of problems that is commonly known as the robust
matrix completion (RMC) problem (Chen et al., 2011; Tao and Yang, 2011; Cherapanamjeri et al.,
2017b,a) that contains the variant proposed in (Zhou and Tao, 2011) as a special case. With S = 0,
the matrix completion (MC) problem is also a special case of the RMC problem (Candès and Plan,
2009; Jain et al., 2013; Cai et al., 2010; Jain and Netrapalli, 2015; Candès and Recht, 2009; Keshavan
et al., 2010; Candès and Tao, 2010; Mareček et al., 2017; Wen et al., 2012). Lastly, when the whole
matrix is observed, the RMC problem is nothing but (5).

Recently, (Dutta et al., 2018a) reformulated (3) as a non-convex feasibility problem, which does
not require any objective function, convex relaxation, or surrogate convex constraints. Rather, it
exploits the following idea: the solution to the PCP problem lies in the intersection of two sets—
one convex and one non-convex, if one considers both the target rank r and the target sparsity α as

hyperparameters. Let X =
(
S
L

)
∈ R2m×n and K = [Id, Id] where Id is the identity operator of

Rm×n, define

X def
=
{
X : KX = A

}
, Y def

=
{
X : rank(L) ≤ r, ||Si,·||0 ≤ αm, ||S·,j ||0 ≤ αn, i ∈ [m], j ∈ [n]

}
.

Note that X is convex and Y is non-convex1. Given the sets, Dutta et al. (Dutta et al., 2018a)
reformulated (3) as non-convex feasibility problem:

find X ∈ R2m×n such that X ∈ X ∩ Y. (8)

Note that if we replace the Id in K with Bernoulli binary matrix, then we obtain the reformulation
of PCP problem with partial observation.

1The α-sparsity constraint on S means that for α ∈ (0, 1), each row and column of S contains no more than
αn and αm number of non-zero entries, respectively. This is slightly more complicated than directly applying
‖ · ‖0 constraint. However, it often works better in practice.
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1.1 Formulation and Contributions

In this paper we consider reformulating the feasibility problem (8) as a best pair problem. Given
two sets X ,Y ⊂ R2m×n, the best pair problems aims to find a pair of points (X?, Y ?) ∈ X × Y
such that they have the closest distance, that is (X?, Y ?) a the solution of the problem below:

min
X∈X ,Y ∈Y

1
2
||X − Y ||2. (9)

When the intersection of X and Y is non-empty, that is X ∩ Y 6= ∅, (9) reduces to the feasibility
problem, with X? = Y ? ∈ X ∩ Y . Given a set X , define its characteristic function by

ιX (X)
def
=

{
0 : X ∈ X ,

+∞ : otherwise.
(10)

Then (9) can be equivalently written as

min
X,Y ∈R2m×n

ιX (X) + 1
2
||X − Y ||2 + ιY(Y ). (11)

Observe that for a given Y , problem (11) becomes minX∈R2m×n ιX (X) + 1
2 ||X − Y ||

2 which is the
Moreau envelope (Bauschke and Combettes, 2011) of ιX (X) of index 1:

1
(
ιX (Y )

) def
= min

X∈R2m×n

1
2
||X − Y ||2 + ιX (X).

As a result, we can simplify (11) to the case of only Y ,

minY ∈R2m×n ιY(Y ) + 1
(
ιX (Y )

)
. (12)

For the rest of the paper, we focus on (12) and our main contributions are summarised below:

• New formulation and a new algorithm for non-convex PCP. We reformulate the non-convex
set feasibility formulation of RPCA to a best pair problem. Although our formulation was
inspired by formulation (8) from (Dutta et al., 2018a), to the best of our knowledge, we are the
first to formulate and solve RPCA via the best pair. To this end, we design a fast and efficient
algorithm—an accelerated proximal gradient method—to solve it.
• Theoretical convergence guarantees. Both global and local convergence analysis of the

scheme are provided. Globally, we show that our algorithm converges to a critical point. If
the algorithm additionally starts sufficiently close to the optimum, we show that it converges to
a global minimizer. Locally, our algorithm enjoys a fast linear rate, which we can sharply esti-
mate. We owe this novelty to our best pair formulation. In contrast, the non-convex projection
RPCA from (Dutta et al., 2018a) or GoDec (Zhou and Tao, 2011) can only guarantee a local
linear convergence.
• Numerical experiments and applications to real-world problems. We apply the proposed

method to several well-tested applications in computer vision. Our extensive experiments on
both real and synthetic data suggest that our algorithm matches or outperforms relevant baseline
algorithms in fractions of their execution time. Additionally, in the supplementary material, we
provide empirical validity of the hyperparameters sensitivity of our approach.

1.2 Notations

Throughout the paper, N is the set of non-negative integers. For a nonempty closed convex set
Ω ⊂ Rn, denote PΩ the orthogonal projector onto Ω. Let R : Rn → R ∪ {+∞} be a lower semi-
continuous (lsc) function, its domain is defined as dom(R)

def
= {x ∈ Rn : R(x) < +∞}, and it is

said to be proper if dom(R) 6= ∅. We need the following notions from variational analysis, see e.g.
(Rockafellar and Wets, 1998) for details. Given x ∈ dom(R), the Fréchet subdifferential ∂FR(x) of
R at x, is the set of vectors v ∈ Rn that satisfies lim infz→x, z 6=x

1
||x−z|| (R(z)−R(x)−〈v, z−x〉) ≥

0. If x /∈ dom(R), then ∂FR(x) = ∅. The limiting-subdifferential (or simply subdifferential) of
R at x, written as ∂R(x), is defined as ∂R(x)

def
= {v ∈ Rn : ∃xk → x,R(xk) → R(x), vk ∈

∂FR(xk) → v}. Denote dom(∂R)
def
= {x ∈ Rn : ∂R(x) 6= ∅}. Both ∂FR(x) and ∂R(x) are

closed, with ∂FR(x) convex and ∂FR(x) ⊂ ∂R(x) (Rockafellar and Wets, 1998, Proposition 8.5).
SinceR is lsc, it is (subdifferentially) regular at x if and only if ∂FR(x) = ∂R(x) (Rockafellar and
Wets, 1998, Corollary 8.11). A necessary condition for x to be a minimizer ofR is 0 ∈ ∂R(x). The
set of critical points ofR is crit(R) = {x ∈ Rn : 0 ∈ ∂R(x)}.
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2 An accelerated proximal gradient method

In this section, we describe a gradient-based optimization method for solving (12). Denote PX ,PY
the projection operators onto X and Y , respectively. Since X is a non-empty closed convex set, its
characteristic function ιX is proper convex and lower semi-continuous. Owing to (Bauschke and
Combettes, 2011), the Moreau envelope is convex differentiable with gradient reads

∇
(

1(ιX (Y ))
)

= (Id− PX )(Y )

which is 1-Lipschitz continuous. Clearly, (12) admits a “non-smooth + smooth” structure, and in
literature one prevailing algorithm to apply is the proximal gradient method (Lions and Mercier,
1979), a.k.a. Forward–Backward splitting. In this paper, we consider an accelerated version of the
method, see Algorithm 1, which is based on inertial technique.

Algorithm 1: An accelerated proximal gradient method

Initial: Let γ ∈]0, 2] and choose Y0 ∈ R2m×n, Y−1 = Y0.
repeat

Za,k = Yk + ak(Yk − Yk−1),

Zb,k = Yk + bk(Yk − Yk−1),

Yk+1 = PY
(
Za,k − γ(Zb,k − PX (Zb,k))

)
.

(13)

k = k + 1;
until convergence;

Remark 2.1.

• If we choose γ = 1 and ak, bk ≡ 0, Algorithm 1 becomes the Backward–Backward split-
ting, which is the method of alternating projections for the considered feasibility problem (8).
Therefore, we recover the method from (Dutta et al., 2018a) as a special case.
• From (8) to (12), we can also consider the Moreau envelope of the non-convex set Y , that is

minX∈R2m×n ιX (X) + 1
(
ιY(X)

)
,

which also works well in practice.
• Algorithm 1 is a special cases of the multi-step inertial proximal gradient descent method con-

sidered in (Liang et al., 2016) for general non-convex composite optimization.

Note that the two projection operators PX ,PY are very easy to compute. Given X =
(
S
L

)
, since X

is an affine subspace, the projection ofX onto X reads PX (X) = 1
2

(
A+ S − L
A− S + L

)
. IfK = [PΩ,PΩ]

where PΩ is the binary mask defined in (6), then for the partial observed case, we have

PX (X) =
(
S
L

)
+

1

2

(
PΩ[A− S − L]
PΩ[A− S − L]

)
.

For the projection PY which contains a low-rank projection and sparsity projection, we refer to
(Dutta et al., 2018a) for more details.

2.1 Global convergence

Since set Y is semi-algebraic (Bolte et al., 2010), our global convergence guarantees of Algorithm 1
is based on Kurdyka-Łojasiewicz property.

Kurdyka-Łojasiewicz property. Let R : Rn → R ∪ {+∞} be a proper lsc function. For η1, η2

such that −∞ < η1 < η2 < +∞, define the set

[η1 < R < η2]
def
= {Y ∈ Rn : η1 < R(Y ) < η2}.

Definition 2.2. Function R is said to have the Kurdyka-Łojasiewicz property at Y ∈ dom(R) if
there exists η ∈]0,+∞], a neighbourhoodU of Y and a continuous concave functionϕ : [0, η[→ R+

such that

4



(i) ϕ(0) = 0, ϕ is C1 on ]0, η[, and for all s ∈]0, η[, ϕ′(s) > 0;
(ii) for all Y ∈ U ∩ [R(Y ) < R < R(Y ) + η], the Kurdyka-Łojasiewicz inequality holds

ϕ′
(
R(Y )−R(Y )

)
dist

(
0, ∂R(Y )

)
≥ 1. (14)

Proper lsc functions which satisfy the Kurdyka-Łojasiewicz property at each point of dom(∂R) are
called KL functions.

KL functions include the class of semi-algebraic functions, see (Bolte et al., 2007, 2010). For in-
stance, the `0 pseudo-norm and the rank function are KL.

Global convergence. To deliver the convergence result, we rewrite (12) into the following generic
form

minY ∈R2m×n
{

Φ(Y )
def
= R(Y ) + F(Y )

}
, (15)

where we assume that

(A.1) R : Rn → R ∪ {+∞} is proper lower semi-continuous, and bounded from below;
(A.2) F : Rn → R is convex differentiable and its gradient ∇F is L-Lipschitz continuous.

Let ν > 0 be a constant. Define the following quantities,

βk
def
= 1− γL− ak − ν

2γ
, β

def
= lim inf

k∈N
βk and αk

def
= γb2kL

2 + νak
2νγ

, α
def
= lim sup

k∈N
αk. (16)

Theorem 2.3 (Global convergence). For problem (15), assume (A.1)-(A.2) hold, and that Φ is a
proper lsc KL function which is bounded from below. For Algorithm 1, choose ν, γ, ak, bk such that

δ
def
= β − α > 0. (17)

Then each bounded sequence {Yk}k∈N satisfies

(i) {Yk}k∈N has finite length, i.e.
∑
k∈N ||Yk − Yk−1|| < +∞;

(ii) There exists a critical point Y ? ∈ crit(Φ) such that limk→∞ Yk = Y ?.
(iii) If Φ has the KL property at a global minimizer Y ?, then starting sufficiently close from Y ?,

any sequence {Yk}k∈N converges to a global minimum of Φ and satisfies (i).

The proof of the above theorem can be found in the supplementary material. We also refer to (Liang
et al., 2016) and the reference therein for more results on non-convex proximal gradient method.

2.2 Local linear convergence

Now we turn to the local perspective and present a local linear convergence analysis for Algorithm
1. For the constraint set Y define in (8), consider the following decomposition of it

YL
def
=
{
Y =

(
S
L

)
: rank(L) ≤ r

}
and YS

def
=
{
Y =

(
S
L

)
: S is α-sparse

}
.

For the sequence Yk generated by (13), suppose Yk =
(
Sk
Lk

)
. It is immediate that rank(Lk) ≤ r

holds for all k. For Sk, though it is always α-sparse, the locations of non-zero elements change
along the course of iteration. In the following, we first show that after a finite number of iterations
the locations of non-zero elements of Sk stop changing, that is Sk will have the same support as that
of S? to which Sk converges, and then Algorithm 1 enters a linear convergence regime.

Support identification of Sk. Let Y ? =
(
S?

L?

)
be a critical point of (12) to which Yk converges.

Let S be the subspace extended by the support of S?. Clearly, S? ∈ S and we have the result below
concerning the relation between Sk and S.

Theorem 2.4 (Support identification). For Algorithm 1, suppose Theorem 2.3 holds. Then Yk
converges to a critical point Y ? of (12). For all k large enough, we have Sk ∈ S.

Let S? be the point that Sk converges to, the above result simply means that after finite number of
iterations, supp(Sk) = supp(S?) holds for all k large enough.

5



Local linear convergence. Given a critical point Y ?, let X? = PX (Y ?), we have

X? ∈ X and S? ∈ S, L? ∈ YL.

Note that the first two sets, X ,S are (affine) subspaces, hence smooth, and YL is the set of fixed-rank
matrices which isC2-smooth manifold (Lee, 2003). To derive the local linear rate, we need to utilize
the smoothness of these sets. LetM be a C2-smooth manifold and let TM(X) the tangent space
ofM at X ∈ M, we have the following lemma which is crucial for our local linear convergence
analysis.

Lemma 2.5 ((Liang et al., 2014, Lemma 5.1)). LetM be a C2-smooth manifold around X . Then
for any X ′ ∈ M ∩ N , where N is a neighbourhood of X , the projection operator PM(X ′) is
uniquely valued and C1 around X , and thus X ′ − X = PTM(X)(X

′ − X) + o(||X ′ − X||). If
moreover,M = X + TM(X) is an affine subspace, then X ′ −X = PTM(X)(X

′ −X).

Denote the tangent spaces of X ,Y at X?, Y ? as TX
?

X and TY
?

Y , respectively. We refer to the sup-
plementary material for detailed expressions of these tangent spaces. Denote PTX?X

and PTY ?Y
the

projections onto the tangent spaces. Define the matrix P def
= PTY ?Y

(
(1− γ)Id + γPTX?X

)
PTY ?Y

, and

Dk
def
=

(
Yk − Y ?
Yk−1 − Y ?

)
and Q def

=

[
(1 + a)P −aP

Id 0

]
with a ∈ [0, 1].

Denote ρP , ρQ the spectral radiuses of P,Q, respectively.

Theorem 2.6 (Local linear convergence). For Algorithm 1, suppose Theorem 2.4 holds. Then Yk
converges to a critical point Y ? of (12). Suppose bk = ak ≡ a ∈ [0, 1], there exists a K > 0 such
that for all k ≥ K,

Dk+1 = QDk + o(||Dk||).
Moreover, if ρP < 1, then so is ρQ , and for all k large enough we have ||Yk − Y ?|| = O(ρk

Q
).

Remark 2.7.

• If TX
?

X ∩ TY ?Y = {0}, then it can be shown that ρP < 1.
• Given ρP , ρQ can be expressed explicitly in terms of a and ρP . For the case that ak → a ∈ [0, 1]

and bk → b ∈ [0, 1], we refer to (Liang, 2016, Chapter 6) for detailed discussion on the local
linear convergence analysis.

An numerical illustration on our theoretical rate estimation and practical observation is provided in
the supplementary material Section C-Figure 13.
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Figure 1: Phase transition diagram for RPCA F, iEALM, and APG with respect to rank and error sparsity.
Here, ρr = rank(L)/m and α is the sparsity measure. We have (ρr, α) ∈ (0.025, 1]× (0, 1) with r = 5 : 5 :
200 and α = linspace(0, 0.99, 40). We perform 5 runs of each algorithm.

3 Numerical experiments

In this section, we extensively tested our best-pair formulation on both real and synthetic data against
a vast genre of PCP algorithms. The first set of algorithms that we tested against, e.g. iEALM
and APG, determine the target rank and sparsity robustly from the given set of hyperparameters.
On the other hand, for the second set of algorithms, e.g. RPCA gradient descent (RPCA GD),
Go decomposition (GoDec), and RPCA nonconvex feasibility (RPCA NCF), the target rank and
sparsity are user-inferred. Although our accelerated proximal gradient algorithm belongs to the
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second class, to show its effectiveness, we compare it with both classes of state-of-the-art robust PCP
algorithms (see Table 2 in the supplementary material) on several computer vision applications—
removal of shadows and specularities from face images, Background estimation or tracking from
video sequences, and inlier detection from a grossly corrupted dataset (see Section A.3.1 in the
supplementary material)2.

Results on synthetic data. The primary goal of these set of experiments is to understand the
behavior of our proposed method on some well-understood data and to test against some state-of-
the-art algorithms. To construct our test matrix A, for these experiments, we used the idea proposed
by Wright et al. (Wright et al., 2009). First, we generate the low-rank matrix, L, as a product of
two independent full-rank matrices of size m × r with r < m such that elements are independent
and identically distributed (i.i.d.) and sampled from a normal distribution—N (0, 1). We generate
the sparse matrix, S, such that its elements are chosen from the interval [−500, 500]. We create the
sparse support set by using the operator (2). Finally, we write A as A = L + S. We fix m = 200
and define ρr = rank(L)/m, where rank(L) varies. We choose the sparsity level α ∈ (0, 1).

Phase transition experiments. For each pair of (ρr, α), we apply iEALM, RPCA NCF, and our
algorithm to recover the pair (L̂, Ŝ). For iEALM, we set λ = 1/

√
m and use µ = 1.25/‖A‖2 and

ρ = 1.5, where ‖A‖2 is the spectral norm (maximum singular value) of A. For a given ε > 0,
if the recovered matrix pair (L̂, Ŝ), satisfies the relative error ‖A−L̂−Ŝ‖F‖A‖F < ε then we consider
the construction is viable. In Figure 1, we produce the phase transition diagrams to show the
fraction of perfect recovery of A, where white denotes success and black denotes failure. We run
the experiments for 5 times and plot the results. The success of iEALM is approximately below the
line ρr+α ≈ 0.25.On the other hand, we note that the performance of our best pair RPCA is almost
similar to that of (Dutta et al., 2018a), when the sparsity level α is small and both approaches can
efficiently provide a feasible reconstruction for any ρr in that case. We also note that for low sparsity
level, iEALM can only provide a feasible reconstruction for ρr ≤ 0.25. Due to their robustness to
any low-rank structure when α is low, RPCA NCF and best pair RPCA can be proved to be very
effective in many real-world applications. In many real-world problems, involving the video/image
data can ideally have any inherent low-rank structure and are generally corrupted by very sparse
outliers of arbitrary large magnitudes. In those instances, RPCA NCF and our best pair RPCA could
be very useful. We show more justification in the later section.

Root mean square error measure. To validate our performance against RPCA GD of Yi et al. (Yi
et al., 2016), we use a different metric—root mean square error (RMSE). Since RPCA GD does
not explicitly recover a sparse matrix, S, it is unjustified to test it against the same relative error.
Therefore, for the true low-rank,L, and a low-rank recovery, L̂, we use the metric ‖L−L̂‖F/√mn as
the measure of RMSE. From Figure 2, we can conclude that our best pair RPCA has less RMSE
compare to that of RPCA GD. Moreover, the RMSE remains unaltered as the cardinality of support
set, Ω increases. Also, see Figure 9 in the Appendix.

Removal of shadows and specularities. Set of images of an object under unknown pose and
arbitrary lighting conditions, form a convex cone in the space of all possible images which may
have unbounded dimension (Basri and Jacobs, 2003; Belhumeur and Kriegman, 1998). However,
the images under distant, isotropic lighting can be approximated by a 9-dimensional linear subspace
which is popularly referred to as the harmonic plane. We used three subjects B11,B12, and B13
from the Extended Yale Face Database (Georghiades et al., 2001) for our simulations. We
used 63 downsampled images of resolution of 120 × 160 of each subject. For APG and iEALM,
we set the parameters the same as in the previous section. For RPCA GD, RPCA NCF, and our
method, we set target rank r = 9 and sparsity level to 0.1. The qualitative analysis on the recovered
images from Figure 3 shows while RPCA GD recovers patchy and granular face images, our best
pair reformulation provides comparable reconstruction to that of iEALM, APG, and RPCA NCF.

2In all experiments, we use the approximate projection (Dutta et al., 2018a; Yi et al., 2016; Zhang and Yang,
2018) onto Y as the exact one is expensive:

Tα[S]
def
= {PΩα(S) ∈ Rm×n : (i, j) ∈ Ωα if |Sij | ≥ |S(αn)

(i,.) | and |Sij | ≥ |S(αm)

(.,j) |}.

If the sparsity constraint was defined only along rowsc (or only columns), the exact projection would be cheap.
However, the approximate projection produces better results, thus we stick with it.
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Figure 2: RMSE to compare between RPCA GD and best-pair RPCA with respect to rank and error sparsity.
We set ρr = rank(L)/m and α is the sparsity measure. We have (ρr, α) ∈ (0.025, 1] × (0, 1) with r = 5 :
5 : 200 and α = linspace(0, 0.99, 40).

Original RPCA NCF iEALM APG RPCA GD Best Pair RPCA
(Ours)

RPCA NCF
sparse 

iEALM sparse APG sparse RPCA GD
sparse

Best Pair RPCA
sparse 

B1
1

B1
2

B1
3

Figure 3: Shadow and specularities removal from face images captured under varying illumination and camera
position. Our feasibility approach provides comparable reconstruction to that of iEALM, APG, and RPCA NCF.

Background estimation from video sequences. Background estimation or moving object track-
ing (Bouwmans et al., 2017; Dutta, 2016; Bouwmans et al., 2016; Dutta et al., 2017a; Bouwmans,
2014; Dutta et al., 2017b, 2018b; Dutta and Richtárik, 2019; Dutta and Li, 2017) is considered as
one of the classic problems in computer vision and is used as a crucial component in human activity
recognition, tracking, and video analysis from surveillance cameras. When the video is captured by
a static camera, minimizing the rank of the matrix A ∈ Rm×n, that concatenates n video frames
(after converting them into vectors) represents the structure of the linear subspace, L, that contains
the background and an error, S, that emphasizes the foreground components. However, the exact
desired rank is often tuned empirically, as the ideal rank-one background is often unrealistic as the
changing illumination, occluded foreground/background objects, reflection, and noise are typically
also a part of the video frames. Based on the above observation, we note that the problem can be cast
typically as (4). However, as we explained in some cases, when the target rank and the sparsity level
is user-inferred hyperparameters, one might use a different approach as in (Zhou and Tao, 2011;
Dutta et al., 2018a; Yi et al., 2016) as well. Additionally, there might be missing/unobserved pixels
in the video and that makes the problem more complex and only a few methods, such as RPCA
NCF, GRASTA (He et al., 2012), RPCA GD remedy to that. Therefore, we tested our best pair
RPCA to a wide range of methods. In our experiments, we use two different video sequences: (i) the
Basic sequence from Stuttgart synthetic dataset (Brutzer et al., 2011), (ii) the waving tree se-
quence (Toyama et al., 1999). We extensively use the Stuttgart video sequence as it is a challenging
sequence that comprises both static and dynamic foreground objects and varying illumination in

Original
BG+FG 

Best Pair RPCA
(Ours)

RPCA NCF RPCA GD GoDec iEALM APG Best Pair RPCA
sparse

RPCA NCF
sparse

RPCA GD
sparse

GoDec
sparse

iEALM
sparse

APG
sparse

Figure 4: Background estimation from video sequences. Except Best pair RPCA, RPCA NCF, and GoDEc all
other methods struggle to remove the static foreground object.
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the background. Additionally, it comes with foreground ground truth for each frame. For iEALM
and APG, we set the parameters the same as in the previous sections. For Best pair RPCA, RPCA
GD, RPCA NCF, and GoDec, we set r = 2, target sparsity 10% and additionally, for GoDec, we
set q = 2. For GRATSA, we set the parameters the same as those mentioned in the authors web-
site (gra, 2012). The qualitative analysis on the background and foreground recovered on both, full
observation (in Figure 4) and partial observation (in Figure 5), suggest that our method recovers a
visually better quality background and foreground compare to the other methods. Note that, RPCA
GD recovers a fragmentary foreground with more false positives compare to our method; moreover,
RPCA GD, GRASTA, iEALM, and APG cannot remove the static foreground object. We provide
a detailed quantitative evaluation of our best pair RPCA with respect to the ε-proximity metric–
dε(X,Y ) as in (Dutta et al., 2018a) and the mean structural similarity index measure (SSIM) by
(Wang et al., 2004) in recovering the foreground objects in Figures 10 and 11 in Appendix.

Original
BG+FG 

Best Pair RPCA
(Ours)

RPCA NCF RPCA GD GRASTA Best Pair RPCA
sparse

RPCA NCF
sparse

RPCA GD
sparse

GRASTA
sparse

Figure 5: Background estimation on subsampled Stuttgart Basic video sequence. We use Ω = 0.9(m.n) and
Ω = 0.8(m.n), respectively.
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Supplementary Material
The organization of this supplementary material is: extra supporting numerical experiments are
reported in Section A; Proofs for the global convergence result of Algorithm 1 is provided in Section
B; The proof of local linear convergence and a numerical example are provided in Section C. Lastly,
we provide a comprehensive table to list all baselines we compare to in Section D.

A Extra Experiments

In this section, we empirically study convergence properties of Algorithm 1 on synthetic, well-
understood data. In particular, we examine its sensitivity to user-specified parameters γ, ak, bk,
target sparsity level α, target rank r and lastly the sensitivity to initialization. Moreover, we provide
extra phase transition diagrams and both quantitative and qualitative results on the inlier detection
problem.

A.1 Sensitivity to the choice of γ, ak, bk

In this experiment, we compare different choices of algorithm parameters γ, ak, bk on instances
of (9) with various target sparsity level α and target rank r. In each experiment, we make sure that
the solution exists; we generate random matrices L̃, S̃ (with independent entries N (0, 1)), project
them onto low rank and sparse constraint set respectively to obtain L̂, Ŝ and set A = L̂ + Ŝ. For
simplicity we consider only ak = bk = a and m = n = 100. Figure 6 shows the result. We see that
parameter choice γ = 1.1, ak = bk = 1

2 is the most reliable.

Figure 6: Sensitivity of Algrithm 1 with respect to choice of γ, ak = bk.
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A.2 Sensitivity to the choice of r, α

In this experiment, we examine how sensitive is Algorithm 1 on the correct choice of the target
sparsity level α and the target rank r.

In each experiment, we generate random matrices L̃, S̃ (with independent entries N (0, 1)), project
them onto r̂-low rank and α̂-sparse constraint set respectively to obtain L̂, Ŝ and set A = L̂ + Ŝ.
Then, we run Algorithm 1 with various choices of r, α and report the results. For simplicity we
consider only γ = 1.1, ak = bk = 1

2 (from the previous experiment) and m = n = 100. Figure 7
shows the result. We can see that if sparsity level is underestimated, the method converges very
slowly. Moreover, the method is more sensitive to the correct choices of target sparsity than target
rank. The last take-away from this experiment is that over-estimation of target parameters usually
leads to slightly slower convergence.

Figure 7: Sensitivity of Algorithm 1 with respect to the correct choice of target rank and target
sparsity.

A.3 Sensitivity to the choice of the starting point

In the last experiment, we examine how the starting point influences the convergence rate. For each
problem instance, we perform 50 independent runs of Algorithm 1 and report the best, worst and
median performance.

For simplicity, we consider only problems with known target rank and sparsity – we generate random
matrices L̃, S̃ (with independent entries N (0, 1)), project them onto low rank and sparse constraint
set respectively to obtain L̂, Ŝ and set A = L̂ + Ŝ. Further, we set ak = bk = 0.5, γ = 1.1 and
m = n = 100. Figure 8 shows the result. We can see that the convergence speed of Algorithm 1 is,
in most cases, not influenced significantly by the starting point. Thus, the non-convex nature of the
problem is surprisingly not causing any issues. Lastly, the convergence rate of Algorithm 1 is faster
for small values of α, r, which is often the most interesting case in terms of the practical application.
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Figure 8: Sensitivity of Algorithm 1 with respect to the starting point.
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Figure 9: Phase transition diagram to compare between RPCA GD and best-pair RPCA with respect to rank
and error sparsity. We set ρr = rank(L)/m and α is the sparsity measure. We have (ρr, α) ∈ (0.025, 1] ×
(0, 1) with r = 5 : 5 : 200 and α = linspace(0, 0.99, 40).

A.3.1 Inlier detection

Historically, PCA and RPCA are used in detecting the inliers and the outliers from a composite
dataset. We infused 400 random, grayscale, downsampled (20× 20 pixels) natural images from the
BACKGROUND/Google folder of the Caltech101 database (Fei-Fei et al., 2007) with the Yale
Extended Face Database to construct the data set. The inliers are the grayscale images of
faces (of the same resolution) under different illuminations while the 400 random natural images
serve as outliers. The goal is to consider a low-dimensional model and to project the inliers to a 9-
dimensional linear subspace where the images of the same face lie. Goes et al. in (Goes et al., 2014)
designed seven algorithms to explicitly find a low-rank subspace. To this end, Goes et al. used the
classical SGD, an incremental approach, and mirror descent algorithms to find the 9-dimensional
subspace. However, we split the dataset, A, into a 9-dimensional low-rank subspace L and expect
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Figure 10: Quantitative comparison between different algorithms on Stuttgart Basic sequence. We
compare the recovered foreground by different methods with respect to the foreground GT available
for each frame on two different metrics: ε-proximity metric–dε(X,Y ) as in (Dutta et al., 2018a) and
structural similarity index measure by (Wang et al., 2004). In recovering the foreground objects, our
best pair RPCA is as robust as the other baseline methods with respect to both metrics.
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Figure 11: Quantitative comparison of foreground recovered by best pair RPCA, RPCA GD, and RPCA
NCFF Stuttgart Basic sequence, frame size 144 × 176 with observable entries: (a) |Ω| = 0.9(m.n), (b)
|Ω| = 0.8(m.n), (c) |Ω| = 0.7(m.n), (d) |Ω| = 0.6(m.n), (e) |Ω| = 0.5(m.n), and (f) |Ω| = 0.4(m.n). The
performance of RPCA GD drops significantly as |Ω| decreases. In contrast, the performance of our best pair
RPCA and RPCA NCF stay stable irrespective of the size of |Ω|.

the outliers to be in the sparse set, S. Once we find L, we find the basis of L via orthogonalization
and project the faces on it. In Figure 12, we show the qualitative results of our experiments3.

As proposed in (Goes et al., 2014), we use the normalized error term ‖PL−PL∗‖F /3
√

2, where L is
subspace fitted by the PCA to the set of inliers and L∗ be the subspace fitted by different algorithms.
Note that, the metric is expected to lie between 0 and 1 where the smaller is the better. We refer to
Table 1 for our quantitative results.

3The codes and datasets for experiments in Section A.3.1 are obtained from
https://github.com/jwgoes/RSPCA
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Original SGD R-SGD 1 R-SGD 2 Inc R-Inc MD R-MD Best Pair 
RPCA 

RPCA NCF
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Figure 12: Inliers and outliers detection. We project the face images (inliers) to 9 dimensional subspaces
found by different methods.

Metric SGD R-SGD1 R-SGD2 Inc R-Inc MD R-MD RPCA-F Best pair SVT
‖PL−PL∗‖F

3
√

2
0.7 0.86 4.66 0.77 0.72 0.67 0.67 0.78 0.76 0.79

Table 1: Quantitative performance of different algorithms in inlier detection experiment. Except R-SGD2 all
methods are competitive.

B Proof of the global convergence

For convenience, define ∆k
def
= ||Yk − Yk−1||.

Lemma B.1. For the update of Yk+1 in (13), given any k ∈ N, define

Gk+1
def
= 1

γ
(Za,k − Yk+1)−∇F(Zb,k) +∇F(Yk+1).

Then, we have Gk+1 ∈ ∂Φ(Yk+1), and

||Gk+1|| ≤
(

1
γ

+ L
)
∆k+1 + (ak

γ
+ bkL)∆k. (18)

Proof. From the definition of proximity operator and the update of Yk+1 (13), we have Za,k −
γ∇F(Zb,k)− Yk+1 ∈ γ∂R(Yk+1). Adding γ∇F(Yk+1) to both sides, we obtain

Gk+1 =
Za,k − γ∇F(Zb,k)− Yk+1 + γ∇F(Yk+1)

γ
∈ ∂Φ(Yk+1).

Applying further the triangle inequality together with the Lipschitz continuity of∇F , we get

||Gk+1|| = || 1γ (Za,k − Yk+1)−∇F(Zb,k) +∇F(Yk+1)||

≤ 1
γ
||Za,k − Yk+1||+ L||Zb,k − Yk+1|| ≤ 1

γ
(∆k+1 + ak∆k) + L(∆k+1 + bk∆k),

which concludes the proof.

Lemma B.2. For Algorithm 1, given the parameters γ, ak, bk, the following inequality holds:

Φ(Yk+1) + β∆2
k+1 ≤ Φ(Yk) + α∆2

k. (19)
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Proof. Define the function

Lk(Y )
def
= γR(Y ) + 1

2
||Y − Za,k||2 + γ〈Y, ∇F(Zb,k)〉.

It can be shown that the update of Yk+1 in (13) is equivalent to

Yk+1 ∈ argminY ∈RnLk(Y ), (20)

which means that Lk(Yk+1) ≤ Lk(Yk), which means

R(Yk+1)+ 1
2γ
||Yk+1−Za,k||2+〈Yk+1, ∇F(Zb,k)〉 ≤ R(Yk)+ 1

2γ
||Yk−Za,k||2+〈Yk, ∇F(Zb,k)〉.

Therefore, we get

R(Yk) ≥ R(Yk+1) + 1
2γ
||Yk+1 − Za,k||2 + 〈Yk+1 − Yk, ∇F(Zb,k)〉 − 1

2γ
||Yk − Za,k||2

= R(Yk+1) + 1
2γ
||Yk+1 − Yk + Yk − Za,k||2 + 〈Yk+1 − Yk, ∇F(Zb,k)〉 − 1

2γ
||Yk − Za,k||2

= R(Yk+1) + 1
2γ

∆2
k+1 + 〈Yk+1 − Yk, ∇F(Zb,k)〉 − ak

γ
〈Yk − Yk+1, Yk − Yk−1〉

= R(Yk+1) + 〈Yk+1 − Yk, ∇F(Yk)〉+ 1
2γ

∆2
k+1

− ak
γ
〈Yk − Yk+1, Yk − Yk−1〉+ 〈Yk+1 − Yk, ∇F(Zb,k)−∇F(Yk)〉.

(21)
Since∇F is L-Lipschitz, then

〈∇F(Yk), Yk+1 − Yk〉 ≥ F(Yk+1)−F(Yk)− L
2

∆2
k+1.

For the inner product 〈Yk − Yk+1, Yk − Yk−1〉, applying the Pythagorean relation 2〈c1 − c2, c1 −
c3〉 = ||c1 − c2||2 + ||c1 − c3||2 − ||c2 − c3||2, we get

〈Yk − Yk+1, Yk − Yk−1〉 = 1
2

(
||Yk − Yk+1||2 + ||Yk − Yk−1||2 − ||Yk+1 − Yk−1||2

)
≤ 1

2

(
||Yk − Yk+1||2 + ||Yk − Yk−1||2

)
.

(22)

Using further Young’s inequality with ν > 0 we obtain

〈Yk+1 − Yk, ∇F(Zb,k)−∇F(Yk)〉 ≥ −
(
ν
2

∆2
k+1 + 1

2ν
||∇F(Zb,k)−∇F(Yk)||2

)
≥ −
(
ν
2

∆2
k+1 + b2kL

2

2ν
∆2
k

)
.

(23)

Combining the above 3 inequalities with (21) yields

R(Yk) ≥ R(Yk+1) + F(Yk+1)−F(Yk)− L
2

∆2
k+1 + 1

2γ
∆2
k+1

− ak
2γ
||Yk − Yk+1||2 − ak

2γ
||Yk − Yk−1||2 − ν

2
∆2
k+1 −

b2kL
2

2ν
∆2
k,

(24)

which leads to

Φ(Yk+1) + 1− γL− ak − ν
2γ

∆2
k+1 ≤ Φ(Yk) + γb2kL

2 + νak
2νγ

∆2
k.

Owing to the definition of β and α we conclude the proof.

Define H the product space H def
= Rn × Rn and Zk = (Yk, Yk−1) ∈ H. Then given Zk, define the

function
Ψ(Zk)

def
= Φ(Yk) + α∆2

k,

which is is a KL function if Φ is. Denote CYk , CZk the set of cluster points of sequences {Yk}k∈N
and {Zk}k∈N respectively, and crit(Ψ) = {Z = (Y, Y ) ∈ H : Y ∈ crit(Φ)}.
Lemma B.3. For Algorithm 1, choose ν, γ, ak, bk such that (17) holds. If Φ is bounded from below,
then

(i)
∑
k∈N ∆2

k < +∞;
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(ii) The sequence Ψ(Zk) is monotonically decreasing and convergent;
(iii) The sequence Φ(Yk) is convergent.

Proof. Define δ = β − α > 0, from Lemma B.2, we have

δ∆2
k+1 ≤

(
Φ(Yk)− Φ(Yk+1)

)
+ α(∆2

k −∆2
k+1).

Let Y−1 = Y0 and the above inequality over k:

δ
∑

k∈N ∆2
k+1 ≤

∑
k∈N
(
Φ(Yk)− Φ(Yk+1)

)
+
∑

k∈Nα(∆2
k −∆2

k+1)

≤ Φ(Y0) + α
∑

k∈N (∆2
k −∆2

k+1) = Φ(Y0) + α∆2
0 = Φ(Y0),

which means, as Φ(Y0) is bounded,∑
k∈N∆2

k+1 ≤
Φ(Y0)
δ

< +∞.

From Lemma B.2, by pairing terms on both sides of (19), we get

Ψ(Zk+1) + (β − α)∆2
k+1 ≤ Ψ(Zk).

Since we assume β − α > 0, hence Ψ(Zk) is monotonically non-increasing. The convergence of
Φ(Yk) is straightforward.

Lemma B.4. For Algorithm 1, choose ν, γ, ak, bk such that (17) holds. If Φ is bounded from below
and {Yk}k∈N is bounded, then Yk converges to a critical point of Φ.

Proof. Since {Yk}k∈N is bounded, there exists a subsequence {Ykj}k∈N and cluster point Y such
that Ykj → Y as j →∞. Next we show that Φ(Ykj )→ Φ(Y ) and that Y is a critical point of Φ.

Since R is lsc, then lim infj→∞R(Ykj ) ≥ R(Y ). From (20), we have Lkj−1(Ykj ) ≤ Lkj−1(Y )
and thus

R(Y ) ≥ R(Ykj ) + 1
2γ
||Ykj − Ukj−1||2 + 〈Ykj − Y , ∇F(Vkj−1)〉 − 1

2γ
||Y − Ukj−1||2

= R(Ykj ) + 1
2γ

(||Ykj − Y ||
2

+ 2〈Ykj − Y , Y − Ukj−1〉) + 〈Ykj − Y , ∇F(Vkj−1)〉.

Taking the limit of the above inequality and using ∆2
k → 0, Ykj → Y , we get

lim supj→∞R(Ykj ) ≤ R(Y ). As a result, limk→∞R(Ykj ) = R(Y ). Since F is continuous,
then F(Ykj )→ F(Y ), hence Φ(Ykj )→ Φ(Y ).

Furthermore, owing to Lemma B.1, Gkj ∈ ∂Φ(Ykj ), and (i) of Lemma B.3 we have Gkj → 0 as
k →∞. Therefore, as j →∞, we have

Gkj ∈ ∂Φ(Ykj ), (Ykj , Gkj )→ (Y , 0) and Φ(Ykj )→ Φ(Y ).

Hence 0 ∈ ∂Φ(Y ), i.e. Y is a critical point.

Proof of Theorem 2.3. Putting together the above lemmas, we draw the following useful conclu-
sions:

(C.1) Denote δ = β − α, then Ψ(Zk+1) + δ∆2
k+1 ≤ Ψ(Zk);

(C.2) Define

Wk
def
=

(
Gk + 2α(Yk − Yk−1)

2α(Yk−1 − Yk)

)
,

then we have Wk ∈ ∂Ψ(Zk). Owing to Lemma B.1, there exists a σ > 0 such that
||Wk|| ≤ σ(∆k + ∆k−1);

(C.3) if Ykj is a subsequence such that Ykj → Y , then Ψ(Zk)→ Ψ(Z) where Z = (Y , Y ).
(C.4) CZk ⊆ crit(Ψ);
(C.5) limk→∞ dist(Zk, CZk) = 0;
(C.6) CZk is non-empty, compact and connected;
(C.7) Ψ is finite and constant on CZk .
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Next we prove the claims of Theorem 2.3.

(i) Consider a critical point of Φ, Y ∈ crit(Φ), such that Z = (Y , Y ) ∈ CZk . Then owing to
(C.3), we have Ψ(Zk)→ Ψ(Z).

Suppose there existsK such that Ψ(ZK) = Ψ(Z). Then, the descent property (C.1) implies
that Ψ(Zk) = Ψ(Z) holds for all k ≥ K. Thus, Zk is constant for k ≥ K, hence has finite
length.

On the other hand, suppose that ψk
def
= Ψ(Zk) − Ψ(Z) > 0. Owing to (C.6), (C.7) and

Definition 2.2, the KL property of Ψ implies that there exist ε, η and a concave function ϕ, and

U def
=
{
S ∈ H : dist(S, CZk) < ε

}∩ [Ψ(Z) < Ψ(S) < Ψ(Z) + η
]
, (25)

such that for all Z ∈ U :

ϕ′
(
Ψ(z)−Ψ(Z)

)
dist

(
0, ∂Ψ(z)

)
≥ 1. (26)

Let k1 ∈ N be such that Ψ(Zk) < Ψ(Z) + η holds for all k ≥ k1. Owing to (C.5), there exists
another k2 ∈ N such that dist(Zk, CZk) < ε holds for all k ≥ k2. Let K = max{k1, k2}.
Then Zk ∈ U holds for all k ≥ K. Furthermore using (26), we have for k ≥ K

ϕ′(ψk)dist
(
0, ∂Ψ(Zk)

)
≥ 1.

Note that since ϕ is concave, ϕ′ is decreasing. As Ψ(Zk) is decreasing too, we have

ϕ(ψk)− ϕ(ψk+1) ≥ ϕ′(ψk)
(
Ψ(Zk)−Ψ(Zk+1)

)
≥ Ψ(Zk)−Ψ(Zk+1)

dist(0, ∂Ψ(Zk))
.

From (C.1), since dist(0, ∂Ψ(Zk)) ≤ ||wk||, we get

ϕ(ψk)− ϕ(ψk+1) ≥ Ψ(Zk)−Ψ(Zk+1)
||wk|| ≥ Ψ(Zk)−Ψ(Zk+1)

σ(∆k + ∆k−1)
.

Moreover, (C.2) yields Ψ(Zk)−Ψ(Zk+1) ≥ δ∆2
k+1 and thus

ϕ(ψk)− ϕ(ψk+1) ≥ δ∆2
k+1

σ(∆k + ∆k−1)
,

which yields
∆2
k+1 ≤

(σ
δ

(ϕ(ψk)− ϕ(ψk+1))
)
(∆k + ∆k−1). (27)

Taking the square root of both sides and applying Young’s inequality we further obtain

∆k+1 ≤ 1
2

(∆k + ∆k−1) + 2σ
δ

(
ϕ(ψk)− ϕ(ψk+1)

)
. (28)

Summing up both sides over k, and using x0 = x−1, we get

`
def
=
∑

k∈N∆k ≤ ∆1 + 2σ
δ
ϕ(ψ1) < +∞,

which concludes the finite length property of Yk.
(ii) Then the convergence of the sequence follows from the fact that {Yk}k∈N is a Cauchy sequence,

hence convergent. Owing to Lemma B.4, there exists a critical point Y ? ∈ crit(Φ) such
that limk→∞ Yk = Y ?.

(iii) We now turn to prove local convergence to a global minimizer. Note that if Y ? is a global
minimizer of Φ, then Z? is a global minimizer of Ψ. Let r > ρ > 0 such that Br(Z?) ⊂ U and
η < δ(r − ρ)2. Suppose that the initial point Y0 is chosen such that following conditions hold,

Ψ(Z?) ≤ Ψ(Z0) < Ψ(Z?) + η (29)

||Y0 − Y ?||+ `(s− 1) + 2
√

Ψ(Z0)−Ψ(Z?)
δ

+ σ
δ
ϕ(ψ0) < ρ. (30)

The descent property (C.1) of Ψ together with (29) imply that for any k ∈ N, Ψ(Z?) ≤
Ψ(Zk+1) ≤ Ψ(Zk) ≤ Ψ(Z0) < Ψ(Z?) + η, and

||Yk+1 − Yk|| ≤
√

Ψ(Zk)−Ψ(Zk+1)
δ

≤
√

Ψ(Zk)−Ψ(Z?)
δ

. (31)
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Therefore, given any k ∈ N, if we have Yk ∈ Bρ(Y ?), then

||Yk+1 − Y ?|| ≤ ||Yk − Y ?||+ ||Yk+1 − Yk|| ≤ ||Yk − Y ?||+
√

Ψ(Zk)−Ψ(Z?)
δ

≤ ρ+ (r − ρ) = r,

(32)

which means that Yk+1 ∈ Br(Y ?).
For any k ∈ N, define the following partial sum pk

def
=
∑k−1
j=k−2

∑j
i=1 ∆i. Note that pk = 0

for k = 1, and limk→+∞ pk = `. Next we prove the following claims through induction: for
k ∈ N

Yk ∈ Bρ(Y ?) (33)∑k

j=1∆j+1 + ∆k+1 ≤ ∆1 + pk + σ
δ

(
ϕ(ψ1)− ϕ(ψk+1)

)
. (34)

From (31) we have

||Y1 − Y0|| ≤
√

Ψ(Z0)−Ψ(Z?)
δ

. (35)

Applying the triangle inequality we then obtain

||Y1 − Y ?|| ≤ ||Y0 − Y ?||+ ||Y1 − Y0|| ≤ ||Y0 − Y ?||+
√

Ψ(Z0)−Ψ(Z?)
δ

< ρ,

which means Y1 ∈ Bρ(Y ?). Now, taking κ = 1 in (28) yields, for any k ∈ N,

2∆k+1 ≤ (∆k + ∆k−1) + σ
δ

(ϕ(ψk)− ϕ(ψk+1)). (36)

Let k = 1. Since Y0 = Y−1, we have
2∆2 ≤ ∆1 + σ

δ
(ϕ(ψ1)− ϕ(ψ2)).

Therefore, (33) and (34) hold for k = 1.
Now assume that they hold for some k > 1. Using the triangle inequality and (34),

||Yk+1 − Y ?|| ≤ ||Y0 − Y ?||+ ∆1 +
∑k

j=1∆j+1

≤ ||Y0 − Y ?||+ 2∆1 + pk + σ
δ

(ϕ(ψ1)− ϕ(ψk+1))

≤ ||Y0 − Y ?||+ 2∆1 + `+ σ
δ

(ϕ(ψ1)− ϕ(ψk+1))

(35) ≤ ||Y0 − Y ?||+ 2

√
Ψ(Z0)−Ψ(Z?)

δ
+ `+ σ

δ
(ϕ(ψ1)− ϕ(ψk+1)).

As ϕ(ψ) ≥ 0 and ϕ′(ψ) > 0 for ψ ∈]0, η[, and in view of (30), we arrive at

||Yk+1 − Y ?|| ≤ ||Y0 − Y ?||+ 2

√
Ψ(Z0)−Ψ(Z?)

δ
+ `+ σ

δ
ϕ(ψ0) < ρ

whence we deduce that (33) holds at k + 1. Now, taking (36) at k + 1 gives
2∆k+2 ≤ (∆k+1 + ∆k) + σ

δ
(ϕ(ψk+1)− ϕ(ψk+2))

≤ ∆k+1 + (∆k + ∆k−1) + σ
δ

(ϕ(ψk+1)− ϕ(ψ(k+2)).
(37)

Adding both sides of (37) and (34) we get∑k+1

j=1∆j+1 + ∆k+2 ≤ ∆1 + pk + (∆k + ∆k−1) + σ
δ

(ϕ(ψ1)− ϕ(ψk+2))

= ∆1 + pk+1 + σ
δ

(ϕ(ψ1)− ϕ(ψk+2)),

meaning that (34) holds at k + 1. This concludes the induction proof.
In summary, the above result shows that if we start close enough from Y ? (so that (29)-

(30) hold), then the sequence {Yk}k∈N will remain in the neighbourhood Bρ(Y ?) and thus
converges to a critical point Y owing to Lemma B.4. Moreover, Ψ(Zk)→ Ψ(Z) ≥ Ψ(Z?) by
virtue of (C.3). Now we need to show that Ψ(Z) = Ψ(Z?). Suppose that Ψ(Z) > Ψ(Z?). As
Ψ has the KL property at Z?, we have

ϕ′
(
Ψ(Z)−Ψ(Z?)

)
dist

(
0, ∂Ψ(Z)

)
≥ 1.

But this is impossible since ϕ′(s) > 0 for s ∈]0, η[, and dist
(
0, ∂Ψ(Z)

)
= 0 as Z is a critical

point. Hence we have Ψ(Z) = Ψ(Z?), which means Φ(Y ) = Φ(Y ?), i.e. the cluster point Y
is actually a global minimizer. This concludes the proof.
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C Proof of local linear convergence

Before presenting the proof for local linear convergence, in Figure 13 below we provide the compar-
ison of theoretical estimation and practical observation. The size of the problem is R32×32, which is
small as larger size will make the rate estimation very slow. It can be observed that our theoretical
rate estimation is very tight given that the red line and the black one are parallel to each other.

50 100 150 200

10 -4

100

Practical observation
Theoretical estimation

ak ≡ 0

20 40 60 80

10 -4

100

Practical observation
Theoretical estimation

ak ≡ a = 0.5

Figure 13: Local linear convergence of Algorithm 1.

Since we are in the non-convex setting, we need the prox-regularity of the non-convexity. A lower
semi-continuous function R is r-prox-regular at x̄ ∈ dom(R) for v̄ ∈ ∂R(x̄) if ∃r > 0 such that
R(x′) > R(x) + 〈v, x′ − x〉 − 1

2r ||x− x
′||2 ∀x, x′ near x̄,R(x) nearR(x̄) and v ∈ ∂R(x) near v̄.

To prove Theorem 2.4, we rely on a so-called partial smoothness concept. Let M ⊂ Rn be a
C2-smooth submanifold, let TM(x) the tangent space ofM at any point x ∈M.

Definition C.1. The function R : Rn → R ∪ {+∞} is C2-partly smooth at x̄ ∈ M relative toM
for v̄ ∈ ∂R(x̄) 6= ∅ ifM is a C2-submanifold around x̄, and

(i) (Smoothness): R restricted toM is C2 around x̄;
(ii) (Regularity): R is regular at all x ∈M near x̄ andR is r-prox-regular at x̄ for v̄;

(iii) (Sharpness): TM(x̄) = par(∂R(x))⊥;
(iv) (Continuity): The set-valued mapping ∂R is continuous at x̄ relative toM.

We denote the class of partly smooth functions at x relative to M for v as PSFx,v(M). Partial
smoothness was first introduced in (Lewis, 2003) and its directional version stated here is due to
(Lewis and Zhang, 2013; Drusvyatskiy and Lewis, 2013). Prox-regularity is sufficient to ensure
that the partly smooth submanifolds are locally unique (Lewis and Zhang, 2013, Corollary 4.12),
(Drusvyatskiy and Lewis, 2013, Lemma 2.3 and Proposition 10.12).

Proof of Theorem 2.4. First we have

• YL is a the set of fixed-rank matrices, hence it is partly smooth.
• Since S is a subspace, hence it is partly smooth at S? relative to any W ∈ (S)⊥.

Under the conditions of Theorem 2.3, there exists a critical point Y ? such that Yk → Y ? and
Φ(Yk)→ Φ(Y ?).

Convergence properties of {Yk}k∈N (Theorem 2.3) entails ||Za,k − Yk|| → 0 and ||Zb,k − Y ?|| → 0.
In turn,

dist
(
−∇F(x?), ∂R(Yk+1)

)
≤ 1
γ
||Za,k − Yk+1||+ ||Zb,k − Y ?|| → 0.

Altogether, this shows that the conditions of (Lewis and Zhang, 2013, Theorem 4.10) or (Drusvy-
atskiy and Lewis, 2013, Proposition 10.12) are fulfilled onR at Y ? for −∇F(Y ?), and the identifi-
cation result follows, that is

(Yr,k,Yα,k) ∈ YL × S
for all k large enough, and we conclude the proof.
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Tangent space TX
?

X Given X? ∈ X , the tangent space simply reads KX = 0. Let E be the
kernel of K, then we have the projection operator onto KX = 0 reads

PTX?X
= E(ETE)−1ET .

Tangent space of YL Let M = Mm,n(R) be the space of m× n matrices with the classical inner
product 〈A, B〉 = Trace(ATB). The set of matrices with fixed rank r,

YL =
{
X ∈M : rank(X) = r

}
,

is a smooth manifold around any matrix L ∈ YL. Given L?, with the help of the singular value
decomposition L = UΣV T , the tagent space at L to YL is

TL
?

YL =
{
H ∈M : uTi Hvj = 0, for all r < i ≤ m, r < j ≤ n

}
.

Let U = [u1, u2, · · · , um], V = [v1, v2, · · · , vn] and Σ be diagonal matrix with singular value
written in decreasing order.

Denote

L =
{
L ∈M : X = uTi vj , for all {i, j}1≤i≤m,1≤j≤n \ {i, j}r<i≤m,r<j≤n

}
,

then L forms the basis of T and dim(L) = mn− r2, there for define

Z = [L1(:);L2(:); · · · ;Lmn−r2(:)], Li ∈ L,

and
PTL?YL

= Z(ZTZ)−1ZT ,

then PTL?YL
is the explicit form of the projection operator of projecting onto subspace TL

?

YL .

Tangent space of S Given S? ∈ S, denote the tangent space as TS
?

S . Let vec(S?) be the vector
form of S?, then we haves

PTS?S
= diag

(
|vec(S?)| > 0

)
.

Finally, we have

PTY ?Y
=

[
PTS?S

PTL?YL

]
.

Proof of Theorem 2.6. From (13), when ak, bk ≡ 0, we have thats

Yk+1 = PY
(
Yk − γ(Yk − PX (Yk))

)
.

Let Y ? be a critical point that Yk converges to, then

Y ? = PY
(
Y ? − γ(Y ? − PX (Y ?))

)
.

Denote Xk = PX (Yk) and X? = PX (Y ?), we have

Xk −X? = PTX?X
(Xk −X?) = PTX?X

PX (Yk − Y ?) = PTX?X
(Yk − Y ?)

= PTX?X
PTY ?Y

(Yk − Y ?) + o(||Yk − Y ?||).

Consider the difference of the above two equations, owing to Lemma 2.5, we get

Yk+1 − Y ? = PY
(
Yk − γ(Yk − PX (Yk))

)
− PY

(
Y ? − γ(Y ? − PX (Y ?))

)
+ o(||Yk − Y ?||)

= PY
(
(1− γ)Yk + γPX (Yk)

)
− PY

(
(1− γ)Y ? + γPX (Y ?)

)
+ o(||Yk − Y ?||)

= PTY ?Y

(
(1− γ)Yk + γPX (Yk)− (1− γ)Y ? − γPX (Y ?)

)
+ o(||Yk − Y ?||)

= PTY ?Y

(
(1− γ)(Yk − Y ?) + γ(Xk −X?)

)
+ o(||Yk − Y ?||)

= PTY ?Y

(
(1− γ)Id + γPTX?X

)
PTY ?Y

(Yk − Y ?) + o(||Yk − Y ?||),
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which means
Yk+1 − Y ? = P(Yk − Y ?) + o(||Yk − Y ?||).

Note that P is symmetric positive semi-definite, hence all its eigenvalues are real and lie in [0, 1].

Now, assume that bk = ak ≡ a, then we have from (13)

Zk = (1 + a)Yk − aYk−1,

Yk+1 = PY
(
Zk − γ(Zk − PX (Zk))

)
.

Follow the derivation of Yk+1 − Y ? above, we get

Yk+1 − Y ? = (1 + a)P(Yk − Y ?)− aP(Yk−1 − Y ?) + o(||Yk − Y ?||)

= [(1 + a)P −aP]

(
Yk − Y ?
Yk−1 − Y ?

)
+ o(||Yk − Y ?||).

Plus the definition of Dk and the fact that o(||Yk − Y ?||) = o(||Dk||), we obtain

Dk+1 = QDk + o(||Dk||).

Owing to (Liang, 2016, Chapter 6), if ρP < 1, then so is ρQ < 1, and the linear convergence result
follows.

D Table of baseline methods

Algorithm Abbreviation Appearing in Experiment Reference
Inexact Augmented Lagrange

Method of Multipliers iEALM Fig. 1, 3, 4 (Lin et al., 2010)

Accelerated Proximal Gradient APG Fig. 3, 4 (Wright et al., 2009)
Singular Value Thresholding SVT Table 1 (Cai et al., 2010)

Grassmannian Robust Adaptive
Subspace Tracking Algorithm GRASTA Fig. 5 (He et al., 2012)

Go Decomposition GoDec Fig. 4, 10 (Zhou and Tao, 2011)
Robust PCA Gradient Descent RPCA GD Fig. 2, 3, 4, 5, 9, 10, 11 (Yi et al., 2016)

Robust PCA Nonconvex Feasibility RPCA NCF Fig. 1, 3, 4, 5, 10, 11 , 12 (Dutta et al., 2018a)

Robust stochastic PCA Algorithms SGD, R-SGD1, R-SGD2
Inc, R-Inc, MD, R-MD Fig. 12, Table 1 (Goes et al., 2014)

Table 2: Algorithms compared in this paper.
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