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Asymptotically Optimal Blind Calibration of
Uniform Linear Sensor Arrays for Narrowband
Gaussian Signals
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Abstract—An asymptotically optimal blind calibration scheme
of uniform linear arrays for narrowband Gaussian signals is
proposed. Rather than taking the direct Maximum Likelihood
(ML) approach for joint estimation of all the unknown model
parameters, which leads to a multi-dimensional optimization
problem with no closed-form solution, we revisit Paulraj and
Kailath’s (P-K’s) classical approach in exploiting the special
(Toeplitz) structure of the observations’ covariance. However,
we offer a substantial improvement over P-K’s ordinary Least
Squares (LS) estimates by using asymptotic approximations in
order to obtain simple, non-iterative, (quasi-)linear Optimally-
Weighted LS (OWLS) estimates of the sensors gains and phases
offsets with asymptotically optimal weighting, based only on the
empirical covariance matrix of the measurements. Moreover, we
prove that our resulting estimates are also asymptotically optimal
w.r.t. the raw data, and can therefore be deemed equivalent
to the ML Estimates (MLE), which are otherwise obtained by
Jjoint ML estimation of all the unknown model parameters. After
deriving computationally convenient expressions of the respective
Cramér-Rao lower bounds, we also show that our estimates offer
improved performance when applied to non-Gaussian signals
(and/or noise) as quasi-MLE in a similar setting. The optimal
performance of our estimates is demonstrated in simulation ex-
periments, with a considerable improvement (reaching an order
of magnitude and more) in the resulting mean squared errors
wr.t. P-K’s ordinary LS estimates. We also demonstrate the
improved accuracy in a multiple-sources directions-of-arrivals
estimation task.

Index Terms—Sensor array processing, direction-of-arrival,
gain estimation, phase estimation, self calibration, weighted least
squares, maximum likelihood, Cramér-Rao lower bound.

I. INTRODUCTION

An obvious condition for the proper operation of sensor
arrays in a variety of applications (e.g., beamforming or Direc-
tion of Arrival (DOA) estimation) is the precise calibration of
their elements. Unfortunately, due to practical difficulties (e.g.,
temperature variations or frequency drifts in the receivers),
errors in the model parameters, such as relative gain and phase
variations within and among sensors, are present quite often.
This, in turn, might translate into substantial degradation in
the resulting performance. Therefore, the sensor array needs
to be calibrated from time to time (if not upon each use).
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While “offline” calibration (i.e., prior to the “operational”
activity), using known calibration signals at known locations
when possible, is relatively simple, self or blind calibration
(e.g., [2, [3]) is typically a more desirable, yet a more
challenging task. In this paper, we address the blind calibration
of the gains and phases in a sensor array within the framework
of narrowband signals. Naturally, the general blind calibration
problem has already been widely addressed in the literature
and is quite well-studied, as presented in the following survey.

A. Related Work

Blind calibration plays an important role in the overall suc-
cessful operation in many applications. For example, in push-
broom cameras, where image destriping is necessary due to
sensor-to-sensor variation within instruments, blind calibration
was proposed in [4] as an outliers-resilient alternative to his-
togram matching. In acoustic sensor arrays, blind calibration
is attractive when both the sources and sensors locations are
not known a-priori [3], [6] (see also [7] for this topic). Other
examples may be found in the context of environmental sensor
networks [8[], [9]], radio astronomy [10], compressive-sensing-
based imaging sensors [11], and timing offsets compensation
of multi-channels analog-to-digital converter [12], to name a
few.

To address these problems, spanning over a wide variety of
applications, several calibration models and assumptions were
proposed. Classical calibration models consist of linear / affine
(3], [13]], polynomial [14] and multilinear [[15] relations be-
tween some (possibly unknown) input and output parameters,
as well as low-rank and sparsity assumptions [[14], [[16]-[19].

A few additional important examples, which are more
closely related to our work, are Paulraj and Kailath’s Least
Squares (LS) (based) estimates for the unknown sensor gains
and phases [20], Friedlander and Weiss’ eigenstructure method
[21], which jointly calibrates the array and estimates the
sources’ DOAs, and the direct (rather involved) Maximum
Likelihood (ML) approach, proposed in [22] by Chong and
See, accounting also for mutual coupling (e.g., [23]) as well
as for errors in the sensor positions, in which the ML Estimate
(MLE) is pursued by an iterative algorithm (which does not
necessarily converge to the MLE). Viberg and Swindlehurst
took a Bayesian approach in [24], where a maximum a-
posteriori estimate is proposed, assuming that certain prior
knowledge of the array response errors is available. More
recent examples are due to Liu et al.’s [25] and Wijnholds and



Noorishad [26], where a diagonal Weighted LS (WLS) and the
weighted alternating LS estimates are proposed, resp. Never-
theless, these weighting approaches are essentially heuristic
and are not shown (nor claimed) to be optimal.

B. Merits and Contributions of this Work

In this paper we revisit the problem of blind sensor gains
and phases estimation in Uniform Linear Arrays (ULAs) for
Gaussian signals, i.e., when the sources’ DOAs and powers,
as well as the noise level, are considered unknown. Following
[1]], we extend our previous approach into a joint estimation
scheme of the gains and phases, and derive closed-form ex-
pressions of their approximate MLEs via Optimally-Weighted
LS (OWLS) estimation. Despite previous claims regarding
the (alleged) independence of the gain and phase estimation
errors [27]], we prove that these estimation errors are indeed
correlated. Furthermore, we prove that the derived estimates
asymptotically coincide with the MLEs in joint estimation of
all the unknown model parameters w.r.t. the raw data measure-
ments, and demonstrate this optimality in simulations. Note
that in this paper, by “asymptotically”, we refer to the case
where only the sample size T" approaches infinity. In particular,
all our results are valid for any Signal-to-Noise Ratio (SNR)
level, as long as it is fixed when increasing 7'. Furthermore, in
this paper optimality is w.r.t. the minimal attainable MSE in
unbiased estimation of the unknown deterministic parameters.

The provided (non-iterative) solutions are efficiently com-
puted, and as we demonstrate empirically in simulations, the
resulting Mean Squared Errors (MSEs) are improved (in some
scenarios) by more than an order of magnitude w.r.t. the MSEs
attained by Paulraj and Kailath’s ordinary LS estimates, and
attain the performance bounds, which are otherwise attained
asymptotically by joint ML estimation of all the unknown
model parameters via non-convex, high-dimensional optimiza-
tion. In addition, we propose a simple generalization of the
derived estimates for the non-Gaussian case, and show that
while these generalized estimates are no longer optimal, they
can still offer a significant improvement over the LS estimates.

The rest of the paper is organized as follows. The remainder
of this section is devoted to a brief outline of our nota-
tions. In Section [[I| we present the model under consideration
and formulate the problem. Our asymptotically optimal blind
calibration scheme is presented in Section [III, where the
OWLS estimates of the gains and phases are derived, and
are shown (analytically) to be asymptotically the MLEs w.r.t.
the raw data. In addition, simple approximated closed-form
expressions of the Cramér-Rao Lower Bound (CRLB) on the
MSEs are given as well, and the complementary Quasi-ML
(QML) approach for non-Gaussian signals is briefly discussed
in Subsection Simulations results, supporting our ana-
lytical derivations, are presented in Section[V] and Section
concludes the paper with final remarks.

C. Notations and Preliminaries

We use z, x and X for a scalar, column vector and matrix,
resp. The superscripts ()T, (-)*, ()7 and (-)~! denote the
transposition, complex conjugation, conjugate transposition
and inverse operators, resp. We use I i to denote the K x K

identity matrix, and the pinning vector ej; denotes the k-th
column of the identity matrix with context-dependent dimen-
sion. Further, dx, = el'e, denotes the Kronecker delta of k
and £. We denote X . = el X (the k-th row of X). E[]
denotes expectation, the Diag(-) operator forms an M x M
diagonal matrix from its M-dimensional vector argument, and
0x7, 10 € RMX1 gre the all-zeros and all-ones vectors, resp.
We use 7 (a dotless j) to denote y/—1; The operators R{-}
and 3{-} denote the real and imaginary parts (resp.) of their
complex-valued argument.

II. PROBLEM FORMULATION

Consider a ULA of M sensors, each with an unknown
(deterministic) gain and phase response, and the presence of
N < M — 1 (unknown) narrowband sources [28|], centered
around some common carrier frequency with a wavelength A,
which are sufficiently far from the array to allow a planar
wavefront (“far-field”) approximation. Thus, let us denote the
unknown gain and phase offset parameters as @ € Rf *1 and
¢ € [—m,m)M*L, resp., where ), and ¢,, are the unknown
gain and phase offsets of the m-th sensor, resp.

More specifically, assuming that the received signals are
Low-Pass Filtered (LPFﬂ and sampled at (at least) the Nyquist
rate, following [[20[], [27], [29] with the same signal model used
therein, the vector of sampled (baseband) signals from all the
M sensors is given (for all t € {1,...,T}) by

r[t] = U@ (A(a)s[t] + v[t]) £ Tdx[t] c CM*1 (1)

where

(i) ¥ 2 Diag(s) € RY*M & £ Diag (eﬂ¢) e CMxM,

(i) s[t] 2 [s[t] --- sn[t]T € CV*! denotes the vector
of sources with wavenumber k£ = 2m/)\, impinging
on the arra}; from (unknown) azimuth angles a =
[011 OéN] S RNXl;
A(a) = [a(ay) --- alay)] € CM*N denotes the
nominal array manifold matrix, with the steering vec-
tors a(an) 2 [1 eIk cos(an) .. e]k(M_l)'YCOS(an)]T c
CM*1 a5 its columns (7 being the inter-element spacing);
v[t] € CM*! denotes an additive noise vector, modeling
ambinet noise or “interfering” signals, assumed to be spa-
tially and temporally independent, identically distributed
(i.i.d.) zero-mean circular Complex Normal (CN) [30]
with a covariance matrix R, £ E [v[t]v[t]T] = 021,
where o2 is considered unknown; and

(v) «[t] denotes the signal that would have been received in

the absence of gain or phase offsets, namely with ¥ =
P =1,.

We also assume that the sources may be modeled as mutually
uncorrelated random processes. Particularly, in this work, s[t]
is considered as a (temporally) i.i.d. zero-mean circular CN
vector process with an unknown diagonal covariance matrix
R, £ E [s[t]s[t]']. Furthermore, we assume s[t] and v|t] are
statistically independent. As a consequence, it follows that

r[t] ~CN (0p, R),Vt € {1,...,T}, 2)

(iii)

(v)

'The bandwidth of the LPF exceeds the bandwidth of the widest source.



where
R2E[r[t]rt]'] = ¥@CP*¥ € CM*M, A3)
C2E [z[t]z[t]] = A(a)R AT (a) + 0213y € CM | (4

and we have used ' = ¥ and &' = ®*.

The problem at hand can now be formulated as follows.
Given the statistically independent measurements {r[t]}thl
whose (identical) distribution is prescribed by @), estimate
the unknown (deterministic) parameters {1, ¢}.

Notice that in this “blind” setup, for this formulation, the
other unknowns, namely c,c? and the diagonal elements
of R, are considered as nuisance parameters. However, for
other problems described by the same model, the parameters
of interest, and accordingly the nuisance parameters, may
be defined differently. For example, in the DOAs estimation
problem (e.g., [31]), @ are the “goal” estimands, whereas
1, ¢,02 and the diagonal elements of R are considered as
nuisance parameters. Nevertheless, our goal here is to provide
an asymptotically optimal estimation scheme for v and ¢,
based on the understanding that the measurements {x[t]} of a
perfectly calibrated sensor array would be preferable (in terms
of the attainable performance) to {r[t]} in other estimation
problems described by this model.

ITI. APPROXIMATE OPTIMAL BLIND CALIBRATION

We begin by recognizing that an asymptotically optimal
solution to our problem would be obtained by joint ML
estimation of 1), ¢, v, 02 and the diagonal elements of R,
which asymptotically yields efficient estimates ([32]]) of v, ¢.
However, since the derivation of the likelihood equations for
this model is rather involved, which, at any rate, leads to a
highly nonlinear system of equations, and since the sufficient
statistic in this model is the sample covariance matrix of the
measurements R £ 1 S r[tlrt]t € CMXM | we resort to
approximated OWLS estimation of %), ¢ based (only) on R.
This approach will lead to simple estimates, obtained as the
solution of a linear system of equations, which will be shown
to asymptotically coincide with the MLEs obtained via joint
ML estimation of all the unknown parameters.

A. Sensors’ Gains and Phases Approximate OWLS Estimation

The proposed estimates we shall present are, in some
sense, improved versions of the LS estimates proposed by
Paulraj and Kailath [20] on the premises of the following
observation. Since for a ULA the nominal array manifold
matrix A(a) is a Vandermonde matrix (e.g., [33]) and all
the signals involved are uncorrelated, the covariance matrix
C (in @)) of a perfectly calibrated array is a Toeplitz matrix
(e.g., [34]). Therefore, using the fact that (from (3)) R;; =
Cijthi); - €/ ®i=93)  we have for

log (Rij) = pij + 7 vij, 4)
the following relations

pij = R {log (Ri;)} = R {log (¢;—jj+1) }+log(v:) +Hog(v;),
(6)
vij; = S{log (Rij)} = S {log (cji—jj+1) } + & — d5, (D)

for any pair of indices ¢,j € {1,..., M}, where
Vi,je{l,...,M}

— cé[cl

A
¢li—jl+1 = Cijy

8)
CM]T S (CMXI,

since C;; = Cyy for any four indices satisfying ¢ —j = k — £.
In particular, for any four indices satisfying i — j = k — ¢,

pij — ke = log(v;) + log(v)5) — log(vr) — log(vpe), (9)
Vij = Ve = Q3 — G5 — O + by (10)

Note that for a unique definition of v;; in (§), the linear relation
in ({7) can only hold when the result lies in the interval [—7, 7).
Otherwise, a modulo operation is invoked, giving rise to a
phase wrapping problem. However, in this work we assume
that all the phase offsets are relatively “small”, i.e.,

lgi| <7, Vie{l,...,M}, (11)

such that (T0) surely holds, in contrast to (7), which may be
dominated by its first term. Note further that assumption (IT]
is considered standard, and is very reasonable in the context
of array calibration errors, which is our main target in this
work.

Based on the relations (9)—(T0), and due to the fact that, in
practice, the true covariance matrix R is not available, it was
proposed in [20] to use R instead of R and to collect all the
nonredundant relations for which (7, j) and (k, ¢) pairs lie on
the same main/super diagonals, and estimate, separately, the
gains and the phases using ordinary LS estimates which stem
from the relations in (O)—(10) (see [20] for further details).

Indeed, theoretically, R can be made arbitrarily close to R
by increasing (appropriately) the sample size 7. However, in
practice, the available sample size is always limited and is
oftentimes fixed. Therefore, rather than relying on the coarse
approximation R ~ R, which leads, in this case, to the coarse,
(sub-optimal) ordinary LS estimate, we propose a more refined
analysis, which takes into account the estimation errors in R
and exploits (some of) their approximated statistical properties
for obtaining a more accurate estimate, which will also be
shown to be asymptotically the Uniformly Minimum-Variance
Unbiased Estimate (UMVUE, [35])).

More formally, for any finite sample size 7', we have

ﬁéR—i-g = ﬁij:Rij_ngjv Vi,jE{l,...,M}, (12)

where {&;;} denote the estimation errors in the estimation of
{R;;}. Hence, rewriting () with R;; replacing R;; yields

-~ N . Eis
log (Rij) = Wi + 7 Vij = log (Rzy) + log (1 + RJ) (13)
ij
—_——
2¢i5

£ (pij + €i5) + - (vig + €5), (14)

for all ¢,j € {1,...,M}, where (;; is the transformed
(complex-valued) “measurement noise”, with €;; and €;; as
its real and imaginary parts, resp., such that we now have the

following linear relations
fii; = R {log (¢ci—ji+1) } +log(vhs) +log(;) + €45, (15)
Uij = S {log (ci—ji+1) } + ¢ — &5 + €. (16)



Combining the relations (Q)—(10) and (I3)-(16), one may ob-
tain, again, two sets of linear equations, one for the unknowns
{log(%m )} only, and the other for {¢,,} only. Hence, the
two resulting systems of linear equations, which now take
into account the “measurement” noise, are decoupled w.r.t.
the unknowns {t,,} and {¢,}.

Ignoring other possible coupling, we have recently proposed
[I] OWLS estimates of the gains and phases, which are
based on the aforementioned two systems of linear equations
and an independent, separate analysis of the transformed
“measurements” noise in each of these systems of equations.
This means that each one of the proposed estimates in [1]
is in fact optimal only w.r.t. the statistics which appear in
its corresponding system of equations, and not w.r.t. the full
sufficient statistic R. For example, in [1]], as well as in Paulraj
and Kailath [20], the element Rq,s is discarded/,\ although it
is definitely a part of the full sufficient statistic R.

However, it turns out that although a deterministic decou-
pling is obtained using @)—(10), the two (exact) systems of
equations (I3)—(T6) are in fact statistically coupled, as opposed
to what is claimed in [27]]. That is, the noise terms {¢;;} and
{€i;} are correlated, meaning that more accurate estimates
would be obtained by jointly estimating all the unknowns
{log(%m ), m,cm} via a widely linear estimate (e.g., [36])
based on all the complex measurements {R;;} and a unified,
full analysis of the transformed “measurement” noise {(;;}.

To this end, let us denote ¥ 2 log(¢p) € RM*1 and
log(c) = p+7-t € CM*1 where log(-) operates elementwise,
and define the vector of (real-valued) unknowns

~T T
oé |:¢ ¢T pT LT ERKOXl, (17)
where Ky £ 4M. With these notations, noting that according
to (13) and , each element of the M x M Hermitian
matrix log (R is a linear combination of elements of 6
and additional noise terms, we may compactly write a linear
“correlation measurements” model

y=HO+¢cRM > (18)

consisting of the “non-replicated” real and imaginary parts
of log (R) That is, the M? “measurements” in y consist of
0.5M (M+1) values of f1;; for (z,7) € {1,..., M} with j <1,
and of 0.5M (M —1) values of U;; for (i, ) € {1,..., M} with
j > i. Likewise, the “noise” vector £ £ [ET eT]T € RM*x1
consists of the respective 0.5M (M + 1) elements of the ;-
related noise ¢;; (in ) and of the 0.5M (M —1) elements
of the v;;-related noise ¢;; (I6) (in €). See Appendix [A] for
the explicit structure of y, H and &.

Notice that the inherent “blindness” of this formulation
inflicts rank-deficiency on H, which in turn implies non-
identifiability of the gains and phases. Indeed, the “correlation
measurements” y may be equivalently “explained” by more
than one estimate. Fortunately, this is also intuitively expected,
since: (i) we can obviously only measure phase differences
between different elements; (ii) the gain is well-defined only
with at least one fixed power-related parameter; and (iii) in this
blind scenario (where both ¢ and « are unknown) the spatial

frequenciesE] corresponding to the DOAs may be determined
only up to an arbitrary rotation (e.g., [28]). Therefore, w.l.0.g.
we may arbitrarily set 11, ¢1 and ¢o to zero. Note also, that
since c; is known to be real-valued (and positive), we also
have ¢; = 0. We may therefore eliminate these parameters
from 6, together with the four corresponding columns (the
"M + 1,M + 2 and 3M + 1) of H, maintaining the
same relation (T8) with the newly defined 8 € R%¢*! and
H € RM**Ko_only now Ky = 4M — 4, so that now H is
full-rank and the (reduced) model is identifiable.

Now, from the Gauss-Markov theorem [335]], the Best Linear
Unbiased Estimate (BLUE) of @ given y is the OWLS estimate

fowss 2 (H'A;'H) H'AZ (y—ng). (19
where 7 £ E[¢] and A £ E [(5 — 775) (= ng)T] are the
mean and covariance matrix of &, resp. The BLUE attains
the minimal attainable MSE matrix among all linear unbiased
estimates, and when £ is Gaussian, it is also the MLE of 6
(based on y), which is an efficient estimate ([32]], even non-
asymptotically), and therefore is also the UMVUE of 8 based
on y.

Thus, our goal now is to obtain closed-form expressions
(possibly approximated) for 7., A¢ in terms of the available
and/or estimable quantities, in order to eventually obtain the
estimate (T9), or at least a well-approximated version thereof.

To this end, assume that T is sufficiently large such that
|Eij| < |R;j| for all possible (i,7). With this, using the
second-order Taylor expansion approximation

2| <<1:10g(1—i—z)%z—§7 Vz € C, (20)

the equivalent “measurement noise” (;; reads

E. .
,":1 (1 ”) ~
Cij og +Rij

&y &
Ri; 2R%’

Vi,je{l,...,M}.

N @1)
Recalling that R is unbiased and using the pseudo-covariance
of &;; (derived in Appendix [B] see (63)), we get

E[£;]=0, E[&] = 1 g

FRY. Vije{l... M} 2

Therefore, it follows that

Elg;] E[&5] _ 1
I [¢ij] =~ R - QRfj T o7 - @9
1 .
E[e5;] = o7 Elei;] ~ 0, Vi,j € {1,..., M}, (24
so that
1 .
e~ =57 [135M(M+1) OgSM(M—l)] S0 (29

As for the covariance matrix of &, which also reads A; =
E [EET] - ngng, based on the assumption @) that {r[t]} are
all circular CN, and in particular using Isserlis’ theorem [37],

2The n-th spatial frequency is defined as wy, £ kv cos(a,).



we show in Appendix |B| that the elements of E [{ﬁT} are

approximately given by

Visk e {1,... M}~Vj,€€ (i, M} :
Eleij - ene] = T -0.5-R {gjg—ii gzj];z;} (26)
E [eij - €re] = % -05-R {gjg%i - gzjgii} (27)
Bleg e = 7059 {0 gjﬁz} 28)

so that A¢ is approximately a function of R only. Note that
these approximations, which are based on the approximation
(20), as well as on the asymptotic (complex) Normality of
the estimation errors {&;;}, become arbitrarily close for a
sufficiently large T'. Particularly, this holds for any fixed SNR.
Note further that @) shows that €;;, €, are indeed dependen/t\.

Of course, the true R is in fact unknown. However, since R
is the MLE of R, by virtue of the invariance property of the
MLE [38], it follows that Ag, a matrix whose elements are
computed by (23) and (26)—(28), but with {Rw} replacing
{R;;}, is approximately the MLE of A.. Therefore, we
propose the following “ML-based OWLS” estimate

-1 —
6’ML OWLS = (HTAg H) HTAg ' (y - ﬁg) ;o (29

from which the desired ML-based OWLS estimates of the

gains and phases (for all m € {1,...,M})
($m> MLowLs — &P (e%/éML-OWLS> ; (30)
(@m) v owrs = Earsm Ovows, 31
are readily extracted. Note that the inverse matrix
—~—1 -
(H TA§ H ) exists only when the inverse matrix
~-1
Ag exists, which is guaranteed (almost surely) when

T > M?, dictating the minimal sample size required for the
validity of (29), and hence (30p, @ Further, note that for
a sufficiently large 7T: Oy owLs =~ Oowrs by virtue of the
continuous mapping theorem [39]] and the consistency of the
MLE ([40]) A¢.

B. Approximate ML Estimation and Cramér-Rao Bound

Since the ML estimation errors {&;;} are asymptotically
(non-circular) jointly CN, the transformed estimation errors
{¢ij}. which can be asymptotically linearized by neglecting
the quadratic term in 2I)), become asymptotically approx-
imately jointly CN as well. Thus, it follows that Ogwrs is
approximately also the MLE of 6 based on y, which means,
in particular, that ¢qgwrg is approximately the MLE of ¢
based on y. As for the gains estimates, which are obtained by

(elementwise) exponentiation of {Z:OWLS, once again, using the
invariance property of the MLE, it follows that $qy; 5 is the
MLE of %) based on y. Therefore, we conclude that ¢y _ows.
Yur.owrs asymptotically coincide with the MLEs of ¢, v
(resp.) based on y. However, observe that y is an invertible
function of R. Consequently, since R is the (minimal) suffi-
cient statistic of model (T)), if follows that ¢OWLS, 1,[;OWL5 are

also asymptotically the MLEs of ¢, 4 (resp.) based on the raw
data {r[t]}~_,. Hence, we conclude that ¢y owrs> ¥ML-OWLS
are asymptotically the MLEs of ¢, 1 (resp.) based on the raw
data {r[t]}{_,, and accordingly are (only, [41]}) asymptotically
efficient. Note that while, asymptotically, Duirowis is also the
UMVUE of ¢, the fact that 9y _owis is the UMVUE of 1
does not imply, in general, that ¥y _owrs (still being the MLE
of 1) is also the UMVUE of ).
Clearly, using A¢ =~ A¢, we have that

~ o~ T ~1
E {(0ML—OWLS - 9) <9ML-OWLS - 9> } ~ (HTAng)

R (32)
But since we have shown that Oy owrs is asymptotically the
MLE of 6 w.r.t. the raw data {r[t]}]_,, using the notation

C- C- C- C-
Ta-lgp\ ! & Ciis éff C;fZ CZZ KoxK
- = 6 6
(H'A'H) 2 P c | €R 7
yf'p ép 4 P
c. Ci C. C
(33)

we may conclude that the CRLBs on the MSEs of any
unbiased estimate of the sensors gains and phases are given
approximately by

oY , Y 20,
CRLB(¢,,) ~ =X (C~
(¥n) (81!) ¥ a¢ ) € ( w>nn
=dn(cy) . vne{2....M), G4
CRLB(¢) & (Cg),m » Vme{3,....M}, (39

where we have used a¢m/a{ﬁn = G - €Y = Spn - Y.

We note that the expressions given in (34)-(33) for the
CRLB of 1, ¢ are valid under the same conditions specified
earlier, after @ In addition, these expressions are somewhat
less involved and require simpler computations than the ones
which are obtained by direct computation of all the Fisher
Information Matrix’ (FIM) elements for all the unknown
parameters, followed by an inversion of the FIM. Further, it is
easy to verify that C o is generally not all zeros, hence proving
that the gain and phase estimation errors are not independent.

C. Approximate QML-based Blind Calibration

Consider the same received-signals model (Section [M)),
with the Gaussianity assumption relaxed, i.e., the source
signals s[t] and the additive noise wv[t] are only assumed
(each) to be temporally i.i.d. proper ([42]) complex-valued
random processes (with arbitrary probability distributions) and
mutually uncorrelated.

In this general framework as well, as long as the fourth-
order joint cumulants of the measurements are finite. i.e.,

Joe Ry Vi, 5,k Le{l,...,
|HT[iaj7ka£]| £ |Cum(ri[t]

M}

t], rft] (36)

75 Dl <o,
where cum(r;[t], 77 [t], ri[t], 77 [t]) denotes the fourth-order

joint cumulant of its arguments, the estimate R, which is no
longer necessarily the MLE of R, is still consistent by virtue



of the law of large numbers [43]]. Therefore, the proposed
estimate (29) retains its consistency property, even for non-
Gaussian signals r[t], where the non-Gaussianity may be due
to the sources’ and/or the noise’s distributions. However, gl
order to retain its asymptotic optimality w.r.t. the statistic R
(but now certainly not necessarily w.r.t. the raw data {rg )

even for non-Gaussian signals, the weight matrix A, needs
to be updated accordingly.
Thus, from the analysis presented in Appendix in the
general (not necessarily Gaussian) case, it follows that
E (€]

]- .. *
= T (HT[Zajvgv k] + lele) ) (37)

1 o N
E [&jgkd = T (KJT[Z,L k,g] + RigRjk) . (38)

Continuing the same derivation in Appendix [B|with the general
expressions (37)-(38) yields the updated elements of A¢ for
the general case. Obviously, when [, j,k,¢] = 0 for all
i,7, k, ¢, these expressions reduce back to (Z6)—(28).

Of course, in the general case A¢ is not (even approxi-
mately) a function of R only, as it depends on terms which
are determined by the fourth-order statistics of the received
signals. Nevertheless, one may still construct a consistent
estimate Ag, by replacing all {R;;} with {RW} and all
{kr[i,7,k, €]} with some consistent estimates {K.[i,j, k, {]}
thereof (based on the available data {r[t]}]_,). With this, the
right-hand side of (29) becomes the “QML-based OWLS”,
denoted by GQML OWLsS, since 1t can be viewed as the OWLS
estimate which is based on R the quasi MLE of R. This
estimate still approximately attains the MSE matrix given in
(32), which, in this case, no longer serves as the CRLB on the
corresponding MSEs w.r.t. the raw data.

We note in passing that another pleltusible approach is
to still construct the weight matrix X£ according to (25)
and (26)-@28), and simply ignore the contributions of the
fourth-order cumulants. In this case, A¢ would serve as an
inconsistent (biased) estimate of A¢, and consequently the
resulting estimate will no longer be (even asymptotically) the
OWLS, but only some “reasonable” WLS estimate. However,
this estimate is considerably cheaper in terms of computational
complexity, since it requires the terms of R only and does not
require estimation of fourth-order cumulants. Obviously, this
comes at the cost of a compromised MSE, which nonetheless
has a smaller constant gap from optimality (in [dB]) than
the ordinary LS estimate. The (rather technical) analysis of
this approximate QML-based estimate is out of the scope
of this paper, and is therefore omitted. Finally, summarizing
this section, Algorithm [I] briefly describes the steps of our
proposed blind (QQML-OWLS calibration scheme.

IV. ADAPTATION TO AN EXTENDED SIGNAL MODEL

Before we demonstrate empirically our analytical results for
model (I), we briefly present the required adaptations in order

to use the proposed method for an extended signal model
rolt] = rlt] + wlt] = C[t] + w(t] € CV*, (39)

in which w][t] denotes a possible additional additive noise
vector, unaffected by the gain and phase offsets 1), ¢. We

Algorithm 1: ML-OWLS Blind Calibration Scheme
Input: {r[t]}]_, (measured signals)
Output: {7[t ]}t 1 (post calibration measured signals)
1 Compute R = % Zt LTt ]r[t]T
2 Compute Ag using (23) and (26] based on R;
3 Construct y and H accordlng to ( and , TESP.;
4 Compute OML owLs Vvia @])

s Compute Py owrs and Gy owrs Via and (31)),
resp., and denote:

v L Diag (;:EML—OWLS) 76 £ Diag (ej ('bML'OWLS);

~—1 ~x%

6 Return {ﬂt] 29 9 r[t]}f:l.

also assume that wlt] is independent of all the other signals
involved, and is i.i.d. zero-mean circular CN, with a covariance
matrix R,, £ E [w[t]w[t]] = 02I,. Hence, since wlt] is
independent of 7[t] and using (3)), the covariance matrix of
T, [t] reads

X L£E [r,[t]

=WUPCP*W+02 T, € CM*M  (40)

rw[t]T]
This extended model covers a few signal models addressed

in the literature, where w|t] usually accounts for internal (e.g.,
thermal) receiver noise. We thus consider three cases of (39).

Case I: Known “Noise Floor” Level

In this case, we assume that the internal noise level, Uw, is

known a-priori. This is a reasonable assumption in various

cases, since the internal noise level in many receivers is

(approximately) fully determined by the bandwidth of the pre-

samplers filters. Thus, the Diagonally-Shifted (DS) estimate
' 020y £ S - R, cCMXM,

er Tt
@1

is an_unbiased, consistent estimate of R. Replacing Rps
with R everywhere in our derivation yields, for this case as
well, asymptotically optimal estimates of 1) and ¢ w.r.t. the
raw data. This result follows from the same considerations
presented in Subsection m since X is a sufﬁcient statistic,
and RDS is an invertible function of 3 (since 02 is known).

Remark: Note that in this case, the scenarlo is “blmd” w.I.t.
the latent sources, their locations and crl,, but since 02 is

known, it may be considered (or termed) as “semi-blind”.

Rps 2

Case II: Unknown “Noise Floor” Level, Zero “Interference”
In this case, we assume that the internal noise level, o2, is
unknown, and UU =0 (e.g., [44]). It follows that

rank (R) = N < rank () =M.

w?

(42)

number of sources number of sensors

For simplicity, we assume that NV is known, although, in prac-
tice, it may be estimated (e.g., via [45]-[47]). Therefore, when
M is known, the internal noise level o2, can be consistently
estimated, e.g., via ML estimation (see [45]], Section IV, Eq.
(13b)). Denoting this estimate as 52, we now define the (plug-

in) ML-based DS estimate as

Rvips 23 - 621y 23— R, € CM*M (43)



which is a consistent estimate of R. Replacing IA%DS with R
everywhere in our derivation yields, for this case as well,
asymptotically optimal estimates of 1) and ¢ w.r.t. the raw
data. Similarly, this result follows from the same consider-
ations presented in Subsection since 3 is (again) a
sufficient statistic, and RML ps 1S an mvertlble function of 3.

Remark: Note that in this case, the only deviation from a
fully blind scenario is caused by the fact that the number of
sources, N, is assumed known. However, as pointed out above,
this assumption may be relaxed, as the number of sources may
be consistently estimated (while still assuming N < M — 1).

Case I1I: Unknown “Noise Floor”

In this case we assume that 0120 is unknown, such that all the
model parameters are unknown, namely a fully blind scenario.
Since in this case, in general, rank (R) = rank (X) = M, we
propose the following non-optimal adaptation. First, note that
the unbiased estimate E, defined in (T)), is the MLE of X.
Second, observe that (| still holds for all pairs i # j €
{1,.... M}, ie., for all the off-diagonal elements {3;;}, re-
placmg {R”} in (T3). Observe that (T6)), relating to the phases,
is relevant only for the off-diagonal elements in the first place.
Therefore, discarding the M diagonal elements {3;;}£,, and
using (only) all the other remaining 0.5M (M —1) off-diagonal
elements (recall that 3 is Hermitian), we may compactly write
the reduced linear “correlation measurements” model

ﬂ — ﬁ0+ge RM(M*I)XI

(44)

where y, and 5 are constructed in exactly the same way
as described in Appendix [A] only without including the M
equations associated with the diagonal elements {E” M. As
long as M (M —1) > Ky, which implies M > 4, the followmg
Reduced ML-based OWLS estimate

=) ETR - 2
rvows 2 (H A;'H) H A (-n.), @)

is consistent, and still provides the enhancement due to its op-
timal weighting, where 7, ~ 7 = {T € RM(M=1)x1 apd
Acm A 2B [(E-7) (E-7) | € RMOEDxMOY
are the ML-based estimates, computed exactly in the same
manner as 7], and Ag are, resp.

Note that, although @—whichAdoes not use all the el-
ements of the sufficient statistic 3—is not optimal (even
asymptotically), the “efficiency gap” from the performance of
the exact MLE (generally) becomes negligible as the number
of sensors increases since

#number of discarded eq. M
=— —
M? M-

#number of total eq. 0. (46)
Hence, intuitively (and informally), if we assume that the
“information” regarding the unknown parameters v and ¢
is approximately “uniformly distributed” over all the M2
potential equations (associated with the real and imaginary
parts of the upper (or lower) triangular part of X), then the
loss, in terms of the number of equations, caused by discarding
the M equations associated with the main diagonal of 3,
relating to gains only, becomes negligible for an array with
a high number of sensors.

While this solution is no longer optimal, it still enjoys
a relatively low-complexity implementation, due to its non-
iterative nature (unlike, e.g., [26]), and still utilizes (most of)
the implicit valuable information encapsulated in the SOS
3, in the form of optimal weighting. Finally, note that the
proposed adapted solution for this case is valid even for
spatially non-white noise, namely when R, and R, are
arbitrary (semi-positive definite) diagonal matrices.

V. SIMULATION RESULTS

In this section, we consider three simulation experiments
in order to corroborate our analytical derivations by empirical
results. First, we demonstrate the asymptotic optimality of the
proposed estimates and the relatively substantial gain w.r.t.
the original LS-based estimates, which commonly serve as a
benchmark method. Second, we demonstrate the consistency
of the modified estimate {@3), while showing at the same time
that, although our method is designed for temporally i.i.d.,
proper sources, it in fact enables a considerable improvement
even for non i.i.d. and/or non-proper sources, using an example
of cyclostationary digital communication signals. Lastly, we
demonstrate the enhanced performance of an optimally blindly
calibrated array in DOA estimation.

A. Asymptotically Optimal Blind Calibration

We consider model in a scenario which consists of a
M = 5 elements array with half wavelength inter-element
spacing (i.e., v = A/2), and N = 3 equal power, zero-
mean unit variance sources impinging from angles o =
—[35° 73° 28°]T. The sensors gains and phases were set to
¥ =[113110.722]T and ¢ = [0° 0° 5° 11° — 8°]T,
resp., where w.1.o.g. we assume (throughout all Section|[V)) that
11, ¢1 and ¢o are known (and serve as references). Empirical
results were obtained by averaging 10* independent trials.

First, we consider Gaussian signals. Fig. [ presents the
MSEs obtained by g owrs and @dypowrs Vs- I, where
the SNR is fixed at 10[dB]. For comparison, we also show
the MSEs obtained by Paulraj and Kailath’s LS estimates
(ignoring the transformed measurements noise’ bias and co-
variance), the non-optimal WLS estimates [1[], ignoring the
cross correlations (28), and the CRLB on the corresponding
MSEs obtained in any unbiased joint estimation of all the
unknown parameters. Similarly, Fig. presents the same
quantities, however now vs. the SNR, where the sample size
is fixed at 7' = 750. As seen, the proposed estimates exhibit
optimal performance, asymptotically attaining the CRLB, i.e.,
the asymptotic performance of the MLE based on the raw data.
Notice that although this optimality is theoretically obtained
only asymptotically, in practice, this asymptotic state may be
reached within (only) a few dozens of samples. Moreover,
the improvement w.r.t. ordinary LS estimation can reach more
than an order of magnitude in the high SNR regime. The
improvement w.r.t. the non-optimal WLS estimates is mainly
in phases estimation, and is reflected by the fact that for high
SNRs, fewer samples are required in order to attain the CRLB.
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Fig. 1: MSE vs. T for SNR= 10[dB]. As seen, the achieved gain by the proposed estimates w.r.t. ordinary LS is substantial even for large sample sizes.
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Fig. 2: MSE vs. SNR for 7" = 750. Evidently, the improvement w.r.t. the “naive” ordinary LS approach can reach more than an order of magnitude in the
high SNR regime. Our proposed estimates require fewer samples than the non-optimal (separated) WLS estimates in order to attain the CRLB in high SNRs.
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Fig. 3: MSE vs. T' for SNR= 10[dB], non-Gaussian sources and uniformly distributed noise. The QML-based WLS estimate is seen to be consistent and
considerably better than the “naive” equally-weighted LS. Further, its robustness to signals with different fourth-order statistics is evident.
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Fig. 4: MSE vs. the sample size T for cyclostationary 8-PSK OFDM and 4-PAM communication sources with different baud rates and with 02 = o2 = 0.1,
i.e., SNR= 10[dB]. Our proposed adapted method for model (39) still provides an improvement in the overall performance. Results are based on 5 - 10
independent trials.

In the second part of this experiment we consider the same [I} only now it demonstrates the performance of the QML-
scenario as described above, only now with non-Gaussian based WLS estimate, which, in practice, is computed exactly
signals. Specifically, the real and imaginary parts of v[t] are as the one presented in the first part of this experiment, but
mutually independent and are (equally) uniformly distributed is no longer considered the ML-based OWLS, as explained in
with zero-mean. For the sources, we consider the Bernoulli Subsection@ Evidently, this estimate is also consistent and
(with a parameter p = 0.5) and Laplace distributions (again, performs better than the ordinary LS estimate. Furthermore, it
for the mutually independent real and imaginary parts), which is seen that the fourth-order statistics of the received signals
were chosen as representatives of both platykurtic and lep- effectively have little influence asymptotically. For different
tokurtic distributions, characterized by less and more frequent SNR values, a similar trend as in Fig. IZI is obtaine(ﬂ
occurrences of extreme outliers, resp., than the Gaussian
distribution. In both cases, the sources were normalized to
have zero mean and unit variance. Fig. E] is the same as Fig. 3This, of course, was validated by simulations.
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Fig. 5: DOAs RMSEs [°] vs. T for a fixed SNR of 0[dB]. The proposed
scheme substantially improves the resulting accuracy w.r.t. ordinary LS, and
is significantly closer to the accuracy attained by the perfectly calibrated array.
The shaded colored areas are of the width of the respective standard deviation.

B. Cyclostationary Digital Communication Sources

We now consider the extended model (39) in a similar,
yet different scenario relative to Subsection [V-A]l The setting
is identical w.r.t. the receiver (/system) parameters My,
and ¢. However, in this experiment the N = 3 sources are
cyclostationary digital communication signals [48]], emitted
from angles o = —[45° 52° 13°]T. Notice that here, the
first two sources are less radially separated. Each source is
constructed by concatenating K frames, each of length T’
samples. More specifically, the n-th source is given by

saltl= Y fPt—k-Tf €C, 47)
k=0
where each individual frame is defined by
641 — 02, 0<t<T,
1010 = { T S L @)
1971 [t - Tsync]; Tsync <t < Tf

such that the first Tgyn. samples are synchronization guard
intervals, and the following Ty — Ty, samples are dedicated
to the information symbols. Here, we set Ty = 40, Ty, = 8,
such that each symbols packet () [t] is 25 samples long.

In order to simulate signals with different baud rates

and frame-synchronization, we applied different “time-stretch”
factors to soft] and ss3[t], replacing these signals with
so[|(t—1)/2]] and s3 [|(t — 2)/3]], resp. (where | 7] denotes
the “floor” operator, namely, the largest integer smaller than
or equal to 7). Consequently, the complete observation time
T = Ky - Ty contains Ky frames of s;[t], but only (approxi-
mately) Ky/2 and Ky /3 frames of s2[t] and s3]t], resp.
__ Fig. @] presents the MSEs obtained by gy owrs and
drmL-owLs (extracted from (43) vs. T, where the first two
sources’ symbols packets are unit variance 8 Phase Shift
Keying (8-PSK) Orthogonal Frequency Division Multiplexed
(OFDM) signals, the third source’s symbols packets are (real-
valued) zero-mean, unit variance 4-level Pulse Amplitude
Modulated (4-PAM) signals, and 02 = o2 = 0.1 fixed (i.e.,
SNR = 10[dB]). All symbols were equiprobable, and were
drawn independently. For comparison, we also show the MSEs
obtained by Paulraj and Kailath’s ordinary LS estimates and
Liu et al’s Diagonal WLS (DWLS) [25]. Clearly, our pro-
posed adapted method still offers a considerable performance
improvement, even for non i.i.d., non stationary sources.
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Fig. 6: DOAs RMSEs [°] vs. the SNR for a fixed sample size of 7' = 1000.
The proposed blind calibration scheme enables a considerably higher accuracy
level, closer to the one attained by the “oracle” perfectly calibrated array. The
shaded colored areas are of the width of the respective standard deviation.

C. DOA Estimation via MUSIC

We consider a similar scenario with an identical array
(and the same offsets 1, ¢), only now we assume that two
(N = 2) zero-mean unit variance Gaussian sources are emitted
from (unknown) angles o = —[35° 73°]T, where N is
assumed to be known, and the goal here is DOA estimation,
which is done via the MUSIC algorithm. For a fixed SNR
level of 0[dB], Fig. [5] presents the Root MSE (RMSE) of
the DOAs estimates, &y, @2, vs. the sample size of three
different post-calibration MUSIC estimates, corresponding to
LS blind calibration, asymptotically optimally blind calibration
and “oracle” perfect calibration. Here as well, already for a
relatively small sample size (in the order of the number of un-
known parameters), a significant improvement in the resulting
accuracy is demonstrated, reaching up to nearly an order of
magnitude for low sample sizes w.r.t. the LS calibration-based
estimates’ RMSEs. A similar trend of enhanced accuracy is
shown in Fig. [6l presenting the DOAs estimates” RMSEs vs.
the SNR for a fixed sample size of T' = 1000.

VI. CONCLUSION

In the context of ULAs, we presented an asymptotically
optimal blind calibration scheme for narrowband Gaussian
signals. Based on the Toeplitz structure of the observations’
covariance matrix and on asymptotic approximations, we
derived OWLS estimates, which were shown to be asymptot-
ically equivalent to the MLEs of the sensors gain and phase
offsets in joint ML estimation of all the unknown parameters.
Additionally, we derived the CRLB on the MSEs of any
unbiased estimate thereof, which are attained asymptotically
by our proposed estimates. Our analytical results and the
significant performance gain were demonstrated in simulation
experiments, where we also showed the resulting enhanced
accuracy in a post-calibration DOAs estimation task.

For non-Gaussian signals, the proposed estimates serve as
QML estimates, which are still asymptotically optimal w.r.t.
the empirical covariance matrix, but, in general, are no longer
the MLEs w.r.t. the raw data. Nevertheless, in comparison to
Paulraj and Kailath’s ordinary LS estimates, these estimates
still exhibit a considerable improvement in the resulting perfor-
mance, as demonstrated empirically in simulations, eventually
enabling higher accuracy in other post-calibration procedures,
such as DOA estimation



lvec (Hw[l])

H = 0 uvec <H¢[1]>

. lvec(Hd’[M]) O lvec (H"[1))
- uvee (H[M]) O uvec (H'[1])

- lvec (H?[M]) @

c RM?xM2
- uvec (H'[M])

(54)

APPENDIX A
CONSTRUCTION OF y, H AND &

Note first (from (I3), (I6)) that log (ﬁ) can be expressed
as the following linear combination of the elements of 6:

M M
log (R) £ fi+ 9= > HY[mlthm +7 Y H’[m|op
m=1

m=1 =

M M
—|—ZH”[m]pm +jZHL[m]Lm+?—|—j-?

m=1 m=1

(49)
with the following real-valued M x M matrices: [i, &,V and €
consist of the elements [i;;,¢;;,V;; and €;; (resp.) as defined

in (13), (16), resp.; and for all 4, j,m € {1,..., M},

(50
HY ] = HY [m]

= 0(i—j+1)m-

Now define the operators lvec(-) and uvec(-), which vectorise
the lower-triangular part (including the diagonal) and strictly-
upper-triangular part (excluding the diagonal) of their square
matrix argument (resp.). Namely, for any M x M matrix A,

Ivec(A) £[Ay1 Agy -+ Apg Agg Ago -+ (51)
Aprz - Aty Anrar] € COBMMFD XL
uvec(A) £[A1g A1 Agg A1y -+ Agg - (52)

AlM AQM A(]Wfl)M:I c CO.5J\/[(]\471)><1.

Using these operators we now construct:

= [lvecT (?R {1og (ﬁ)}) uvec’ (S {log (ﬁ)})]T
— [vec™ () uvec™ ()] € M, (53)

so that with H defined in at the top of the page (where
in the upper block ) denotes a 0.5M (M + 1) x M all-zeros
matrix and in the lower block ¢ denotes a 0.5M (M —1) x M
all-zeros matrix), and

a [lvec ()

€= {uvec (€)

(where e € RO-SM(MAD)X1 gpg e € ROSMM-Dx1 were de-
fined below (I8)), we obtain the desired relation y = HO+E.

— |:€:| c RM2X1

. (55)

APPENDIX B
COMPUTATION OF THE NOISE COVARIANCE MATRIX

Our goal here is to obtain approximated closed-form ex-
pressions for the elements of the covariance matrix A¢. We
begin with the computation of

T E [eeT] E[eeT] M M
Bl = g jeer] mleer | SF 6O

As seen from and (21)), we have

2
1] 1]

R, 2R3

Gy = eyt ey~ Vi,je{l,...,M}. (57)

Starting with the elements of the upper-left block E [ee™], it
may be easily shown that for any z;,25 € C

E[R{z1R{22}] = 0.5 - R{E [2125] + E[z122]}.  (58)
Hence, neglecting fourth-order noise terms yields
E (£ | E[€;Em) }
Ele.. ~05- Wl 74 J
[eijere] = 0.5-R { Ry R, + RRe ) (59)

so we may concentrate on E[&;;Ef,] and E[&;;Ek], the
covariances and pseudo-covariances of {&;;}. Thus,

E [€,€) = E [Ri;Rjy] — Rij Ry

= % Z E [ri[t1]r; [t1]ri[ta]relte] ] — Rij Ry,

(60)
t1,ta=1
Using the circularity of r[t], which implies
E [ri[t1]r;[ta]] = E [} [t]r} [t2]] = 0,
Vi, je{l,..., M} Vt1,te € {1,...,T}, (61)
we may write the summand in as
E [rilt]r}[t2)ri[ta]re(to]] =
{m[z',y: R+ Ry Ry + RuRy, ti=to o
Rij R}y, t1 £t

where k,.[i, ], k,¢] = cum(r; [t], r5[t], r[t], r7 [t]) denotes the
fourth-order joint cumulant of its arguments. Using the fact
that {r[t]}Z_, are all i.i.d. circular CN, by applying Isserlis’
theorem [37], it follows that x,[¢, j, k, ¢] = 0 for all ¢, j, k, £ €
{1,...,M}. Accordingly, substituting into (60), and
repeating for E [£;;Ee] with exactly the same technique, we
obtain after simplification

E (6,65, = %RikRye, E (€60 = %RM L (63)
for all 4,7,k,¢ € {1,..., M}. Note that (63) implies that the
estimations errors {&;;} are non-circular, in contrast to the
measured signals {r;[t]}. Now, substituting (63) into (59), we
obtain (for all 4,j,k, ¢ € {1,...,M})

1 Ry R, RyR%,
Ele;. - %—~0.5~§R{ J J}. 64
[e3j - ene = Ryl T Ry Ree (64)
Similarly, notice that for any z;, z € C we also have
E[S{21}3{22}] = 0.5 - R{E [2125] — E[2122]}, (65)
E [R{z1}S{22}] = 0.5 - S{E [2122] — E[2123]},  (66)



and using (63), which we have already obtained, we immedi-
ately have (for all 4,5, k, ¢ € {1,...,M})

1 Ry R;, RiyRj,
E[EIGJM]%*O5§R{ i — J }, (67)
J T Rij ke Rinké
1 Ry R, R R,
Ele;;-e€ %—-0.5~%{ AL J}, (68)
i - enel ~ 7 RijRe  RyR;,

which are the elements of 2%11 the other block matrices
E [e€™] ,E [e€T] = (E [ee™])  assembling (36).
Using the pseudo-covariance of {&;;} given in (63)), we have

E[,] E[& 1
E[G;] = }[Bz;] —2[]%%;} =57 —
Eley] & g Eleg] 0, ¥irj € {1, M}, (69)
so that
Ne ™ *% : [lg‘.SM(M+1) OoT.sM(M—1)] (70)

Now, recall that A = [E [ £T — 77577?’ thus we have
obtained in (64), (67)—(68) and approximated closed-form
expressions for all the elements of the covariance matrix A.
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