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Abstract

After decades of research in Direction of Arrival (DoA) estimation, today Maximum Likelihood (ML) algorithms still provide
the best performance in terms of resolution capabilities. At the cost of a multidimensional search, ML algorithms achieve a
significant reduction of the outlier production mechanism in the threshold region, where the number of snapshots per antenna
and/or the signal to noise ratio (SNR) are low. The objective of this paper is to characterize the resolution capabilities of ML
algorithms in the threshold region. Both conditional and unconditional versions of the ML algorithms are investigated in the
asymptotic regime where both the number of antennas and the number of snapshots are large but comparable in magnitude.
By using random matrix theory techniques, the finite dimensional distributions of both cost functions are shown to be Gaussian
distributed in this asymptotic regime, and a closed form expression of the corresponding asymptotic covariance matrices is provided.
These results allow to characterize the asymptotic behavior of the resolution probability, which is defined as the probability that
the cost function evaluated at the true DoAs is smaller than the values that it takes at the positions of the other asymptotic local
minima.

Index Terms

Conditional Maximum Likelihood, Unconditional Maximum Likelihood, DoA Estimation, Random Matrix Theory, Central
Limit Theorem.

I. INTRODUCTION

The determination of the direction of arrival (DoA) of one or multiple far-field sources continues to be a highly relevant
problem in multiple fields, such as radar, sonar, seismology or radioastronomy. Among all the DoA determination methods
available today, classical Maximum Likelihood (ML) procedures remain to be the ones that offer the best performance in
terms of both precision and spatial resolution. The extraordinary performance of ML methods comes at the expense of an
increased computational complexity, since they require a non-linear multi-dimensional search instead of a one-dimensional one
(as it is the case in subspace-based algorithms). However, ML methods still represent the only valid alternative in challenging
scenarios with closely located and/or highly correlated sources. They are also the most attractive solution in offline processing
applications.

Several alternatives have been proposed in the literature in order to alleviate the high computational complexity associated
with the non-linear multidimensional search of ML methods. One can differentiate between algorithms that try to simplify
the local search procedure and algorithms that aim to simplify the global search. Among the first group, we can include
the alternating projection method [1], the IQML algorithm for Uniform Linear Arrays (ULA) [2], some methods based on
large sample volume approximations of the ML objective function (such as MODE [3] or related alternatives [4], [5]), and
some recently proposed approximate ML methods for the specific case where only two closely spaced sources are present
in the scenario [6], [7]. All these methods achieve a significant reduction of the computational complexity at the expense of
a certain performance loss, caused by the fact that the ML objective function is in fact approximated. The second family of
ML-based DoA detection algorithms are aimed at simplifying the global multidimensional search, avoiding the computational
burden associated with an evaluation of the ML objective function in a uniform multidimensional fine grid. One may include
here genetic algorithms for global search [8], [9], or two-stage methods that first select a set of candidate DoAs with simpler
one-dimensional search methods and then refine these initial estimations by a multidimensional ML search procedure [10],
[11]. The aim of all these global search methods is to avoid convergence to a local extremum of the ML objective function
while avoiding the need to evaluate this function at a high number of points in the multi-dimensional grid.

One must point out that there exist two alternative ML DoA estimation procedures with different objective functions,
depending on whether the signals are modeled as stochastic or as unknown deterministic parameters. The Unconditional ML
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(UML) method is based on the assumption that the source signals are temporally white Gaussian random variables [12], [13],
whereas the Conditional ML (CML) method simply treats them as unknown deterministic parameters that need to be estimated.
It was early recognized [14] that the UML method asymptotically outperforms CML when the number of samples tends to
infinity for a fixed array dimension. In fact, it was shown in [15] that, contrary to UML, the CML method is statistically
inefficient, in the sense that the algorithm does not achieve the Cramér-Rao Bound (CRB) corresponding to the deterministic
signal assumption. This effect is caused by the fact that the total number of parameters that need to be estimated by the
CML method increases with the sample size, whereas this is not the case in the UML algorithm. On the other hand, it was
demonstrated in [16] that CML and UML are in fact equivalent at large signal to noise ratio (SNR), meaning that the difference
between their estimates converges to zero in probability, even for finite values of the sample volume.

All of the above performance results for CML and UML are only valid in the small error regime, that is when the estimated
DoAs are very close to the true ones, either because of a relatively large sample volume with respect to the array dimension
[14] or a relatively low noise power level with respect to the source signals [17], [16]. Unfortunately, none of the above
insights carry over to the more relevant case where the number of samples is comparable to the array dimension and the
SNR is moderately low. Note that this is precisely the regime where ML offers the main advantages with respect to other
one-dimensional DoA estimation techniques, such as more conventional subspace based approaches. The main objective of
this paper will be the performance characterization of the CML and UML techniques in this “threshold region”, whereby both
the number of samples per antenna and the SNR take moderate values. This region is typically characterized by a systematic
appearance of outliers in the DoA estimates, which are mainly caused by the incapability of resolving closely spaced sources.

Unfortunately, the performance of CML and UML DoA estimation methods in this threshold region has received less attention
in the literature. One of the most relevant contributions in this direction was the work by Athley in [18], which characterized
the probability of resolving closely spaced sources for finite values of the sample size and SNR. Some additional insights into
the problem were given in [19], where the outlier production mechanism was related to the asymptotic eigendecomposition of
the observation covariance matrix. Recently, the approach in [18] has been used to study the resolution probability of both CML
and UML in the multi-frequency case [20]. In this paper, we also follow the approach in [18] and characterize the resolution
probability of these two ML methods by studying the stochastic behavior of the CML and UML objective functions under
the assumption that the observations are Gaussian random variables. Our approach will be asymptotic in both the number of
antennas and the number of samples, although we will always assume that both the SNR and the number of samples per antenna
are finite and bounded quantities. In practice, this asymptotic regime models the situation where the number of antennas is of
the same order of magnitude as the number of available snapshots.

The approach followed by Athley in [18] conforms to the classical Method of Interval Errors (MIE), which predicts the
threshold region performance of estimation methods based on minimizing a certain cost function. This method has also been
used in [21] to characterize the threshold performance of the Capon method and in [22] to study the threshold of the ML
estimation method corresponding to one signal in spatially colored noise. The main idea is that the mean squared error (MSE)
of the estimated parameters can be decomposed into a sum of two weighted terms, a local error term (the small-error variance),
and an outlier term for global errors (outliers), that is

MSE = PresMSEsmall + (1− Pres)MSElarge (1)

where MSEsmall is the small error MSE (usually the Cramér-Rao Bound), MSElarge is the large error MSE (typically
approximated as the average MSE under a uniformly distributed parameter choice) and Pres is the resolution probability.
In order to characterize the resolution probability, the MIE identifies all the local minima of the asymptotic (deterministic) cost
function. Clearly, only one of these local minima will be associated to the true value of the parameters (the global minimum,
assuming consistency), whereas the rest will contain the typical values taken by outliers, which can all be associated to other
local minima. The resolution probability is defined as the probability that the value of the cost function at the position of
the deterministic global minima (true DoAs) is smaller than the values at the rest of the local ones. Observe that the global
behavior of the random cost function is summarized as the behavior in a finite set of deterministic points.

The rest of the paper is structured as follows. Section II introduces the conditional and unconditional ML DoA estimation
methods and presents the two main results of the paper, namely (i) almost sure convergence of the ML cost functions and (ii)
convergence in law of the associated finite dimensional distributions. The proof of these two main results is given in Section
III and Section IV respectively. Section V provides a numerical evaluation of the asymptotic probability of resolution that is
established according to the results in Section II and finally Section VI concludes the paper.

II. DOA ML METHODS AND MAIN ASYMPTOTIC RESULTS

Let us denote by y(n) ∈ CM×1 a column vector that contains the complex samples received by an array of M elements at
the nth time instant. This signal contains the contribution from K < M far field sources with DoAs θ̄ =

[
θ̄(1), . . . , θ̄(K)

]T
,

so that we can express y(n) as
y(n) = A(θ̄)s(n) + n(n).
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In this expression, s(n) ∈ CK×1 is a column vector with the source signal samples, A(θ̄) ∈ CM×N is a matrix that contains
as columns the steering vectors corresponding to the different directions of arrival and n(n) ∈ CM×1 is a column vector with
background noise entries, assumed independent and identically distributed (i.i.d.) according to a circularly symmetric Gaussian
law with with zero mean and unknown variance σ2. Assume that N different snapshots or realizations of y(n) are available,
and denote Y = [y(1), . . . ,y(N)]. As mentioned above, two different ML methods for the estimation of θ̄ can be derived
depending on the nature of the signal vectors s(n). In both cases, the minimization is carried out in a multidimensional compact
domain ΘK ⊂ RK for which A(θ) has full column rank, for example

ΘK = {θ1 < . . . < θK , θk ≥ θk−1 + ε, θ1 ≥ −π + ε, θK ≤ π − ε} (2)

for some small ε > 0.

A. Conditional ML

In the conditional model, the signals are assumed to be deterministic unknown parameters, denoted by S = [s(1), . . . , s(N)].
The corresponding ML estimator is the minimizer of the normalized negative log-likelihood

LC
(
σ2,S,θ

)
= M log σ2 +

1

Nσ2
‖Y −A(θ)S‖2F

where ‖·‖F is the Frobenius norm and where we constrain σ2 > 0. The minimum is achieved at Ŝ(θ) = (AH(θ)A(θ))−1AH(θ)Y
and, regardless of σ2, the CML estimator of θ is obtained by minimizing the cost function LC(σ2, Ŝ(θ),θ) or, equivalently,
the function

η̂C (θ) =
1

M
tr
[
P⊥A(θ)R̂

]
(3)

where R̂ is the sample covariance matrix, i.e. R̂ = 1
NYYH , and P⊥A(θ) is the orthogonal projection matrix onto the null

column space of A(θ), namely P⊥A(θ) = IM −PA(θ), where

PA(θ) = A(θ)
(
AH(θ)A(θ)

)−1
AH(θ).

B. Unconditional ML

The unconditional model assumes the signals s(n) are independent circularly symmetric Gaussian vectors with zero mean
and unknown covariance matrix Ps = E

[
s(n)sH(n)

]
. In this case, the ML estimator can be formulated as the minimizer of

normalized negative log-likelihood

LU
(
Ps, σ

2, θ
)

= log det R
(
Ps, σ

2, θ
)

+ tr
[
R−1

(
Ps, σ

2, θ
)
R̂
]

where here again R̂ is the sample covariance matrix defined above and where R
(
Ps, σ

2, θ
)

= A(θ)PsA
H(θ) + σ2IM . The

above minimization is carried with the constraints Ps ≥ 0, σ2 > 0 and θ ∈ ΘK . The solution to the above optimization problem
can be formulated as follows. Let us denote by α̂1(θ) ≤ . . . ≤ α̂K(θ) the eigenvalues of the K ×K matrix UH

A (θ)R̂UA(θ),
where UA(θ) = A(θ)(AH(θ)A(θ))−1/2 and let q̂1(θ), . . . , q̂K(θ) denote the associated eigenvectors. For k = 1, . . . ,K,
denote by Λ̂k(θ) a k× k diagonal matrix that contains the k highest eigenvalues and let Q̂k(θ) be defined as a K × k matrix
that contains the associated eigenvectors, that is Λ̂k(θ) = diag(α̂K−k+1(θ), . . . , α̂K(θ)) and Q̂k(θ) = [q̂K−k+1(θ), . . . , q̂K(θ)].
Furthermore, we define σ̂2

k(θ) as

σ̂2
k(θ) =

1

M − k
tr
[
R̂
(
I−UA(θ)Q̂k(θ)Q̂H

k (θ)UH
A (θ)

)]
.

Now, let m denote the maximum integer such that1 Λ̂m(θ) > σ̂2
m(θ)Im. If there does not exist such an integer (meaning that

α̂K(θ) < σ̂2
1(θ)) then the optimum is achieved at Ps = 0 and σ2 = 1

M trR̂. Otherwise, the function LU (Ps, σ
2, θ) reaches its

minimum at σ2 = σ̂2
m(θ) and Ps = P̂

(m)
s , where

P̂(m)
s =

(
AH(θ)A(θ)

)−1/2
Q̂m(θ)

(
Λ̂m(θ)− σ̂2

m(θ)Im

)
Q̂H
m(θ)

(
AH(θ)A(θ)

)−1/2
.

Furthermore, the corresponding negative log-likelihood takes the minimum value

LU

(
P̂(m)
s , σ̂2

m(θ), θ
)

= (M −m) log σ̂2
m(θ) + log det Λ̂m(θ) +M.

The UML estimator can therefore be obtained by exploring the above cost function over the domain ΘK . The problem here
is that every time we need to evaluate the above expression at a particular θ we need to find the full eigendecomposition of
the matrix UH

A (θ)R̂UA(θ), so finding the true UML estimator is quite complex from the computational complexity. For this

1It can be seen that if this inequality holds for a particular index m, it must hold for all integers smaller than m.
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reason, typical implementations of the UML DoA estimator assume that N > K and α̂1(θ) > σ̂2
K(θ) [12], [13], implying that

m = K and turning the problem into the minimization of

η̂U (θ) =
M −K
M

log σ̂2
K(θ) +

1

M
log det

(
UH
A (θ)R̂UA(θ)

)
(4)

where
σ̂2
K (θ) =

1

M −K
tr
[
P⊥A(θ)R̂

]
. (5)

By using the identity det(I + AB) = det(I + BA) (valid for matrices of compatible dimensions), this cost function can also
be expressed in the more conventional form

η̂U (θ) =
1

M
log det

[
σ̂2
K(θ)P⊥A(θ) + PA(θ)R̂PA(θ)

]
(6)

which can be evaluated without the need of computing an eigendecomposition at each θ. Furthermore, this cost function is
well defined with probability one even if α̂1(θ) ≤ σ̂2

K(θ) (because α̂1(θ) > 0 almost surely). For this reason, the minimizer
of the above cost function is usually taken to be, by definition, the UML estimator.

When N < K (undersampled regime), we will always have α̂1(θ) = . . . = α̂K−N (θ) = 0 and therefore the cost function
in (4)-(6) is not well defined. Noting however that α̂K−N+1(θ) > 0 with probability one, we can instead assume that
α̂K−N+1(θ) ≥ σ̂2

N (θ), implying that m = N in the original UML problem, which can readily be turned into the minimization
of

η̂U (θ) =
M −N
M

log σ̂2
N (θ) +

1

M
log det

(
YHPA(θ)Y

N

)
with σ̂2

N (θ) being expressible as in (5) simply replacing K by N . This cost function can also be evaluated without the need
for eigenvalue decompositions and is always well defined even if the hypothesis α̂K−N+1(θ) ≥ σ̂2

N (θ) does not hold. For this
reason, this is the natural extension of the simplified UML cost function to the undersampled regime (N < K). From now on,
we will consider this natural extension of the UML method to the undersampled regime.

In conclusion, for both undersampled and oversampled regimes, we will assume that the the minimum positive eigenvalue
of UH

A (θ)R̂UA(θ) is larger than the associated noise power estimate, taken to be σ̂2
K̃

(θ) as defined in (5) with K replaced
with K̃ = min (K,N). In both cases, this assumption allows to evaluate the corresponding cost function without the need for
a parameter-dependent eigenvalue decomposition.

As it can be readily seen, both CML and UML methods are based on the minimization of highly nonlinear multidimensional
objective functions η̂C (θ), η̂U (θ) that typically present multiple local minima. In order to obtain the ML estimators, one should
first identify all the local minima in the parameter space ΘK and then select the lowest one as the corresponding estimated
DoAs. The randomness of these ML cost functions will lead to fluctuations of the local minima, which will generate a loss
in both precision and resolution. Fluctuations in the position of the global minimum around the true DoAs θ̄ will result in a
loss of precision, which will lead to fluctuations of the estimated DoAs around the true ones θ̄. The objective of this paper is
the characterization of this effect, following the approach established in [18].

C. First order asymptotic behavior

In order to overcome the difficulties in the statistical characterization of the ML cost functions, we will take an asymptotic
approach and characterize the behavior of the two ML cost functions when both sample size (N ) and array dimension (M )
are large but comparable in magnitude. Furthermore, we will assume that the source signals follow the unconditional model,
as formalized in the following.

(As1) The number of elements of the array depends on the sample size, M = M(N) and M(N) → ∞ when N → ∞.
Furthermore, the quotient M/N converges to a positive constant as N → ∞, namely M/N → c, 0 < c < ∞. From now on
the expressions “large N” and “large M” will be indistinctly used to refer to this asymptotic regime.

(As2) The observations y(n), n = 1, . . . , N , are complex, circularly symmetric, independent and identically distributed
Gaussian random variables with zero mean and covariance matrix R. Furthermore, the eigenvalues of R are allowed to fluctuate
with increasing M but are always located inside a compact interval of R+

? (the real positive axis) independent of M.
(As3) The number of sources K is strictly lower than the number of sensors, that is K < M . Furthermore, K may increase

with N , so that we can either have2

0 ≤ lim inf
K

N
≤ lim sup

K

N
< 1 (7)

(oversampled regime) or

1 < lim inf
K

N
≤ lim sup

K

N
<∞ (8)

2The case K = N requires more specific asymptotic tools and is left for future reserarch. On the other hand, observe that the case of K constant
(independent of N ) is included in (7).
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(undersampled regime).
We consider here a family of L sequences (L fixed and independent of M ) of K-dimensional points in ΘK , which will be

denoted by {θ(`)
M }`=1,...,L. Our objective is to characterize the asymptotic behavior of the CML and the UML cost functions

evaluated at these L distinct point sequences. Observe that according to (As3) the dimensionality of these points will scale
up with the array dimension. Consider the M ×M deterministic matrix

R
(`)
A = PA

(
θ

(`)
M

)
RPA

(
θ

(`)
M

)
and note that this matrix is always singular due to the fact that K < M . We will denote by M̄` + 1 the total number of
distinct eigenvalues of this matrix, which will be written as 0 = γ

(`)
0 < γ

(`)
1 < . . . < γ

(`)

M̄`
. The multiplicity of the mth

positive eigenvalue is denoted as K(`)
m , so that, assuming that A(θ

(`)
M )is full column rank, we will have K(`)

0 = M −K, and∑M̄`

m=1K
(`)
m = K. Note that, for the sake of notational simplicity, we omit the dependence on the observation dimension M

in all these quantities. The following assumption is not really needed for the derivations in this paper, but greatly simplifies
the exposition and derivation of the results. It basically ensures that all the matrices R

(`)
A have exactly K positive eigenvalues.

Thanks to (As2), it is sufficient to ensure that the A(θ
(`)
M ) is full column rank at all θ(`)

M uniformly in M .
(As4) For each ` = 1, . . . , L, the sequence of points {θ(`)

M } is such that the minimum eigenvalue of AH(θ
(`)
M )A(θ

(`)
M ) is

bounded away from zero uniformly in M .
We are now ready to introduce the first result of the paper, which characterizes the first order behavior of the UML and the

CML cost functions.

Theorem 1 Under (As1)–(As4), and for each ` = 1, . . . , L, we have |η̂C(θ
(`)
M )−η̄C(θ

(`)
M )| → 0 and |η̂U (θ

(`)
M )−η̄U (θ

(`)
M )| → 0

almost surely as N → ∞, where η̄C (θ) and η̄U (θ) are two deterministic equivalent objective functions, defined as follows.
For the CML method, we define η̄C (θ) = M−1tr[P⊥A(θ)R]. For the UML method, we must distinguish between undersampled
and oversampled scenarios. More specifically, if (7) holds, we have

η̄U (θ) =
1

M
log det

[
σ̄2 (θ) P⊥A(θ) + PA(θ)RPA(θ)

]
+
N −K
M

log

(
N

N −K

)
− K

M
(9)

where
σ̄2
K (θ) =

1

M −K
tr
[
P⊥A(θ)R

]
.

Conversely, when (8) holds, we have

η̄U (θ) =
1

M
log det [|φ0(θ)| IM + PA(θ)RPA(θ)] +

M −N
M

log σ̄2
N (θ)− M −N

M
log |φ0(θ)| − N

M
(10)

where φ0(θ) is the only negative solution to the following equation in φ

1

N
tr
[
PA(θ)RPA(θ) (PA(θ)RPA(θ)− φIM )

−1
]

= 1. (11)

Proof: See Section III.
In the light of the above theorem, one may clearly establish a different asymptotic behavior for the CML and the UML

cost functions. The CML cost function is asymptotically equivalent to its large-sample approximation M−1 tr
[
P⊥A(θ)R

]
,

whereas the behavior of the UML cost function is somewhat different. In the oversampled situation, the UML cost function
is asymptotically close to the large sample equivalent (the first term in (9)) plus a constant factor that does not play any role
in the parameter optimization process. In the undersampled case, however, the UML cost function presents quite a different
behavior, in the sense that it becomes equivalent to a cost function that does not appear to bear any similarity with its large
sample approximation. We can see, however, that in all these cases, the maximum of the objective function is achieved at the
true DoAs, as formally established in the following lemma.

Lemma 1 Assume that the array does not present ambiguities, so that whenever A(θ1) = A(θ2)T with T an invertible
matrix, we have θ1 = θ2. Then, regardless of whether N > K or N < K, both η̄C (θ) and η̄U (θ) achieve their minimum at
the true DoAs, namely

θ̄ = arg min
θ∈ΘK

η̄C (θ) = arg min
θ∈ΘK

η̄U (θ)

where ΘK is as defined above.

Proof: See Appendix A.
The fact that both ML cost functions are asymptotically close some deterministic functions with a global minimum at the

true parameters θ̄ supports the conjecture that both methods provide consistent estimates even under a finite number of samples
per observation dimension. However, this is not formally proven here, since it would require extending the above pointwise
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convergence result to uniform convergence on the parameter space ΘK . In this paper, we are more interested in the behavior
of the cost functions themselves, and more specifically in their fluctuations around their deterministic equivalents, which will
eventually lead to the presence of outliers. As mentioned above, the presence of outliers is typically a consequence of the cost
function achieving its minimum at a local extremum that is far away from the one associated with the true parameters. In
the next subsection, we will further characterize this effect by investigating the nature of the fluctuations of the CML and the
UML cost functions at these local minima.

D. Second order behavior

In this subsection, we will prove that the two ML cost functions asymptotically fluctuate around their deterministic equivalents
as Gaussian random variables. We define the two L× 1 column vectors

η̂
C

=
[
η̂C

(
θ

(1)
M

)
, . . . , η̂C

(
θ

(L)
M

)]T
η̄
C

=
[
η̄C

(
θ

(1)
M

)
, . . . , η̄C

(
θ

(L)
M

)]T
and take equivalent definitions for the UML cost function. We will assume that the K-dimensional points θ(`)

M are such that the
asymptotic covariance is uniformly invertible. In order to formulate this point more precisely, let us define (for ` = 1, . . . , L)
the matrix

Q` = R1/2A`

[
AH
`

(
R− φ(`)

0 IM

)
A`

]−1

AH
` R1/2 (12)

where φ(`)
0 is the only non-positive solution to the equation in (11) when θ = θ

(`)
M and A`= A(θ

(`)
M ).

(As5) Given the L sequences of K-dimensional points {θ(`)
M } we consider two L×L matrices WP and WQ with (i, j)th

entry respectively defined as

{WP }i,j =
1

N
tr
[
P⊥A

(
θ

(i)
M

)
P⊥A

(
θ

(j)
M

)]
(13)

{WQ}i,j =
1

N
tr [QiQj ] (14)

where Qi is as in (12). We assume that the minimum eigenvalue of both WP and WQ is bounded away from zero uniformly
in M .

Under the above set of assumptions, it is possible to characterize the asymptotic pointwise convergence of the two ML cost
functions, which we summarize in the following result. The following result establishes the fact that η̂

C
and η̂

U
asymptotically

fluctuate around their deterministic equivalents as Gaussian random vectors. We formulate the result so that it holds for both
the undersampled (N < K) and the oversampled (N > K) regimes.

Theorem 2 Consider the quantity σ2
` = (M − K̃)−1tr[P⊥A(θ

(`)
M )R] where K̃ = min(K,N) and define the M ×M matrices

P` = R1/2PA

(
θ

(`)
M

)
R1/2 P⊥` = R1/2P⊥A

(
θ

(`)
M

)
R1/2.

Under (As1)− (As5), and as N →∞, the random vectors MΓ
−1/2
C (η̂

C
− η̄

C
) and MΓ

−1/2
U (η̂

U
− η̄

U
) converge in law to

a multivariate standardized Gaussian distribution, where

{ΓC}`,m =
1

N
tr
[
P⊥` P⊥m

]
and

{ΓU}`,m =
1

σ2
`σ

2
m

1

N
tr
[
P⊥` P⊥m

]
+

1

σ2
m

1

N
tr
[
P⊥mQ`

]
+

1

σ2
`

1

N
tr
[
P⊥` Qm

]
− log

∣∣∣∣1− 1

N
tr [Q`Qm]

∣∣∣∣
with Q` denoting the matrix defined in (12).

Proof: See Section IV.
The above results provide a means of establishing the asymptotic probability of resolution of the UML and the CML methods.

Before turning to its proof, let us draw some conclusions that can be derived from it. First of all, it is interesting to observe
that when M,N →∞, the two cost functions are asymptotically close to the two deterministic counterparts η̄C (θ) and η̄U (θ).
Even if the two asymptotic equivalents present a single global minimum at the true value of the DoAs, these functions are
in practice highly multimodal, i.e. they present several local minima. As shown in Lemma 1, one of these local minima will
coincide with the true DoAs, namely θ̄. Let L denote the number of additional local minima inside the feasibility region, other
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than θ̄, and let θ(1)
M , . . . , θ

(L)
M denote the K-dimensional points where these minima are achieved. In general, both L and the

points θ(`)
M may be different in η̄C (θ) and η̄U (θ). The probability of resolution is defined as the probability that the original

cost functions η̂C (θ) and η̂U (θ) at any of these additional local minima takes a lower value than the corresponding function
at θ̄, namely

PCML
res = P

[
L⋂
`=1

{
η̂C

(
θ

(`)
M

)
> η̂C

(
θ̄
)}]

(15)

and equivalently for η̂U . As explained above, this definition of the resolution probability provides a very accurate description
of both the breakdown effect and the expected mean squared error (MSE) of the DoA estimation process. Unfortunately, in
our ML setting, (15) is difficult to analyze for finite values of M,N due to the complicated structure of the cost functions
(3)-(6). For this reason, previous studies [18], [21], [22] focused instead on the union bound of the complementary of (15),
i.e. the outlier probability, obtained by assuming independent events. Theorem 2 provides a very simple way of approximating
(15), by simply using the asymptotic distributions (as M,N → ∞) instead of the actual ones. It will be shown below via
simulations that the result provides a very accurate description of the actual probability, even for very low M,N .

It should be mentioned here that the above results are merely concerned with finite dimensional distributions and do not
formally imply convergence of the resolution probability of the CML and UML methods. This is because the number of local
minima L of η̄ (θ) may in practice increase with M , and this substantially complicates the asymptotic behavior of (15). We
conjecture that this will be the case for reasonably well behaved A(θ), but a more rigorous study of this problem is left for
future research.

III. PROOF OF THEOREM 1

The proof is based on the study of the eigenvalues of matrices of the type R̂
(`)
A = PA(θ

(`)
M )R̂PA(θ

(`)
M ) and strongly relies

on random matrix theory techniques. In order to introduce these methods, consider the complex random function m̂`(z),
` = 1, . . . , L, z ∈ C+ = {z ∈ C : Im z > 0}, defined as

m̂`(z) =
1

M
tr

[(
R̂

(`)
A − zIM

)−1
]
. (16)

This function is the Stieltjes transform of the empirical distribution function of the eigenvalues of R̂
(`)
A , and it is extremely

important in order to characterize the asymptotic behavior of the eigenvalues of this matrix. We will also identify R̂
(0)
A = R̂

and therefore denote m̂0(z) as the Stieltjes transform of the empirical eigenvalue distribution of R̂, that is

m̂0(z) =
1

M
tr

[(
R̂− zIM

)−1
]
.

The Stieltjes transforms defined above allow to characterize a number of quantities that bear some dependence with the
eigenvalues through the Cauchy integration formula. For example, one can readily express the CML objective function as

η̂C

(
θ

(`)
M

)
=

1

2π j

∮
C−0
zm̂0(z)dz − 1

2π j

∮
C−`
zm̂`(z)dz (17)

where C−` (` ≥ 0) is a negatively (clockwise) oriented contour enclosing all the positive eigenvalues of R̂
(`)
A and not zero.

Hence, we can easily study the asymptotic behavior of η̂C(θ
(`)
M ) by examining the asymptotic behavior of the function m̂`(z).

A similar observation is possible for the UML cost function. Indeed, we can express η̂U (θ) in (6) as

η̂U

(
θ

(`)
M

)
=
M − K̃
M

log σ̂2
K̃

(
θ

(`)
M

)
+

1

M
log pdet

[
R̂

(`)
A

]
where K̃ = min(K,N) and where pdet (·) here denotes the pseudo-determinant (product of positive eigenvalues), so that the
above expression makes sense even if R̂

(`)
A is singular. By using the definition of the Stieltjes transform in (16), we may write

η̂U

(
θ

(`)
M

)
=
M − K̃
M

log

[
M

M − K̃
η̂C

(
θ

(`)
M

)]
+

1

2π j

∮
C−`

log z m̂`(z)dz (18)

where now log z is the principal branch of the complex logarithm, analytic on C\R−, and where C−` is as defined above. In
particular, since C−` encloses the positive eigenvalues of R̂

(`)
A and not zero, the above representation is valid for both N > K

and N < K. Hence, we conclude here again that we can infer the asymptotic properties of η̂U (θ
(`)
M ) from the asymptotic

behavior of m̂`(z).
It is well known [23], [24] that, under (As1)− (As4) the positive eigenvalues of R̂

(`)
A are almost surely located inside a

fixed compact interval S` ⊂ R+
? for all N large enough. This implies that for sufficiently large N we can fix the contour C−`

in (17)-(18) so that it does not depend either on N or the realization of the eigenvalues of R̂
(`)
A , while still enclosing S` and
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not {0}. This means that, for all N large enough, the only source of randomness in (17)-(18) is through the integrand function
m̂`(z), which has been well studied in the random matrix theory literature. In particular, the following result establishes that
this function is asymptotically close to a deterministic counterpart, which will be referred to as the asymptotic deterministic
equivalent. We will use a uniform notation for R

(`)
A and R by identifying R = R

(0)
A and defining M̄0 + 1 as the total number

of different eigenvalues of R, which will be denoted by 0 < γ
(0)
0 < . . . < γ

(0)

M̄0
. The mth eigenvalue of R will have multiplicity

K
(0)
m , so that in particular M =

∑M̄0

m=0K
(0)
m .

Theorem 3 [25], [26] Let z ∈ C+ and assume that (As1)− (As4) hold. Then, for ` = 0, . . . , L, |m̂`(z) − m̄`(z)| → 0
almost surely as N →∞, where m̄`(z) is a deterministic complex function defined as

m̄`(z) =
ω` (z)

z

1

M

M̄∑̀
m=0

K(`)
m

1

γ
(`)
m − ω` (z)

(19)

where the complex function ω` (z) is defined as the unique solution in C+ of the polynomial equation

z = ω` (z)

1− 1

N

M̄∑̀
m=0

K(`)
m

γ
(`)
m

γ
(`)
m − ω` (z)

 . (20)

By using the analycity and boundedness of the function |m̂`(z)− m̄`(z)| on the set C\S`∪{0} one may invoke Montel’s
theorem to establish uniform convergence on compact sets in C\S`∪{0}. In this case, the definition of the function ω` (z)
is extended by conventional analytical continuation. In particular, one can establish that supz∈C` |m̂`(z)− m̄`(z)| → 0 with
probability one. Let us now define η̄C(θ

(`)
M ) and η̄U (θ

(`)
M ) as in (17)-(18) but replacing m̂`(z) by m̄`(z), ` ≥ 0. By the Dominated

Convergence Theorem (DCT) together with Theorem 3 we can readily see that |η̂C(θ
(`)
M )− η̄C(θ

(`)
M )| → 0. Regarding the UML

cost function, we can write

η̂U

(
θ

(`)
M

)
− η̄U

(
θ

(`)
M

)
=

1

2π j

∮
C−`

log z [m̂`(z)− m̄`(z)] dz +
M − K̃
M

log

1 +
η̂C

(
θ

(`)
M

)
− η̄C

(
θ

(`)
M

)
η̄C

(
θ

(`)
M

)
 . (21)

The first term of the above equation converges almost surely to zero by the DCT and Theorem 3. Regarding the second term,
one can clearly see that by (As4) infM η̄C(θ

(`)
M ) > 0 so that by convergence of η̂C(θ

(`)
M ) − η̄C(θ

(`)
M ) to zero and the bound

log (1 + x) < x for |x| < 1 we can establish the same result.
At this point, it only remains to prove that the CML and UML deterministic cost functions defined by direct substitution of

m̂`(z) by m̄`(z), ` ≥ 0, in (17)-(18) correspond to those in the statement of the theorem. In other words, it remains to solve
the corresponding integrals. To do this, we consider the change of variables z 7→ ω = ω` (z), where ω` (z) is as defined in
(20), and observe that

ω′` (z) =

1− 1

N

M̄∑̀
m=1

K(`)
m

(
γ

(`)
m

γ
(`)
m − ω` (z)

)2
−1

. (22)

If we denote C−ω`
= ω`

(
C−`
)
, we can express η̄C

(
θ

(`)
M

)
as

η̄C

(
θ

(`)
M

)
=

1

M
tr [R]− 1

2π j

∮
C−ω`

1

M

M̄∑̀
m=0

K(`)
m

ω

γ
(`)
m − ω

1

ω′`
dω

where we have used the definition of m̄`(z) in (19) together with the z 7→ ω change of variables, and where ω′` should be
understood as the derivative defined in (22) as a function of ω. It was shown in [27] that, for ` = 1, . . . , L, the contour C−ω`

encloses all the positive eigenvalues of R
(`)
A , namely γ(`)

1 < . . . < γ
(`)

M̄`
, which are the unique singularities of the above integrand

(γ(`)
0 = 0 is not a singularity). Hence, by conventional Cauchy integration, we obtain η̄C

(
θ

(`)
M

)
= M−1 tr [R]−M−1 tr

[
R

(`)
A

]
as we wanted to show. Regarding η̄U (θ), we only need to solve the integral corresponding to the second term in (18), namely

I` ,
1

2π j

∮
C−`

log zm̄`(z)dz

=
1

2π j

∮
C−`

log z

z

1

M

M̄∑̀
m=1

K
(`)
m ω` (z)

γ
(`)
m − ω` (z)

dz

=
1

2π j

∮
C−ω`

L`(ω) 1
M

∑M̄`

m=1K
(`)
m

1

γ
(`)
m −ω

1− 1
N

∑M̄`

m=1K
(`)
m

γ
(`)
m

γ
(`)
m −ω

dω

ω′`
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for ` = 1, . . . , L, where in the first identity we used the definition of m̄`(z) in (19) together with the fact that z = 0 is not
enclosed by C−` (so we can drop the sum term in m = 0), and where the second identity follows from the change of variables
z 7→ ω and the definition

L`(ω) = log

ω
1− 1

N

M̄∑̀
m=1

K(`)
m

γ
(`)
m

γ
(`)
m − ω

 . (23)

The following proposition establishes the value of this integral.

Proposition 1 For every ` ≥ 1, the integral I` takes the value

I` =
1

M

M̄∑̀
k=1

K
(`)
k log γ

(`)
k +

N −K
M

log
N

N −K
− K

M

when N > K (oversampled regime), whereas

I` =
1

M

M̄∑̀
k=1

K
(`)
k log

(
γ

(`)
k − φ

(`)
0

)
+
N −K
M

log
∣∣∣φ(`)

0

∣∣∣− N

M

when N < K (undersampled regime), where φ(`)
0 is the only negative solution to the equation in (11) for θ = θ

(`)
M .

Proof: See Appendix B.
In order to conclude the proof of Theorem 1, we need to ensure that the above integral makes sense even in N → ∞. In

particular, we need to show that infN,` |φ(`)
0 | > 0 in the undersampled regime, so that the logarithm in the above expression

is well defined for all large N . From the definition of φ(`)
0 , we can write

K

N
− 1 =

φ
(`)
0

N

M̄∑̀
m=1

K(`)
m

1

φ
(`)
0 − γ

(`)
m

from where it follows that ∣∣∣φ(`)
0

∣∣∣ ≥
 1

N

M̄∑̀
m=1

K(`)
m

(
γ(`)
m

)−1

−1 ∣∣∣∣KN − 1

∣∣∣∣
and consequently infN,` |φ(`)

0 | > 0 as a consequence of (As3) and (As4).

IV. PROOF OF THEOREM 2

Following the same approach as in the proof of Theorem 1, we see that we are able to express

M
(
η̂C

(
θ

(`)
M

)
− η̄C

(
θ

(`)
M

))
=

1

2π j

∮
C−0
zM (m̂0(z)− m̄0(z)) dz − 1

2π j

∮
C−`
zM (m̂`(z)− m̄`(z)) dz

where C−0 and C−` respectively enclose all the positive eigenvalues of R and R
(`)
A , and not zero. On the other hand, using (21),

we can also write

M
(
η̂U

(
θ

(`)
M

)
− η̄U

(
θ

(`)
M

))
=
M − K̃
η̄C (θM )

(
η̂C

(
θ

(`)
M

)
− η̄C

(
θ

(`)
M

))
+

1

2π j

∮
C−

log z M [m̂`(z)− m̄`(z)] dz + ε
(`)
M (24)

where we have defined the error term

ε
(`)
M =

(
M − K̃

)
log

1 +
η̂C

(
θ

(`)
M

)
− η̄C

(
θ

(`)
M

)
η̄C

(
θ

(`)
M

)
− (M − K̃) η̂C

(
θ

(`)
M

)
− η̄C

(
θ

(`)
M

)
η̄C

(
θ

(`)
M

) . (25)

Using the fact that |log (1− x)− x| < |x|2 (1− |x|)−1 for |x| < 1 one can readily see that ε(`)M → 0 in probability, so that we
can disregard this term in the asymptotic analysis. Now, observe that we can express all the remaining terms in the form

1

2π j

∮
C−`
f` (z)M (m̂`(z)− m̄`(z)) dz (26)

where f` (z) is a certain complex function that is holomorphic on the positive real axis. For every fixed `, it was shown in
[28] that the above statistic asymptotically fluctuates as a Gaussian random variable with zero mean and positive variance.
However, in this paper we need a different result, that describes the asymptotic joint distribution of collections of variables
with the form above.
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Theorem 4 Let {R1, . . . ,RR} denote a collection of R Hermitian positive semidefinite matrices of dimension M ×M with
bounded spectral norm. For r = 1, . . . , R, R̂r = N−1R

1/2
r XXHR

H/2
r , where R

1/2
r is a non-necessarily Hermitian M ×M

matrix such that Rr = R
1/2
r R

H/2
r , and X is an M ×N matrix of i.i.d. Gaussian random variables with law CN (0, 1). Let

m̂r(z), m̄r(z) and ωr(z) be defined as in (16), (19) and (20) respectively. Let {f1(z), . . . , fR(z)} be complex functions that
are holomorphic on the positive real axis, R+

? and define η̂ = [η̂(1), . . . , η̂(R)]T where

η̂(r) =
1

2π j

∮
C−r
fr(z)m̂r(z)dz (27)

where C−r is a clockwise oriented contour enclosing all the positive eigenvalues of R̂r and not {0}. Let η̄ = [η̄(1), . . . , η̄(R)]T ,
where η̄(r) is defined as η̂(r) replacing m̂r(z) with m̄r(z), and consider an R×R matrix Γ with entries

{Γ}r,m =
−1

4π2

∮
C+ωr

∮
C+ωm

gr (ω1) gm (ω2) Φr,m (ω1, ω2) dω1dω2 (28)

where Cωr
= ωr(Cr),

gr(ω) = fr

(
ω

(
1− 1

N
tr
[
Rr (Rr − ω)

−1
]))

Φr,m (ω1, ω2) =
−∂2 log (1−Ψr,m (ω1, ω2))

∂ω1∂ω2

and where

Ψr,m (ω1, ω2) =
1

N
tr

[(
R1/2
r

)H
(Rr − ω1IM )

−1
R1/2
r RH/2

m (Rm − ω2IM )
−1

R1/2
m

]
.

Consider an L × R complex transformation matrix Ξ and assume that ΞΓΞH is invertible and that the spectral norm of(
ΞΓΞH

)−1
is bounded in M . Assume, finally that M → ∞ when N → ∞ so that the quotient M/N is enclosed by a

compact of the positive real axis. Under these conditions, the column vector M
(
ΞΓΞH

)−1/2
Ξ
(
η̂ − η̄

)
converges in law to

a multivariate standardized Gaussian random vector.

Proof: See Appendix D.
We can readily particularize Theorem 4 to the problem at hand. For the CML cost function, we can use the above theorem

with R = L, Ξ = IL, fr(z) = z and R
1/2
r = PA

(
θ

(r)
M

)
R1/2, r = 1, . . . , L. Computing the integrals in (28) or directly using

the formula for the expectation of four Gaussian random variables we can establish that

{ΓC}r,m =
1

N
tr
[
P⊥A

(
θ

(r)
M

)
RP⊥A

(
θ

(m)
M

)
R
]
.

The matrix ΓC has its minimum eigenvalue bounded away from zero. Indeed, observe that we can write

ΓC = WH
(
RT⊗R

)
W

where W is defined as M2 × L matrix

W =
1√
N

[
vec
(
P⊥A

(
θ

(1)
M

))
, . . . , vec

(
P⊥A

(
θ

(L)
M

))]
. (29)

Therefore, for any unit norm vector u ∈ CL×1 we have uHΓCu ≥ λ2
min(R)uHWHWu ≥ λ2

min(R)λmin(WHW) =
λ2

min(R)λmin(WP ), where λmin (·) is the minimum eigenvalue of a matrix and WP is defined in (13). Therefore, taking
infimum with respect to u and invoking (As2) and (As4) we see that the minimum eigenvalue of ΓC is bounded away from
zero uniformly in M . Therefore, we can apply Theorem 4 to conclude that that MΓ−1

C

(
η̂
C
− η̄

C

)
converges to a standardized

Gaussian distribution.
Regarding the UML cost function, we see from (24) that we can express

M
(
η̂
U
− η̄

U

)
= Ξξ + εM

where Ξ ∈ CL×2L+1 is a deterministic transformation matrix as in the statement of Theorem 4, ξ ∈ C2L+1×1 is a random
column vector with quantities of the form in (26) and where εM ∈ CL×1 contains the error quantities ε(`)M defined in (25),
which converge to zero in probability. More specifically, the column vector ξ can be written as η̂ = [ξT (1), ξT (2)]T where
ξT (1) ∈ CL+1×1 has its (`+ 1)th entry equal to

{ξ (1)}`+1 =
1

2π j

∮
C−`
zM (m̂`(z)− m̄`(z)) dz
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for ` ≥ 0, whereas ξ (2) ∈ CL×1 has its `th entry equal to

{ξM (2)}` =
1

2π j

∮
C−`

log zM (m̂`(z)− m̄`(z)) dz.

On the other hand, the `th row of matrix Ξ has zeros everywhere except for the 1st, the (`+ 1)th and the (`+ L+ 1)th
positions, which take the values

{Ξ}`,1 =
M − K̃

Mη̄C

(
θ

(`)
M

) ,
{Ξ}`,`+1 = −{Ξ}`,1 , {Ξ}`,`+L+1 = 1

respectively. We can now invoke Theorem 4 in order to establish a CLT on the random vector Ξξ. Let Cξ ∈ C2L+1×2L+1

denote the asymptotic covariance matrix of ξ, equivalent to Γ in the statement of Theorem 4. Consider first the upper left
entries of the matrix Cξ. In this case, we may directly establish that {Cξ}`+1,m+1 = N−1tr[P

(`)
A RP

(m)
A R] for 0 ≤ `,m ≤ L,

where we have used the short hand notation

P
(`)
A = PA

(
θ

(`)
M

)
, ` ≥ 1, and P

(0)
A = IM .

Now, in order to compute the other elements of the matrix, namely {Cξ}M+`,: for ` ≥ 1 and {Cξ}:,M+m for m ≥ 1, we
need to solve the integrals

Γ
(`,m)
1 =

1

2π i

1

2π i

∮
C+ω`

∮
C+ωm

z1 log z2Φ`,m (ω1, ω2) dω1dω2 (30)

Γ
(`,m)
2 =

1

2π i

1

2π i

∮
C+ω`

∮
C+ωm

log z1 log z2Φ`,m (ω1, ω2) dω1dω2 (31)

for ` ≥ 0,m ≥ 1, with z1 (resp. z2) replaced by the right hand side of (20) as a function of ω1 (resp. ω2). It is shown in
Appendix C that

Γ
(`,m)
1 =

1

N
tr
[
R1/2P

(`)
A R1/2Qm

]
(32)

whereas
Γ

(`,m)
2 = − log

∣∣∣∣1− 1

N
tr [Q`Qm]

∣∣∣∣ (33)

where Ql is defined in (12). An easy computation shows that ΞMCξΞ
T
M = ΓU as given in the statement of Theorem 2.

However, we need to check that the expression in (33) makes sense even for asymptotically large N . By the Cauchy-Schwarz
inequality, it is enough to see that supN,`N

−1 tr[Q2
` ] < 1. Observe that we can express

1

N
tr
[
Q2
`

]
=

1

N

M̄∑̀
m=1

K(`)
m

(
γ

(`)
m

γ
(`)
m − φ(`)

0

)2

.

In the undersampled case we have φ(`)
0 = 0 and the above quantity is equal to K/N , which is obviously bounded away from

1 according to (As3). For the undersampled case, we use the fact that infN,` |φ(`)
0 | > 0, which is proven at the end of Section

III, so that
1

N
tr
[
Q2
`

]
= 1−

∣∣∣φ(`)
0

∣∣∣ 1

N

M̄∑̀
m=1

K(`)
m

γ
(`)
m(

γ
(`)
m − φ(`)

0

)2 < 1

uniformly in M, `. Finally, it remains to show that the minimum eigenvalue of ΓU is bounded away from zero. To see this,
we observe that we can write ΓU = Γ

(1)
U + Γ

(2)
U where{

Γ
(1)
U

}
`,m

=
1

N
tr

[(
1

σ2
m

P⊥m +Qm
)(

1

σ2
`

P⊥` +Q`
)]

{
Γ

(2)
U

}
`,m

= − 1

N
tr [Q`Qm]− log

∣∣∣∣1− 1

N
tr [Q`Qm]

∣∣∣∣ .
We can readily see that Γ

(1)
U ≥ 0, so it suffices to show that Γ

(2)
U > 0 uniformly in M . Indeed, observe that Γ

(2)
U is a Hadamard

matrix function [29, p.449] of the L× L matrix WQ defined in (14). Indeed, we can express Γ
(2)
U as

Γ
(2)
U =

∑
n≥2

1

n
W

(n)
Q
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where W
(n)
Q is the nth Hadamard product of WQ with itself. This matrix is positive definite uniformly in M by (As4),

implying that Γ
(2)
U > 1

2W
(2)
Q > 0 uniformly in M , as we wanted to show.

V. NUMERICAL VALIDATION

In this section, we provide a numerical validation of the main results established in Section II. We considered a uniformly
spaced antenna array of M = 10 elements separated a quarter of wavelength apart, receiving K = 4 sources coming from
DoAs: 16◦, 18◦, 60◦,−50◦. The four signals were received with the same power and were all uncorrelated, except for the first
two (closely spaced), which presented a correlation coefficient ρ. Figures 1, 2 and 3 represent the resolution probability of the
UML and CML methods when the sample size consisted of N = 100, 10 and 3 snapshots respectively. In these figures, dotted
lines represent the resolution probability simulated with 104 sample realizations, whereas solid lines represent the behavior
predicted by the asymptotic formulas in Theorem 2. The values of the local minima where obtained by running an accelerated
proximal gradient search method [30, Section 4.3] over the electrical angle space3, taking as initial search values a collection
of 331 points uniformly distributed among the feasibility set in (2). At each iteration, this algorithm performs a gradient
update followed by an orthogonal projection onto the feasibility set in (2) with ε = 0.0262 radians, which corresponds to 1/4
of the minimum separation between sources in the scenario. The resulting values where then grouped into clusters using an
agglomerative hierarchical clustering algorithm based on single linkage (distance between clusters defined as the minimum
of the distance among any pair of elements). Clusters where formed by ensuring a minimum distance of at least 0.6 radians
between clusters, whose centroids were used as representatives for the position of the local minima. We considered three
different scenarios: (i) uncorrelated and equi-powered sources; (ii) uncorrelated sources with powers {2, 0.5, 1, 1} (so that the
closely spaced sources are received with a 6dB power difference); and (iii) almost coherent equi-powered sources (where
the closely spaced sources were received with a correlation coefficient ρ = 0.95). The predicted probability of resolution is
evaluated by assuming that the cost functions follow a multi-dimensional Gaussian distribution, i.e. η̂

C
∼ N (η̄

C
,M−2ΓC) and

η̂
U
∼ N (η̄

U
,M−2ΓU ), where we used the Matlab c© implementation of the multidimensional cumulative distribution function

(mvncdf.m), a quasi-Monte Carlo integration algorithm based on methods developed by Genz and Bretz [31].
Observe that in general terms the asymptotic expressions are very good approximations of the actual resolution probability

even for relatively low values of the sample size, the only exception being the performance of the CML method in the
undersampled regime (N = 3). Surprisingly enough, the asymptotic resolution probability of the UML method provides an
accurate prediction even for extremely small vales of M,N . Regarding the actual performance of the methods, the CML
method generally provides better performance in terms of resolution probability. The only exceptions appear to be situations
where sources are very highly correlated and the sample size is relatively high (Figure 1).

In order to justify the usefulness of the resolution probability, in Figure 4 we represent the mean squared error (MSE) of the
CML and UML estimates as a function of the SNR for the same scenario as above, taking N = 100. The predicted MSE is
obtained using the expression in (1), where the MSEsmall is as given in [14] and where MSElarge is the MSE that is obtained
by choosing uniformly at random a point in the feasibility region ΘK . Using [32, Integral 4.631], one can readily see that
(assuming ε→ 0 in the feasibility region of (2))

MSElarge = (2π)
2

[
K

6 (K + 1)
+

K∑
m=1

(
m

K + 1
− π + θ̄ (m)

2π

)2
]

where we recall that θ̄ (1) < . . . < θ̄ (K) are the true DoAs, assumed to take values on the interval (−π, π). Observe that the
aysmptotic expressions of the resolution probability are extremely useful in order to characterize the threshold SNR at which
outliers begin to appear. In fact, the main limitation of the MSE prediction based on (1) is the fact that the small error term
MSEsmall is only valid as an approximation when N → ∞ and does not fully characterize the finite N scenario, especially
in the presence of highly correlated sources (similar results are reported in [19], [33]).

VI. CONCLUSIONS

The use of random matrix theory techniques has proven to be a very good tool to characterize the behavior of conditional
and unconditional ML algorithms for DoA estimation in the threshold region. By studying the first and second order behavior
of these two ML cost functions, it has been shown that the finite dimensional distributions of these two cost functions
asymptotically fluctuate as multivariate Gaussian random vectors with a certain mean and covariance matrix, which have been
derived in closed form. These results have been used in order to approximate and characterize the resolution probability of
both methods in threshold region. These studies corroborate the fact that, in general terms, the CML method provides better
resolution probabilities than UML, except for very specific cases with highly correlated source signals and relatively large
sample size.

3That is, over θ = π sinβ, with β the physical DoA.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

Probability of resolution, M=10, N=100, K=4

Fig. 1. Simulated vs. asymptotic resolution probability of the UML and CML methods when N = 100.

APPENDIX A
PROOF OF LEMMA 1

The fact that η̄C (θ) achieves its maximum at θ = θ̄ is well known in the literature, as it is the case for η̄U (θ) in
the oversampled regime. Thus, we will only prove the result for η̄U (θ) in the undersampled regime. Let us recall that
UA (θ) = A(θ)

(
AH(θ)A(θ)

)−1/2
. Observe first that we can re-write

η̄U (θ) = Υ (UA (θ)) +
M −N
M

log

(
1

M −N
tr [R]

)
where

Υ (U) = −N
M

+
1

M
log det

[
UHRU− ξ (U) IK

]
+
M −N
M

log

(
1−

tr
[
UHRU

]
tr [R]

)
− K −N

M
log |ξ (U)|

and where ξ (UA (θ)) = φ0 (θ), so that ξ (U) is the unique negative solution of the equation

1

N
tr
[
UHRU

(
UHRU− ξIK

)−1
]

= 1. (34)

Consider the unconstrained maximization of the function Υ (U) with respect to the set of M ×K matrices with orthogonal
columns. Let Σ ∈ CK×K be a complex Hermitian matrix that contains the Lagrange multipliers corresponding to the set of
constraints UHU = IK . By constructing the Lagrangian associated to this optimization problem and forcing the derivatives
with respect to the entries of U to zero we obtain the optimality conditions

1

σ̄2
N (U)

RU−RU
(
UHRU−ξ (U) IK

)−1
= MUΣ (35)
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Probability of resolution, M=10, N=10, K=4

Fig. 2. Simulated vs. asymptotic resolution probability of the UML and CML methods when N = 10.

where, with some abuse of notation, we have defined

σ̄2
N (U) =

1

M −K
tr
[
R
(
IM −UUH

)]
.

Imposing the orthogonality constraint we obtain an expression for Σ, which inserted into (35) leads to[
RU−U

(
UHRU

)] [
IK − σ̄2

N (U)
(
UHRU−ξ (U) IK

)−1
]

= 0. (36)

Hence, all local minima of Υ (U) must be zeros of one of the two factors above.
Let us first analyze the zeros of the first term, namely the solutions to RU = U(UHRU). Noting that UHRU is Hermitian

and positive definite, so we can consider its eigenvalue decomposition, namely QΛQH . Using this, the above equation can
be rewritten as RUQ = UQΛ and we see that the columns of matrix UQ are equal to K different eigenvectors of R. Since
the value of the cost function is invariant to the choice of Q, we have determined all the set of solutions corresponding to the
first part of the identity in (36). Regarding the second term in (36), we need to have

UHRU =
(
ξ (U) + σ̄2

N (U)
)
IK .

This means that U must belong to the kernel of R−
(
ξ (U) + σ̄2

N (U)
)
IM , so that here again the columns of U must be

formed by distinct eigenvectors of R up to right multiplication by an orthogonal matrix. Let λ1 ≤ . . . ≤ λM denote the
eigenvalues of R (some of which may be repeated), and let I denote the index set of the K eigenvectors of R in the selected
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Probability of resolution, M=10, N=3, K=4

Fig. 3. Simulated vs. asymptotic resolution probability of the UML and CML methods when N = 3.

matrix U and I its complementary. At the local extrema, we see that the cost function Υ (U) can be expressed as

Υ (U) = −N
M

+
1

M
log det R− M −N

M
log

tr [R]

M −K

+
M −N
M

log

 1

M −K
∑
k∈I

λk

− 1

M −K
∑
k∈I

log λk

+
1

M

K −N
M −K

∑
k∈I

log λk

− 1

M

∑
k∈I

log
λk

λk − ξI
− K −N

M
log |ξI |

where ξI is the negative solution to
1

N

∑
i∈I

λi
λi − ξI

= 1.

The first term is independent of I and can be obviated. The second term is non-negative by the arithmetic-geometric mean
inequality and reaches its minimum when the eigenvalues (λk)k∈I are all equal, that is when I = {1, . . . ,M −K} so that
all these eigenvalues are equal to the noise power. Since K > N , the third term is minimum under the same circumstances.
Regarding the final term, it can readily be seen that it decreasing in (λk)k∈I because its derivative with respect to λj is equal
to

− 1

M

(−ξI)

λj (λj − ξI)
< 0

implying that the minimum is achieved when the selected eigenvalues are maximum, that is I = {M −K + 1, . . . ,M}.
From all the above, we conclude that Υ (U) is minimized when the columns of U are selected as the eigenvectors associated

with the K largest eigenvalues of R. However, these eigenvectors span the column space of A
(
θ̄
)

and by the manifold regularity
condition one must necessarily have θ̄ = arg minθ η̄U (θ) as we wanted to show.
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Fig. 4. Simulated vs. asymptotic mean squared error (MSE) of the UML and CML methods when N = 100.

APPENDIX B
PROOF OF PROPOSITION 1

In this appendix, we drop from the notation the dependence on ` (point sequence index) to simplify the exposition. Since
` ≥ 1, we will have 0 = γ0 < γ1 < . . . < γM̄ . We note that we can rewrite L(ω) in (23) as L(ω) = log [ω (1− Φ (ω))],
where we have defined

Φ (ω) =
1

N

M̄∑
m=1

Km
γm

γm − ω
. (37)

Let φ0 < φ1 < . . . < φM̄ denote the M̄ different roots of the equation φ (1− Φ (φ)) = 0. It is not difficult to see [27] that
only the roots φ1, . . . , φM̄ are enclosed by Cω , whereas φ0 is always outside the contour Cω . Furthermore, when K < N we
have φ0 = 0 and φ1 > 0 whereas when K > N we have φ0 < 0 and φ1 = 0. In particular, we see that {0} is enclosed by
Cω only in the undersampled regime (K > N ).

First of all, note that, using the fact that φ0 (1− Φ (φ0)) = 0 we may re-write L(ω) in (23) as

L(ω) = log
[
(ω − φ0)

(
1− Φ̃ (ω)

)]
where we have defined

Φ̃ (ω) =
1

N

M̄m∑
m=1

K̃m
γm

γm − ω
K̃m = Km

γm
γm − φ0

. (38)

Consider the function I(x) : [0, 1]→ C, defined as

I(x) =
1

2π j

∮
C−ω

L(ω, x)

1− Φ (ω)

 1

M

M̄∑
m=1

Km

γm − ω

 1

ω′
dω (39)
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where L(ω, x) = log[(ω−φ0)(1−xΦ̃ (ω))] and where ω′ should be understood as the derivative defined in (22) as a function
of ω. Note that the above integral we want to solve can be expressed as I(1). It follows from the DCT (cf. [34, Lemma 4])
that I(x) is a differentiable function of x, and therefore we can compute I(1) by first computing the derivative I ′(x) and its
primitive and then using I(0) to fix the value of the undetermined constant.

We consider first the integral I(0), which can be expressed as

I(0) =
1

2π j

∮
C−ω

log (ω − φ0)

1− Φ (ω)

 1

M

M̄∑
m=1

Km
1

γm − ω

 1

ω′
dω.

Noting that Φ (0) 6= 1, we see that φk = 0 does not constitute a singularity of the above integrand, so the poles that contribute
to the above integral are {γk, k ≥ 1} and {φk, k ≥ 1, φk 6= 0}. By simple residue calculus, we can establish that

I(0) =
1

M

M̄∑
k=1

Kk log (γk − φ0)− N

M
Φ (φ0) +

N −K
M

log

∏M̄

k=1
(γk − φ0)∏M̄

k=1
φk 6=0

(φk − φ0)

Next, we focus on the derivative I ′(x), which takes the form

I ′(x) =
1

2π j

∮
C+ω

Φ̃ (ω)
(

1
M

∑M̄
m=1Km

1
γm−ω

)
(

1− xΦ̃ (ω)
)

(1− Φ (ω))

1

ω′
dω.

Let us consider x ∈ (0, 1) and let φ̃1 (x) < . . . < φ̃M̄ (x) denote the M̄ distinct solutions to the equation xΦ̃ (ν̃) = 1. It can
readily be seen following the approach in [27] that when x ∈ (0, 1) all the roots φ̃1 (x) , . . . , φ̃M̄ (x) are located inside Cω .
Observing that ω = 0 is not a singularity of the above integrand, we see that the poles inside the contour are {γk, k ≥ 1},
{φk, k ≥ 1, φk 6= 0} and {φ̃k (x) , k ≥ 1}. Computing the corresponding residues, we find that

I ′(x) =
1

x

(
K

M
+
N −K
M

M̄

)
+

1

x2

N

M

M̄∑
k=1

Kk

K̃k

+
1

M

M̄∑
k=1

φ̃k(x)6=0

M̄∑
m=1

Km

(
1 +

γm

γm − φ̃k (x)

)
φ̃′k (x)

γm − φ̃k (x)

+
N −K
M

 M̄∑
k=1
φk 6=0

Φ̃ (φk)

1− xΦ̃ (φk)
−

M̄∑
k=1

φ̃k(x) 6=0

Φ′
(
φ̃k (x)

)
φ̃′k (x)

1− Φ
(
φ̃k (x)

)


where we have used the fact that, for k > 1, we have xΦ̃(φ̃k(x)) = Φ(φk) = 1 and that φ̃k (x) is a differentiable function of
x with derivative

φ̃′k (x) =

−x2

N

M̄∑
m=1

K̃m
γm(

γm − φ̃k (x)
)2


−1

.

One can easily find a primitive of I ′(x) and fix the undetermined constraint according to the value of I(0). In this process,
one needs to use the fact that, for k ≥ 1, when x→ 0 we have φ̃k (x)→ γk, x−1(γk − φ̃k (x))→ γk

N K̃k and

1

x

(
γk − φ̃k (x)

x
− γk
N
K̃k

)
→ γk

N
K̃k

1

N

M̄∑
m=1
m 6=k

K̃m
γm

γm − γk
.

Once we have fixed the undetermined constant, we can obtain

I(x) =
1

M

M̄∑
k=1

Kk log (γk − φ0)− N

M
Φ (φ0)

+
N −K
M

log

∣∣∣∣∣∣∣∣
(

1− xΦ̃ (φ0) 1φ0 6=0

) ∏M̄

k=1
(γk − φ0)∏M̄

k=1
φk 6=0

(φk − φ0)

∣∣∣∣∣∣∣∣
+ ξ1(x) + ξ2(x) + ξ3(x)
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where 1{·} is the indicator function and where we have defined

ξ1(x) =
N −K
M

log

∣∣∣∣∣∣∣
∏M̄
k=1

(
1− Φ

(
φ̃k (x)

))
∏M̄

k=0
φk 6=0

(
1− xΦ̃ (φk)

) M̄∏
k=1

(
K̃k

Kk
x

)∣∣∣∣∣∣∣
ξ2(x) =

1

M

M̄∑
m=1

Km log

∣∣∣∣∣∣∣
xγmN K̃m

∏M̄
k=1
k 6=m

(γm − γk)∏M̄
k=1

(
γm − φ̃k (x)

)
∣∣∣∣∣∣∣

ξ3(x) =
1

M

M̄∑
m=1

M̄∑
k=1

Kmγm

γm − φ̃k (x)
+

1

M

M̄∑
k=1

M̄∑
m=1
m6=k

Kk

K̃k

K̃mγm
γm − γk

+
1

M

M̄∑
k=1

M̄∑
m=1
m6=k

Kmγm
γk − γm

− 1

x

N

M

M̄∑
k=1

Kk

K̃k

.

Lemma 2 For any x ∈ (0, 1), it holds that
ξ1(x) = ξ2(x) = ξ3(x) = 0.

Furthermore, ∏M̄
k=1
φk 6=0

(φk − φ0)∏M̄
k=1 (γk − φ0)

=

{
1
N

∑M̄
m=1Km

γm
(γm−φ0)2

φ0 6= 0
N−K
N φ0 = 0.

(40)

Proof: See Appendix E.
From all the above, we see that when K < N the function I(x) is constant in x and equal to the value in statement of the

proposition. Finally when K > N we will have

I(x) =
1

M

M̄∑
k=1

Kk log (γk − φ0)− N

M
+
N −K
M

log |φ0|

+
N −K
M

log

∣∣∣∣∣1− xΦ̃ (φ0)

1− Φ̃ (φ0)

∣∣∣∣∣
and therefore I(1) is equal to the value in the statement of the proposition.

APPENDIX C
SOLUTION TO THE COVARIANCE INTEGRALS Γ

(`,m)
1 ,Γ

(`,m)
2

In this appendix, we provide an alternative solution to the covariance integrals in (30)-(31). We will consider the case
` ≥ 1,m ≥ 1, since the cases ` = 0 and/or m = 0 can be obtained by a simple renumbering of the eigenvalues. Both integrals
are particular instances of the generic covariance integral given in (28), where we recall that we can express

Φ`,m (ω1, ω2) = −∂
2 log (1−Ψ`,m (ω1, ω2))

∂ω1∂ω2

where the partial derivatives are well defined because at the contours we have |Ψ`,m (ω1, ω2)| < 1 (simply use Cauchy-Schwarz
and apply the results in [27, Appendix I]). Therefore, using the integration by parts formula we can alternatively express (28)
as

{Γ}`,m = − 1

2π i

1

2π i

∮
C+ω`

∮
C+ωm

dg` (ω1)

dω1

dgm (ω2)

dω2
log (1−Ψ`,m (ω1, ω2)) dω1dω2.

This means that we can re-write Γ
(`,m)
1 and Γ

(`,m)
2 as

Γ
(`,m)
1 = − 1

2π i

∮
C+ω`

dz1

dω1
I(ω1)dω1

Γ
(`,m)
2 = − 1

2π i

∮
C+ω`

dL`(ω1)

dω1
I(ω1)dω1
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where Lm(ω) is defined in (23) and where we have defined the integral

I(ω1) =
1

2π i

∮
C+ωm

dLm(ω2)

dω2
log (1−Ψ`,m (ω1, ω2)) dω2.

In order to solve this integral, we consider the singular value decomposition

R
1/2
` = P

(`)
A R1/2 =

M̄∑̀
r=0

√
γ

(`)
r U(`)

r

(
V(`)
r

)H
where M̄` + 1 is the total number of singular values of R

1/2
` (including {0} when ` > 0). With all these definitions, we may

express the function Ψ`,m as

Ψ`,m (ω1, ω2) =

M̄∑̀
r=0

M̄m∑
k=0

κ`mrk
γ

(`)
r γ

(m)
k(

γ
(`)
r − ω1

)(
γ

(m)
k − ω2

)
κ`mrk =

1

N
tr

[
V(`)
r

(
V(`)
r

)H
V

(m)
k

(
V

(m)
k

)H]
.

and note that this notation is valid for `,m ≥ 0. Using the definition of φ(m)
0 , we can find an equivalent definition of the

function Lm(ω2) that will be more convenient from now on, that is

Lm(ω2) = log

(ω2 − φ(m)
0

)1− 1

N

M̄m∑
k=1

K̃
(m)
k

γ
(m)
k

γ
(m)
k − ω2

 (41)

where

K̃
(m)
k = K

(m)
k

γ
(m)
k

γ
(m)
k − φ(m)

0

.

In order to be able to handle both the undersampled and oversampled cases, we let 0 ≤ φ̃
(m)
1 < . . . < φ̃

(m)

M̄m
denote the M̄m

roots of the equation Φ̃(m)(φ̃) = 1, where Φ̃(m) (φ) is defined as in (38) but replacing all quantities associated with R by the
equivalent ones associated with Rm.

A. Computation of I(ω1)

In order to find a close form expression for I(ω1), we will follow the same approach as in the proof of Proposition 1 above.
More specifically, we express I(ω1) = I(ω1, 1) where I(ω1, x) is a differentiable function of x ∈ [0, 1] defined as

I(ω1, x) =
1

2π i

∮
C+ωm

dLm(ω2)

dω2
log (1− xΨ`,m) dω2.

Obviously, we will have I(ω1, 0) = 0. On the other hand, using the DCT one can see that I(ω1, x) is a differentiable function
of x ∈ [0, 1] with derivative

∂I(ω1, x)

∂x
=
−1

2π i

∮
C+ωm

dLm(ω2)

dω2

Ψ`,m

1− xΨ`,m
dω2.

One can trivially find a closed form expression for the above integral using conventional residue calculus. One only needs to
realize that, since φ(m)

0 is never enclosed by Cωm
(the proof is similar to that of Lemma 3 below), the above integrand only has

singularities at the points {γ(m)
k , φ̃

(m)
k , k = 1, . . . , M̄m} plus the solutions to the equation xΨ`,m (ω1, ω2) = 1 as a function

of ω1. The following lemma establishes that there exist exactly M̄m solutions to this equation enclosed by Cωm
, which will

be denoted as ζ(`,m)
j (ω1, x), j = 1, . . . , M̄m.

Lemma 3 Define, for ` ≥ 0, the region

Ω` =

ω ∈ C :
1

N

M̄∑̀
r=0

K(`)
r

∣∣∣∣∣ γ
(`)
r

γ
(`)
r − ω

∣∣∣∣∣
2

< 1


and let ω1 ∈ Ω`. Then, when m ≥ 1 and for x ∈ (0, 1], the following equation in the complex variable ζ

xΨ`,m (ω1, ζ) = 1. (42)

has exactly M̄m roots inside ∂Ωm.
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Proof: See Appendix F.
It can easily be seen that {φ̃(m)

k , k = 1, . . . , M̄m} are always enclosed by the contour ∂Ωm. Since the contour C+
ωm

is always
enclosing the region Ωm (cf. [27]) we can readily compute the value of ∂I(ω1, x)/∂x using conventional Cauchy calculus,

∂I(ω1, x)

∂x
= −M̄m

x
−
M̄m∑
j=1

Ψ`,m

(
ω1, φ̃

(m)
j

)
1− xΨ`,m

(
ω1, φ̃

(m)
j

)+

+

M̄m∑
j=1

 Φ̃(m)′
(
ζ

(`,m)
j (ω1,x)

)
1− Φ̃(m)

(
ζ

(`,m)
j (ω1,x)

) − 1

ζ
(`,m)
j (ω1, x)− φ(m)

0

 ∂ζ
(`,m)
j (ω1, x)

∂x

where Φ̃(m)′ denotes the derivative of Φ̃(m) and where we have used the fact that ζ(`,m)
j (ω1, x) is a differentiable function of

x with derivative
∂ζ

(`,m)
j (ω1, x)

∂x
=

(
−x2 ∂Ψ`,m (ω1, ω2)

∂ω2

∣∣∣∣
ω2=ζ

(`,m)
j (ω1,x)

)−1

.

We can therefore find a primitive of ∂I(ω1, x)/∂x and force the value of I(ω1, 0) = 0 to fix the undetermined constraint. In
order to do this, we need to use the fact that limx→0 ζ

(`,m)
j (ω1,x) = γ

(m)
j and

lim
x→0

x−1
(
γ

(m)
j − ζ(`,m)

j (ω1,x)
)

=

M̄∑̀
r=1

κ`mrj
γ

(`)
r γ

(m)
j

γ
(`)
r − ω1

.

All this leads to
I(ω1, x) = − log

(
1− xΨ`,m

(
ω1, φ

(m)
0

))
+ ξ1(ω1, x) + ξ2(ω1, x)

where we have defined

ξ1(ω1, x) =

M̄m∑
j=1

log

 1− xΨ`,m

(
ω1, φ̃

(m)
j

)
1− Φ̃(m)

(
ζ

(`,m)
j (ω1, x)

)
− M̄m∑

j=1

log

 xN

K̃
(m)
j

M̄∑̀
r=1

κ`mrj
γ

(`)
r

ω1 − γ(`)
r


ξ2(ω1, x) = log

(
1− xΨ`,m

(
ω1, φ

(m)
0

))
+

M̄m∑
j=1

log

(
γ

(m)
i − φ(m)

0

ζ
(`,m)
i (ω1, x)− φ(m)

0

)

Lemma 4 For any x ∈ (0, 1], we have ξ1(ω1, x) = ξ2(ω1, x) = 0.

Proof: See Appendix G.
By simply taking x = 1 in the resulting expression for I(ω1, x) we get I(ω1) = − log(1−Ψ`,m(ω1, φ

(m)
0 )).

B. Computation of Γ
(`,m)
1

By applying the integration by parts formula we can write

Γ
(`,m)
1 =

1

2π i

∮
C+ω`

z1

∑M̄`

r=1 κ̃
`m
r

γ(`)
r(

γ
(`)
r −ω1

)2

1−
∑M̄`

r=1 κ̃
`m
r

γ
(`)
r

γ
(`)
r −ω1

dω1

where we have defined

κ̃`mr =

M̄m∑
k=1

κ`mrk
γ

(m)
k

γ
(m)
k − φ(m)

0

.

Let ν(`,m)
j denote the solutions to the equation

1 =

M̄∑̀
r=0

κ̃`mr
γ

(`)
r

γ
(`)
r − ν(`,m)

j

. (43)

Lemma 5 This equation has M̄` distinct solutions, namely ν
(`,m)
1 < . . . < ν

(`,m)

M̄`
, all of which are located inside C+

ω`
.

Proof: See Appendix H.
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Hence, we can obtain the value of Γ
(`,m)
1 by using classical residue calculus on the poles {γ(`)

j , ν
(`,m)
j } that are enclosed

by C+
ω`

. Close examination of the integrand of Γ
(`,m)
1 leads to the conclusion that the only poles enclosed by C+

ω`
are

{γ(`)
j , ν

(`,m)
j , j = 1, . . . , M̄`}, and direct computation of the residues allows us to conclude that

Γ
(`,m)
1 =

M̄∑̀
j=1

K
(`)
j γ

(`)
j +

M̄∑̀
j=1

γ
(`)
j

1−
M̄∑̀
r=1
r 6=j

K(`)
r

γ
(`)
r

γ
(`)
r − γ(`)

j

+

−
M̄∑̀
j=1

ν
(`,m)
j

1−
M̄∑̀
r=1

K(`)
r

γ
(`)
r

γ
(`)
r − ν(`,m)

j

− M̄∑̀
j=1

K
(`)
j

κ̃`mj
γ

(`)
j

1−
M̄∑̀
r=1
r 6=j

κ̃`mr
γ

(`)
r

γ
(`)
r − γ(`)

j


In order to simplify this, we introduce the following lemma.

Lemma 6 Let ` ≥ 1. For j = 1, . . . , M̄` we have
M̄∑̀
r=1

ν(`,m)
r =

M̄∑̀
r=1

γ(`)
r −

M̄∑̀
r=1

κ̃`mr γ(`)
r (44)

M̄∑̀
i=1

κ̃`mj γ
(`)
j

ν
(`,m)
i − γ(`)

j

=

M̄∑̀
r=1
r 6=j

κ̃`mr
γ

(`)
r

γ
(`)
r − γ(`)

j

+

M̄∑̀
i=1
i 6=j

κ̃`mj
γ

(`)
j

γ
(`)
i − γ

(`)
j

− 1 (45)

Proof: See Appendix I.
Now, using (44)-(45) in the expression of Γ

(`,m)
1 we directly obtain

Γ
(`,m)
1 =

M̄∑̀
r=1

κ̃`mr γ(`)
r =

1

N
tr

R1/2P
(`)
A R1/2

M̄m∑
k=1

γ
(m)
k

γ
(m)
k − φ(m)

0

V
(m)
k

(
V

(m)
k

)H
which can alternatively be expressed as in (32).

C. Computation of Γ
(`,m)
2

Using the expression of I(ω1) and the analycity of L`(ω1), we may express Γ
(`,m)
2 as Γ

(`,m)
2 (1) where

Γ
(`,m)
2 (x) =

−1

2π i

∮
C+ω`

dL`(ω1)

dω1
log
(

1− xΨ`,m

(
ω1, φ

(m)
0

))
dω1

is a differentiable function of x in the unit interval. Taking the definition of L`(ω1) in (41), we can readily see that Γ
(`,m)
2 (0) = 0.

On the other hand, using the dominated convergence theorem we can compute the derivative as

dΓ
(`,m)
2 (x)

dx
=

1

2π i

∮
C+ω`

dL`(ω1)

dω1

Ψ`,m

(
ω1, φ

(m)
0

)
1− xΨ`,m

(
ω1, φ

(m)
0

)dω1.

This integral can be computed via conventional Cauchy integration, using the fact that the singularities are located at the
points {γ(`)

r , φ̃
(`)
j , ν

(`,m)
j (x) , j = 1, . . . , M̄`} where we recall that φ̃(`)

j are the solutions to Φ̃(`) (ω1) = 1 and where we have
introduced the quantities ν(`,m)

j (x), defined as the solutions to the equation xΨ`,m(ω1, φ
(m)
0 ) = 1. It can be shown that all

these points are inside Cω`
. Computing the corresponding residues, we obtain

dΓ
(`,m)
2 (x)

dx
=

1

x
M̄` +

M̄∑̀
j=1

∑M̄`

r=1 κ̃
`m
r

γ(`)
r

γ
(`)
r −φ̃(`)

j

1− x
∑M̄`

r=1 κ̃
`m
r

γ
(`)
r

γ
(`)
r −φ̃(`)

j

+

M̄∑̀
j=1

(
1

ν
(`,m)
j (x)− φ(`)

0

−
Φ(`)′(ν

(`,m)
j (x))

1− Φ(`)(ν
(`,m)
j (x))

)
dν

(`,m)
j (x)

dx

where Φ(`)(ω1) is defined as in (38) and where Φ(`)′(ω1) denotes its derivative. We can readily find a primitive of the above
equation and finally obtain

Γ
(`,m)
2 = −

M̄∑̀
j=1

log

∣∣∣∣∣∣1−
M̄∑̀
r=1

κ̃`mr
γ

(`)
r

γ
(`)
r − φ̃(`)

j

∣∣∣∣∣∣
+

M̄∑̀
j=1

log

∣∣∣∣∣N κ̃`mj

K̃
(`)
j

ν
(`,m)
j − φ(`)

0

γ
(`)
j − φ

(`)
0

∣∣∣∣∣+

M̄∑̀
j=1

log

∣∣∣∣∣∣1− 1

N

M̄∑̀
r=1

K̃(`)
r

γ
(`)
r

γ
(`)
r − ν(`,m)

j

∣∣∣∣∣∣
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where we have used the fact that Γ
(`,m)
2 (0) = 0 to fix the indeterminate constraint. We can now simplify this expression using

the following result.

Lemma 7 The following identities hold for any j ≥ 1,

M̄∏̀
r=1

ν
(`,m)
r − φ̃(`)

j

γ
(`)
r − φ̃(`)

j

= 1−
M̄∑̀
r=1

κ̃`mr
γ

(`)
r

γ
(`)
r − φ̃(`)

j

M̄∏̀
r=1

(
ν(`,m)
r − γ(`)

j

)
= −κ̃`mj γ

(`)
j

M̄∏̀
k=1
k 6=j

(
γ

(`)
k − γ

(`)
j

)
M̄∏̀
k=1

φ̃
(`)
k − ν

(`,m)
j

γ
(`)
k − ν

(`,m)
j

= 1− 1

N

M̄∑̀
r=1

K̃(`)
r

γ
(`)
r

γ
(`)
r − ν(`,m)

j

M̄∏̀
k=1

(
φ̃

(`)
k − γ

(`)
j

)
= − 1

N
K̃

(`)
j γ

(`)
j

M̄∏̀
k=1
k 6=j

(
γ

(`)
k − γ

(`)
j

)
M̄∏̀
r=1

ν
(`,m)
r − φ(`)

0

γ
(`)
k − φ

(`)
0

= 1−
M̄∑̀
r=1

κ̃`mr
γ

(`)
r

γ
(`)
r − φ(`)

0

.

Proof: See Appendix J.
By direct application of the identities in Lemma 7 below, we can simplify the expression of Γ

(`,m)
2 as

Γ
(`,m)
2 = log

∣∣∣∣∣∣1−
M̄∑̀
r=1

κ̃`mr
γ

(`)
r

γ
(`)
r − φ(`)

0

∣∣∣∣∣∣
which can alternatively be expressed as in (33).

APPENDIX D
PROOF OF THEOREM 4

Let us consider the following real-valued random variable η` = M
2π i

∮
C` f`(z) (m̂`(z)− m̄`(z)) dz where

m̂`(z) =
1

M
tr
[
Q̂`(z)

]
, m̄`(z) =

1

M
tr
[
Q̄`(z)

]
Q̂`(z) =

(
R̂` − zIM

)−1

Q̄`(z) =
ω` (z)

z
(R` − ω` (z) IM )

−1

with ω` (z) being the unique solution to the following equation

z = ω` (z)

(
1− 1

N
tr
[
R` (R` − ω` (z) IM )

−1
])

that belongs to C+ for z ∈ C+. Let a`, ` = 1 . . . L, denote real-valued bounded quantities and consider

η =

L∑
`=1

a`η` =

L∑
`=1

a`
1

2π i

∮
C`
f`(z)M (m̂`(z)− m̄`(z)) dz (46)

Let Ψ(u) = exp (iuη) and consider the characteristic function E [Ψ(u)]. The objective is to show that, in the limit when
M,N →∞, we have

E [Ψ (u)]− exp

(
−aTΓa

2
u2

)
→ 0 (47)

pointwise in u, where a = [a1, . . . , aL]
T and where Γ is defined in the statement of Theorem 4. Given the boundedness

assumptions in the statement of the theorem, the result will follow from a trivial modification of [35, Proposition 6]. The rest
of the section is therefore devoted to showing (47).

The first step of the proof consists in replacing the original contour C`, which depends on R̂` (it encloses all the eigenvalues
of R̂` except zero) by a fixed deterministic contour that only depends on R`, which will be denoted by C̄`. To do this, we
use the fact that, for all large M,N , the eigenvalues of R̂` are all located inside a certain support, S` [23]. Unfortunately, the
random variable η in (46) does not need to have a characteristic function for all M when C` is replaced with C̄`. This is because
there might exist realizations for which the eigenvalues of R̂` become dangerously close the contour C` or even on C`. In order
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to overcome this difficulty, we will follow the approach in [36], [37] and consider an equivalent (large-M ) representation of
η that is guaranteed to have characteristic function for all M . Indeed, let us define Sε` = {x ∈ R : dist (x,S`) ≤ ε} for ε > 0.
Assume that ε is small enough such that S2ε

` does not contain {0}. Let φ` denote a smooth function φ` : R→ [0, 1] such that
φ`(x) = 1 for x ∈ Sε` and φ`(x) = 0 for x ∈ R\S2ε

` . We will write φ` = detφ`

(
R̂`

)
. By [23], we know that φM = 1 with

probability one for all M sufficiently large. Therefore, we may represent η as

η =

L∑
`=1

a`
1

2π i

∮
C̄`
f`(z)M (m̂`(z)− m̄`(z))φ`dz (48)

almost surely for all M sufficiently large. The characteristic function of (48) exists for every realization and every possible M .
Having introduced this regularization parameter φ` and the deterministic contours, we are now in the position of introducing
the main technical tools that will be used in the proof of this theorem. Following the approach in [35], our derivations will
be based on the partial integration formula for Gaussian functionals, together with the Poincaré-Nash inequality. We introduce
these tools in the following proposition.

Remark 1 In what follows, the symbol O(N−k) will denote a general bivariate complex function that is bounded in magnitude
by ε (z1, z2)N−k, where ε (z1, z2) does not depend on N and is such that

max
m,n

sup
(z1,z2)∈Cm×Cn

‖ε (z1, z2)‖ < +∞. (49)

The function itself may be different from one line to another, and it may be matrix valued, in which case (49) is understood
as the spectral norm. On the other hand, O(N−N) should be understood as a bivariate complex function that can be written
as O(N−`) for every ` ∈ N.

Proposition 2 Assume that, for each fixed z ∈ C, the function Ω (X,X∗, z) : R2MN → C is continuously differentiable and
such that both itself and its partial derivatives are polynomically bounded. If X is real valued, simply consider Γ as a function
on RMN , with the same properties. Than, under (As1) we can write

E [XijΩ (X,X∗, z)] = E

[
∂Ω (X,X∗, z)

∂X∗ij

]
(50)

where
∂

∂X∗ij
=

1

2

∂

∂ Re [Xij ]
+ j

1

2

∂

∂ Im [Xij ]
.

On the other hand, we can also write

var [Ω (X,X∗, z)] ≤
M∑
i=1

N∑
j=1

E

∣∣∣∣∂Ω (X,X∗, z)

∂Xij

∣∣∣∣2 +

∣∣∣∣∣∂Ω (X,X∗, z)

∂X∗ij

∣∣∣∣∣
2
 (51)

where now
∂

∂Xij
=

1

2

∂

∂ Re [Xij ]
− j

1

2

∂

∂ Im [Xij ]
.

The function φ` is continuously differentiable (on R2MN ) with polynomically bounded partial derivatives. If, in addition,
supz∈C E

(
|Ω (X,X∗, z)φ`|2

)
< C for some positive deterministic C independent of M , then under (As1),

E [Ω (X,X∗, z)φrM ] = E [Ω (X,X∗, z)φ`] +O
(
N−N

)
(52)

for any r ∈ N, and also

E
[
Ω (X,X∗, z)

∂φ`
∂Xij

]
= O

(
N−N

)
(53)

where the term O
(
N−N

)
should be understood as in Remark 1 above.

The above results are well known in the random matrix literature and the proof is therefore omitted. One of the conclusions
of Proposition 2 is the fact that we can basically ignore the presence of the regularization term φ` up to an error of order
O (N−m) for any m ∈ N, which will be irrelevant for the purposes of our derivations.

From now on we will therefore consider the definition of η in (48) and apply the above tools to investigate the asymp-
totic behavior of its characteristic function. Using the dominated convergence theorem, we can establish that E [Ψ(u)] is a
differentiable function of u with derivative

dE [Ψ(u)]

du
= i

L∑
`=1

a`
M

2π i

∮
C`
f`(z1)E [(m̂`(z1)− m̄`(z1)) Ψ(u)φ`] dz1.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 24

We can study the quantity inside the expectation using the resolvent identity, which states that

z1Q̂`(z1) = Q̂`(z1)R̂` − IM .

We start by noting that we can develop the term

E
[
Q̂`(z1)R̂`Ψ(u)φ`

]
=

M∑
i=1

N∑
j=1

E

[
XijQ̂`(z1)R

1/2
`

eix
H
j

N
R
H/2
` Ψ(u)φ`

]
which can be further developed using the integration by parts formula in (50), together with the identity

∂

∂Xij

Q̂`(z1) = −Q̂`(z1)R
1/2
`

xje
H
i

N
R
H/2
` Q̂`(z1).

A direct application of these techniques and the resolvent identity allows us to write

E
[
Q̂`(z1)φ`Ψ(u)

]
= −z−1

1 IME [Ψ(u)φ`] +
1

ω` (z1)
E
[
Q̂`(z1)R`Ψ(u)φ`

]
− 1

ω` (z1)
E
[
Q̂`(z1)R̂`Ψ(u)α`(z1)φ`

]
(54)

− iu
1

ω` (z1)

L∑
m=1

am
2π i

∮
Cm

fm(z2)
1

N
E
[
Q̂`(z1)R`,mQ̂2

m(z2)R̂m,`Ψ(u)φ`

]
dz2

+O
(
N−N

)
with the definitions

α`(z1) =
1

N
tr
[
R`Q̂`(z1)

]
φ` −

1

N
tr
[
R`Q̄`(z1)

]
R`,m = R

1/2
` RH/2

m

R̂`,m = R
1/2
`

XXH

N
RH/2
m

and where we have used the identity

1 +
1

N
tr
[
R`Q̄`(z1)

]
= 1 +

ω` (z1)

z1

1

N
tr
[
R` (R` − ω` (z1) IM )

−1
]

=
ω` (z1)

z1
(55)

which follows directly from the definition of ω` (z1). In order to investigate the asymptotic behavior of E [m̂`(z1)Ψ(u)φ`]
from (54), we move the second term on the right hand side of (54) to the left hand side and multiply both sides by Q̄`(z1)
so that we obtain

E
[(

Q̂`(z1)− Q̄`(z1)
)

Ψ(u)φ`

]
=

z1

ω` (z1)
E
[
Q̂`(z1)R̂`Q̄`(z1)Ψ(u)α`(z1)φ`

]
+ iu

z1

ω` (z1)

L∑
m=1

am
2π i

∮
Cm

fm(z2)
1

N
E
[
Q̂`(z1)R`,mQ̂2

m(z2)R̂m,`Q̄`(z1)Ψ(u)φ`φm

]
dz2 +O

(
N−N

)
. (56)

Observe that the trace of the left hand side of the above equation is directly equal to ME [(m̂`(z1)− m̄`(z1)) Ψ(u)φ`], which
is the original quantity that we want to analyze.

Let us now analyze the behavior of the quantity E [α`(z1)Ψ(u)φ`] . To to this, we multiply both sides of (56) by R` and
take traces of the result, so that we can write

E [α`(z1)Ψ(u)φ`] =
1

1− γ`,` (z1, z1)
E [α`(z1)β`(z1)Ψ(u)φ`]

+
1

N

iu

1− γ`,` (z1, z1)

z1

ω` (z1)

L∑
m=1

am
2π i

∮
Cm

fm(z2)
1

N
E tr

[
Q̄`(z1)R`Q̂`(z1)R`,mQ̂2

m(z2)R̂m,`Ψ(u)φ`φm

]
dz2 +O

(
N−N

)
(57)

where we have defined

β`(z1) =
z1

ω` (z1)

1

N
tr
[
Q̄`(z1)R`Q̂`(z1)R̂`

]
φ` − γ`,` (z1, z1)

γ`,m (z1, z2) =
z1z2

ω` (z1)ωm (z2)

1

N
tr
[
Rm`Q̄`(z1)R`mQ̄m(z2)

]
and where we have used the well known fact that

sup
M

sup
z1∈C`,z2∈Cm

|γ`,m (z1, z2)| < 1
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so that the quantity 1− γ`,` (z1, z1) is always invertible.
Consider the first term on the right hand side of (57). According to Lemma 8 presented below, the expectation of α`(z1), β`(z1)

is O(N−1), and its variance decays as O(N−2). Hence, we can write (by Cauchy-Schwarz inequality)

|E [α`(z1)β`(z1)Ψ(u)]|2 ≤ E
[
|α`(z1)|2

]
E
[
|β`(z1)|2

]
= O(N−2)

so that the first term on the right hand side of (57) decays as O(N−1). Regarding the second term, we can use a similar
argument together with Lemma 10 presented below to establish that
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Furthermore, the approximations in Lemma 10 allow to express
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where, for r, s ∈ N, we have defined
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)r (
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so that in particular γ`,m (z1, z2) = γ
(1,1)
`,m (z1, z2) , and where we have used (55) together with the identity
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Let us now go back to the expression in (56). Taking traces and applying the same decorrelation technique together with
Lemma 10, we can write
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Now, the first term is of order O(N−1) because by Cauchy-Schwarz
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]
= NO(N−2) = O(N−1).

As for the second term, we see that it corresponds to the one derived in (57). Hence, inserting the derived expression for
E [α`(z1)Ψ(u)] derived above and using the approximations in Lemma 10 we obtain
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We can conclude the proof by noting that we can alternatively express γ(r,s)
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γ
(r,s)
`,m (z1, z2) = Γ

(r,s)
`,m (ω` (z1) , ωm (z2))



IEEE TRANSACTIONS ON SIGNAL PROCESSING 26

where
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or, alternatively,
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Therefore, applying the change of variables z1 7→ ω` (z1), z2 7→ ωm (z2) we arrive at the result of the theorem.

A. Auxiliary Lemmas

In this appendix, we provide some bounds on expectations and variances of different random functions of complex vari-
able. The notation O(N−`) should be understood as a deterministic term whose magnitude is upper bounded by a quan-
tity of the form ε (z1, z2)N−`, where ε (z1, z2) is a bivariate real valued positive function independent of N such that
sup(z1,z2)∈C`×Cm ε (z1, z2) <∞.

Lemma 8 Let A denote an M ×M deterministic matrix with bounded spectral norm. Then, we can write
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Proof: It follows from the application of the integration by parts formula in (50) together with the Nash-Poincaré variance
inequality in (51).

Lemma 9 Let A denote an M ×M deterministic matrix with bounded spectral norm. Then, we can write
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Proof: The proof of the variances follows directly from the Nash-Poincaré variance inequality in (51), so that we will only
prove the first two identities. Let us first consider on the first identity. Using the resolvent’s identity on Q̂m(z2), developing
with respect to X and applying the integration by parts formula in (50), we obtain
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where we have additionally decorrelated the expectations of two terms and used the approximations in Lemma 8 above. We
can also apply the integration by parts formula on the quantity
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where we have also decorrelated terms of expectations using the fact that all variances decay as O(N−2) and subsequently
applied the approximations in Lemma 8. Inserting this last equation with A replaced by R
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m A into the first one we obtain
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Particularizing this expression for A replaced with Q̄m(z2)Rm,` and using Lemma 8 we obtain
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Inserting this into (61) and replacing A with Q̄m(z2)A we get to (58), and inserting it into (60) we obtain (59).

Lemma 10 Let A denote an M ×M deterministic matrix with bounded spectral norm. Then, we can write
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On the other hand, we have
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Proof: The proof that the variance decays as O(N−2) follows the conventional approach from the Nash-Poincaré inequality,
and is therefore omitted. To proof the first two identities, we proceed as in the proof of Lemma 9. Using first the resolvent
identity on Q̂m(z2) together with the integration by parts formula and Lemmas 8 and 9, we can write
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where we have decorrelated the double terms using the fact that all variances decay as O(N−2) and we have used the identity
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In a similar way, we can develop the term
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so that, inserting this back into the first equation and replacing A with R
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Particularizing this expression for A = Rm.` we see that
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so that inserting this back into the above expression, we obtain (62). Finally, inserting the above expression into (64) with A

replaced by R
H/2
` A and using (62) with A replaced by Rm,`A we obtain (63).

APPENDIX E
PROOF OF LEMMA 2

The roots φ̃k(x), k = 1, . . . , M̄ are the solutions to the polynomial equation 1 = xΦ̃ (φ) . Therefore, we have the identity

M̄∏
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and following the same procedure for the roots φk, k = 0, . . . , M̄ , such that φk 6= 0 we obtain
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(φk − γ`)
= x

K̃`
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. (67)

Likewise, forcing φ = φ̃r(x) for some r in (66) and φ = φ` for some ` such that φ` 6= 0 in (65) we readily see that ξ1(x) = 0.
On the other hand, forcing φ = γ` for some ` in (65) directly shows that the argument of the logarithm in the definition of
ξ2(x) is equal to the identity, leading to ξ2(x) = 0. In order to show that ξ2(x) = 0, we take derivatives on both sides of (65),
namely
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Forcing φ = γ` for some ` in the above equation and using the identity obtained by forcing φ = γ` in (65) we obtain
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Multiplying this equation by K`/K̃` and summing over ` we obtain ξ3(x) = 0. Let us finally show (40). Assume first that
φ0 6= 0. By taking the derivatives of both sides of (66) and forcing φ = φ0 we directly obtain the first identity. Regarding the
identity for case φ0 = 0, it can be readily obtained by forcing φ = 0 in (66).

APPENDIX F
PROOF OF LEMMA 3

The proof will be based on Rouché’s theorem. Denote f(ζ) = 1−xΨ`,m (ω1, ζ) and observe that this function is meromorphic
on the complex plane. Using the Cauchy-Schwarz inequality one can write
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where we have used the fact that ω1 ∈ Ω` and x ≤ 1. Now, for all ζ ∈ ∂Ωm we clearly have |1− f(ζ)| < 1. On the other
hand, f(ζ) has no poles or zeros along ∂Ωm. Indeed, the poles of f(ζ) are the eigenvalues of Rm, which are located inside
∂Ωm. Furthermore, f(ζ) cannot have zeros on ∂Ωm because this would imply

1 =

∣∣∣∣∣∣x
M̄∑̀
r=0

M̄m∑
k=0

κ`mrk
γ

(`)
r γ

(m)
k(

γ
(`)
r − ω1

)(
γ

(m)
k − ζ

)
∣∣∣∣∣∣
2

<
1

N

M̄m∑
k=1

K
(m)
k

∣∣∣∣∣ γ
(m)
k

γ
(m)
k − ζ

∣∣∣∣∣
2

= 1

leading to contradiction. We can conclude that f(ζ) has the same number of poles and zeros inside Ωm, i.e. it will have exactly
M̄m zeros that will be in direct correspondence with the positive eigenvalues of Rm since m ≥ 1 by assumption.
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Using the fact that ζ(`,m)
j (ω1, x) are the solutions to the equation in (42), we have the following polynomial identity

M̄m∏
r=1

(
ζ(`,m)
r (ω1, x)− ζ

)
=

M̄m∏
r=1

(
γ(m)
r − ζ

)
− x

M̄m∑
k=1

M̄∑̀
r=1

κ`mrk
γ

(`)
r

γ
(`)
r − ω1

γ
(m)
k

M̄m∏
i=1
i 6=k

(
γ

(m)
i − ζ

)
. (68)

Now using the fact that φ̃(m)
k are the solutions to the equation Φ̃(m)(φ̃) = 1, we have the polynomial identities

M̄m∏
k=1

(
φ̃

(m)
k − φ̃

)
=

M̄m∏
k=1

(
γ

(m)
k − φ̃

)
− 1

N
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r=1

K̃(m)
r γ(m)

r

M̄m∏
k=1
k 6=r

(
γ

(m)
k − φ̃

)
. (69)

Forcing ζ = γ
(m)
j in (68), φ̃ = γ

(m)
j in (69) and dividing the result, we obtain

M̄m∏
r=1

ζ
(`,m)
r (ω1, x)− γ(m)

j

φ̃
(m)
r − γ(m)

j

=
xN

K̃
(m)
j
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κ`mrj
γ

(`)
r

γ
(`)
r − ω1

(70)

Likewise, taking ζ = φ̃
(m)
j in (68) and φ̃ = ζ

(`,m)
j (ω1, x) in (69), we see that

M̄m∏
r=1

ζ
(`,m)
r (ω1, x)− φ̃(m)

j

γ
(m)
r − φ̃(m)

j

= 1− xΨ`,m

(
ω1, φ̃

(m)
j

)
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(m)
k − ζ(`,m)

j (ω1, x)

γ
(m)
k − ζ(`,m)

j (ω1, x)
= 1− Φ̃(m)

(
ζ

(`,m)
j (ω1, x)

)
.

Multiplying for all j = 1, . . . , M̄m,dividing the two resulting equations and using (70) we obtain

M̄m∏
j=1

xN
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(m)
j
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κ`mrj
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(`)
r

ω1 − γ(`)
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(
ω1, φ̃

(m)
j

)
1− Φ̃(m)

(
ζ

(`,m)
j (ω1, x)

)
and therefore ξ1(ω1, x) = 0. On the other hand, forcing ζ = φ

(m)
0 in (68) we directly obtain ξ2(ω1, x) = 0.

APPENDIX H
PROOF OF LEMMA 5

To see this, consider the function

h`m(ν) = 1−
M̄∑̀
r=0

κ̃`mr
γ

(`)
r

γ
(`)
r − ν

and observe that, using the Cauchy-Schwarz inequality, we may write
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where the second inequality follows from κ`mrk ≤
K(`)

r

N and the fact that φ(m)
0 is never enclosed by the contour C+

ωm
. It can

readily be seen that h`m(ν) cannot have zeros or poles on the contour C+
ω`

. Hence, when ν is located in C+
ω`

, we can write∣∣1− h`m(ν)
∣∣ < 1 and by the Rouché’s theorem we conclude that h`m(ν) has the same number of poles and zeros inside C+

ω`
,

as we wanted to show.
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By using the fact that ν(`,m)
j are the solutions to (43), we can identify the two polynomials
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. (71)

By identifying the coefficients of the terms in νM̄m−1 we obtain (44). On the other hand, forcing ν = γ
(`)
j in (71) allows us

to write
M̄m∏
r=1

(
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j

)
= −κ̃`mj γ
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j
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.

Taking derivatives on both sides of (71) and forcing ν = γ
(`)
j ,∑M̄`

i=1

∏M̄`
r=1
r 6=i

(
ν

(`,m)
r − γ(`)

j

)
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j
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j
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and using the above identity, we obtain (45).
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By forcing ν = φ̃
(`)
j and ν = γ

(`)
j on both sides of the polynomial identity in (71) we directly obtain the first and second

equations. On the other hand, forcing φ̃ = ν
(`,m)
j and φ̃ = γ

(`)
j in the polynomial identity in (69) we obtain the third and

fourth equations. Finally, forcing ν = φ
(`)
0 in (71) we obtain the last equation.
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