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Tune smarter not harder: A principled approach to

tuning learning rates for shallow nets
Thulasi Tholeti* Sheetal Kalyani*

Abstract—Effective hyper-parameter tuning is essential to
guarantee the performance that neural networks have come to
be known for. In this work, a principled approach to choosing
the learning rate is proposed for shallow feedforward neural
networks. We associate the learning rate with the gradient
Lipschitz constant of the objective to be minimized while training.
An upper bound on the mentioned constant is derived and a
search algorithm, which always results in non-divergent traces,
is proposed to exploit the derived bound. It is shown through
simulations that the proposed search method significantly out-
performs the existing tuning methods such as Tree Parzen
Estimators (TPE). The proposed method is applied to three
different existing applications: a) channel estimation in OFDM
systems, b) prediction of the exchange currency rates and c)
offset estimation in OFDM receivers, and it is shown to pick
better learning rates than the existing methods using the same
or lesser compute power.

I. INTRODUCTION

Deep neural networks have made significant improvements

to fields like speech and image processing [1], communications

[2]–[4], computer vision, etc. [5]. These networks are typically

trained using an iterative optimization algorithm such as

Gradient Descent (GD) or its multiple variants [6], [7]. To

successfully deploy these networks for various applications,

the hyper-parameters of the network, namely the width and the

depth of the network and the learning rate used for training

should be carefully tuned [8].

Initially, manual search and grid search were the most

popular approaches [9]. The authors of [10] then showed

that randomly chosen trials were more efficient in terms of

search time for hyper-parameter optimization than a grid-based

search. However, in both the methods, the observations from

the previous samples are not utilized to choose values for the

subsequent trials. To remedy this, Sequential Model-Based

Optimization (SMBO) was introduced to perform hyper-

parameter tuning where the next set of hyper-parameters to

be evaluated are chosen based on the previous trials [11].

Some of the well-known models for Bayesian optimization are

Gaussian Processes [12], random forests [13] and TPE [14].

In the methods listed here so far, the tuning of hyper-

parameters is typically performed as a black-box module, i.e.,

without utilizing any information about the objective function

to be minimized. There exist many applications in which the

architecture of the network is fixed, for which the number

of layers and the width of the network are already specified

*The authors are with the Department of Electrical Engineering, In-
dian Institute of Technology Madras, Chennai, India 600 036. Email:
{ee15d410,skalyani}@ee.iitm.ac.in

and are not treated as hyper-parameters. Given such an ar-

chitecture, the learning rate is an important hyper-parameter

as it determines the speed of convergence of the optimization

algorithm [15]. In such cases, it would be beneficial if the

learning rate is derived as a function of the objective as it can

be simply recomputed for a new set of inputs instead of tuning

the learning rate from scratch.

The idea of tuning-free algorithms has recently attracted

attention, not only in neural networks but in the context

of other algorithms as well. For example, [16] proposed a

tuning-free Orthogonal Matching Pursuit (OMP) algorithm,

[17] proposed a tuning-free hedge algorithm and [18] proposed

a parameter-free robust Principal Component Analysis (PCA)

method. To propose such a tuning-free equivalent for the GD

algorithm while training neural networks, it would require a

theoretical analysis of the objective function. Although neural

networks are applied to varied applications, little is known

about its theoretical properties when the network consists of

multiple hidden layers. Most theoretical works such as [19],

[20] are available for networks with one or two hidden layers,

which we call shallow networks.

Although deep neural networks are popular in computer

vision and image processing where the objective function is

complex, applications in areas like wireless communication

and finance predictions still employ shallow feedforward neu-

ral networks as evidenced by works in [21]–[25]. In [22],

channel estimation for Orthogonal Frequency Division Multi-

plexing (OFDM) systems was done using a single hidden layer

network. Shallow networks were also used in applications like

user equipment localization [25], symbol detection in high-

speed OFDM underwater acoustic communication [26] and

Direction of Arrival (DoA) estimation [24]. In all the above,

the architecture for a given application was fixed and the

learning rate was chosen by manual tuning or grid search.

For such applications which employ a fixed shallow archi-

tecture, a theory-based approach for choosing the learning rate

will save the computation which would otherwise be spent on

tuning hyper-parameters. The learning rate of the optimization

algorithm has been associated with the Lipschitz properties of

the objective function, namely the Lipschitz constant of the

gradient of the objective function in [27]. Although, there has

been significant interest in analyzing the Lipschitz properties

of neural networks in recent literature [28], [29], these works

focus on the Lipschitz constant of the output which plays an

important role in analysing the stability of the network, and

not on the gradient Lipschitz constant of the objective which

is required for quantifying the learning rate.
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A. Motivation

In the existing works on hyper-parameter optimization, the

choice of learning rate is often treated as a separate module

that is to be performed before the training; they do not employ

any information about the function that should be optimized.

As an alternative, we wish to associate the learning rate with

the parameters of the problem, thereby providing a theoretical

justification to the choice of learning rate and also use this to

tune in a smarter fashion. In typical tuning methods, there is

a clear trade-off between the number of trials of the search

algorithm that is allowed and the performance of the chosen

learning rate. If one decides to adopt a higher number of

trials then, one is more likely to achieve a better learning

rate. However, there is no guarantee that the chosen learning

rate will lead to convergent behaviour of GD given any fixed

number of trials. In the proposed method, we wish to provide

the user with the same trade-off between the number of trials

and the performance, whilst ensuring that chosen learning rate

always results in convergence irrespective of the number of

trials allowed.

B. Contributions

A theory-based approach to determine the learning rate for

shallow networks is proposed. The contributions of this work

are four-fold. Firstly, using classic literature [27], the learning

rate is associated with the gradient Lipschitz constant of the

objective function. Secondly, the upper bound on gradient

Lipschitz constants for feedforward neural networks consisting

of one and two layers are derived for popular activation

functions, namely, ReLU and sigmoid. The bounds, initially in

terms of eigenvalues of large Hessian matrices, are simplified

to yield easy-to-implement expressions that can be adapted to

a given architecture. Thirdly, the derived bound on the gradient

Lipschitz constant is utilized for determining the learning rate;

an algorithm, ’BinarySearch’, is introduced for this search. The

proposed algorithm is shown to outperform the popular hyper-

parameter tuning estimator, TPE, in terms of the loss achieved,

while ensuring convergence. Finally, the utility of the proposed

method is also demonstrated using three applications: channel

estimation in the case of OFDM systems, Carrier Frequency

Offset estimation in OFDM receivers and the prediction of

exchange rates for currencies.

C. Notation

We use bold upper-case letters, say A to denote matrices

and Aij ,A
i to denote their (i, j)th element and the ith col-

umn respectively. The maximum eigenvalue of A is denoted

as λmax(A); the maximum diagonal entry is denoted as

Dmax(A). The bold lower-case letters x,y denote vectors.

All vectors are column vectors unless stated otherwise. The ℓ2
norm of a vector is denoted as ‖.‖. The ℓ1 and ℓ∞ norms of

a vector x are denoted as |x|1 =
∑

i xi and |x|∞ = maxi xi

respectively. The indicator function denoted as IE takes the

value 1 when E is true and value 0 otherwise. The symbols ∇
and ∇2 denote the first and second derivatives respectively.

II. DEFINITIONS AND BACKGROUND

Definition 1. A differentiable function f : Rd → R is said to

be α- gradient Lipschitz if for any x1,x2 in the domain of f ,

and for α > 0,

‖∇f(x1)−∇f(x2)‖ ≤ α ‖x1 − x2‖ , (1)

where α is known as the gradient Lipschitz constant. The

smallest such constant is known as the optimal constant,

denoted by α∗.

Nesterov’s seminal work [27] discusses the following theo-

rem which guarantees the convergence of the GD algorithm.

Lemma 1. [27] For an α-gradient Lipschitz function f :
R

d → R, gradient descent with a step size η ≤ 1/α produces

a decreasing sequence of objective values and the optimal step

size is given by η∗ = 1/α.

For a doubly differentiable function f with gradient Lips-

chitz constant as α, we have [27]

∇2f(x) � αI ∀x. (2)

This implies that all eigenvalues of the matrix ∇2f(x)− αI
should be less than or equal to zero for all values of x.

This is achieved when the maximum eigenvalue satisfies this

condition. Therefore, the gradient Lipschitz constant of a

double differentiable function is given by

α∗ = max
x

λmax(∇
2f(x)). (3)

We use (3) in the following sections to derive the required

constant. Note that any α > α∗ also satisfies (2). Therefore, if

the exact value for α∗ cannot be determined, an upper bound

on α∗ can be derived. The learning rate derived from the

upper bound also results in a decreasing sequence of iterates

according to Lemma 1. This signifies that the learning rate

derived as the inverse of the gradient Lipschitz constant or any

upper bound will always result in convergence of the gradient

descent algorithm. This implication is used by us to guarantee

the convergence of GD while training neural networks.

III. DERIVING THE GRADIENT LIPSCHITZ CONSTANT FOR

A SINGLE HIDDEN LAYER NEURAL NETWORK

In this section, a neural network with a single hidden layer

consisting of k neurons with activation function act(.) is

considered, as given in Fig. 1. We derive the gradient Lipschitz

constant for two different popular activation functions: sigmoid

and ReLU. The weight vector from the input to the jth hidden

layer neuron is denoted as wj where wj ∈ R
d for j = 1, ...k.

The column vector w refers to the stack of vectors w1, ...wk;

w ∈ R
kd. The output of the network is taken as the sum of

outputs from each of the hidden layer neurons and is given by

f(x,w) =
∑k

j=1 act(x
Twj) for input x. The training data is

denoted as a set of points (x(i), y(i)) for i = 1, ...N . The aim

of the network is to learn the function f given the training data.

Throughout, we consider the quadratic loss function namely,

l(w) =
1

2N

N
∑

i=1









k
∑

j=1

act(x(i)Twj)



 − y(i)





2

. (4)
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Fig. 1: The architecture of a single hidden layer network

A. Sigmoid activation

The sigmoid activation is defined as σ(x) = 1
1+exp(−x) . The

gradient Lipschitz constant for a single hidden layer network

with sigmoid activation function is derived in this section.

Initially, we consider a single data point, (x, y), and then

extend it to a database.

Theorem 1. The gradient Lipschitz constant for a single-

hidden layer feedforward network with sigmoid activation

when considering quadratic loss function in (4) with act(.) =
σ(.) and N = 1 is given by,

α∗ ≤ min

(

|k − y|

10
+

k

16
, 0.1176(k−1)+

|y|

10
+0.077

)

‖x‖2 .

(5)

Proof: As the loss function is doubly differentiable, the

required constant is α∗ = maxw λmax(∇2l(w)). Note,

∇l(w) =

( k
∑

j=1

σ(xTwj)−y

)







σ(xTw1)(1 − σ(xTw1))x
...

σ(xTwk)(1 − σ(xTwk))x






.

(6)

b̂(x,w) ,







σ(xTw1)(1− σ(xTw1))
...

σ(xTwk)(1− σ(xTwk))






, (7)

is defined where b̂(x,w) ∈ R
k. Let Diagm(km) denote

a diagonal matrix whose non-zero entry in the mth row is

km. The Hessian matrix computed using the product rule of

differentiation is given by,

∇2l(w) =

(

Diagm

(

(

k
∑

j=1

σ(xTwj)− y
)

σ(xTwm)

(1− σ(xTwm))(1 − 2σ(xTwm))

)

+ b̂(x,w)b̂(x,w)T

)

⊗ xxT . (8)

The gradient Lipschitz constant is given by

α∗ = max
w

λmax

[(

Diagm

(

(

k
∑

j=1

σ(xTwj)− y
)

σ(xTwm)

(1− σ(xTwm))(1 − 2σ(xTwm))

)

+ b̂(x,w)b̂(x,w)T

)

⊗ xxT

]

. (9)

Note (9) involves a maximization over all possible values of

w and an eigenvalue computation for every value. We use the

structure of the matrix to provide a simplified solution. We

use the following property of Kronecker products [30].

Lemma 2. Let A ∈ R
n×n have eigenvalues λi, i ∈ n, and

let B ∈ R
m×m have eigenvalues µj , j ∈ m, then the mn

eigenvalues of A⊗B are given by

λ1µ1, · · · , λ1µm, λ2µ1, · · · , λ2µm, · · · , λnµm.

Therefore, the maximum eigenvalue of the Kronecker prod-

uct will be the product of the maximum eigenvalues, if the

maximum eigenvalue of the diagonal matrix is positive; else,

it will be zero. As we are maximizing over all possible values

of w, we can always ensure that the maximum eigenvalue

is positive. Since xxT is rank one with a single non-zero

eigenvalue, xTx, using Lemma 2, we have,

α∗ = max
w

λmax(P )xTx, (10)

where P is defined as

P , Diagm

(

(

k
∑

j=1

σ(xTwj)− y
)

σ(xTwm)

(1− σ(xTwm))(1 − 2σ(xTwm))

)

+ b̂(x,w)b̂(x,w)T . (11)

A bound can be obtained to find the maximum eigenvalue of

P using the Weyl’s inequality which states that for Hermitian

matrices A and B,

λmax(A+B) ≤ λmax(A) + λmax(B). (12)

Using the above inequality, the observation that

b̂(x,w)b̂(x,w)T is rank-1 and that the eigenvalues of

a diagonal matrix are the diagonal entries, one obtains,

λmax(P ) ≤ max
m

(

(

k
∑

j=1

σ(xTwj)− y
)

σ(xTwm)

(1− σ(xTwm))(1 − 2σ(xTwm))

)

+ b̂(x,w)T b̂(x,w). (13)
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Combining (10) and (13),

α∗ ≤ max
w

(

max
m

(

(

k
∑

j=1

σ(xTwj)− y
)

σ(xTwm)(1− σ(xTwm))(1 − 2σ(xTwm))

)

+
∥

∥

∥
b̂(x,w)

∥

∥

∥

2
)

‖x‖2 . (14)

The expression in (14) can be written in terms of the deriva-

tives of sigmoid function as given below:

α∗ ≤ max
w

(

max
m

(

(

k
∑

j=1

σ(xTwj)− y
)

∇2σ(xTwm)

)

+

k
∑

j=1

(

∇σ(xTwj)
)2

)

‖x‖2 . (15)

We now use the following bounds on the sigmoid derivatives

[31] to bound (15):

0 ≤ σ(x) ≤ 1 ∀x (16)

∇xσ(x) = σ(x)(1 − σ(x)) ≤
1

4
∀x (17)

∇2
xσ(x) = σ(x)(1 − σ(x))(1 − 2σ(x)) ≤

1

10
∀x. (18)

Using the above conditions to individually maximize each of

the terms in (15),

α∗ ≤

[

|k − y|

10
+

k

16

]

‖x‖2 . (19)

We note that tighter bounds may be achieved by maximizing

(15) as a whole instead of each individual term. As the

maximization in (15) is over the weights w, considering the

terms consisting of w,

max
m

(

(

k
∑

j=1

σ(xTwj)− y
)

∇2σ(xTwm)

)

+

k
∑

j=1

(

∇σ(xTwj)
)2

(20)

Note that maximizing (20) with respect to w maximizes

(15). Let us assume that the index that maximizes the inner

maximization with respect to m is m̄. Therefore, (20) is now

rewritten as,

( k
∑

j=1

σ(xTwj)− y

)

∇2σ(xTwm̄) +
k
∑

j=1

(

∇σ(xTwj)
)2
.

(21)

We use a − b ≤ |a| + |b| on the first term. Combining the

terms corresponding to m̄ and using (18) to bound the second

derivative,

max
w

[

1

10

(

k
∑

j=1,j 6=m̄

σ(xTwj) + |y|
)

+
k
∑

j=1,j 6=m̄

(

∇σ(xTwj)
)2

+ σ(xTwm̄)∇2σ(xTwm̄) +
(

∇σ(xTwm̄)
)2
]

. (22)

We then maximize each of these terms individually leading to

the following bounds:

•
σ(x)
10 + (∇σ(x))2 ≤ 0.1176 ∀x

• σ(x)∇2σ(x) + (∇σ(x))2 ≤ 0.0770 ∀x.

Incorporating the above, we get the following bound on the

gradient Lipschitz constant

α∗ ≤
[

(k − 1)0.1176 +
|y|

10
+ 0.0770

]

‖x‖2 . (23)

Depending on the value of k and y, we find that either

of the bounds in (19) and (23) can prove tighter. As both of

them are upper bounds, we pick the least one of them. The

final expression for the upper bound on the gradient Lipschitz

constant when a single data point (x, y) is taken is given by,

α∗ ≤ min(
|k − y|

10
+

k

16
, 0.1776(k− 1)

+
|y|

10
+ 0.0770) ‖x‖2 . (24)

We now wish to extend this to multiple data points (x(i), y(i))
for i = 1, · · ·N . When we follow the same derivation for

a loss function constructed with multiple data points, the

derived upper bound results in the average of the individual

upper bounds. This is a direct implication from the fact that

∇2 (
∑

i fi) =
∑

i ∇
2fi.

Therefore, the bound on α∗ is given by

α∗ ≤
1

N

N
∑

i=1

min

[

|k − y(i)|

10
+

k

16
,

0.1776(k− 1) +
|y(i)|

10
+ 0.0770

]

‖x(i)‖2 . (25)

As the loss function for multiple data points is defined as the

average over loss using each of the data points, we note that the

derived upper bound on the gradient Lipschitz constant also

follows a similar structure. Given the number of neurons in the

hidden layer, k, and the data set, the upper bound can be found

by simply evaluating the expression derived in (25); the inverse

of this bound gives a learning rate which always guarantees

that GD will converge. The bound increases with increase in

width of the network as well as the norm of the input. It is

noted that the bound depends on data only through its norm.

Therefore, if different data sets with similar Euclidean norms

are encountered, the derived bound can simply be reused.

B. ReLU activation

The ReLU activation function is given by s(x) =
max(0, x). Initially, consider a single data point (x, y) for

deriving the gradient Lipschitz constant.

Theorem 2. The gradient Lipschitz constant for a single-

hidden layer feedforward network with ReLU activation when

considering quadratic loss function in (4) when act(.) = s(.)
and N = 1 is given by

α∗ = k ‖x‖2 . (26)

Proof: Please see Appendix A.
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We now extend the derivation of the gradient Lipschitz

constant for a multiple input database. The result in Theorem

2 can be extended to N inputs as

α∗ =
1

N
max
w

λmax

(

N
∑

i=1

a(x(i), w)a(x(i), w)T

)

, (27)

where

a(x,w) ,
[

I{xTw1≥0}x . . . I{xTwk≥0}x
]T

. (28)

This involves a maximization over all possible weights and we

would like to derive a closed form expression. It is observed

that the Hessian matrix in this specific problem is structured;

it is the sum of outer products of the vector a(x(i), w) where

the vector consists of x(i) multiplied by appropriate indicators.

We wish to exploit the structure of the Hessian matrix to arrive

at an elegant solution which can be easily evaluated. Towards

that end, we state and prove the following lemma.

Lemma 3. For a vector a(x(i),w) as defined in (28), the

following relation holds

λmax

(

N
∑

i=1

ā(x(i))ā(x(i))T

)

≥

λmax

(

N
∑

i=1

a(x(i), w)a(x(i), w)T

)

∀w (29)

where

ā(x) ,
[

x . . . x
]T

(k terms). (30)

Proof: Please see Appendix B.

Lemma 3 holds for all values of w; therefore, it also holds

for that w which maximizes the maximum eigenvalue in

(27). In essence, Lemma 3 provides an upper bound on the

constant α∗. It is also noted that as ā(x(i)) is an instance of

a(x(i), w) for a specific w,

max
w

λmax

(

N
∑

i=1

a(x(i), w)a(x(i), w)T

)

≥

λmax

(

N
∑

i=1

ā(x(i))ā(x(i))T

)

. (31)

Hence, (31) gives a lower bound on the constant α∗. From

(29) and (31), it is evident that the upper and the lower bounds

coincide and must be equal to the exact value of α∗, i.e.,

α∗ = λmax

(

1

N

N
∑

i=1

ā(x(i))ā(x(i))T

)

. (32)

The exact gradient Lipschitz constant for a single hidden layer

network with ReLU activation has been derived in (32). We

no longer need the perform the brute force maximization over

all weight values as was required in (27). Instead evaluating

α∗ is now reduced to finding the maximum eigenvalue of a

kd × kd matrix. We note that the value of α∗ only depends

on the data vectors x(i) and the number of neurons k.

As the dimension of the problem increases, the eigenvalue

computation will get intensive; in such cases, we can employ

well-established bounds like Gershgorin and Brauer’s ovals of

...

...
...

+

x1

x2

x3

xn

act(.)

act(.)

act(.)

act(.)

y

Input

layer

Hidden

layer

Hidden

layer

Output

layer

Fig. 2: The architecture of a two hidden layer network

Cassini to provide easily computable upper bounds on α∗. For

convenience, these theorems are stated here.

Theorem 3 (Gershgorin’s Circles theorem [32]). For a square

matrix A, the upper bound on the maximum eigenvalue is,

λmax(A) ≤ max
i

(aii +Ri(A)), (33)

where Ri(A) =
∑

i6=j |aij |

Theorem 4 (Brauer’s Ovals of Cassini). For a square matrix

A, the upper bound on the maximum eigenvalue is given by

λmax(A) ≤ max
i6=j

(

aii + ajj
2

+
√

(aii − ajj)2 +Ri(A)Rj(A)

)

,

(34)

where Ri(A) =
∑

i6=j |aij |.

The bound in Theorem 4 is guaranteed to be provide a

bound which is not worse than the Gershgorin bound [33]. The

bounds stated above can be used to provide an upper bound

on the gradient Lipschitz constant if eigenvalue computation

is a constraint. The inverse of the derived constant α∗ or its

upper bound can be used as the learning rate while training

the network, and this will guarantee convergence of GD.

IV. DERIVING THE GRADIENT LIPSCHITZ CONSTANT FOR

A TWO HIDDEN LAYER NEURAL NETWORK

Here, we focus on a shallow architecture with two hidden

layers between the input and output layers as illustrated in Fig.

2. The weight matrix between the input and the first hidden

layer is denoted as V ∈ R
d×k1 where k1 is the number of

neurons in the first hidden layer. The weight matrix between

the two hidden layers is denoted as W ∈ R
k1×k2 where k2 is

the number of neurons in the second hidden layer. The output

of the network is the sum of the outputs of the neurons in

the second hidden layer. Let us denote the parameters of the

network V ,W as a single vector θ. Note that the dimension

of θ is k1(d+ k2).

θ =
[

V 1T . . .V k1
T

W 1T . . .W k2
T
]T

(35)
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This derivation is challenging as it is not a straight-forward

extension of the single layer case; the Hessian involves two

weight matrices V ,W to be optimized over. The squared loss

function is considered whose expression is given by,

l(θ) =
1

2N

N
∑

i=1

(

( k2
∑

l2=1

act
(

k1
∑

l1=1

act(x(i)TV l1)

Wl1l2

)

)

− y(i)

)2

. (36)

A. Sigmoid activation

Here, we derive the gradient Lipschitz constant of a 2-

hidden layer network with sigmoid activation function. As

done previously, we initially consider a single data tuple (x, y)
where x ∈ R

d and y ∈ R.

Theorem 5. The gradient Lipschitz constant for a two hid-

den layer feedforward network with sigmoid activation when

considering quadratic loss function in (36) with act(.) = σ(.)
and N = 1 is given by,

α∗ ≤ k1

(

k2β ‖x‖

16

)2

+
k1k2
16

+ max

(

1

10
+

[

1

4
+

β

10

]

k1 ‖x‖1
4

,

[

1

4
+

β

10

]

k2 ‖x‖∞
4

+

[

β

1000
+

1

4

]

k1k2β ‖x‖1 ‖x‖∞

)

|k2 − y| (37)

when |θi| < β ∀i for θ as defined in (35).

Proof: Please see Appendix C.

This is further extended to the case of N inputs and the

obtained constant is given by

α∗ ≤
1

N

N
∑

i=1

[

k1

(

k2β ‖x(i)‖

16

)2

+
k1k2
16

+ max

(

1

10
+

[

1

4
+

β

10

]

k1 ‖x(i)‖1
4

,

[

1

4
+

β

10

]

k2 ‖x(i)‖∞
4

+

[

β

1000
+

1

4

]

k1k2β ‖x(i)‖1 ‖x(i)‖∞

)

|k2 − y(i)|

]

.

(38)

We note that increase in dimension of the architecture will lead

to an increase in the bound. The derived bound also depends

on the maximum value in the weight matrix. Therefore, the

bound is tighter when there are no spurious values with large

magnitude in the weight matrix.

B. ReLU Activation

Initially, consider a single data tuple (x, y) where x ∈ R
d

and y ∈ R.

Theorem 6. The gradient Lipschitz constant for a two hidden

layer feedforward network with ReLU activation when consid-

ering quadratic loss function in (36) with act(.) = s(.) and

N = 1 is given by

α∗ ≤ k1(d+ k2)β
2 ‖x‖2 +max(Amaxk2|x|∞, Amax|x|1),

(39)

where Amax = k1k2β
2 ‖x‖ − y when |θi| < β ∀i.

Proof: Please see Appendix D.

Extending to a database of N inputs, i.e., (x(i), y(i)) for

i = 1, ...N , the following bound is obtained on the gradient

Lipschitz constant,

α∗ ≤
1

N

N
∑

i=1

(

k1(d+ k2)β
2 ‖x(i)‖2 +

max((Amax(i)k2|x(i)|∞, Amax(i)|x(i)|1)

)

, (40)

where Amax(i) = k1k2β
2 ‖x(i)‖ − y(i). The derived bound

depends on the dimension of the problem and on the factor β
which is the maximum magnitude in the weight matrix. The

bound increases linearly with increase in any of the following

parameters: k1, k2, d and quadratically on β.

V. PROPOSED SEARCH ALGORITHM

We propose an algorithm that uses the derived bounds from

previous sections to arrive at a learning rate which exhibits

faster convergence than using the inverse of the derived bound.

A. Why is a search algorithm required?

For a derived upper bound α, the corresponding learning

rate is found as η = 1/α. Note that η < η∗ (where η∗ = 1/α∗)

and therefore, any learning rate derived from an upper bound is

guaranteed to result in non-increasing traces for GD. However,

there may exist learning rates that are greater than η which

lead to faster convergence.

Even when the exact value of gradient Lipschitz constant is

available, optimality over all possible initializations is consid-

ered. However, in practical scenarios, the range of values with

which the neural networks are initialized are restricted and

hence, we do not require a universally optimal learning rate. In

other words, we can afford to have learning rates even higher

than η∗ as long as it guarantees monotonically decreasing

iterates in the region where the weights are initialized.

Summarizing, the motivations for proposing a search are

two-fold: the derived bounds may be loose which gives room

for finding better learning rates, and we wish to exploit the

weight initialization to find a learning rate customized to the

initialization.

B. Proposed algorithm

The search is for a learning rate which leads to faster

convergence than the inverse of the derived bound, while

ensuring that it produces decreasing iterates. This search can

be conducted by employing a search interval customized for

a given data set and weight initialization. The start-of-the-art

hyper-parameter tuning libraries such as HyperOpt [14] allow

the user to set the search space. In our work, we adopt the

HyperOpt1 implementation of TPE [14]. As they do not utilize

the information regarding the objective, the search for learning

rate is typically conducted in the interval [0, 1].
The algorithm is inspired from binary search [34]. The

1In this manuscript, we refer to the TPE implementation in the HyperOpt
library as simply HyperOpt.
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Algorithm 1 Binary search algorithm

1: Input: Derived bound α, Evaluations E, Epochs T
2: Initialization: η = 1/α, lc = α, loss∗ = Loss(η, T )
3: for i = 1, 2, · · ·E do

4: Run GD for and observe Loss(η, T ).
5: if Loss(η) < loss∗ AND Iterates are non-increasing

then

6: loss∗ = Loss(η, T ) (Update best loss)

7: lc = η−1

8: η = (lc/2)
−1 (Increase learning rate)

9: else

10: η =

[

η−1 + lc
2

]−1

(Decrease learning rate)

11: end if

12: end for

13: Output: Learning rate = η

algorithm is initialized with a learning rate that is guaranteed

to converge (i.e., 1/α where α is the derived bound) and is

allowed a certain number of trials. If the learning rate chosen

in a trial results in a converging trace of GD, a higher learning

rate is chosen for the next trial; else, a lower learning rate

is chosen. The learning rate leading to the lowest loss is

reported at the end of the search algorithm. We note that as

the algorithm is initialized with a convergent learning rate,

it never yields a divergent learning rate, unlike other search

algorithms like grid search, random search and HyperOpt.

Note that one can apply more sophisticated search techniques

to carry out this search; we adopt the BinarySearch algorithm

as it is intuitive and effective. When the ends of a search

interval are known, binary search is typically employed in

many applications such as [35]. In our implementation, the

BinarySearch algorithm checks if the midpoint of the interval

results in a learning rate that gives monotonically decreasing

iterates. If so, it searches through the lower interval, else, it

chooses the higher interval.

The proposed algorithm is described in Algorithm 1. Note

that in the algorithm, Loss(η, T ) refers to the value of the

loss function at the end of T epochs using the learning rate η.

C. Advantages and remarks

The inverse of the derived gradient Lipschitz constant

always acts as a valid learning rate. Therefore, in applications

where a slower convergence is acceptable, this method is

highly useful since it allows one to actually skip hyperpa-

rameter tuning altogether.

In other search methods, the search space is often con-

sidered as [0, 1]. However, there may be applications where

the inverse of the gradient Lipschitz constant is greater than

one. This in turn implies that the proposed method will

choose learning rates greater than one whilst guaranteeing

convergence whereas the traditional methods with restricted

search space, say [0, 1] will choose a learning rate less than 1.

In the case that the optimal learning rate is of a very low

order, search algorithms like random search or HyperOpt may

always encounter diverging behaviour even after the allotted

number of evaluations are utilized. However, in the case of

the proposed BinarySearch algorithm, we are guaranteed to

find a learning rate which would result in a successful GD

epoch. These advantages are demonstrated with the help of

simulations in the forthcoming section.

VI. SIMULATION RESULTS

The effectiveness of the proposed algorithm is compared

against HyperOpt. As HyperOpt is already shown to outper-

form random search [14], we only compare with the HyperOpt

tool that uses the TPE. To do so, we run 100 experiments with

the same number of evaluations allotted for both HyperOpt and

BinarySearch. To compare optimization strategies, we can opt

for any of the following metrics2:

• Best-found value: The loss achieved during the best-

performing evaluation in an experiment is compared and

the fraction of times BinarySearch outperforms HyperOpt

is tabulated.

• Best trace: The best trace for both the competing algo-

rithms are compared. The learning rate leading to the least

area under the convergence curve is said to yield the best

trace.

Note that using best loss as the only metric for comparing two

optimization techniques may not be sufficient. For example,

consider two optimization mechanisms that reach the same

minimum in 100 and 1000 epochs. The best loss metric ranks

both algorithms equally whereas convergence in 100 epochs

is preferable. As the best trace metric compares the area

below the convergence curves, it ranks the algorithm using

100 epochs higher than the other. The speed of convergence

especially becomes important while training complex models

which take significant amount of time to train. The synthetic

simulation is inspired from the setting in works like [19], [20]

that deal with the theoretical properties of shallow networks.

We consider a database with points (x(i), y(i)) for i = 1, ..N
where x(i) ∼ N (0, I) similar to [19]. It is assumed that

there is an underlying network known as the teacher network

with weights w∗. The weights of the teacher network are also

sampled from a zero mean unit variance Gaussian distribution.

The corresponding labels y(i) are generated by passing the

data through the teacher network. For our simulations, we

consider N = 100 with T epochs.

The network to be trained is referred to as the student

network. The weights of the student network are initialized

using Xavier initialization [36] and the quadratic loss function

is employed. The optimization algorithm used for training

is GD and it is run for T epochs. The algorithms, both

BinarySearch and HyperOpt, are allowed a fixed number of

evaluations. This is repeated for 100 experiments (each with

a different database and weight initialization). All results

reported are over 100 experiments.

A. One hidden layer networks

1) Comparison with HyperOpt: For a single hidden layer,

we run GD for T = 100 epochs. We note that the best

learning rate chosen by HyperOpt after the stipulated number

of evaluations sometimes still lead to unsuccessful GD epochs

2https://sigopt.com/blog/evaluating-hyperparameter-optimization-strategies/

https://sigopt.com/blog/evaluating-hyperparameter-optimization-strategies/


9

in case of ReLU activation, i.e., the iterates diverge while our

method never leads to divergent behaviour. The fraction of

times that divergent behaviour is observed for HyperOpt is

tabulated in Table I. In the remaining successful experiments,

we compare the final loss obtained using the learning rate

chosen by both BinarySearch and HyperOpt. The fraction of

experiments in which BinarySearch outperforms (results in a

lower ’best-found value’ than) HyperOpt is tabulated in Table

II.

No. of evaluations

d k 5 10 20

10 10 0.12 0.01 0
20 5 0.03 0 0
5 20 0.18 0.07 0

20 20 0.37 0.07 0.02

TABLE I: Fraction of times HyperOpt diverges for 1 hidden

layer network with ReLU activation

ReLU activation Sigmoid activation

No. of evaluations No. of evaluations

d k 5 10 20 5 10 20

10 10 0.81 0.91 0.93 1 1 1
20 5 0.76 0.85 0.85 1 1 1
5 20 0.74 0.90 0.95 1 1 1
20 20 0.73 0.86 0.89 1 1 1

TABLE II: Fraction of times the best value for BinarySearch

outperforms HyperOpt for 1 hidden layer network out of

successful experiments3

We notice that for higher number of evaluations, Bina-

rySearch always outperforms HyperOpt. It should be noted

that these comparisons are performed after eliminating the

experiments for which HyperOpt diverges. For instance, for

the configuration d = k = 20 with 5 evaluations using

ReLU activation, BinarySearch outperforms HyperOpt 73%
out of the 100 − 37 = 63 successful experiments. If we also

consider the divergent experiments, BinarySearch outperforms

HyperOpt 83% of the times. In the case of sigmoid activation,

the divergent behaviour is not observed. As the gradient of the

loss function is of a small order of magnitude (in the order of

10−2), GD does not diverge for higher learning rates. Also,

the learning rate derived as the inverse of gradient Lipschitz

constant for d = 2, k = 3, N = 100 is 1.78 which itself is

greater than 1. This implies that any learning rate less than

1.78 will never lead to divergent behaviour and learning rates

greater than 1.78 can be explored. One can argue that the

derived bound can be used to modify the search interval of

existing algorithms; this is discussed at the end of this section.

The metric, ’best-found value’ grades an algorithm based

on the final loss value that the algorithm converges to. We

also need a metric to quantify the performance in terms of

the convergence rate. Hence, we also provide the best-trace

metric, where the tuning strategies are compared based on their

convergence. The curve with the fastest convergence (least

area under convergence curve) out of all 100 experiments

is plotted for BinarySearch and HyperOpt. We provide the

3Experiments in which HyperOpt diverges are not considered.

results for a specific configuration with d = k = 10 where

each method is allowed 10 evaluations for ReLU and sigmoid

activation functions in Fig. 3 and 4 respectively. We note that

the proposed method results in better convergence curves than

the existing method, HyperOpt.

0 20 40 60 80
0
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10

15

Time steps

L
o

ss
l(
θ)

BinarySearch

HyperOpt

Fig. 3: Best trace comparison of single hidden layer ReLU

network with d = k = 10 with 10 evaluations
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L
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ss
l(
θ)

BinarySearch

HyperOpt

Fig. 4: Best trace comparison of single hidden layer sigmoid

network with d = k = 10 with 10 evaluations

In order to further study the attributes of the learning

rates chosen by the proposed method in comparison with

HyperOpt, we tabulate the mean, standard deviation, maximum

and minimum values chosen over the 100 experiments. We

study this for the case of d = k = 10 in Table III.

Activation Evals Algorithm Mean Std. dev Max Min

ReLU
5

BinarySearch 0.324 0.033 0.409 0.227
HyperOpt 0.234 0.095 0.459 0.017

20
BinarySearch 0.385 0.045 0.498 0.292

HyperOpt 0.328 0.069 0.462 0.098

Sigmoid
5

BinarySearch 3.175 0.071 3.327 2.983
HyperOpt 0.778 0.174 0.996 0.342

20
BinarySearch 13.359 3.984 30.805 7.514

HyperOpt 0.868 0.095 0.996 0.565

TABLE III: Variation of the chosen learning rates for single

hidden layer network
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Although the above tabulation is for 100 experiments, note

that HyperOpt returns a learning rate that results in diverging

traces for a small fraction of experiments (0.01); these entries

are ignored while computing the tabulated constants for Hy-

perOpt.

From Table III, it is noted that BinarySearch always chooses

a larger learning rate on an average as compared to HyperOpt

which leads to better convergence. The maximum learning rate

(the learning rate yielding the best trace graph) chosen by

BinarySearch is greater than that of HyperOpt as the number

of evaluations increase as evidenced by the numbers corre-

sponding to ReLU activation. In the case of ReLU activation,

it is observed that the proposed method has lesser variance in

choosing a step size as compared to HyperOpt. For the sigmoid

activation, our method chooses rates much greater than one, as

it is allowed by the structure of the problem whereas HyperOpt

typically is restricted to the interval [0, 1]. This also explains

why BinarySearch results in a much faster convergence than

HyperOpt in this case.
2) Comparison with other optimization algorithms: We

also compare the performance of our proposed tuning method

against popular optimization algorithms such as Adam [7],

Adagrad [37], Adadelta [38] and RMSProp [39]. Although a

default learning rate of 0.001 is suggested for Adam, RMSProp

and Adadelta, we note that a learning rate of 0.01 fares better

in this case. To demonstrate, we compare against the default

learning rate (0.001) as well as a learning rate of 0.01 for

the Adam optimizer. For the other optimizers, we only show

results for a learning rate of 0.01 which fares better than their

default rate of 0.001. The learning curve corresponding to the

plain vanilla gradient descent using the derived bound is also

included for the comparison.

The proposed binary search algorithm outperforms all the

other methods in all the cases as illustrated in Fig. 5. (Kindly

note that the legend provided in the first subplot holds for

the all the figures and is not repeated for ease of viewing.) It

should be noted that all the above methods (Adam, RMSProp,

Adagrad, Adadelta and gradient descent with derived bound)

only require a single evaluation of the optimization algorithm

whereas the BinarySearch method is employed when multi-

ple evaluations can be performed; for our experiments, we

have considered 10 evaluations for the binary search method.

However, we can see that the performance of the optimization

algorithm Adam with its default learning rate is fairly poor as

compared to the tuned version. Note that this tuning would also

take up evaluations based on the search algorithm employed.

In the case of ReLU activation, we note that the derived bound

itself outperforms all the other optimization methods. In case

of the sigmoid activation function, the Adam optimizer with

a learning rate of 0.01 exhibits faster convergence than the

derived bound for d = 10 and k = 10; both Adam and

RMSProp with 0.01 outperform the derived bound for d = 20
and k = 20. However, the choice of learning rate as 0.01

would require some tuning as the default rate is 0.001.

B. Two hidden layer networks

1) Comparison with HyperOpt: For a two hidden layer

network, we run GD for T = 200 epochs as it takes greater

number of epochs to converge than the single hidden layer.

Similar to the case of a single hidden layer, the fraction of

experiments for which HyperOpt chooses divergent values for

a network with ReLU activation is tabulated in Table IV.

We note that as the dimensions of the problem gets bigger,

No. of evaluations

d k1 k2 5 10 20

5 3 2 0.07 0.02 0
10 5 3 0.29 0.23 0.05
5 10 5 0.44 0.34 0.21
10 10 10 0.77 0.5 0.44

TABLE IV: Fraction of times HyperOpt diverges for 2 hidden

layer ReLU

the number of experiments which return unusable (divergent)

learning rates increases. For example, in the case of ReLU

activation with k1 = 10, k2 = 10, we obtain divergent

learning rates for 44% of the experiments even after allowing

20 evaluations for HyperOpt. In case of sigmoid activation,

it is again noted that there is no divergent behaviour. The

fraction of the remaining experiments in which BinarySearch

outperforms HyperOpt is tabulated in Table V. It is noticed

that the proposed method overtakes the existing method at

higher dimensions. Best-trace graphs for a two-hidden layer

network resembles the graphs for a single hidden layer and

are not produced due to lack of space.

ReLU activation Sigmoid activation

No. of evaluations No. of evaluations

d k1 k2 5 10 20 5 10 20

5 3 2 0.45 0.65 0.59 1 0.98 0.95
10 5 3 0.58 0.67 0.61 1 0.99 0.96
5 10 5 0.52 0.62 0.73 0.4 0.93 0.96
10 10 10 0.56 0.66 0.86 0 1 1

TABLE V: Fraction of times the best value for BinarySearch

outperforms HyperOpt for 2 hidden layer out of successful

experiments

For a two-layer network, we consider the architecture with

d = 5, k1 = 3, k2 = 2. This is chosen at random for study, and

the constants over 100 experiments are tabulated in Table VI;

we notice similar trends for other architecture with different

widths as well.

Activation Evals Algorithm Mean Std. dev Max Min

ReLU
5

BinarySearch 0.431 0.435 3.287 0.102
HyperOpt 0.285 0.239 0.996 0.015

20
BinarySearch 0.424 0.391 2.952 0.061

HyperOpt 0.308 0.218 0.915 0.001

Sigmoid
5

BinarySearch 6.012 0.929 8.055 3.983
HyperOpt 0.677 0.222 0.999 0.122

20
BinarySearch 18.656 6.662 32.364 5.849

HyperOpt 0.756 0.177 0.991 0.136

TABLE VI: Variation of the chosen learning rates for two

hidden layer network

From Table VI, we see that the average as well as the

maximum learning rate chosen by BinarySearch is greater

than HyperOpt. In our experiments, note that greater learning

rate implies better convergence as we only consider non-

divergent traces. Similar to the single hidden layer network,
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(d) Sigmoid activation: d=20, k=20

Fig. 5: Single hidden layer network: Comparison with other optimization techniques

BinarySearch outperforms HyperOpt by a large margin in case

of sigmoid activation, as it opts for learning rates greater than

one.

2) Comparison with other optimization algorithms: For

the case of two layer networks, we see that the proposed

binary search (using 10 evaluations) always results in faster

convergence as compared to the other optimization algorithms.

This is shown in Fig. 6. Similar to that of a single hidden layer

network, for ReLU activation, we see that the derived bound

outperforms the other optimization methods. However, for

sigmoid activation, especially in higher network dimensions,

the other algorithms perform better than the derived bound

but worse than the proposed binary search. Although all the

above experiments were performed with N = 100, the trend

in performance does not change with change in N as both the

loss function as well as the derived bound contain a factor of

1/N .

C. Remarks

1) Complexity of the algorithm: The complexity of the

proposed method as well as the comparative method, namely

HyperOpt, is nC(GD) where n is the number of evaluations

and C(GD) is the complexity of the plain vanilla gradient

descent algorithm for a fixed number of epochs. Note that both

these tuning methods run the gradient descent algorithm during

each evaluation for the same number of epochs. Therefore,

both algorithms have the same complexity as long as they

employ the same number of evaluations. Newer optimization

methods such as Adam, Adagrad, RMSProp and Adadelta have

greater algorithmic complexity than the traditional gradient

descent algorithm as they involve more additive and multi-

plicative operations in order to maintain an adaptive step-size.

Although the difference in computational complexities is not

much among the adaptive algorithms, the trend in complexity

is as follows: GD < Adagrad < RMSProp < Adam. [40].

2) Using the derived bound in a different search: One could

ask if the derived bound can be used in HyperOpt or other

existing popular hyper-parameter optimization algorithms it-

self. Though we can employ the derived bounds to restrict the

search space of existing algorithms on one end of the interval,

how to define the other end is still a question. For example, we

note that for a neural network with sigmoid activation function,

GD converges for learning rates greater than 1. Hence, the

learning rate corresponding to the derived bound (> 1) may

be set as the lower limit of the search interval; however, how

to set the upper bound still remains a question. We believe

that this is worth exploring in future work.

VII. APPLICATIONS

Feedforward shallow networks are widely used in the con-

text of resource allocation [41], wireless communication [22],
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(d) Sigmoid activation: d=10, k1 = 10, k2 = 10

Fig. 6: Two hidden layer network: Comparison with other optimization techniques

[24], financial predictions [23] and weather forecasting [42]. In

this section, we illustrate the utility of the proposed algorithm

in three specific applications.

A. Channel Estimation in OFDM systems

The use of neural network for channel estimation is advo-

cated as traditional estimation methods such as Least Squares

and MMSE suffer from lack of accuracy and high computa-

tional complexity respectively [21], [22]. We now describe

the architecture employed in [22]. A pilot-based channel

estimation is considered. A single hidden layer with k neurons

with sigmoid activation function is employed. The real and the

imaginary parts of the received pilots are fed separately into

the network and the corresponding channel impulses are esti-

mated at the output. The output layer (with linear activation)

has the same number of neurons as the input layer, say 2M for

estimating the channel response the real and imaginary parts

of M sub-carriers. The component-wise sum of the squared

difference between the estimated and actual channel response

is the objective function to be minimized. The learning rate

employed in the paper is 0.05 and is chosen through manual

tuning, which usually involves searching through trial and

error which is a laborious process. We now derive an upper

bound on the gradient Lipschitz constant of the objective and

apply Algorithm 1 to find the learning rate.

We follow the notation introduced in Section IV where the

weight matrix between the input and hidden layer is denoted

by V and the weight matrix between the hidden and output

layer is denoted as W . Let the data points be denoted as

(x(i),o(i)) for i = 1, ...N . Each element of the output vector

is denoted as o(i)l2 where l2 = 1, ..2M . The loss function is

given by,

l(θ) =
1

2N

N
∑

i=1

2M
∑

l2=1

[(

k
∑

l1=1

σ(x(i)TV l1)Wl1l2

)

− o(i)l2

]2

.

(41)

Note that, in this application, the architecture consists of

multiple outputs nodes. Therefore, the result in Theorem 1

cannot be used as it is. The bound on the gradient Lipschitz

constant hence is derived for this specific case, and the bound

is given by,

α∗ ≤
1

N

N
∑

i=1

[

k1k2
16

β2 ‖x(i)‖∞ ‖x(i)‖1 +

k2
∑

l2=1

[

(k1β − ol2)
β

10
‖x(i)‖∞ ‖x(i)‖1

]

+

k1k2
4

β ‖x(i)‖∞ +
k1
4
(k1β −min

m
om) ‖x(i)‖∞

]

. (42)

Sketch of Proof: The elements of the Hessian matrix ∇2l(θ)
are computed and the Gershgorin theorem (Theorem 3) is then

applied to obtain the above result.
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Here, we consider a OFDM system with M = 64 sub-carriers

where all the sub-carriers consist of the pilot symbol. The

pilots are transmitted through the channel and received. All

the simulations are performed in the frequency domain. It is

assumed that the channel impulse responses are available for

training. As done in [22], the number of inputs and outputs

to the neural network are 2M and the number of neurons in

the hidden layer are k = 10. For our simulations, we have

considered a QPSK constellation and an SNR of 10dB.

The learning rate chosen in the paper is a fixed learning rate

0.05. The loss corresponding to the fixed learning rate after

T = 100 time steps is 0.068. The learning rate chosen by

Algorithm 1 and the corresponding loss in tabulated in Table

VII. We can see that the proposed method finds a learning

No. of evaluations

5 10 20

Learning rate 0.033 0.062 0.064

Loss 0.0004 3.53e-6 3.27 e-23

TABLE VII: Learning rates chosen and loss encountered for

channel estimation by Algorithm 1

rate that is comparable to the one suggested by manual tuning

with as low as 5 evaluations. We can also see that the loss

that the algorithm converges to is lower than the loss arrived

at by using 0.05 as the learning rate.

B. Exchange rate prediction

Neural networks are used in various aspects of finance such

as debt risk assessment, currency prediction, business risk

failure, etc. [43]. Applications such as exchange rate prediction

hold great importance in the economy. In [23], a single hidden

layer neural network is considered where the neurons employ

the sigmoid activation function. In the mentioned work,

prediction is done using daily, monthly or quarterly steps.

For the sake of our demonstration, we consider the daily step

prediction. The exchange rates for the previous d = 5 days

are fed as the input to the network and the prediction for the

next day is made. The architecture of the network is the same

as the one demonstrated in Fig. 1 with d = 5 input neurons,

k = 10 neurons at the hidden layer and one output neuron.

The data for the experiment is obtained from the website

http://www.global-view.com/forex-trading-tools/forex-history/index.html

as in [23].

The data is organized as (x(i), y(i)) for i = 1, ..N training

samples; note that x(i) ∈ R
d represents the daily step (change

in the exchange rate from the previous day) for the past five

days and y(i) is the rate for the day (which is the quantity to

be estimated). We implement [23] with a slight modification:

the network proposed in the paper uses a threshold within

every neuron which is also a parameter to be tuned; instead,

in this implementation, we add a column of ones to the data

to compensate for threshold. Hence, we have x(i) ∈ R
d+1.

We are justified in doing so as we would tune the weight

vector corresponding to the d+ 1th input to the hidden layer

instead of tuning the threshold. The loss function in [23] is

given by,

l(w) =
1

2N

N
∑

i=1









k
∑

j=1

σ(x(i)Twj)



− y(i)





2

, (43)

where w denotes the weights of the network to be optimized

and σ(.) denotes the sigmoid activation function. We note that

the loss function is the similar to (4) and hence the bound

derived in (25) in Section III can be used.

The paper recommends GD as the optimization algorithm to

be used; however, it does not recommend any tuning method

for the learning rate for this application. We employ the Bi-

narySearch method proposed in Algorithm 1 and tabulate the

losses encountered after tuning the learning rate for T = 500
time steps in Table VIII. We note that the proposed method

No. of evaluations

5 10 20

BinarySearch 0.254 0.2532 0.253

HyperOpt 0.255 0.255 0.254

TABLE VIII: Loss encountered for exchange rate prediction

by Algorithm 1 and HyperOpt

performs well as compared to HyperOpt using TPE and is

able to achieve the optimal loss within a small number of

iterations. As it is noted that both the algorithms converge to

similar losses, we wish to demonstrate the convergence graphs

by plotting the best-trace graphs. From Fig. 7, we note that

the proposed BinarySearch algorithm converges faster.

0 10 20 30
0

10

20

30

Time steps

L
o

ss
l(
θ)

BinarySearch

HyperOpt

Fig. 7: Best trace comparison for exchange rate prediction

network with 10 evaluations

C. Offset estimation in OFDM receivers

Recent work in [44] uses neural network blocks for different

purposes while designing an OFDM receiver such as synchro-

nization. We focus on the estimation of the Carrier Frequency

Offset(CFO). Shallow networks with restricted width are em-

ployed to reduce the computational complexity.

Simulation setup of [44] is used and is briefly described below.

The OFDM signal is generated as per IEEE 802.11 standard

http://www.global-view.com/forex-trading-tools/forex-history/index.html
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using 64 subcarriers and 4-equally spaced pilots where 16-

QAM constellation is employed for modulation. The baseline

model is derived using the estimate from the cyclic prefix (CP).

A moving window of the CP estimates derived from NCFO

consecutive OFDM symbols serve as inputs to the shallow

neural network. The estimate from the established preamble

method developed by Moose [45] is used as the label for

training.

The said shallow network is constructed with the same ar-

chitecture in Fig.1 with ReLU activation; hence, the upper

bound on the gradient Lipschitz constant is given in (32). It is

established in [44] that using a neural network to estimate the

CFO as mentioned above results in better MSE than simply

using the CP estimates or the preamble methods. We only

verify if the proposed tuning method results in better learning

curves than the optimization algorithm used in [44].

The authors employ the Adam optimization algorithm with

the default learning rate of 0.001. We now compare this with

the proposed method in Fig. 8. It can be seen from the figure

that using the derived bound as the learning rate of GD (as

well as the binary search method) converges within a few

initial epochs whereas Adam optimizer takes 800 epochs to

converge to the same minimum. Note that although binary

search requires more evaluations, GD with the derived learning

rate requires just one iteration, like the Adam optimizer. This

shows that our proposed method results in faster convergence.

0 200 400 600 800
0

2

4

6

8

Time steps

L
o

ss
l(
θ)

Derived bound

Binary Search

Adam - 0.001

Fig. 8: Learning curves for CFO estimation

In this section, we considered three popular applications in

the communication and finance sector where shallow feedfor-

ward networks are used and demonstrated that the proposed

method can be used effectively to tune the learning rate as

compared to the state-of-the-art tuning algorithms.

VIII. CONCLUDING REMARKS

In this work, we proposed a theory-based approach for

determining the learning rate for a shallow feedforward neural

network. We derived the gradient Lipschitz constant for fixed

architectures and developed a search algorithm that employs

the derived bound to find a better learning rate while ensuring

convergence. While the existing algorithms tune harder, i.e.,

employ higher number of evaluations in order to find a suitable

learning rate, we can tune smarter by searching over an

interval which is customized to the objective. When allowed

the same number of evaluations, we demonstrated that the

proposed method outperforms state-of-the-art methods such as

HyperOpt in terms of convergence in both synthetic and real

data.

APPENDIX A

PROOF OF THEOREM 2

As the function is doubly differentiable, the required con-

stant is α∗ = maxw λmax(∇
2l(w)).

∇l(w) =





k
∑

j=1

s(xTwj)− y











I{xTw1≥0}x
...

I{xTwk≥0}x






(44)

∇2l(w) =







I{xTw1≥0}x
...

I{xT wk≥0}x













I{xTw1≥0}x
...

I{xTwk≥0}x







T

= a(x,w)a(x,w)T (45)

where

a(x,w) ,
[

I{xTw1≥0}x . . . I{xTwk≥0}x
]T

. (46)

Although the ReLU function given by max(0, x) is non-

differentiable at x = 0, the work in [20] states that if the

input is assumed to be from the Gaussian distribution, the

loss function becomes smooth, and the gradient is well defined

everywhere. The gradient is given by I{x≥0} where I is the

indicator function. By a similar argument, we consider the

second derivative to be zero over the entire real line. Note that

the Gaussian assumption is only to ensure that the derivative of

the ReLU function is defined at x = 0 due to the smoothness

for theoretical tractability. The gradient Lipschitz constant is

given by

α∗ = max
w

λmax(∇
2l(w)) = max

w
λmax(a(x,w)a(x,w)T ).

(47)

We note that a(x,w)a(x,w)T is a rank-1 matrix

and therefore, its only non-zero eigenvalue is given by

a(x,w)Ta(x,w) = ‖a(x,w)‖2, which is also the maxi-

mum eigenvalue. Substituting in (47),

α∗ = max
w

‖a(x,w)‖2 . (48)

The norm is maximized when all the entries of the vector are

non-zero, i.e., when all the indicators correspond to 1. Let us

define

ā(x) ,
[

x . . . x
]T

, (49)

which is a stack of the input vector repeated k times. There-

fore, the required constant is given by

α∗ = ‖ā(x)‖2 = k ‖x‖2 . (50)

In this case, we note that the derived constant for a single data

point is not a bound, but the exact gradient Lipschitz constant

and it is a function of the number of neurons, k, and the norm

of the input vector.
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APPENDIX B

PROOF OF LEMMA 3

The Rayleigh quotient of a Hermitian matrix A and a non-

zero vector g is given by gTAg
gT g

and reaches the maximum

eigenvalue when the vector g is the eigen vector corresponding

to the maximum eigenvalue [46].

λmax(A) = max
g:‖g‖=1

gTAg, (51)

Also, observe that for any other vector of unit norm h 6= g,

gTAg > hTAh. (52)

In the following proof, denoting x(i) as xi and the

principal eigen vectors of
(

∑N

i=1 ā(xi)ā(xi)
T
)

,
(

a(xi, w)a(xi, w)T
)

and
(

∑N
i=1 a(xi, w)a(xi, w)T

)

as ḡ, gi and ĝ respectively,

λmax

(

N
∑

i=1

ā(xi)ā(xi)
T

)

= ḡT

(

N
∑

i=1

ā(xi)ā(xi)
T

)

ḡ

=

N
∑

i=1

ḡT
(

ā(xi)ā(xi)
T
)

ḡ

≥
N
∑

i=1

gT
i

(

ā(xi)ā(xi)
T
)

gT
i .

Note that as
(

a(xi, w)a(xi, w)T
)

is a rank-1 matrix, the

principal eigen vector is given by gi = a(xi, w). Hence,

N
∑

i=1

gT
i

(

ā(xi)ā(xi)
T
)

gT
i

=
N
∑

i=1

a(xi, w)T (ā(xi)ā(xi))a(xi, w). (53)

Considering each term in the summation,

a(xi, w)T
(

ā(xi)ā(xi)
T
)

a(xi, w)

=

(

a(xi, w)T ā(xi)

)(

ā(xi)
Ta(xi, w)

)

=

( k
∑

j=1

I{xT
i
wj≥0}x

T
i xi

)( k
∑

j=1

I{xT
i
wj≥0}x

T
i xi

)

=

( k
∑

j=1

I
2
{xT

i
wj≥0}x

T
i xi

)( k
∑

j=1

I
2
{xT

i
wj≥0}x

T
i xi

)

=

( k
∑

j=1

I{xT
i
wj≥0}x

T
i I{xT

i
wj≥0}xi

)

( k
∑

j=1

I{xT
i
wj≥0}x

T
i I{xT

i
wj≥0}xi

)

= a(xi, w)T
(

a(xi, w)a(xi, w)T
)

a(xi, w).

Using this result in (53),

N
∑

i=1

a(xi, w)T
(

ā(xi)ā(xi)
T
)

a(xi, w)

=

N
∑

i=1

a(xi, w)T
(

a(xi, w)a(xi, w)T
)

a(xi, w)

≥
N
∑

i=1

ĝT
(

a(xi, w)a(xi, w)T
)

ĝ

= ĝT

(

N
∑

i=1

a(xi, w)a(xi, w)T

)

ĝ

= λmax

(

N
∑

i=1

a(xi, w)a(xi, w)T

)

.

Hence proved.

APPENDIX C

PROOF OF THEOREM 5

The loss function is doubly differentiable, and hence,

α∗ = max
θ

λmax(∇
2l(θ)). (54)

The first-order partial derivatives are computed as follows,

∂l(θ)

∂θ
= A

∂A

∂θ
(55)

∂A

∂θ
=

















































(

∑k2

l2=1

[

ql2σ(x
TV 1)(1− σ(xTV 1))W1l2x

]

)

...
(

∑k2

l2=1

[

ql2σ(x
TV k1)(1− σ(xTV k1))Wk1l2x

]

)

q1σ(x
TV 1)
...

q1σ(x
TV k1)

q2σ(x
TV 1)
...

q2σ(x
TV k1)
...

qk2
σ(xTV k1)

















































(56)

We define the following terms, where qa is the

first derivative and q′a is the second derivative of

σ
(

∑k1

l1=1(σ(x
TV l1)Wl1a)

)

and then compute the elements

of the Hessian matrix.

A ,

(

k2
∑

l2=1

σ

(

k1
∑

l1=1

σ(xTV l1)Wl1l2

)

− y

)

, (57)

qa , σ

(

k1
∑

l1=1

(σ(xTV l1)Wl1a)

)

(

1− σ

(

k1
∑

l1=1

(σ(xTV l1)Wl1a)

))

, (58)
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q′a , σ

(

k1
∑

l1=1

(σ(xTV l1)Wl1a)

)

(

1− σ

(

k1
∑

l1=1

(σ(xTV l1)Wl1a)

))

(

1− 2σ

(

k1
∑

l1=1

(σ(xTV l1)Wl1a)

))

.

(59)

∂2l(θ)

∂Wij∂Wi′j′
=
(

qjσ(x
TV i)

)

(

qj′σ(x
TV i′)

)

+Aσ(xTV i)σ(xTV i′)q′jI{j=j′} (60)

∂2l(θ)

∂V i∂V i′
=

(

k2
∑

l2=1

[

ql2σ(x
TV i)(1 − σ(xTV i))Wil2x

]

)

(

k2
∑

l2=1

[

ql2σ(x
TV i′ )(1− σ(xTV i′))Wi′l2x

]

)T

+Aσ(xTV i)(1 − σ(xTV i))σ(xTV i′)

(1− σ(xTV i′))

[

k2
∑

l2=1

q′l2Wil2Wi′l2

]

xxT

+A

[

k2
∑

l2=1

ql2Wil2

]

σ(xTV i)(1 − σ(xTV i))

(1− 2σ(xTV i))I{i=i′}xx
T (61)

∂2l(θ)

∂V i∂Wi′j′
=

k2
∑

l2=1

[

ql2σ(x
TV i)(1− σ(xTV i))Wil2

]

q′jσ(x
TV i′)xT +Aσ(xTV i)(1− σ(xTV i))

[ k2
∑

l2=1

(ql2I{i=i′,l2=j′} +Wil2q
′
l2
σ(xTV i′)

]

xT

(62)

∂2l(θ)

∂Wij∂V i′
= qjσ(x

TV i)

k2
∑

l2=1

[

ql2σ(x
TV i′)(1− σ(xTV i′))Wi′l2x

]

+Aqjσ(x
TV i)(1 − σ(xTV i))Ii=i′x

+A(σ(xTV i′))2(1− σ(xTV i′))q′jWi′jx (63)

It is observed that the elements of the Hessian matrix depends

on the values of the parameters in θ (through A) unlike the

case with a single hidden layer in which the parameters only

appeared as indicators. As the maximization is over θ, the

elements of the matrix V and W can be scaled up arbitrarily

and the obtained upper bound will be infinity, which is a trivial

upper bound. To avoid this, it is assumed that the magnitude

of the weights are restricted; i.e., |θi| < β ∀i. The Hessian

matrix can be written in the following form:

∇2l(θ) =

(

dA

dθ

)(

dA

dθ

)T

+M , (64)

where the first terms in all the second order partial deriva-

tive elements (given in (60) - (63)) are accounted for in
(

dA
dθ

) (

dA
dθ

)T
. The rest of the additive terms are represented

by the matrix M . Applying Weyl’s inequality (i.e., (12)),

λmax(∇
2l(θ)) ≤ λmax

(

(

dA

dθ

)(

dA

dθ

)T
)

+ λmax(M).

(65)

We note that the first term in the above equation is a rank one

matrix and has a maximum eigenvalue of
∥

∥

dA
dθ

∥

∥

2
. The required

gradient Lipschitz constant is obtained by maximizing (65)

over all values of θ and is given by

max
θ

λmax(∇
2l(θ)) ≤ max

θ

∥

∥

∥

∥

dA

dθ

∥

∥

∥

∥

2

+max
θ

λmax(M) (66)

Focusing on the first term in (66), the vector dA
dθ

consists of

k1k2 terms of the form q(.)σ(.) and k1 terms of the form
∑k2

l2=1 ql2∇σ(xTV a)Wal2x where a = 1, ..., k1. Recall from

(16) that σ(.) ≤ 1 and from (17) that q(.) ≤
1
4 . Therefore,

max
θ

∥

∥

∥

∥

dA

dθ

∥

∥

∥

∥

2

= k1

(

k2β ‖x‖

16

)2

+
k1k2
16

(67)

where β = maxi θi. We now focus on the second additive

term in (66). To bound the maximum eigenvalue of M , the

Gershgorin’s theorem (stated in Theorem 3) is employed.

Considering the terms in (60) - (63) that are not included

in
(

dA
dθ

) (

dA
dθ

)T
, we bound the maximum row sum over all

possible values of θ. The row sum can be computed in one of

two possible ways considering elements from (a)
∂2l(θ)

∂V i∂V i′

and
∂2l(θ)

∂V i∂Wi′j′
or (b)

∂2l(θ)

∂Wij∂V i′
and

∂2l(θ)

∂Wij∂Wi′j′
.

The maximum value taken by A is |k2 − y| as the sigmoid

function has a maximum value of one. Recall that qa is a

first derivative and q′a is a second derivative of the sigmoid

function. Using the bounds on derivatives stated in (16) - (18),

max
θ

λmax(M) ≤ |k2 − y|max

(

1

10
+

[

1

4
+

β

10

]

k1 ‖x‖1
4

,

[

1

4
+

β

10

]

k2 ‖x‖∞
4

+

[

β

1000
+

1

4

]

k1k2β ‖x‖1 ‖x‖∞

)

(68)

where the first argument in the maximization corresponds to

case (a) and the second argument corresponds to case (b) of

computing the row sum. Combining (67) and (68),

α∗ ≤ max

(

1

10
+

[

1

4
+

β

10

]

k1 ‖x‖1
4

,

[

1

4
+

β

10

]

k2 ‖x‖∞
4

+

[

β

1000
+

1

4

]

k1k2β ‖x‖1 ‖x‖∞

)

|k2 − y|

+ k1

(

k2β ‖x‖

16

)2

+
k1k2
16

(69)
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APPENDIX D

PROOF OF THEOREM 6

The aim is to find the gradient Lipschitz constant of l(θ).
For a doubly differentiable function, the required constant is

given by

α∗ = max
θ

λmax(∇
2l(θ)). (70)

In order to find the Hessian, we initially find the first-order

partial derivatives:

∂l(θ)

∂θ
= A

∂A

∂θ
(71)

∂A

∂θ
=







































(

∑k2

l2=1

[

ql2I{xTV 1≥0}W1l2x
]

)

...
(

∑k2

l2=1

[

ql2I{xTV k1≥0}Wk1l2x
]

)

q1s(x
TV 1)

q1s(x
TV 2)
...

q1s(x
TV k1)
...

qk2
s(xTV k1)







































(72)

where

A ,

(

k2
∑

l2=1

s

(

k1
∑

l1=1

s(xTV l1)Wl1l2

)

− y

)

(73)

qa , I
{
∑k1

l1=1
(s(xTV l1 )Wl1a)≥0}

. (74)

Similar to one-hidden layer ReLU case, we assume that

the gradients of qa with respect to Wij and V i are 0 and

0 respectively. Now, the second-order partial derivatives are

derived.

∂2l(θ)

∂Wij∂Wi′j′
=
(

qjs(x
TV i)

)

(

qj′s(x
TV i′)

)

(75)

∂2l(θ)

∂V i∂V i′
=

(

k2
∑

l2=1

[

ql2I{xTV i≥0}Wil2x
]

)

(

k2
∑

l2=1

[

ql2I{xTV i′≥0}Wi′l2x
]

)T

(76)

∂2l(θ)

∂V i∂Wi′j′
= Aqj′ I{xTV i′≥0}I{i=i′}x

T+

(

k2
∑

l2=1

[

ql2I{xTV i≥0}Wil2x
T
]

)

(

qj′s(x
TV i′)

)

(77)

∂2l(θ)

∂Wij∂V i′
= AqjI{xTV i≥0}I{i=i′}x+

(

k2
∑

l2=1

[

ql2I{xTV i′≥0}Wi′l2x
]

)

(

qjs(x
TV i)

)

.

(78)

Note that the Hessian is a square matrix of dimension k1(d+
k2) × k1(d + k2). On putting the Hessian matrix together, it

is observed that the Hessian can be written as a sum of two

matrices as given below

∇2l(θ) =

(

dA

dθ

)(

dA

dθ

)T

+M , (79)

where M is a matrix with all the elements as zero except

for the additional elements corresponding to
∂2l(θ)

∂Wij∂V i′
and

∂2l(θ)

∂V i′∂Wij
where i = i′. The main diagonal elements of the

matrix are always zero and it is also symmetric; there are

2dk1k2 non-zero elements in the matrix.

Using Weyl’s inequality stated in (12),

λmax(∇
2l(θ)) ≤ λmax

(

(

dA

dθ

)(

dA

dθ

)T
)

+ λmax(M)

(80)

=

∥

∥

∥

∥

dA

dθ

∥

∥

∥

∥

2

+ λmax(M). (81)

The maximum eigenvalue of the matrix M can be bounded

using the Brauer’s Ovals of Cassini bound (stated in Theorem

4).

λmax(M) ≤ max
i6=j

(

mii +mjj

2
+

√

(mii −mjj)2 +Ri(M)Rj(M)

)

(82)

where Ri(M) =
∑

i6=j |mij |. It is noted that all diagonal

elements are always zero and multiple rows have similar row

sums. Therefore, the bound reduces to

λmax(M) ≤ max
i

Ri(M) (83)

This is the same as the Gershgorin’s bound obtained for the

matrix M . Note that the elements of the matrix M are the first

terms in (77) and (78) corresponding to the case when i = i′.
The structure of the matrix M is such that the maximum

row sum can be computed in one of two ways: Ak2 times the

maximum element of vector x, or A times the sum of elements

of x. Therefore, while maximizing over θ, the maximum row

sum of M is given by

max
i

Ri(M) = max(Ak2|x|∞, A|x|1), (84)

where |x|∞ = maxi xi and |x|1 =
∑

i xi.

We can write (81) as

λmax(∇
2l(θ)) ≤

∥

∥

∥

∥

dA

dθ

∥

∥

∥

∥

2

+max(Ak2|x|∞, A|x|1). (85)

To obtain the desired bound on the gradient Lipschitz

constant, we maximize over all possible values of θ to obtain,

max
θ

λmax(∇
2l(θ)) ≤ max

θ

∥

∥

∥

∥

dA

dθ

∥

∥

∥

∥

2

+max
θ

λmax(M). (86)

The first term is an outer product of vectors (matrix of rank

1) and hence, the eigenvalue is given by their inner product.

The vector dA
dθ

consists of k1(d + k2) terms each with an

indicator, an element from θ and the input vector. Recall that
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to avoid arbitrary scaling of the derived bound, we impose the

following restriction that |θi| ≤ β ∀i. Therefore,

max
θ

∥

∥

∥

∥

dA

dθ

∥

∥

∥

∥

2

= k1(d+ k2)β
2 ‖x‖2 . (87)

To maximize the second term in (86), we note that the scalar

term A is a sum of k1k2 combinations of product of two

weight parameters with the data vector x. The maximum value

that the scalar A can take is denoted by Amax = k1k2β
2 ‖x‖−

y. Therefore, the second term is maximized as

max
θ

λmax(M) = max((Amaxk2|x|∞, Amax|x|1), (88)

where Amax = k1k2β
2 ‖x‖ − y. Combining (86), (87) and

(88), we obtain

α∗ ≤ k1(d+ k2)β
2 ‖x‖2 +max((Amaxk2|x|∞, Amax|x|1).

(89)

An upper bound on the gradient Lipschitz constant for a two

hidden layer ReLU network is derived.
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