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Random phaseless sampling for causal signals in

shift-invariant spaces: a zero distribution

perspective
Youfa Li, Wenchang Sun

Abstract—We proved that the phaseless sampling (PLS)
in the linear-phase modulated shift-invariant space (SIS)
V (eiα·ϕ), α 6= 0, is impossible even though the real-valued

function ϕ enjoys the full spark property (so does eiα·ϕ).
Stated another way, the PLS in the complex-generated
SISs is essentially different from that in the real-generated
ones. Motivated by this, we first establish the condition
on the complex-valued generator φ such that the PLS of
nonseparable causal (NC) signals in V (φ) can be achieved
by random sampling. The condition is established from
the generalized Haar condition (GHC) perspective. Based
on the proposed reconstruction approach, it is proved that
if the GHC holds then with probability 1, the random
sampling density (SD) = 3 is sufficient for the PLS of
NC signals in the complex-generated SISs. For the real-
valued case we also prove that, if the GHC holds then with
probability 1, the random SD = 2 is sufficient for the PLS
of real-valued NC signals in the real-generated SISs. For
the local reconstruction of highly oscillatory signals such as
chirps, a great number of deterministic samples are required.
Compared with deterministic sampling, the proposed random
approach enjoys not only the greater sampling flexibility but
the much smaller number of samples. To verify our results,
numerical simulations were conducted to reconstruct highly
oscillatory NC signals in the chirp-modulated SISs.

Index Terms—Random phaseless sampling, complex (real)-
generated shift-invariant space, generalized Haar condition,
sampling density, highly oscillatory signals.

I. INTRODUCTION

Phase retrieval (PR) is a nonlinear problem that seeks

to reconstruct a signal f , up to a unimodular scalar, from
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the intensities of the linear measurements (c.f.[1], [2], [3],

[4], [5], [6], [7])

bk := |〈f, ak〉|, k ∈ Γ,

where ak is called the measurement vector.

As stated in Y. Shechtman et. al [7] one of the reasons

for PR in optics is that, for highly oscillatory signals such

as optical waves (electromagnetic fields oscillating at 1015

Hz and higher), measuring their phases is very difficult or

even impossible for electronic measurement devices. PR

has been widely investigated in engineering and mathemat-

ical problems such as coherent diffraction imaging ([7],

[8], [9]), quantum tomography ([10]), and frame theory

([11], [12]). A concrete PR problem corresponds to the

specific signal class C and measurement vectors (e.g. [13],

[14], [15], [16], [17], [18], [19]). For example, Alaifari

et. al [15] considered the PR of real-valued bandlimited

functions by frame measurement vectors. When f lies

in a function class C and ak is the shift of the Dirac

distribution, then the corresponding PR is the phaseless

sampling (PLS for short), modeled as

to reconstruct f by the samples |f(x)|, x ∈ Ω,

up to a unimodular scalar. In what follows, we introduce

the recent developments on PLS in shift-invariant spaces

(SISs).

A. Related work

SIS has many applications in signal processing. Please

refer to [19], [20], [21], [22] and the references therein

for a few examples. For a generator g : R → C, its SIS is

defined as

V (g) := {∑k∈Z
ckg(· − k) : {ck}k∈Z ∈ ℓ2},

where {ck}k∈Z ∈ ℓ2 means
∑

k∈Z
|ck|2 < ∞. Recently,

PLS in SISs received much attention (e.g.[23], [24],

[25], [26], [27], [28]). Particularly, it was investigated

for bandlimited signals in Thakur [25], P. Jaming, K.

Kellay and R. Perez Iii [28] and C.K. Lai, F. Littmann, E.
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Weber [29]. Note that the spaces of bandlimited signals

are shift-invariant and the corresponding generators (sinc

function or its dilations) are infinitely supported (c.f. [30],

[31]). Chen, Cheng, Sun and Wang [26] established the

PLS of nonseparable (the definition of nonseparability

is postponed to section I-B1) real-valued signals in the

SIS from a compactly supported generator. W. Sun [24]

established the PLS for nonseparable real-valued signals

in SISs generated by B-splines.

Note that the generators and signals in [24], [26] are all

real-valued, and the sampling is deterministic. Motivated

by the results therein we will investigate the random PLS

of causal signals in complex (or real)-generated SISs. Here

a signal f ∈ V (g) is said to be causal if

f =
∑∞

k=0 ckg(· − k), c0 6= 0.

The set of causal signals in V (g) is denoted by Vca(g).
Causal signals are an important class of signals (c.f. [19],

[32], [33]). Particularly, the Fourier measurement-based

PR of causal signals in SISs was addressed in [19]. In

what follows, we introduce the motivation.

B. Motivation

1) Full spark property fails for complex-valued case:

Many practical applications require processing signals in

the SISs from complex-valued generators such as chirps

(e.g.[21], [34]). We will investigate the PLS in complex-

generated SISs. To the best of our knowledge, there are

few literatures on this topic. We are greatly motivated by

Theorem 1.1, which will state that the PLS in the complex-

generated SISs is essentially different from that in the real-

generated ones.

Some denotations and definitions are necessary for

Theorem 1.1. A nonzero function f is traditionally denoted

as f 6≡ 0, and f(x) 6= 0 means that the point x is not the

zero of f . The conjugate of a ∈ C is denoted by ā. The

real and imaginary parts of a are denoted by ℜ(a) and

ℑ(a), respectively. Any a 6= 0 can be denoted by |a|eiθ(a)

where i, |a| and θ(a) are the imaginary unit, modulus and

phase, respectively. For phases θ(a) and θ(b), we say that

θ(a) = θ(b) if θ(a) = θ(b) + 2kπ for a certain k ∈ Z.
Traditionally, the phase of zero can be assigned arbitrarily.

Throughout this paper the complex and real-valued

generators are denoted by φ and ϕ, respectively. Without

loss of generality, assume that

supp(φ) ⊆ (0, s), supp(ϕ) ⊆ (0, s) (1.1)

with the integer s ≥ 2. A function 0 6≡ f ∈ V (φ) (or

V (ϕ)) is separable if there exist 0 6≡ f1 and 0 6≡ f2 ∈
V (φ) (or V (ϕ)) such that f = f1 + f2 and f1f2 ≡ 0.

Clearly, if f is separable then |f | = |f1 + eiαf2| where

α ∈ (0, 2π), and consequently it is not distinguishable

from f1 + eiαf2 by the samples of |f |.
For the above real-valued generator ϕ, if the matrix

(
ϕ(xk + n)

)
1≤k≤2s−1,0≤n≤s−1 (1.2)

is full spark (c.f. [35], [36]) for any 2s− 1 distinct points

xk ∈ (0, 1), k = 1, . . . , 2s−1, namely, every s×s subma-

trix is nonsingular, then it follows from [26] that the real-

valued nonseparable signals in V (ϕ) can be determined

by sufficiently many samples. The B-spline generators in

[24] satisfy the property. However, the following theorem

implies that the property is not sufficient for achieving

PLS when the generator is complex-valued.

Theorem 1.1: Let ϕ be real-valued such that supp(ϕ) ⊆
(0, s) and the matrix in (1.2) is full spark for any 2s− 1
distinct points xk ∈ (0, 1), k = 1, . . . , 2s − 1. Define

φ := eiα·ϕ with α 6= 0. Then the PLS in Vca(φ) can not

be achieved despite the fact that φ also satisfies the full

spark property.

Proof: It is easy to check that φ inherits the full spark

property of ϕ. It follows from the full spark property that

{φ(· + k) : k = 0, . . . , s − 1} is linearly independent.

We first choose β ∈ R such that α − β 6= kπ for any

k ∈ Z. Let N ≥ 2. Define a sequence {ck}Nk=0 such

that c0 = 1 and c1 = eiβ . It is easy to check that

{ck}Nk=0 6= eiθ̂{ei2αkck}Nk=0 for any θ̂ ∈ [0, 2π). By the

above linear independence, we have
∑N

k=0 ckφ(· − k) 6=
eiθ̂

∑N
k=0 e

i2αkckφ(·−k). However, it is easy to check that

|
N∑

k=0

ei2αkckφ(· − k)| = |
N∑

k=0

ckφ(· − k)|. (1.3)

In other words, the PLS in Vca(φ) can not be achieved.

✷

Motivated by Theorem 1.1, we need to establish a

condition on the complex-valued generator φ such that

the PLS in Vca(φ) can be achieved. The condition will

be established from the zero distribution (or the Lebesgue

measure of zero set) perspective. Our motivation for this

perspective is introduced in what follows.

2) New perspective: zero distribution-based PLS:

We first interpret the full spark property from the zero

distribution perspective. For a function system Λ =
{g0, . . . , gL−1}, its span space is defined as

span{Λ} :=
{∑L−1

j=0 cjgj : cj ∈ R
}
. (1.4)

It is easy to check that the full spark property of the matrix

in (1.2) is equivalent to that the function system

Λϕ := {ϕ, . . . , ϕ(·+ s− 1)} (1.5)
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satisfies the (s−1)-Haar condition (HC for short) on (0, 1)
(c.f.[37], [38], [39] for HC). Specifically, Λϕ is linearly

independent and

sup
06≡h∈span{Λϕ}

#(Zh ∩ (0, 1)) ≤ s− 1, (1.6)

where Zh is the zero set of h and #(Zh ∩ (0, 1)) is the

cardinality of Zh ∩ (0, 1).
Motivated by the above HC, from the zero distribution

perspective we will establish the condition on φ := φℜ +
iφℑ such that the PLS in Vca(φ) can be achieved. Inspired

by Theorem 1.1, the zero distribution should not be

correlated with the functions in span{φ, . . . , φ(·+s−1)}.

Instead we will require in section II that the distribution

is related with the functions in span(Ξφ), where

Ξφ :=
{
φℜφℜ(·+ k) + φℑφℑ(·+ k), φℜφℑ(·+ k)−
φℑφℜ(·+ k)

}s−1

k=1
∪
{
φ2
ℜ + φ2

ℑ

}
.

(1.7)

More specifically, Ξφ is linearly independent and

sup
06≡h∈span{Ξφ}

µ(Zh ∩ (0, 1)) = 0, (1.8)

where µ is the Lebesgue measure and span{Ξφ} is de-

fined via (1.4). Clearly, (1.8) (a measure perspective) is

essentially different from (1.6) (a cardinality perspective).

Compared with the cardinality perspective, we will profit

more from the measure perspective. Details on this will be

given in section I-E. For simplicity we give the following

definitions.

Definition 1.2: If (1.8) holds, then we say that the

system Ξφ satisfies the generalized Haar condition (GHC

for short), and φ is a complex-valued GHC-generator.

As a counterpart of Definition 1.2, we next define the

GHC related to the real-valued generator ϕ in (1.1).

Definition 1.3: If Λϕ = {ϕ(· + k) : k = 0, . . . , s − 1}
in (1.5) is linearly independent and satisfies

sup
06≡h∈span{Λϕ}

µ(Zh ∩ (0, 1)) = 0, (1.9)

then we say that the system Λϕ satisfies the GHC, and ϕ
is a real-valued GHC-generator.

C. Typical GHC-generators

1) Typical complex-valued GHC-generators: We start

with the amplitude-phase form of a complex-valued func-

tion. Any function (including a generator for an SIS)

F : R −→ C can be written as the general form

|F (t)|eiθ(F (t)), where |F (t)| and θ(F (t)) (taking values

on [0, 2π)) are referred to as the amplitude function and

the phase (or rotation) function. Therefore, any complex-

valued generator for an SIS can be interpreted as the

(possibly nonlinear) rotation of a real-valued function.

As mentioned before, one of the reasons for PR in

optics is the high oscillation of a signal. Chirps which

take the very general form F (t)eiλρ(t) are the typical class

of highly oscillatory signals, where F (t) ≥ 0 and λ is a

(large) base frequency such that the phase function λρ(t)
is varying rapidly over time (c.f.[40]). As stated in [40],

chirps are ubiquitous in nature. They are of interest in

applications such as in analysis of echolocation in bats

([41]) and whales ([42], [40]), and in detecting gravi-

tational waves ([40]). They are also applied in ultrafast

optics ([43]) and ultrashort laser pulses ([44]).

Many chirps such as those in [34, section 6.3] have the

local analytic structure. Employing this, GHC (1.8) can

be easily checked. For example, motivated by [34, section

6.3] we take the chirp-generator

φ(x) = 2
3

√
2π|b|e−i

a(x−2)2

2b e−i
p(x−2)

b cos2 π(x−2)
4 χ(0,4)(x),

(1.10)

such that supp(φ) = (0, 4), where a 6= 0 and χE is the

characteristic function of the set E ⊆ R. Clearly, the 7
components of the system Ξφ in (1.7) are essentially the

restrictions of analytic functions. Recall that the zero set

of any nonzero analytic function has Lebesgue measure

zero (c.f. [45]). Hence, if the components gi ∈ Ξφ, i =
1, . . . , 7, are linearly independent on (0, 1) then φ is a

complex-valued GHC-generator. The independence can be

achieved if there exists (x1, . . . , x7) ∈ (0, 1)7 such that the

determinant∣∣∣∣∣∣∣

g1(x1) g2(x1) . . . g7(x1)
...

...
. . .

...

g1(x7) g2(x7) . . . g7(x7)

∣∣∣∣∣∣∣
6= 0. (1.11)

Take the parameters (a, b, p) = (4, 0.8, 1) or (50, 0.8, 1)
for example. Uniformly choosing (x1, . . . , x7) from

(0, 1)7 we found that (1.11) holds with probability 1. Then

φ in (1.10) is a complex-valued GHC-generator.

2) Real-valued GHC-generators: If a real-valued gen-

erator has the local analytic structure, then we can also

address how to check whether it is a GHC-generator by the

similar argument as above. The cardinal B-splines and the

refinable functions ([46], [47], [48]) having positive masks

are the typical examples of real-valued GHC-generators.

D. Contributions

An infinite discrete set E is said to have sampling den-

sity (SD) if SD = limb−a→∞
#([a,b]∩E)

b−a
< ∞. Throughout

this paper, we require that the random sampling points on

any unit interval [n, n+ 1] obey the uniform distribution.

Our contributions include:

(i) From a new perspective—zero distribution, we es-

tablish the condition for the PLS of causal signals in the
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complex-generated SISs. Specifically, Theorem 2.5 will

state that if φ is a complex-valued GHC-generator, then

with probability 1 the random SD = 3 is sufficient for the

PLS of nonseparable signals in Vca(φ).
(ii) The PLS of nonseparable and real-valued signals

in real-generated SISs is also investigated from the zero

distribution perspective. Specifically, Theorem 3.1 will

state that if ϕ is a real-valued GHC-generator, then with

probability 1 the random SD = 2 is sufficient for the PLS

of nonseparable and real-valued signals in Vca(ϕ).
(iii) An alternating approach, termed as phase decoding-

coefficient recovery (PD-CR), is established to reconstruct

the nonseparable signals in Vca(φ) and Vca(ϕ). By the

random sampling-based PD-CR, Propositions 2.6 and 3.2

will guarantee that the highly oscillatory signals can be

locally reconstructed by using a very small number of

samples. More details about this is given in section I-E-2).

E. Highlights

1) The zero distribution perspective enables us to do

PLS in complex-generated Vca(φ): As mentioned in sec-

tion I-B2, the traditional requirement—full spark property

for PLS of real-valued signals can be interpreted by (1.6),

a cardinality perspective. Theorem 1.1 implies that the

property does not work for complex-valued case. Based

on GHC (a measure perspective), we establish the PLS of

nonseparable signals in Vca(φ).
2) Local reconstruction of highly oscillatory signals

costs a small number of samples: If ϕ or φ is highly oscil-

latory, then the quantities sup06≡h∈span{Λϕ} #(Zh∩(0, 1))
and sup06≡h∈span{Ξφ} #(Zh ∩ (0, 1)) are great. And a

great number of deterministic samples are necessary for

local reconstruction. However, Propositions 2.6 and 3.2

will guarantee that the highly oscillatory signals can be

locally reconstructed, with probability 1, by using a very

small number of random samples. Unlike [24], the number

of samples is independent of the above quantities. To make

this point, we will give a test signal in section III-C (3.46)

and its local restriction in (3.47). Although the restriction

is determined by just two coefficients, one needs at least

259 deterministic samples to reconstruct it. By the PD-CR,

however, with probability 1 it can be reconstructed by just

three random samples.

F. Organization

Section II concerns on the random PLS of nonseparable

signals in Vca(φ), where φ is a complex-valued GHC-

generator. Based on the proposed PD-CR, we proved that

when the sampling points obey the uniform distribution

and the random SD = 3, then with probability 1 any

nonseparable signal in Vca(φ) can be determined up to

a unimodular scalar. In section III the PD-CR is modified

such that it is more adaptive to the real-valued case. By

the modified PD-CR, the real-valued and nonseparable

signals in Vca(ϕ) can be determined with probability 1
if the random SD = 2. To confirm our results numerical

simulations are conducted in section II-H and section

III-C. For the local reconstruction, Propositions 2.6 and 3.2

imply that the highly oscillatory signals can be determined,

with probability 1, by using a very small number of

random samples. We conclude in section IV.

II. RANDOM PLS OF CAUSAL SIGNALS IN

COMPLEX-GENERATED SISS

We start with some necessary denotations. As in section

I the conjugate of a ∈ C is denoted by ā. The random

variable t, obeying the uniform distribution on (0, 1), is

denoted by t ∼ U(0, 1). Its observed value is denoted by

t̂. For an event E, its probability and complementary event

are denoted by P (E) and E
c, respectively. For two events

E1 and E2, P (E1∩E2) = P (E1|E2)P (E2), where E1∩E2

and P (E1|E2) are the intersection event and conditional

probability, respectively.

A. Preliminary on complex-valued GHC-generator

The following proposition will be helpful for proving

Theorem 2.5, one of our main theorems.

Proposition 2.1: Let φ = φℜ+iφℑ be a GHC-generator

supported on (0, s). Then Λφ,1 := {φ(· + k) : k =
0, . . . , s− 1} and Λφ,2 := {φφ̄(·+ k) : k = 0, . . . , s− 1}
also satisfy the GHC, namely, (1.8) holds with Ξφ being

replaced by Λφ,1 or Λφ,2.

Proof: The proof can be easily concluded by the GHC in

(1.8) associated with Ξφ. ✷

Note 2.2: Theorem 1.1 implies that Λφ,1 satisfying

GHC is not sufficient for achieving the PLS in Vca(φ).
By the same argument as in the proof of Theorem 1.1, it

is easy to prove that Λφ,2 is also not sufficient.

B. Phase decoding-coefficient recovery for Vca(φ)

As in section I, Vca(φ) is defined by

Vca(φ) = {∑∞
k=0 ckφ(· − k) : {ck} ∈ ℓ2, c0 6= 0, ck ∈ C}.

For f ∈ Vca(φ), call Nf := sup{k : ck 6= 0} the

maximum coefficient index of f . Clearly, if f is compactly

supported (infinitely supported) then Nf < ∞(= ∞). On

the other hand, if the phases of sufficiently many samples

of |f | have been decoded, then the reconstruction of f
can be linear. Motivated by this, we will establish an

alternating approach: phase decoding-coefficient recovery
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(PD-CR). Some denotations are necessary for introducing

the approach.

As in section I, φ is supported on (0, s) with the integer

s ≥ 2. For n ≥ 1, define the set In by

In :=

{
{0, 1, . . . , n− 1}, 1 ≤ n ≤ s− 1,
{n− s+ 1, . . . , n− 1}, n ≥ s.

(2.12)

For f =
∑∞

k=0 ckφ(· − k) ∈ Vca(φ), define the auxiliary

function vn,f on (0, 1) by

vn,f (·) :=
∑

k∈In
ckφ(n+ · − k), (2.13)

which together with supp(φ) ⊆ (0, s) leads to

f(n+ x) = vn,f (x) + cnφ(x), x ∈ (0, 1). (2.14)

Based on vn,f , define two auxiliary bivariate functions

An,f (x, y) +Bn,f (x, y)i

:= |f |(n+x)
|φ|2(x)

[
φ̄(x)φ(y)v̄n(y)− v̄n(x)|φ|2(y)

]
,

(2.15)

and

Cn,f (x, y)

:= |f |2(n+ y)− |vn,f |2(y) + 2ℜ(vn,f (x)v̄n,f (y)φ(y)
φ(x) )

− |φ|2(y)
|φ|2(x) [|f |2(n+ x) + |vn,f |2(x)],

(2.16)

whenever x, y ∈ (0, 1) such that φ(x) 6= 0. The values

of the above bivariate functions at (x, y) ∈ (0, 1)2 are

correlated via the following equation w.r.t the unknown

z ∈ C:

(An,f (x, y) +Bn,f (x, y)i)z
2 − Cn,f (x, y)z

+An,f(x, y)−Bn,f (x, y)i = 0.
(2.17)

The following lemma states that the solutions to (2.17)

can provide a precise feedback on the global phase of

{ck}k∈In .

Lemma 2.3: Let vn,f (·) and An,f (·, ·) +Bn,f (·, ·)i be

defined in (2.13) and (2.15), respectively. Define ṽn,f (·)
via (2.13) with {ck}k∈In being replaced by {c̃k}k∈In :=

eiθ̂{ck}k∈In . Moreover, define Ãn,f (·, ·) + B̃n,f (·, ·)i and

C̃n,f (·, ·) via (2.15) and (2.16) with vn,f (·) being replaced

by ṽn,f (·). For fixed x, y ∈ (0, 1) and n ≥ 1 such that

φ(x) 6= 0 and An,f (x, y) +Bn,f (x, y)i 6= 0, suppose that

the two solutions to (2.17) are z1 and z2. Then the two

solutions to

(Ãn,f (x, y) + B̃n,f (x, y)i)z
2 − C̃n,f (x, y)z

+Ãn,f(x, y)− B̃n,f (x, y)i = 0
(2.18)

are eiθ̂z1 and eiθ̂z2.

Proof: Through the direct calculation we have
vn,f (x)v̄n,f (y)φ(y)

φ(x) =
ṽn,f (x)¯̃vn,f (y)φ(y)

φ(x) and

Cn,f (x, y) = C̃n,f (x, y),
Ãn,f (x,y)+B̃n,f(x,y)i

An,f (x,y)+Bn,f(x,y)i
= e−iθ̂.

(2.19)

On the other hand,

z1, z2

=
Cn,f(x,y)±

√
C2

n,f
(x,y)−4|An,f(x,y)+Bn,f(x,y)i|2

2(An,f (x,y)+Bn,f(x,y)i) ,

which together with (2.19) leads to that the two solutions

to (2.18) are eiθ̂z1 and eiθ̂z2. ✷

Based on Lemma 2.3, the following theorem concerns

on a guarantee for decoding phases.

Theorem 2.4: Let f ∈ Vca(φ). Assume that all the

samples

{|f(t̂0)|} ∪
{
|f(n+ t̂nj

)| : j = 1, 2, 3, n = 1, . . . ,
Nf + s− 1

}

(2.20)

are nonzeros where t̂0, t̂nj
∈ (0, 1). Then the corre-

sponding phases {θ(f(t̂0))} ∪ {θ(f(n+ t̂nj
))}n,j can be

determined (up to a global real-valued number) if for every

n ∈ {1, 2, . . . ,Nf + s− 1}, φ(t̂n1 ) 6= 0 and the equation

system




(An,f (t̂n1 , t̂n2) +Bn,f (t̂n1 , t̂n2)i)z
2 − Cn,f (t̂n1 , t̂n2)z

+An,f (t̂n1 , t̂n2)−Bn,f(t̂n1 , t̂n2)i = 0,

(An,f (t̂n1 , t̂n3) +Bn,f (t̂n1 , t̂n3)i)z
2 − Cn,f (t̂n1 , t̂n3)z

+An,f (t̂n1 , t̂n3)−Bn,f(t̂n1 , t̂n3)i = 0,
(2.21)

w.r.t the the unknown z ∈ C has a unique solution.

Proof: As previously, denote f =
∑∞

k=0 ckφ(· − k). We

prove the theorem recursively on n. Suppose that

θ(f(t̂0)) = θ0 (2.22)

is known as the priori information. Then it follows from

0 6= f(t̂0) = c0φ(t̂0) that

c0 = eiθ0 |f(t̂0)|/φ(t̂0). (2.23)

For n = 1, we next address how to determine z :=
eiθ(f(t̂11+1)). It follows from (2.14) that





|v1,f (t̂11) + c1φ(t̂11)| = |f(1 + t̂11)|,
|v1,f (t̂12) + c1φ(t̂12)| = |f(1 + t̂12)|,
|v1,f (t̂13) + c1φ(t̂13)| = |f(1 + t̂13)|,

(2.24)

where v1,f (t̂1j ), j = 1, 2, 3, are computed by using (2.13)

and (2.23) as follows,

v1,f (t̂1j ) = φ(1 + t̂1j )c0 =
φ(1+t̂1j )e

iθ0 |f(t̂0)|

φ(t̂0)
. (2.25)
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By (2.14), |f(1 + t̂11)|z = v1,f (t̂11) + c1φ(t̂11 ). Since

φ(t̂11) 6= 0, we have

c1 =
|f(1 + t̂11)|z − v1,f (t̂11)

φ(t̂11)
, (2.26)

which together with the last two identities in (2.24) leads

to

∣∣v1,f (t̂1j ) +
|f(1+t̂11 )|z−v1,f (t̂11 )

φ(t̂11 )
φ(t̂1j )

∣∣2

= |f(1 + t̂1j )|2, j = 2, 3.
(2.27)

By direct calculation, we can prove that (2.27) is equiv-

alent to (2.21) for n = 1. Since there exists a unique

solution to (2.21), z can be determined, and consequently

c1 can be done by (2.26). Now {θ(f(1 + t̂1l)) : l 6= 1}
are determined by θ(f(1+ t̂1l)) = θ(v1,f (t̂1l)+ c1φ(t̂1l ))
with v1,f (t̂1l) given by (2.25). Suppose that {θ(f(t̂0))} ∪
{θ(f(k+t̂kj

)) : j = 1, 2, 3, k = 1, . . . , n−1} and {ck}n−1
k=0

have been determined, where n < Nf + s. Through

the similar procedures as above, z := eiθ(f(t̂n1+n)) can

be determined by (2.21), and cn = [|f(n + t̂n1)|z −
vn,f (t̂n1)]/φ(t̂n1). Then by (2.14), θ(f(n + t̂nj

)) can be

computed. By the recursion on n, the phases {θ(f(t̂0))}∪
{θ(f(n+ t̂nj

)) : j = 1, 2, 3, n = 1, . . . ,Nf + s− 1} can

be determined.

Recall that the above determination is achieved by the

priori information (2.22). Without this information, now

we assign

θ(f(t̂0)) = θ̃0, (2.28)

where θ̃0 ∈ [0, 2π). We next prove that under this

assignment, f̃ := ei(θ̃0−θ0)f =
∑∞

k=0 c̃kφ(·−k) can be de-

termined by the samples in (2.20), where c̃k = ei(θ̃0−θ0)ck.

Consequently, {θ(f(t̂0))+ θ̃0−θ0}∪{θ(f(n+ t̂nj
))+ θ̃0−

θ0 : j = 1, 2, 3, n = 1, . . . ,Nf+s−1} can be determined.

For (2.28), through the similar analysis as in (2.23) we

have

c̃0 = eiθ̃0 |f(t̂0)|

φ(t̂0)
= ei(θ̃0−θ0)c0

and θ(f̃(t̂0)) = θ(φ(t̂0)c̃0) = θ(f(t̂0)) + θ̃0 − θ0.

As in Lemma 2.3, define Ã1,f (x, y) + B̃1,f (x, y)i and

C̃1,f (x, y) via (2.15) and (2.16) with c0 being replaced

by c̃0. Through the similar analysis as in (2.27), z :=

eiθ(f̃(t̂11+1)) satisfies




(Ã1,f (t̂11 , t̂12) + B̃1,f (t̂11 , t̂12)i)z
2 − C̃1,f (t̂11 , t̂12)z

+Ã1,f(t̂11 , t̂12)− B̃1,f(t̂11 , t̂12)i = 0,

(Ã1,f (t̂11 , t̂13) + B̃1,f (t̂11 , t̂13)i)z
2 − C̃1,f (t̂11 , t̂13)z

+Ã1,f(t̂11 , t̂13)− B̃1,f(t̂11 , t̂13)i = 0.
(2.29)

By the same argument as in the proof of Lemma 2.3, we

can prove that

Ã1,f (x,y)+B̃1,f (x,y)i

A1,f (x,y)+B1,f (x,y)i
= ei(θ0−θ̃0), C̃1,f (x, y) = C1,f (x, y),

(2.30)

which together with (2.21) having a unique solution leads

to that (2.29) also has a unique solution. Applying Lemma

2.3 with θ̂ = θ̃0 − θ0, we have z = ei(θ̃0−θ0)eiθ(f(t̂11+1)).

Consequently, c̃1 = ei(θ̃0−θ0)c1. Suppose that {θ(f(t̂0))+
θ̃0 − θ0} ∪ {θ(f(k + t̂kj

)) + θ̃0 − θ0 : j = 1, 2, 3, k =

1, . . . , n− 1} (or c̃k = ei(θ̃0−θ0)ck) have been determined.

Define Ãn,f + B̃n,f i and C̃n,f via (2.15) and (2.16),

respectively, by replacing ck by c̃k. By Lemma 2.3 and

the similar analysis as in (2.30), we can prove that

c̃n = ei(θ̃0−θ0)cn. The rest of the proof can be easily

concluded by the recursion on n. ✷

The procedures in the proof of Theorem 2.4 for decod-

ing the phases {θ(f(t̂0))} ∪ {θ(f(n + t̂nj
))}n,j , up to a

global real number, are conducted recursively on n. And

they alternate with those for recovering the coefficients

{cn}. Next we summarize them to establish the PD-CR.

Approach II-B

Input: Samples {|f(t̂0)|} ∪ {|f(k + t̂kj
)| : j =

1, 2, 3, k = 1, . . . , n} where t̂0, t̂kj
∈ (0, 1) and n < Nf+

s; initial phase θ(f(t̂0)) = θ̃0 and c0 := eiθ̃0 |f(t̂0)|/φ(t̂0).
Output: {ck}nk=0 and {θ(f(t̂0))}∪{θ(f(k+ t̂kj

)) : j =
1, 2, 3, k = 1, . . . , n}.

Recursion assumption: Assume that the phases

{θ(f(t̂0))} ∪ {θ(f(k + t̂kj
)) : j = 1, 2, 3, k = 1, . . . , n−

1} and coefficients {ck}n−1
k=0 have been recovered. Then

{θ(f(n+ t̂nj
)) : j = 1, 2, 3} and cn are recovered by the

following steps:

step 1: Compute vn,f (t̂nj
) via (2.13) with j = 1, 2, 3.

Compute An,f (t̂n1 , t̂n2) + Bn,f (t̂n1 , t̂n2)i and

An,f (t̂n1 , t̂n3) + Bn,f (t̂n1 , t̂n3)i, Cn,f (t̂n1 , t̂n2) and

Cn,f (t̂n1 , t̂n3) via (2.15) and (2.16), respectively.

step 2: θ(f(n+ t̂n1)) is decoded by computing

eiθ(f(n+t̂n1))

= argminzn,k∈{zn,1,zn,2}

{
min{|zn,k − zn,l| : l = 3, 4}

}

(2.31)

where

zn,k

=
Cn,f (t̂n1 ,t̂n2)

2(An,f (t̂n1 ,t̂n2)+Bn,f (t̂n1 ,t̂n2)i)

±
√

C2
n,f

(t̂n1 ,t̂n2)−4|An,f (t̂n1 ,t̂n2)+Bn,f (t̂n1 ,t̂n2)i|2

2(An,f (t̂n1 ,t̂n2)+Bn,f (t̂n1 ,t̂n2)i)
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with k = 1, 2, and

zn,l

=
Cn,f (t̂n1 ,t̂n3)

2(An,f (t̂n1 ,t̂n3)+Bn,f (t̂n1 ,t̂n3)i)

±
√

C2
n,f

(t̂n1 ,t̂n3)−4|An,f (t̂n1 ,t̂n3)+Bn,f (t̂n1 ,t̂n3)i|2

2(An,f (t̂n1 ,t̂n3)+Bn,f (t̂n1 ,t̂n3)i)

with l = 3, 4.

step 3: Compute cn =
[
eiθ(f(n+t̂n1))|f(n + t̂n1)| −

vn,f (t̂n1)
]
/φ(t̂n1). Compute f(n + t̂nj

) by (2.14), and

θ(f(n+ t̂nj
)) = θ

( f(n+t̂nj
)

|f(n+t̂nj
)|

)
where j 6= 1.

C. Random phaseless sampling for Vca(φ)

Next we replace the points {t̂0} ∪ {t̂n1 , t̂n2 , t̂n3}n in

Theorem 2.4 (2.20) by random variables, and establish

our first main theorem as follows.

Theorem 2.5: Let φ = φℜ + iφℑ be a complex-valued

GHC-generator such that supp(φ) ⊆ (0, s) with the integer

s ≥ 2. Then any nonseparable signal f ∈ Vca(φ) can be

determined (up to a unimodular scalar) with probability 1
by the random samples {|f(t0)|} ∪ {|f(n+ tn1)|, |f(n+
tn2)|, |f(n+tn3)| : n = 1, . . . ,∞}, where the i.i.d random

variables {t0} ∪ {tn1 , tn2 , tn3 : n = 1, . . . ,∞} ∼ U(0, 1).
Proof: The proof is given in section II-F. ✷

The following proposition concerns on local reconstruc-

tion.

Proposition 2.6: Let φ = φℜ + iφℑ and f be as in

Theorem 2.5. Then for any integer L > 1, the restriction

f[0,L] of f on [0, L] can be determined (up to a unimod-

ular scalar) with probability 1, by the random samples

{|f(t0)|} ∪ {|f(n + tn1)|, |f(n + tn2)|, |f(n + tn3)| :
n = 1, . . . , L − 1}, where the i.i.d random variables

{t0} ∪ {tn1 , tn2 , tn3 : n = 1, . . . , L− 1} ∼ U(0, 1).
Proof: The proof is given in section II-G. ✷

D. Conjugation ambiguity does not occur for Vca(φ)

In this section we will compare the result in section II-C

with that in [29] which concerns on the conjugation phase

retrieval. We start with the definition of conjugation am-

biguity (c.f. [29], [14]) of PR in an SIS. The conjugation

ambiguity means that there exists a signal f in an SIS,

which is not real-valued (up to a unimodular scalar), such

that it is not distinguishable from its conjugation f̄ which

still lies in this SIS. For a real-valued generator ϕ, it is

clear that

|
N∑

k=0

ckϕ(· − k)| = |
N∑

k=0

ckϕ(· − k)| (2.32)

for any sequence {ck}Nk=0 ⊆ C. That is, the conjugation

ambiguity is inevitable for phaseless sampling in a real-

generated SIS. Most recently, C.K. Lai, F. Littmann and

E. Weber [29] investigated the conjugate phase retrieval

of complex-valued bandlimited signals, namely, to recon-

struct them up to the conjugation ambiguity.

It is easy to check that (1.3) leads to (2.32). Despite

all this, the following remark states that there are some

essential differences between the result in Theorem 2.5

and that in [29].

Remark 2.7: (1) Unlike the conjugate phase retrieval,

the conjugation ambiguity does not occur in Theorem 2.5.

Or else, suppose that f(x) = |f(x)|eiρ(x) and f̄(x) =
|f(x)|e−iρ(x) both lie in Vca(φ). Clearly, |f(x)| = |f̄(x)|.
Then it follows from Theorem 2.5 that f(x) = eicf̄(x)
which leads to ρ(x) ≡ c/2. This is a contradiction with the

definition of conjugation ambiguity. (2) Our generator is

complex-valued and compactly supported while the gener-

ator in [29] is real-valued and not compactly-supported. (3)

Our sampling is random while that in [29] is deterministic.

E. Some lemmas for proving Theorem 2.5

We start with the so called maximum gap.

Definition 2.8: For f =
∑∞

k=0 ckφ(·−k) ∈ Vca(φ), its

maximum gap is defined as

Gf =





max
{
1 ≤ γ < ∞ : ∃i ≥ 1 s.t. ci+γ 6= 0,

ci = . . . = ci+γ−1 = 0
}
, if ∃ck = 0,

0, else.

The following lemma concerns on the relationship be-

tween the maximum gap and nonseparability.

Lemma 2.9: If f =
∑∞

k=0 ckφ(· − k) ∈ Vca(φ) is

nonseparable, then Gf < s− 1.

Proof: Suppose that 0 = ci = . . . = ci+L−1 with i ≥ 1
and L ≥ s − 1. Define f1 =

∑i−1
k=0 ckφ(· − k) and f2 =∑∞

k=i+L ckφ(· − k). It is easy to derive from c0 6= 0,

ci+L 6= 0 and φ being a GHC-generator that f1 6≡ 0, f2 6≡
0. Now supp(φ) ⊆ (0, s) leads to f = f1+f2 and f1f2 ≡
0. That is, f is separable. This is a contradiction. ✷

The following lemma concerns on the zero property of

An,f (x, y) +Bn,f (x, y)i.

Lemma 2.10: Let φ = φℜ + iφℑ be a complex-valued

GHC-generator such that supp(φ) ⊆ (0, s) with the integer

s ≥ 2. Moreover, f ∈ Vca(φ) is nonseparable, and {t0}∪
{tn1 , tn2 , tn3 : n = 1, . . . ,Nf + s − 1} ∼ U(0, 1). Then

P
(
An,f (tn1 , tni

) +Bn,f (tn1 , tni
)i 6= 0

)
= 1 for any n ∈

{1, . . . ,Nf + s− 1}, where i = 2, 3.

Proof: The proof is given in section V-A. ✷
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Based on Lemma 2.10, in what follows we investigate

the probabilistic behavior of the phase θ(An,f (tn1 , tn2)
+iBn,f(tn1 , tn2)).

Lemma 2.11: Let f, φ and {t0} ∪ {tn1 , tn2 , tn3 : n =
1, . . . ,Nf + s− 1} ∼ U(0, 1) be as in Lemma 2.10. Then

for any fixed α ∈ (0, 2π], it holds that

P
(
θ(An,f (tn1 , tn2) + iBn,f (tn1 , tn2)) 6= α

)
= 1.

Proof: The proof is given in section V-B. ✷

Based on Lemma 2.11, we next investigate the unique-

ness of (2.21) with t̂ni
therein being replaced by tni

∼
U(0, 1).

Lemma 2.12: Let f, φ and {t0} ∪ {tn1 , tn2 , tn3 : n =
1, . . . ,Nf + s− 1} ∼ U(0, 1) be as in Lemma 2.10. Then

for any n ∈ {1, . . . ,Nf + s− 1}, the equation system




(
An,f (tn1 , tn2) +Bn,f(tn1 , tn2)i

)
z2 − Cn,f (tn1 , tn2)z

+An,f (tn1 , tn2)−Bn,f (tn1 , tn2)i = 0,(
An,f (tn1 , tn3) +Bn,f(tn1 , tn3)i

)
z2 − Cn,f (tn1 , tn3)z

+An,f (tn1 , tn3)−Bn,f (tn1 , tn3)i = 0,

has only one solution with probability 1.

Proof: The proof is given in section V-C. ✷

Based on Lemma 2.12 and Approach II-B, we next

prove Theorem 2.5.

F. Proof of Theorem 2.5

By Λφ,1 in Proposition 2.1 satisfying GHC, we have

P (|f(n+tn1)| 6= 0) = P (|φ(tn1)| 6= 0) = 1. If the phases

{θ(f(t0))} ∪ {θ(f(n + tni
)) : n = 1, . . . ,∞, i = 1, 2, 3}

can be determined (up to a global real number) with

probability 1, then {cn}∞n=0 can be reconstructed by (2.14)

(up to a unimodular scalar) with the same probability. On

the other hand, by supp(φ) ⊆ (0, s) and the definition of

Nf , it is sufficient to prove that {θ(f(t0))} ∪ {θ(f(n +
tni

)) : n = 1, . . . ,Nf + s − 1, i = 1, 2, 3} can be

determined (up to a global real number) with probability

1.

As previously, we have P (|φ(t0)| 6= 0) = 1. Following

Approach II-B, let c0 := eiθ̃0 |f(t0)|/φ(t0). Then, with

probability 1, c0 can be determined up to the scalar eiθ̂,

where θ̂ := θ̃0 − θ0 with θ0 being the exact phase of

f(t0). Or with probability 1, θ(f(t0i)) can be determined

up to the number θ̂. For any 0 ≤ n ≤ Nf + s − 1,

suppose that the phases {θ(f(t0))}∪{θ(f(k+ tkj
)) : k =

1, . . . , n− 1, j = 1, 2, 3} have been determined (up to the

global real number θ̂) with probability 1. Correspondingly,

{ck}n−1
k=0 haven been determined (up to the scalar eiθ̂) with

probability 1. Now by Lemma 2.12, Theorem 2.4 and

Lemma 2.3, θ(f(n + tn1) + θ̂ can be determined (up to

the global real number θ̂) via Approach II-B (2.31) with

probability 1. Then cn can be determined (up to the scalar

eiθ̂) with probability 1. The proof can be concluded by the

recursion.

G. Proof of Proposition 2.6

By supp(φ) ⊆ (0, s) we just need to prove that {cn}L−1
n=0

can be determined with probability 1, up to a unimodular

scalar. As in section II-F, with probability 1, c0 is deter-

mined by |f(t0)|, up to a unimodular scalar eiγ . Suppose

that with probability 1, {ck}n−1
k=0 are determined up to eiγ .

Then by the same argument as in section II-F we can prove

that with the same probability, cn can be determined, up

to eiγ , by |f(n+ tni
)|, i = 1, 2, 3. The proof is concluded.

H. Numerical simulation: random PLS of complex-valued

and highly oscillatory chirps

This section is to verify Theorem 2.5. Our test SIS

Vca(φa,b,p) is related with [34, section 6.3.1]. Specifically,

φa,b,p(x)

= 2
3

√
2π|b|e−i

a(x−2)2

2b e−i
p(x−2)

b cos2 π(x−2)
4 χ(0,4)(x).

By section I-C1, both φ4,0.8,1 and φ50,0.8,1 are GHC-

generators. The test signal

fa(x) :=
∑15

n=0 cnφa,0.8,1(x− n),

where a = 4, 50 and G(fa) < 3. See Fig. II.1 for

their graphs. In Fig. II.2 we also plot the phase function

θ(fa(x)) defined via fa(x) = |fa(x)|eiθ(fa(x)). Clearly,

the two signals are highly oscillatory. By Theorem 2.5,

fa(x) can be determined with probability 1, up to a

unimodular, by the random samples {|fa(t0)|}
⋃{|fa(n+

tn1)|, |fa(n+ tn2)|, |fa(n+ tn3)| : n = 1, . . . , 18}, where

t0, tn1 , tn2 , tn3 ∼ U(0, 1). In the noiseless setting, 103

trials are conducted to determine fa(x) by Approach II-B.

The error is defined as

Error(fa)
:= log10(minγ∈(0,2π] ||{ck} − eiγ{c̃k}||2/||{ck}||2),

where {c̃k} is the coefficient sequence of the reconstruc-

tion version f̃a(x) =
∑15

n=0 c̃nφa,0.8,1(x − n). Approach

II-B is considered to be successful if Error(fa) ≤ −1.8.

The cumulative distribution function (CDF) of Error(fa)
is defined as

CDF(x) =
#
(
Error(fa) ≤ x

)

103
. (2.33)

Fig. II.3 confirms that with probability 1, the signals can

be determined in the noiseless setting.

In what follows we examine the robustness of Ap-

proach II-B to noise corruption. The observed values of

{|f(t0)|} ∪ {|f(n+ tn1)|, |f(n+ tn2)|, |f(n+ tn3)| : n =



9

0 5 10 15
x

-5

0

5

rea
lp

art
off

4

(a)

0 5 10 15
x

-4

-2

0

2

4

ima
gin

ary
par

to
ff

4

(b)

0 5 10 15
x

-5

0

5

rea
lp

art
off

50

(c)

0 5 10 15
x

-10

-5

0

5

ima
gin

ary
par

to
ff

50

(d)

Fig. II.1: (a) The real part of f4; (b) The imaginary part of f4; (c) The real part of f50; (d) The imaginary part of f50.
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Fig. II.2: (a) The phase function θ(f4(x)) of f4; (b) The phase function θ(f50(x)) of f50.
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Fig. II.3: (a) The CDF of Error(f4) in the noiseless setting; (b) The CDF of Error(f50) in the noiseless setting.

fa

SNR
50 60 70 80 90 100 110 120 130

f4 0.0070 0.0940 0.2800 0.4830 0.6440 0.7990 0.8860 0.9410 0.9970

f50 0.0240 0.1770 0.4040 0.6270 0.7330 0.8430 0.9090 0.9520 0.9880

TABLE II.1: Success rate vs noise level (SNR).

1, . . . , 18} in a trial are denoted by {|f(t̂0)|} ∪ {|f(n +
t̂n1)|, |f(n+ t̂n2)|, |f(n+ t̂n3)| : n = 1, . . . , 18}. We add

the Gaussian noise ε ∼ N(0, σ2) to the noiseless samples.

That is, we employ the noisy samples {|fa(t̂0)| + ε} ∪
{|fa(n + t̂n1)| + ε, |fa(n + t̂n2)| + ε, |fa(n + t̂n3)| + ε :
n = 1, . . . , 18} to conduct Approach II-B. The variance

σ2 is chosen such that the desired signal to noise ratio

(SNR) is expressed by

SNR = 10 log10
( ||Fa||

2
2

55σ2

)
, (2.34)

where ||Fa||22 = |fa(t̂0)|2 +
∑3

k=1

∑18
n=1 |fa(n + t̂nk

)|2.

In the noisy setting, 103 trials are also conducted to recon-

struct f4(x) and f50(x), respectively. Their reconstruction

success rates (CDF(−1.8)) are recorded in Table II.1.

III. RANDOM PHASELESS SAMPLING OF CAUSAL AND

REAL-VALUED SIGNALS IN REAL-GENERATED SISS

Throughout this section, let ϕ be a real-valued GHC-

generator such that supp(ϕ) ⊆ (0, s) with the integer s ≥
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2. This section focuses on the PLS of real-valued signals

in

Vca(ϕ) =
{∑∞

k=0 ckϕ(· − k) : {ck ∈ R} ∈ ℓ2, c0 6= 0
}
.

Some denotations and definitions are helpful for discus-

sion. Suppose that the signal f ∈ Vca(ϕ) is denoted by

f =
∑∞

k=0 ckϕ(· − k). (3.35)

As in section II-B denote Nf = sup{k : ck 6= 0}. As in

(2.12), define the index set In by

In =

{
{0, 1, . . . , n− 1}, 1 ≤ n ≤ s− 1,
{n− s+ 1, . . . , n− 1}, n ≥ s.

For n ≥ 1 and the signal f in (3.35), define an auxiliary

function

vℜn,f (x) :=
∑

k∈In
ckϕ(n+ x− k), x ∈ (0, 1). (3.36)

Moreover, define

Aℜ
n,f (x, y) :=

|f |(n+x)
|ϕ|2(x)

[
ϕ(x)ϕ(y)vℜn,f (y)

−vℜn,f(x)ϕ
2(y)

]
,

(3.37)

and

Cℜ
n,f (x, y) := |f |2(n+ y)− |vℜn,f |2(y)

+
2vℜ

n,f (x)v
ℜ

n,f(y)ϕ(y)

ϕ(x)

− |ϕ|2(y)
|ϕ|2(x)

[
|f |2(n+ x) + |vℜn,f |2(x)

]
,

(3.38)

whenever x, y ∈ (0, 1) such that ϕ(x) 6= 0. The maximum

gap Gf is defined via Definition 2.8 with φ replaced by

ϕ. The sign function sgn(x) takes 1,−1 and 0 when x >
0, x < 0 and x = 0, respectively.

A. Random PLS of real-valued signals in Vca(ϕ)

We next establish the main theorem of this section. It

is the counterpart of Theorem 2.5.

Theorem 3.1: Let ϕ be a real-valued GHC-generator

such that supp(ϕ) ⊆ (0, s) with the integer s ≥ 2. Then

any nonseparable and real-valued signal f ∈ Vca(ϕ) can

be determined (up to a sign) with probability 1 by the

random samples {|f(t0)|} ∪ {|f(n+ tn1)|, |f(n + tn2)| :
n = 1, . . . ,∞}, where the i.i.d random variables {t0} ∪
{tn1 , tn2 : n = 1, . . . ,∞} ∼ U(0, 1).
Proof: Since f is nonseparable, by the same argument as

in Lemma 2.9 we have Gf < s−1, which together with ϕ
being a real-valued GHC-generator leads to the probability

P (|f(k+ tki
)| > 0) = 1 for any k ∈ {0, . . . ,Nf +s−1}.

Clearly, P (|ϕ(tni
)| > 0) = 1. As in section II-F, it is

sufficient to prove that the phases {θ(f(t0))} ∪ {θ(f(n+
tni

)) : n = 1, . . . ,Nf+s−1, i = 1, 2} can be determined,

up to the constant π, with probability 1.

Denote f =
∑∞

k=0 ckϕ(·− k). By the similar argument

as in the proof of Lemma 2.10, we can prove that

P (Aℜ
n,f (tn1 , tn2) 6= 0) = 1, n = 1, . . . ,Nf + s− 1.

(3.39)

Assume that z0 = eiθ(f(t0)) ∈ {1,−1} is assigned exactly.

As previously, P (|f(n+ tni
)| > 0) = P (|ϕ(tni

)| > 0) =
1. Then

f(t0) = z0|f(t0)|, (3.40)

and c0 = z0|f(t0)|
ϕ(t0)

with probability 1. We next determine

θ(f(t11 + 1)) and c1. Similarly to (2.24), we have
{ |vℜ1,f (t11) + c1ϕ(t11)| = |f(1 + t11)|,

|vℜ1,f (t12) + c1ϕ(t12)| = |f(1 + t12)|.
(3.41)

Denote f(1+ t11) := z1|f(1+ t11)| with z1 ∈ {1,−1} to

be determined. By the similar argument as in (2.27), we

can prove that z1 is the solution to

Aℜ
1,f (t11 , t12)z

2 − Cℜ
1,f (t11 , t12)z +Aℜ

1,f (t11 , t12) = 0.

(3.42)

It follows from (3.39) that with probability 1, there exist

at most two solutions to the above equation. Note that

the product of the two solutions is 1. Then there exists a

unique solution with the same probability. More precisely,

z1 = sgn
(Cℜ

1,f (t11 ,t12 )

Aℜ

1,f (t11 ,t12)

)
. (3.43)

Therefore under the assumption (3.40), c1 =
z1|f(1+t11)|−v1,f (t11 )

ϕ(t11)
with probability 1. And θ(f(1+t1i))

can be determined with probability 1. Continuing the

above procedures, {θ(f(t0))} ∪ {θ(f(n + tni
)) : n =

1, . . . ,Nf + s − 1, i = 1, 2} can be determined with the

same probability.

Contrary to (3.40), we next assign

f(t0) = −z0|f(t0)|. (3.44)

Under (3.44), we shall prove that {θ(f(t0)) + π} ∪
{θ(f(n+ tni

)) + π : n = 1, . . . ,Nf + s− 1, i = 1, 2} or

f̃ =
∑∞

k=0 c̃kϕ(· − k) can be determined with probability

1, where c̃k = −ck. First it follows from P (|ϕ(t0)| 6=
0) = 1 that

c̃0 = − z0|f(t0)|
ϕ(t0)

= −c0. (3.45)

Then θ(f̃(t0i)) = θ(f(t0i)) + π. By (3.37), (3.38) and

(3.45), we have Aℜ
1,f̃

(t11 , t12) = −Aℜ
1,f (t11 , t12) and

Cℜ
1,f̃

(t11 , t12) = Cℜ
1,f (t11 , t12). Moreover, as in (3.42),

sgn(f̃(1 + t11)) is the solution to

Aℜ
1,f̃

(t11 , t12)z
2 − Cℜ

1,f̃
(t11 , t12)z +Aℜ

1,f̃
(t11 , t12) = 0.
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Fig. III.4: (a) The graph of f10,−0.2381,1; (b) The graph of the phase function of f10,−0.2381,1; (c) The graph of

f50,−0.2381,1; (d) The graph of the phase function of f50,−0.2381,1; (e) The graph of f10−6,−0.0038,0; (f) The graph of

the phase function of f10−6,−0.0038,0.

-16 -14 -12 -10 -8 -6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

-16 -14 -12 -10 -8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

-15 -14.5 -14 -13.5 -13 -12.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(c)

Fig. III.5: (a) The CDF of Error(f10,−0.2381,1) in the noiseless setting; (b) The CDF of Error(f50,−0.2381,1) in the

noiseless setting; (c) The CDF of Error(f10−6,−0.0038,0) in the noiseless setting

0 0.5 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
(a)

0 0.5 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
(b)

Fig. III.6: (a) The graph of Aℜ
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As in (3.43), the solution is given by

z = sgn
(Cℜ

1,f̃
(t11 ,t12)

Aℜ

1,f̃
(t11 ,t12)

)
= −sgn

(Cℜ

1,f (t11 ,t12 )

Aℜ

1,f (t11 ,t12 )

)
.

Then θ(f̃(1 + t11)) = θ(f(1 + t11)) + π. Consequently,

c̃1 = −c1 and θ(f̃(1 + t12)) = θ(f(1 + t12)) + π.

By recursion on n, we can prove that {θ(f(t0)) + π} ∪
{θ(f(n+ tni

))+ π : n = 1, . . . ,Nf + s− 1, i = 1, 2} can

be determined with probability 1. ✷

The following proposition concerns on the local recon-

struction. It is the counterpart of Proposition 2.6.

Proposition 3.2: Let ϕ and f be as in Theorem 3.1.

Then for any integer L > 1, the restriction f[0,L] of f on

[0, L] can be determined with probability 1, up to a sign,

by the random samples {|f(t0)|} ∪ {|f(n+ tn1)|, |f(n+
tn2)| : n = 1, . . . , L−1}, where the i.i.d random variables

{t0} ∪ {tn1 , tn2 : n = 1, . . . , L− 1} ∼ U(0, 1).

Proof: The proof is based on that of Theorem 3.1. And

it can be concluded by the similar argument as in section

II-G. ✷

B. PD-CR for nonseparable real-valued signals in Vca(ϕ)

Let {t̂0} ∪ {t̂n1 , t̂n2 : n = 1, . . . ,∞} be the observed

values of random variables {t0} ∪ {tn1 , tn2 : n =
1, . . . ,∞} in Theorem 3.1. Based on the proof of Theorem

3.1, in what follows we establish an approach for the PLS

of nonseparable real-valued signals in Vca(ϕ).

Approach III-B

Input: Samples {|f(t̂0)|}∪{|f(k+ t̂kj
)| : j = 1, 2, k =

1, . . . , n} where t̂0, t̂kj
∈ (0, 1) and n ≤ Nf + s − 1.

Assign initial phase θ(f(t̂0)) = θ̃0 ∈ {0, π}; c0 =

eiθ̃0 |f(t̂0)|/ϕ(t̂0).
Output: {ck}nk=0 and {θ(f(t̂0))}∪{θ(f(k+ t̂kj

)) : j =
1, 2, k = 1, . . . , n}.

Recursion assumption: Assume that the phases

{θ(f(k + t̂kj
)) : j = 1, 2, k = 1, . . . , n − 1} and

coefficients {ck}n−1
k=0 have been recovered. Then {θ(f(n+

t̂nj
)) : j = 1, 2} and cn are recovered by the following

steps:

step 1: Compute vℜn,f (t̂n1), Aℜ
n,f (t̂n1 , t̂n2) and

Cℜ
n,f (t̂n1 , t̂n2) by (3.36), (3.37) and (3.38), respectively.

step 2: θ(f(n + t̂n1)) ∈ {0, π} is recovered by

computing eiθ(f(n+t̂n1)) = sgn
(Cℜ

n,f (t̂n1 ,t̂n2)

Aℜ

n,f
(t̂n1 ,t̂n2)

)
. And cn =

[eiθ(f(n+t̂n1))|f(n+ t̂n1)| − vℜn,f (t̂n1)]/ϕ(t̂n1).

C. Numerical simulation: costing small number of sam-

ples to reconstruct highly oscillatory real-valued chirps

This section is to examine the efficiency of Approach

III-B. The generator ϕ is chosen as φa,b,p,ℜ, the real part

of φa,b,p defined in section II-H. The test signal is

fa,b,p(t) =
∑15

n=0 cn,aφa,b,p,ℜ(t− n), (3.46)

where c0,a 6= 0, cn,a ∈ R. It is easy to check that fa,b,p(t)
can be rewritten as the real-valued chirp form (c.f. [40]):

A(t) cos(λυ(t)) with A(·) ≥ 0. By the analysis in section

I-C2, we can check that φ10,−0.238,1,ℜ, φ50,−0.238,1,ℜ and

φ10−6,−0.0038,0,ℜ are all real-valued GHC-generators. We

choose f10,−0.2381,1, f50,−0.2381,1 and f10−6,−0.0038,0 as

test signals. Their graphs are plotted in Fig. III.4 (a, c, e).

Moreover, the phase function θ(fa,b,p(x)), taking 0 and

π when fa,b,p(x) ≥ 0 and fa,b,p(x) < 0, respectively, is

plotted in Fig. III.4 (b, d, f).

Fig. III.4 (b, d, f) imply that f10,−0.2381,1

and f50,−0.2381,1 are much more oscillatory than

f10−6,−0.0038,0. It should be noted that a great number

of deterministic samples are necessary for the local

reconstructions of f10,−0.2381,1 and f50,−0.2381,1. To

make this point, define

ga(t) =

1∑

n=0

cn,aφa,−0.238,1,ℜ(t− n), t ∈ (0, 2), (3.47)

where c0,10 = 0.7064, c1,10 = −0.6183, c0,50 = −0.5874
and c1,50 = 0.2659 are as in (3.46). Clearly,

ga(t) = fa,−0.2381,1(t), t ∈ (0, 2), (3.48)

and the reconstruction of ga is equivalent to ones of c0,a
and c1,a. Suppose that c0,a and c1,a can be recovered by

any L̊ deterministic samples {|ga(t̂0)|, |ga(1 + t̂1i)| : i =
1, . . . , L̊−1}, where t̂0, t̂1i ∈ (0, 1). We next estimate L̊. It

is required that φa,−0.238,1,ℜ(t̂0) 6= 0 such that c0,a can be

determined, up to a sign, by |ga(t̂0)|. Otherwise, |ga(t̂0)|
is useless for determining c0,a. Without loss of generality,

assume that c0,a is determined and |ga(1+ t̂1i)| 6= 0. Next

we need to determine c1,a. Then the determination of c1,a
is equivalent to the determination of z := sgn(ga(1+t̂11)).
By the analysis in (3.41), z is the solution to (3.42)

with Aℜ
1,f (t11 , t12) and Cℜ

1,f (t11 , t12) therein replaced

by Aℜ
1,ga(t̂11 , t̂1j ) and Cℜ

1,ga(t̂11 , t̂1j ), respectively, where

j 6= 1. Clearly, z can be determined if and only if

Aℜ
1,ga(t̂11 , t̂1j ) 6= 0. As an example, we choose t̂11 = 0.5

without bias. See the graph of Aℜ
1,ga(0.5, x) on (0, 1) in

Fig. III.6. Obviously the number of zeros of Aℜ
1,ga(0.5, x)

on (0, 1) is much larger than 2. Especially, we found that

the number of zeros of Aℜ
1,g50(0.5, x) is not smaller than

256. Then we need at least 257 additional deterministic

samples on (1, 2) to avoid Aℜ
1,g50(0.5, x) = 0. Therefore
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fa,b,p

SNR
35 40 50 60 70 80 90 100

f50,−0.2381,1 0.0100 0.0590 0.2460 0.5290 0.6870 0.8450 0.9200 0.9620

f10,−0.2381,1 0.0160 0.0470 0.2520 0.4590 0.6570 0.8540 0.9090 0.9560

f10−6,−0.0038,0 0.1100 0.3370 0.7390 0.9080 0.9520 0.9800 0.9850 0.9960

TABLE III.2: Success rate vs noise level (SNR).

for reconstructing g50, L̊ ≥ 259 although it is determined

by only two coefficients. By Proposition 3.2, however,

ga can be determined, with probability 1, by just three

random samples. Allowing for (3.48) we just need to check

the recovery efficiency of fa,−0.2381,1.

In the present simulation, by the random samples

{|fa,b,p(t0)|} ∪ {|fa,b,p(n+ tn1)|, |fa,b,p(n+ tn2)| :
n = 1, . . . , 18},

(3.49)

103 trials of Approach III-B are conducted to recover

fa,b,p, where {t0} ∪ {tn1 , tn2 : n = 1, . . . , 18} ∼ U(0, 1).
The recovery error is defined as

Error(fa,b,p) := log10(minγ∈{1,−1} ||{ck,a}
−γ{c̃k,a}||2/||{ck,a}||2),

(3.50)

where {c̃k,a} is the recovery version of {ck,a}. As in

section II-H, the approach is considered successful if

Error(fa,b,p) ≤ −1.8, and the cumulative distribution

function (CDF) of the error is defined via (2.33). Clearly,

Fig. III.5 implies that f10,−0.2381,1, f50,−0.2381,1 and

f10−6,−0.0038,0 can be recovered perfectly in the noiseless

setting. To check the stability to noise, we also conduct

103 trials in the noisy setting. As in section II-H, we

add the Gaussian noise ε ∼ N(0, σ2) to the observed

noiseless samples in (3.49). The variance σ2 is chosen via

(2.34) with 55 therein replaced by 37 such that the desired

SNR can be expressed. As in the noiseless case, 103 trials

are also conducted. The success rates (CDF(−1.8)) are

recorded in Table III.2.

Comparing Table II.1 and Table III.2 we found that,

for the low SNR (e.g. ≤ 60), the stability to noise in

the present simulation (real-valued case) is much stronger

than that in section III-C (complex-valued case). We next

interpret this from the phase distribution perspective.

Remark 3.3: For a real-valued signal f ∈ V (ϕ), its

phase function θ(f(x)) has only two values: 0 and π.

Since the samples in (3.49) are perturbed, unavoidably so

is
Cℜ

n,f (t̂n1 ,t̂n2)

Aℜ

n,f
(t̂n1 ,t̂n2)

in step 2 of Approach II-B. If the per-

turbation ǫ of
Cℜ

n,f(t̂n1 ,t̂n2)

Aℜ

n,f
(t̂n1 ,t̂n2)

satisfies |ǫ| < |C
ℜ

n,f (t̂n1 ,t̂n2)

Aℜ

n,f
(t̂n1 ,t̂n2)

|,
then θ(f(n+ t̂n1)) can be decoded exactly through step 2.

Unlike the real-valued case, Fig. II.2 implies that the

phases of the complex-valued signals in section II-H are

much more complicated. Therefore, it is no wonder that

the stability in the present simulation is much stronger

than that in section II-H.

On the other hand, it follows from Fig. III.4 (b, d, f) that

the phase function of f10−6,−0.0038,0 varies much more

slowly than those of f10,−0.2381,1 and f50,−0.2381,1. And

when SNR (≤ 50) is low, numerical results in Table III.2

imply the much stronger stability for f10−6,−0.0038,0.

Recall that the distribution and oscillation of the phase

is the intrinsic property of a signal. Overall, the simulation

results in section II-H and in the present section imply that

the recovery stability to noise is related with the property.

IV. CONCLUSION

We prove that the full spark property is not sufficient

for the phaseless sampling in complex-generated shift-

invariant spaces (SISs) (Theorem 1.1). We establish a

condition for decoding the phases of the samples (Theorem

2.4). Based on Theorem 2.4, we establish a reconstruction

scheme in Approach II-B. Based on Approach II-B and

the generalized Haar condition (GHC), nonseparable and

causal (NC) signals in the complex-generated SISs can

be determined with probability 1 if the random sampling

density (SD) is not smaller than 3 (Theorem 2.5). Ap-

proach II-B is modified to Approach III-B such that it is

more adaptive to real-valued NC signals in real-generated

SISs. Based on Approach III-B and GHC, real-valued NC

signals in the real-generated SISs can be determined with

probability 1 if the random SD is not smaller than 2
(Theorem 3.1). Propositions 2.6 and 3.2 imply that the

highly oscillatory signals can be determined locally, with

probability 1, by a very small number of random samples.

V. APPENDIX

A. Proof of Lemma 2.10

Since tn1 , tn2 and tn3 are i.i.d random variables, we just

need to prove P
(
An,f (tn1 , tn2) +Bn,f (tn1 , tn2)i 6= 0

)
=

1.

Define an event Ẽn,0 := {φ(tn1)f̄(n + tn1) 6= 0} w.r.t

tn1 . By (2.14), we have

Ẽn,0

= {φ(tn1)(v̄n,f (tn1) + c̄nφ̄(tn1)) 6= 0}
= {∑k∈In

c̄kφ(tn1 )φ̄(n+ tn1 − k) + c̄n|φ|2(tn1) 6= 0}.
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First, it is easy to derive from Lemma 2.9 and the defini-

tion of Nf that, for every n ∈ {1, 2, . . . ,Nf +s−1} there

exists a nonzero coefficient in {ck : k ∈ In}. Moreover,

Λφ,2 in Proposition 2.1 satisfies GHC. Then

µ
(
{t ∈ (0, 1) :

∑
k∈In

c̄kφ(t)φ̄(n+ t− k)

+c̄n|φ|2(t) = 0}
)

= 0.

(5.51)

Therefore P (Ẽn,0) = 1. Consequently, P (En,0) = 1

where En,0 =
{ |f(n+tn1)|

|φ|2(tn1)
6= 0

}
. Define an auxiliary

(random) function w.r.t tn1 and tn2 by

an,f (tn1 , tn2) + bn,f(tn1 , tn2)i
:= φ̄(tn1)φ(tn2 )v̄n,f (tn2)− v̄n,f (tn1)|φ|2(tn2).

(5.52)

Direct observation on (2.15) leads to that

An,f (tn1 , tn2) +Bn,f (tn1 , tn2)i

=
|f |(n+tn1)

|φ|2(tn1 )

(
an,f(tn1 , tn2) + bn,f(tn1 , tn2)i

)
.

(5.53)

As previously for every n ∈ {1, 2, . . . ,Nf}, there exists

a nonzero coefficient in {ck : k ∈ In}. Then by (2.13)

we have v̄n,f 6≡ 0. Now it follows from Λφ,2 in Proposi-

tion 2.1 satisfying GHC that φv̄n,f and |φ|2 are linearly

independent, which together with P (En,0) = 1 leads to

an,f (·, ·) + bn,f(·, ·)i 6≡ 0. Then

1 ≥ P
(
an,f(tn1 , tn2) + bn,f (tn1 , tn2)i 6= 0

)

≥ P
(
an,f (tn1 , tn2) + bn,f(tn1 , tn2)i 6= 0|En,0

)
P (En,0)

= P
(
an,f (tn1 , tn2) + bn,f(tn1 , tn2)i 6= 0|En,0

)

= 1,

where Λφ,2 satisfying GHC is used again in the last

identity. The proof is concluded.

B. Proof of Lemma 2.11

If 0 <
|f |(n+tn1)

|φ|2(tn1)
< ∞, then it follows from (5.53) that

θ[An,f (tn1 , tn2) + Bn,f(tn1 , tn2)i] = θ[an,f (tn1 , tn2) +
bn,f(tn1 , tn2)i], where an,f (tn1 , tn2) + bn,f(tn1 , tn2)i is

defined in (5.52). By direct calculation, for y ∈ (0, 1) we

have

ℜ(an,f (tn1 , y) + ibn,f (tn1 , y))
= an,f (tn1 , y)
= utn1 ,f

(φ2
ℜ(y) + φ2

ℑ(y))

+
∑

k∈In
[c̃tn1 ,k,ℜ

(
φℜ(y)φℜ(y + n− k)

+φℑ(y)φℑ(y + n− k)
)
]

−∑
k∈In

[c̃tn1 ,k,ℑ

(
φℑ(y)φℜ(y + n− k)

−φℜ(y)φℑ(y + n− k)
)
],

and

ℑ(an,f (tn1 , y) + ibn,f (tn1 , y))
= bn,f(tn1 , y))
= vtn1 ,f

(φ2
ℜ(y) + φ2

ℑ(y))

+
∑

k∈In
[c̃tn1 ,k,ℑ

(
φℜ(y)φℜ(y + n− k)

+φℑ(y)φℑ(y + n− k)
)
]

+
∑

k∈In
[c̃tn1 ,k,ℜ

(
φℑ(x)φℜ(y + n− k)

−φℜ(y)φℑ(y + n− k)
)
],

where v̄n,f (tn1) := utn1 ,f
+ ivtn1 ,f

and

c̃tn1 ,k
:= φ̄(tn1)ck = c̃tn1 ,k,ℜ

+ ic̃tn1 ,k,ℑ
. (5.54)

As mention in section V-A, there exists at least one

nonzero coefficient in {ck : k ∈ In} for every n ∈
{1, 2, . . . ,Nf + s − 1}. For any fixed n ∈ {1, . . . ,Nf},

using Λφ,1 in Proposition 2.1 satisfying GHC, we have

P (φ̄(tn1) 6= 0) = 1, which together with (5.54) leads to

that with probability 1, there exists at least one nonzero

coefficient in {c̃tn1 ,k
: k ∈ In}. Then

P
(
ℜ(an,f (tn1 , tn2) + ibn,f(tn1 , tn2)) 6= 0

)

≥ P
(
ℜ(an,f (tn1 , tn2) + ibn,f (tn1 , tn2)) 6= 0|En,0

)

×P (En,0)
= P

(
ℜ(an,f (tn1 , tn2) + ibn,f (tn1 , tn2)) 6= 0|En,0

)

= 1,

where P (En,0) = 1, derived from section V-A, is

used in the first identity, and the second identity is de-

rived from GHC (1.8). Therefore, P
(
ℜ(an,f (tn1 , tn2) +

ibn,f(tn1 , tn2)) 6= 0
)

= 1. Similarly, we can prove

that P
(
ℑ(an,f (tn1 , tn2) + ibn,f (tn1 , tn2)) 6= 0

)
= 1.

Then P
(
θ[an,f (tn1 , tn2) + bn,f (tn1 , tn2)i] = jπ

2

)
= 0,

where j = 0, 1, 2, 3. Applying the above result to f̃ :=
ei(π

2 −α)f ∈ Vca(φ), the proof is concluded.

C. Proof of Lemma 2.12

Define three random events

E1 :=
{
(An,f (tn1 , tn2) + iBn,f (tn1 , tn2))

×(An,f (tn1 , tn3)− iBn,f(tn1 , tn3))
6= (An,f (tn1 , tn2)− iBn,f(tn1 , tn2))

×(An,f (tn1 , tn3) + iBn,f(tn1 , tn3))
}
,

(5.55)

and

E2 := {An,f (tn1 , tn2) + iBn,f (tn1 , tn2) 6= 0},
E3 := {An,f (tn1 , tn3) + iBn,f (tn1 , tn3) 6= 0}. (5.56)

Next we prove that P (E1) = 1. By Lemma 2.10, P (E2) =
P (E3) = 1. Direct computation gives that

1 ≥ P (E1)
≥ P (E1 ∩ E2)
= P (E1|E2)P (E2)
= P (E1|E2).

(5.57)
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By (5.55) and (5.56), we have

E1|E2

=
{
An,f (tn1 , tn3)− iBn,f(tn1 , tn3)

−b(tn1 , tn2)(An,f (tn1 , tn3) + iBn,f (tn1 , tn3)) 6= 0|E2

}
,

where

b(tn1 , tn2) =
An,f (tn1 ,tn2)−iBn,f (tn1 ,tn2)

An,f (tn1 ,tn2)+iBn,f (tn1 ,tn2)
.

Applying Lemma 2.11 to An,f (tn1 , tn3)+ iBn,f (tn1 , tn3),
it is easy to prove that P (E1|E2) = 1 which together with

(5.57) leads to P (E1) = 1. Now the rest of proof can be

easily concluded.
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Youfa Li Biography text here.

PLACE
PHOTO
HERE

Wenchang Sun Biography text here.

REFERENCES

[1] R. W. Gerchberg and W. O. Saxton, A practical algorithm for the
determination of phase from image and diffraction plane pictures,
Optik, 35, 237-246, 1972.

[2] J. R. Fienup, Phase retrieval algorithms: A comparison, Applied
Optics, 21(15), 2758-2769, 1982.

[3] J. R. Fienup, Reconstruction of an object from the modulus of its
Fourier transform, Optics Letters, 3(1), 27-29, 1978.

[4] J. R. Fienup, Phase retrieval algorithms: A personal tour, Applied

Optics, 52(1), 45-56, 2013.

[5] E. J. Candès, T. Strohmer and V. Voroninski, PhaseLift: Exact and
stable signal recovery from magnitude measurements via convex
programming, Communications on Pure and Applied Mathematics,
66(8), 1241-1274, 2013.

[6] B. A. Shenoy and C. S. Seelamantula, Exact phase retrieval for
a class of 2-D parametric signals, IEEE Transactions on Signal
Processing, 63(1), 90-103, 2015.

[7] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao
and M. Segev, Phase retrieval with application to optical imaging,
IEEE Signal Processing Magazine, 32(3), 87-109, 2015.

[8] J. Miao, T. Ishikawa, I.K. Robinson and M.M. Murnane, Beyond
crystallography: Diffractive imaging using coherent x-ray light
sources, Science, 348(6234), 530-535, 2015.

[9] E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninski, Phase
retrieval via matrix completion, SIAM Journal on Imaging Sciences,
6(1), 199-225, 2013.

[10] T. Heinosaarri, L. Mazzarella and M. M.Wolf, Quantum tomog-
raphy under prior information, Communications in Mathematical

Physics, 318, 355-374, 2013.

[11] R. Balan, P.G. Casazza and D. Edidin, On signal reconstruction
without noisy phase, Applied and Computational Harmonic Anal-
ysis, 20, 345-356, 2006.

[12] L. Li, C. Cheng, D. Han, Q. Sun and G. Shi, Phase retrieval from
multiple-window short-time Fourier measurements, IEEE Signal

Processing Letters, 24(4), 372-376, 2017.

[13] K. Huang, Y. C. Eldar and N. D. Sidiropoulos, Phase retrieval from
1D Fourier measurements: convexity, uniqueness, and algorithms,
IEEE Transactions on Signal Processing, 64(23), 6105-6117, 2016.

[14] Y. Chen, C. Cheng and Q. Sun, Phase retrieval of complex and
vector-valued functions, arXiv preprint arXiv: 1909.02078v1.

[15] R. Alaifari, I. Daubechies, P. Grohs and G. Thakur, Reconstructing
real-valued functions from unsigned coeffcients with respect to
wavelet and other frames, Journal of Fourier Analysis and Ap-

plications, 23, 1480-1494, 2017.

[16] R. Alaifari, I. Daubechies, P. Grohs and R. Yin, Stable phase
retrieval in infinite dimensions, Foundations of Computational

Mathematics, 19, 869-900, 2019.
[17] J. Cahill, P. G. Casazza and I. Daubechies, Phase retrieval in

infinite-dimensional Hilbert spaces, Trans. Amer. Math. Soc. Ser.

B, 3, 63-76, 2016.

[18] N. Shlezinger, R. Dabora and Y. C. Eldar, Measurement matrix
design for phase retrieval based on mutual information, IEEE
Transactions on Signal Processing, 66(2), 324-339, 2018.

[19] B. A. Shenoy, S. Mulleti and C. S. Seelamantula, Exact phase
retrieval in principal shift-invariant spaces, IEEE Transactions on

Signal Processing, 64(2), 406-416, 2016.
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