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Abstract—The paper introduces a novel family of deterministic
periodic signals, the orthogonal periodic sequences (OPSs), that
allow the perfect identification on a finite period of any functional
link polynomials (FLiP) filter with the cross-correlation method.
The class of FLiP filters is very broad and includes many popular
nonlinear filters, as the well-known Volterra and the Wiener
nonlinear filters. The novel sequences share many properties of
the perfect periodic sequences (PPSs). As the PPSs, they allow
the perfect identification of FLiP filters with the cross-correlation
method. But, while PPSs exist only for orthogonal FLiP filters, the
OPSs allow also the identification of non-orthogonal FLiP filters,
as the Volterra filters. In OPSs, the modeled system input can be
any persistently exciting sequence and can also be a quantized
sequence. Moreover, OPSs can often identify FLiP filters with a
sequence period and a computational complexity much smaller
that PPSs. The provided experimental results, involving the
identification of real devices and of a benchmark model, highlight
the potentialities of the proposed OPSs in modeling unknown
nonlinear systems.

Index Terms—Ortogonal Periodic Sequences, Functional Link
Polynomial filters, nonlinear filters.

I. INTRODUCTION

THE paper discusses a novel family of deterministic sig-
nals that can be used to identify any Functional Link

Polynomial (FLiP) filter with the cross-correlation method.
FLiP filters [1], [2] are a class of nonlinear filters that
includes many of the most popular linear-in-the-parameters
(LIP) nonlinear filters used in theory and practice [3]–[17].
The class of FLiP filters is very broad. It includes the well
known Volterra filters [18]–[20] and Wiener nonlinear (WN)
filters [18], [21], that derive from the truncation of the Volterra
and Wiener series, respectively. It includes also the even
mirror Fourier nonlinear (EMFN) filters [22], the Legendre
nonlinear (LN) filters [23], the Chebyshev nonlinear (CN)
filters [24] and many others [2]. These models have recently
produced interest not only in signal processing but also in
computational intelligence and machine learning [25]. FLIP
filters are formed by a linear combination of basis functions.
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These basis functions are products of nonlinear expansions
of delayed input samples that follow the constructive rule
of Volterra filters. The FLiP basis functions form algebras
that satisfy all requirements of the Stone-Weierstass theorem
[2]. Therefore, the FLiP filters are universal approximators,
i.e., they can arbitrarily well approximate any discrete-time,
time invariant, finite memory, continuous nonlinear system
[2]. Some families of FLiP filters provide an orthogonal
representation for some stochastic inputs. For example, WN
filters have orthogonal basis functions for white Gaussian
inputs, EMFN and LN filters for white uniform inputs, and
CN filters for a particular nonuniform distribution [24]. In
those cases, the coefficients can be calculated by projecting
the output of the filter on each of the basis functions. The
projection can be performed by estimating the expected value
of the product of the filter output and the basis function.
Computing these expected values with time averages gives
origin to the cross-correlation method, which is based on the
calculation of the cross-correlation between the basis functions
and the system output. Since the system output is a polynomial
function of the input, the estimate of these expected values
implies the computation of high order input moments with
time averages. Unfortunately, this presents the drawback of
requiring millions of samples to obtain an accurate estimation
[26], [27]. For many years, it has been possible to identify
orthogonal FLiP filters with the cross-correlation method only
with the stochastic inputs.

As an alternative to stochastic inputs, appropriate determin-
istic input signals have also been applied to system iden-
tification with the cross-correlation method. Among these,
the perfect periodic sequences (PPSs) [28], [29] are de-
terministic sequences with an ideal autocorrelation function
that is periodic impulsive. They have been first proposed as
inputs for linear system identification [30]–[33] but in recent
years they have been extended also to nonlinear filters. In
the latter case, by definition a periodic sequence is perfect
when the cross-correlation between any two different basis
functions, estimated over a period, is zero. This definition
is the natural extension of the linear case, where the input
samples themselves can be considered as basis functions. PPSs
suitable for the identification of many families of orthogonal
FLiP filters, e.g, the EMFN [34], [35], the LN [23], [36], the
CN [37] and the WN filters [38], have been developed, and a
general methodology for their derivation has been discussed
in [2]. These PPSs have been obtained by imposing the cross-
correlation between any two different basis functions to be
zero, and by solving the resulting system of nonlinear equa-
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tions with an iterative approach. This directly constraints the
PPS samples, which are in general real numbers in [−1,+1].

Extending the results of [39], this paper contributes to the
subject by proposing a novel family of deterministic periodic
sequences, the orthogonal periodic sequences (OPSs), which
can be used to identify FLiP filters on a finite time interval
with the cross-correlation method. The OPSs share many
similarities with the PPSs. As the PPSs, (i) they have been
developed for the identification of FLiP filters and (ii) they
allow the perfect estimation of a FLiP filter on a finite time
interval with the cross-correlation method. But OPSs have
a more general use than PPSs. In fact, they can identify
any orthogonal or non-orthogonal FLiP filter, including the
Volterra filters1. Moreover, they could also be developed for
any family of LIP nonlinear filters that admits a filterbank
implementation (e.g., Hammerstein filters or functional link ar-
tificial neural networks (FLANN)), since these filters are often
special cases of FLiP filters or combinations of FLiP filters. In
contrast to PPSs, in OPSs the input sequence does not need
to be perfect periodic: it can have any arbitrary persistently
exciting distribution and can also be a quantized sequence.
Once chosen the input sequence and the FLiP filter used for
the identification, a set of OPSs can be developed. Each OPS
is designed to estimate one of the so-called “diagonals” of the
FLiP filter using the cross-correlation method. It will be shown
that OPSs can often identify FLiP filters with a sequence
period and, thus, a computational complexity much smaller
than PPSs.

It has to be pointed out that the identification procedure
using OPSs differs from the classical methods of Lee-Schetzen
[21], [40], which identify WN filters using white noise, and
of Korenberg [41], which determine the coefficients of a data
dependent orthogonal representation. The methods in [21],
[40] and [41] are based on a Gram-Schmidt orthogonalization
of the Volterra series and they require filter conversions. The
identification using OPSs does not apply any Gram-Schmidt
orthogonalization nor require filter conversions to identify the
desired filter.

In the experimental results, the identification using OPS
will be compared with other approached based on the cross-
correlation method and with the least-square (LS) identifica-
tion. While there is a huge amount of alternative identification
approaches that can be applied to nonlinear filters, in this
paper we will consider only those most related to the proposed
approach, i.e., all those approaches suitable for FLiP filters
that are based on the cross-correlation method, which has an
unmatched low computational-complexity, and the LS method
that is used as baseline. The experimental results are indeed
intended to show that OPSs can identify FLiP filters as well
as PPSs and the LS method. However, in the last experiment
we will also compare the results obtained with the proposed
approach with those of a parametric method based on multi-
tones.

Given the low computational complexity of the cross-
correlation method and the relatively small period of OPSs, the

1To the authors knowledge, they are the only sequences that allow the
exact direct estimation of Volterra filters in a finite time interval with the
cross-correlation method.

use of OPSs provides one of the most efficient identification
methodologies for FliP filters. Nevertheless, we must point out
the following aspects: i) Nonlinear system identification using
OPSs is possible only if the unknown nonlinear system can be
represented with a FLiP filter. ii) The order and memory length
of the FLiP filter should be a priori known or estimated with a
trial and error procedure. iii) Identification with OPSs requires
the application of a deterministic input signal. Alternative
recent methodologies that do not require the latter can be found
in [42]–[49].

The main original contributions of this paper are the fol-
lowing: i) We introduce the concept of OPSs and explain how
they can be developed for any FLiP filter. ii) We analyze the
nonlinear system identification using OPSs. The cases where
the identified model underestimates the memory or the order of
the nonlinear system are specifically addressed. The analysis
considers also the effect of different kinds of additive output
noises, i.e., white Gaussian, colored Gaussian, and non Gaus-
sian noise. iii) We show that nonlinear system identification
using OPSs is one of the most efficient identification methods
for FLiP filters.

The rest of the paper is organized as follows. In Section II
FLiP filters are reviewed. The OPSs are developed in Sec-
tion III. FLiP filter identification using OPSs is discussed in
Section IV. Section V provides experimental results about the
identification of real nonlinear devices and of a benchmark
model and compares OPSs with other identification methods
based on cross-correlation and with LS identification.

The following notation is used throughout the paper: R is
the set of real numbers, R1 is the interval [−1,+1], <a(n)>L
is the sum of a(n) over a period of L consecutive samples,
E[·] indicates expectation, δ(n) is the unit pulse sequence.

II. FUNCTIONAL LINK POLYNOMIAL FILTERS

The FLiP filters are a broad class of LIP nonlinear filters
and are universal approximators: they can arbitrarily well
approximate any discrete-time, time-invariant, finite memory,
continuous nonlinear system,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where f is a continuous N -dimensional function from RN1 to
R, and x(n) ∈ R1.

FLiP filters can be proved to be universal approximators
according to the Stone-Weierstrass theorem [50]:

“Let A be an algebra of real continuous functions on
a compact set K. If A separates points on K and
if A vanishes at no point of K, then the uniform
closure B of A consists of all real continuous
functions on K” .

A family A of real functions is an algebra when A is closed
under addition, multiplication, and scalar multiplication.

The basis functions of FLiP filters are formed following the
constructive rule of Volterra filters starting from an ordered
set of univariate functions

{g0[ξ], g1[ξ], g2[ξ], ...} (2)

satisfying the requirements of Stone-Weierstass theorem. In (2)
g0[ξ] is a function of order 0, usually the constant 1, g2i+1[ξ]
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TABLE I
FLIP BASIS FUNCTIONS

Order 0:
g0[x(n)] = 1.

Order 1:
g1[x(n)], . . . , g1[x(n−N + 1)].

Order 2:
g2[x(n)], . . . , g2[x(n−N + 1)],

g1[x(n)]g1[x(n− 1)], . . . , g1[x(n−N + 2)]g1[x(n−N + 1)],
g1[x(n)]g1[x(n− 2)], . . . , g1[x(n−N + 3)]g1[x(n−N + 1)],

...
g1[x(n)]g1[x(n−D)], . . . , g1[x(n−N +D + 1)]g1[x(n−N + 1)],

Order 3:
g3[x(n)], . . . , g3[x(n−N + 1)],

g2[x(n)]g1[x(n− 1)], . . . , g2[x(n−N + 2)]g1[x(n−N + 1)],
...

g2[x(n)]g1[x(n−D)], . . . , g2[x(n−N +D + 1)]g1[x(n−N + 1)],
g1[x(n)]g2[x(n− 1)], . . . , g1[x(n−N + 2)]g2[x(n−N + 1)],

...
g1[x(n)]g2[x(n−D)], . . . , g1[x(n−N +D + 1)]g2[x(n−N + 1)],
g1[x(n)]g1[x(n− 1)]g1[x(n− 2)], . . .

g1[x(n−N + 3)]g1[x(n−N + 2)]g1[x(n−N + 1)],
...

g1[x(n)]g1[x(n−D + 1)]g1[x(n−D)], . . .
g1[x(n−N +D + 1)]g1[x(n−N + 2)]g1[x(n−N + 1)],

for any i ∈ N is an odd function of order 2i + 1, g2i[ξ] for
any i ∈ N is an even function of order 2i.

For N = 1, the set of basis functions obtained setting
ξ = x(n) in (2) can arbitrarily well approximate the nonlinear
system in (1).

For N > 1, a set of FLiP basis functions capable of
arbitrarily well approximating (1) can be developed by

1) writing the functions in (2) for ξ = x(n), x(n− 1), . . .,
x(n−N + 1), and then

2) multiplying the terms of different variable in all possible
manners, as in the constructive rule of Volterra filters,
taking care of avoiding repetitions.

It can be verified that this set of basis functions and their linear
combinations form an algebra that separates points on RN1 and
vanishes in no point (for the presence of g0) and thus satisfies
all requirements of Stone-Weierstrass theorem.

The order of a FLiP basis function is defined as the sum
of the orders of the constituent factors gi(ξ), and the diagonal
number of a basis function is the maximum time difference
between the involved input samples. For sake of clarity, the
FLiP basis functions up to order 3, diagonal number D, and
memory N are given in Table I.

A FLiP filter of order K, memory N , diagonal number D
is the linear combination of all FLiP basis functions, with
order, memory, and diagonal number up to K, N , and D,
respectively. For example, a FLiP filter of order 3, memory N
and diagonal number D, is the linear combination of all basis
function in Table I.

FLiP filters can be implemented in the form of a filter bank,

y(n) =

R−1∑
p=0

Np−1∑
m=0

hp(m)fp(n−m), (3)

where fp(n) are the zero lag basis functions (e.g., the
first elements of the rows of Table I), i.e., f0(n) =
g0[x(n)] = 1, f1(n) = g1[x(n)], f2(n) = g2[x(n)], f3(n) =
g1[x(n)]g1[x(n− 1)], . . ., f2+D(n) = g1[x(n)]g1[x(n−D)],
f3+D(n) = g3[x(n)], . . .; Np is the memory length for the
basis function fp(n) and is equal to N minus the diagonal
number of fp(n); R is the total number of zero lag basis
functions, i.e.,

R =

(
D +K

D + 1

)
+ 1. (4)

The FLiP filter has ND coefficients with [1]

ND =

(
D +K + 1

D + 1

)
+

(
D +K

D + 1

)
(N − 1−D). (5)

Following the naming conventions of Volterra filters, each
sequence hp(m) with 0 ≤ p ≤ R − 1 is called a diagonal
of the FLiP filter.

Any choice of the univariate functions gi(ξ) takes to a
different family of nonlinear filters. FLiP filters comprise many
well known families of nonlinear filters, specifically

• the Volterra filters, where gi(ξ) = ξi;
• the WN filters, which also derive for the truncation of the

Wiener series, where gi(ξ) are the Hermite polynomials
of variance σ2

x (according to the definition in [51]),

{1, ξ, ξ2 − σ2
x, ξ

3 − 3σ2
xξ, ξ

4 − 6σ2
xξ

2 + 3σ4
x, . . . }; (6)

• the LN filters, where gi(ξ) are Legendre polynomials,

{1, ξ, (3ξ2−1)/2, ξ(5ξ2−3)/2, (35ξ4−30ξ2+3)/8, . . . };

(7)

and others, as discussed in [2]. Some of these filters are orthog-
onal FLiP filters, i.e., have basis functions that are orthogonal
for a specific distribution of the input signal samples. For
example, the basis functions of WN filters are orthogonal for
a zero mean white Gaussian input with variance σ2

x, those of
LN filters are orthogonal for a white uniform input in R1.
If the input distribution guarantees the orthogonality of the
basis functions, the coefficients of the filter can in theory
be estimated with the cross-correlation method, computing
the cross-correlation between the basis functions and the
system output. Unfortunately, applying stochastic inputs the
cross-correlation method often requires millions of samples to
accurately estimate the FLiP filter coefficients. Nevertheless,
it has been shown that the orthogonal FLiP filters also admit
PPSs, i.e., deterministic periodic sequences that guarantee the
orthogonality of the basis functions over a period. Using a PPS
input, an orthogonal FLiP filter can still be identified with the
cross-correlation method, with the coefficients hi(j) given by

hi(j) =
< y(n)fi(n− j) >L

< f2
i (n) >L

, (8)

where L is a period of the PPS.
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PPSs for FLiP filters of order K, memory N , diagonal num-
ber D have been obtained by considering a periodic sequence
with L unknown samples and imposing the orthogonality of
all basis functions, i.e., imposing

< fi1(n− j1)fi2(n− j2) >L= 0, (9)

for all i1, i2, j1, j2. For sufficiently large L, this is an under-
determined system of nonlinear equations that may have
infinite solutions, and a solution has always been computed
solving (9) with the Newton-Raphson method [52]. It must
be pointed out that the procedure for solving the system is
very slow, since the Newton-Raphson method is an iterative
method and each iteration has a computational cost propor-
tional to Q

3
, with Q the number of nonlinear equations, and

Q ' R(ND + 1). It should be noted that the value of Q
influences also the period of the PPS, since L should be
sufficiently larger than Q and L is often in the range [2Q, 6Q].
In contrast, the OPSs introduced in the next section can be
derived solving a simpler linear system and can often identify
the FLiP filter with a much smaller period L.

III. ORTHOGONAL PERIODIC SEQUENCES

By definition, an OPS is a periodic sequence that cross-
correlated with the filter output provides one of the diagonals
of the FLiP filter. Let us consider a FLiP filter and a periodic
input sequence x(n) of period L. The only condition imposed
to the input sequence is to persistently excite the FLiP filter.
This condition guarantees the invertibility of all input data
matrices that will be introduced in the following. The condition
is satisfied when the input sequence samples are aleatory taken
from a Gaussian distribution, a white uniform distribution,
or other random distribution. The sequence could also be
a quantized sequence, provided that it is quantized with a
sufficiently large number of levels. For example, it was shown
in [53] that an independent, identically distributed sequence
must take at least K + 1 distinct values to persistently excite
an order K Volterra filter. For obtaining the experimental
results of Section V, 10 bits quantized sequences have been
considered.

Let us consider the i-th diagonal of the FLiP filter, hi(j)
with 0 ≤ j ≤ Ni− 1. In what follows we want to develop the
OPS zi(n) of period L such that

hi(j) =< y(n)zi(n− j) >L, (10)

for 0 ≤ j ≤ Ni − 1.
Consider first the case of i = 0 and f0(n) = 1. Inserting

(3) in (10), for j = 0

h0(0) =

R−1∑
p=0

Np−1∑
m=0

hp(m) < fp(n−m)z0(n) >L . (11)

Thus, to be (10) true it must be

< f0(n)z0(n) >L=< z0(n) >L= 1, (12)

and
< fp(n−m)z0(n) >L= 0, (13)

for all 0 ≤ m ≤ Np − 1, and 0 < p ≤ R − 1. Any sequence
z0(n) that satisfies the Q0 = ND linear equations in (12) and
(13) is an OPS that can compute h0(n), i.e., the constant term
of the FLiP filter.

Consider now i > 0. Inserting (3) in (10), we have

hi(j) =

R−1∑
p=0

Np−1∑
m=0

hp(m) < fp(n−m)zi(n− j) >L . (14)

To be (10) true for j = 0, it must be

< f0(n)zi(n) >L = < zi(n) >L= 0, (15)
< fi(n)zi(n) >L = 1, (16)

< fi(n−mi)zi(n) >L = 0, (17)
< fp(n−mp)zi(n) >L = 0, (18)

for all 1 < mi ≤ Ni−1, 0 ≤ mp ≤ Np−1 and 0 < p ≤ R−1
with p 6= i. To be (10) true also for j > 0, together with (15)–
(18) it must also be

< fp(n)zi(n− j) >L=< fp(n+ j)zi(n) >L= 0. (19)

for all 0 < j ≤ Ni − 1. Thus, zi(n) must satisfy the linear
equation system

< zi(n) >L = 0, (20)
< fi(n)zi(n) >L = 1, (21)

< fi(n−mi)zi(n) >L = 0, (22)
< fp(n−mp)zi(n) >L = 0, (23)

for all −(Ni − 1) < mi ≤ Ni − 1 and mi 6= 0, −(Ni − 1) ≤
mp ≤ Np − 1 and 0 < p ≤ R− 1 with p 6= i.

The system in (20)–(23) has Qi equations and L variables
(the samples of zi(n)), with

Qi = ND + (R− 1)(Ni − 1). (24)

For L ≥ Qi, the system is critically determined or under-
determined and for persistently exciting inputs it always admits
a solution. It can be written in matrix form as follows,

Sz = d (25)
where z is a vector collecting the samples of zi(n), d is a
vector of all zeros apart from the element 1 corresponding to
(21), and S is a fat or square matrix. Each row of S is formed
by the samples of a basis function fp(n−mp), with n ranging
along the row from 0 to L, and p and mp changing along the
columns with 0 ≤ p ≤ R−1 and −(Ni−1) ≤ mp ≤ Np−1.
The minimum norm solution of the system is

z = S(SST )−1d. (26)

The elements of the matrix SST are formed by cross-
correlations between basis functions with different time delays,
i.e., are

< fp1(n−mp1)fp2(n−mp2) >L (27)

where 0 ≤ p1, p2 ≤ R − 1, −(Ni − 1) ≤ mp1 ≤ Np1 − 1,
and −(Ni − 1) ≤ mp2 ≤ Np2 − 1. SST is a block matrix
whose entries are Toeplitz matrices with varying dimensions.
For its particular structure it admits efficient algorithms for
its inversions. For example, the product (SST )−1d can be
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efficiently computed with the algorithm presented in [54],
which was successfully adopted in our research. Working with
nonlinear basis functions, SST could have a bad conditioning,
but for sufficiently large L we have always been able to
find a solution with sufficient accuracy working with double
precision arithmetic.

When L ≥ Q = maxiQi = ND + (R − 1)(N − 1), it
becomes possible to develop a set of OPSs zi(n) for 0 ≤ i ≤
R−1, which allows to estimate with the same input sequence
all diagonals of the FLiP filter. Furthermore, the same input
sequence could be used for estimating different types of FLiPs
filters by developing different sets of OPSs.

It should be noted that Q is in general much lower than
the number of nonlinear equations Q ' R(ND + 1) that have
to be solved for deriving a PPS for the same FLiP filter (ND
is generally much larger than N ). Computing an entire set of
OPSs zi(n) for 0 ≤ i ≤ R−1 requires often less computations
than a single iteration of the algorithm used to develop PPSs.

The approach for developing OPSs presented in this Section
could be easily adapted to identify other families of LIP
nonlinear filters. The main characteristic of FLiP filters that is
exploited in developing the OPSs and deriving equations (11)
and (14) is the filter bank form in (3). Thus, it is possible
to develop OPSs for any LIP nonlinear filter that has a filter
bank implementation and admits persistently exciting inputs.
Most of these LIP filters are specific cases of FLiP filters or
combinations of FLiP filters.

IV. NONLINEAR SYSTEM IDENTIFICATION WITH OPSS

In absence of measurement noise, a set of OPSs suitable for
the identification of a FLiP filter allows the exact identification
with the cross-correlation method of any nonlinear system that
can be modeled with the chosen FLiP filter. In case of an
under-estimation of the nonlinear system or in presence of a
measurement noise, the identification will be affected by an
error. In what follows, we assume that a set of OPSs for a
FLiP filter of order K, memory N , diagonal number D is
used to estimate a nonlinear system whose output is corrupted
by a measurement noise ν(n),

y(n) = f [x(n), x(n− 1), . . . , x(n−N0 + 1)] + ν(n). (28)

The nonlinear system in (28), is assumed to be a FLiP
filter of memory NSys, order KSys, diagonal number DSys,
with NSys, KSys, DSys possibly larger than N,K, and D,
respectively. In what follows we separately study the effect on
the identified model of (i) an underestimation of the memory
of the nonlinear system, (ii) an underestimation of the order
or diagonal number of the nonlinear system, and (iii) the
measurement noise. Eventually, we discuss the computational
complexity of OPS identification in comparison with PPS and
least-square methods.

A. Memory underestimation

First, the case of an underestimation of the memory of the
system is considered. We assume NSys = N + ∆N , with
∆N > 0, while KSys ≤ K and DSys ≤ D, and we neglect

the effect of the noise assuming ν(n) = 0. In this case, the
system in (28) can be written as

y(n) =

R−1∑
p=0

Np+∆N−1∑
m=0

h̃p(m)fp(n−m). (29)

where h̃p(n) are the coefficients to be estimated with (10).
The estimation of the system performed with a set OPSs for a
filter of memory N , order K, diagonal number D is affected
by an aliasing error, which influences the first ∆N terms of
the diagonals. In fact, for j ∈ [0,∆N − 1] the estimation
of hi(j) with < y(n)zi(n − j) >L is affected by the cross-
correlations < fp(n−k)zi(n− j) >L with k ∈ [Np+ j,Np+
∆N − 1]. On the contrary, the cross-correlations < fp(n −
k)zi(n−j) >L are zero when k−j < Np for the orthogonality
conditions imposed by (20)-(23). Thus, in case of a memory
underestimation the identification is biased.

B. Order or diagonal number underestimation

We next consider the case of an order or diagonal number
underestimation. We assume KSys > K or DSys > D, while
NSys ≤ N and ν(n) = 0. In this case, the system in (28) can
be written as

y(n) =

R−1∑
p=0

Np−1∑
m=0

h̃p(m)fp(n−m) + ∆K,D(n) (30)

where h̃p(n) are the coefficients to be estimated with (10)
and ∆K,D(n) is the linear combination of all basis functions
of order greater than K or diagonal number greater than D.
In this case, all coefficients estimated with (10) are affected
by an error caused by the basis functions of order greater
than K or diagonal number greater than D unaccounted
in the development of the OPSs, and the identification is
again biased. The error on the coefficient hi(j) is equal to
< ∆K,D(n)zi(n− j) >L. Even though this error in reality is
deterministic, working with large periods and a large number
of neglected basis functions in ∆K,D(n), according to the law
of large numbers we can assume this error to be stochastic
and Gaussian distributed. Thus, in these conditions the effect
of this error can be deemed similar to a measurement noise.

C. Effect of the measurement noise

Eventually, the effect of a measurement noise ν(n) on the
coefficients identification is studied considering NSys ≤ N ,
KSys ≤ K, and DSys ≤ D. Thus, the nonlinear system to be
modeled is

y(n) =

R−1∑
p=0

Np−1∑
m=0

h̃p(m)fp(n−m) + ν(n), (31)

where h̃p(n) are the coefficients to be estimated with the
values hi(j) given in (10). We separately consider the case
of a white or colored Gaussian noise, and of a non Gaussian
noise.
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1) Gaussian noise: We consider first the case where the
output is affected by a colored Gaussian noise

ν(n) = hν(n) ∗ ν(n), (32)

where ν(n) is a zero-mean, variance σ2
ν , white Gaussian noise,

and hν(n) is the causal, finite memory Nν , impulse response
of the forming filter that generates the measurement noise,
where

Nν−1∑
n=0

hν(n)2 = 1. (33)

As a particular case, when hν(n) = δ(n), the output of
the system is corrupted by a zero-mean, variance σ2

ν , white
Gaussian measurement noise.

Using (10) and exploiting the properties of OPSs,

hi(j) = h̃i(j)+ < (hν(n) ∗ ν(n))zi(n− j) >L . (34)

Since ν(n) is zero mean, E[hi(j)] = h̃i(j) and the identifica-
tion method is unbiased.

We next estimate the mean square deviation (MSD) of the
coefficients. The MSD of the coefficients of fi(n−j) is defined
as

MSDi,j = E[(hi(j)− h̃i(j))2]. (35)

For OPSs, from (10) we have

MSDi,j = E[(< (hν(n) ∗ ν(n))zi(n− j) >L)2]. (36)

It is proved in the Appendix that

MSDi,j = σ2
ν

L−1∑
m=−Nν+1

< hν(n−m)zi(n− j) >2
L . (37)

The sum in (37) can be interpreted as the energy of the
sequence

[zi(−j), zi(−j + 1), . . . , zi(L− j − 1)], (38)

filtered with the finite impulse response (FIR) filter with im-
pulse response hν(−n). When the nonlinear system output is
corrupted by a white Gaussian noise, i.e., when hν(n) = δ(n),
the mean square deviation reduces to

MSDi,j = σ2
ν < zi(n)2 >L, (39)

which is independent of the delay j.
From (37) and (39) it is evident that MSDi,j is proportional

to the noise power σ2
ν . It can also be observed that MSDi,j is

inversely proportional to <f2
i (n)>L, the energy of the basis

functions over a period, because according to (21) <z2
i (n)>L

is inversely proportional to < f2
i (n) >L. Since for constant

power, the energy of the basis functions over a period increases
proportionally to L, MSDi,j is also inversely proportional
to the period L. Thus, we can improve the accuracy of the
estimation by increasing the period L or by computing the
cross-correlation over multiple periods.

To compare the different OPSs on equal terms, we introduce
the noise gain Gν , which is defined as the average value over
all basis functions of

Gν,i,j =
MSDi,j
σ2
ν

< f2
i (n− j) >L, (40)

and evaluate it in particular for a white measurement noise.
From (39) we have that Gν is the average value over all basis
functions of

Gν,i,j =< z2
i (n) >L · < f2

i (n) >L . (41)

For PPSs, it can be proved that Gν,i,j and Gν are always 1,
independently of the considered filter or the period L of the
sequence. On the contrary, for OPSs we show in Section V
that Gν changes with the chosen FLiP filter, the distribution
of the input samples, and the period L. For a specific filter and
input sample distribution, Gν can greatly vary with L, because
the choice of L influences the power of the designed OPS
zi(n). When L = Q, i.e., the minimum period of the OPS,
we have found Gν can assume very large values that make
the identification with OPSs useless. On the contrary, when
L � Q, Gν assumes reasonable values. In orthogonal FLiP
filters, when the input samples are taken from the distribution
ideally guaranteeing the orthogonality of the basis functions
(e.g., Gaussian for WN filters or uniform for LN filters), when
L tends to infinity, Gν tends to 1, the ideal value we have with
PPSs. This property can be easily expected since the longer is
L, the closer the input sequence is to a PPS.

2) Non Gaussian noise: At this point it is interesting to
note how the OPS identification behaves when the noise is
zero mean but non-Gaussian. Using (10) and exploiting the
properties of OPSs, we now have

hi(j) = h̃i(j)+ < ν(n)zi(n− j) >L . (42)

If ν(n) is zero mean, E[hi(j)] = h̃i(j) and the identification
method is also in this case unbiased.

According to equation (10) and (31), for the central limit
theorem the error hi(j) − h̃i(j) will still have a Gaussian
distribution, with

MSDi,j = E[(< ν(n)zi(n− j) >L)2]. (43)

depending on the auto-correlation function of the noise and on
the OPS sequence zi(n). We must also point out that the only
protection with respect to outliers is the averaging performed
in the cross-correlation with OPSs. The interested reader, is
referred to [47]–[49], [55] for some recent methods that are
robust against outliers.

D. Computational cost of identification

From (10), the computational cost of a filter identification
with OPS is around LND operations, i.e., multiplications
and additions, if the cross-correlations are computed in time
domain. It is of (2 log2(L) + 1)LR operations if the cross-
correlations are computed in DFT domain, assuming a FFT
cost L log2(L) operations. These computational costs are
much lower than that of a LS identification on the same data,
which is order of LN2

D operations. Also for PPSs we have
a computational cost of LND operations in time domain and
(2 log2(L)+1)LR operations in DFT domain, provided in (8)
we neglect the cost of computing the basis functions and of
the normalization. Nevertheless, it will be shown in Section V
that OPSs can provide identification performance similar to
the PPSs with much shorter periods.
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Fig. 1. First experiment: Seconds, third, and total harmonic distortion.
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Fig. 2. First experiment: Noise Gain of OPSs for LN, WN and Volterra filters.

V. EXPERIMENTAL RESULTS

In this section, we provide some experimental results that
illustrate the ability of OPSs to identify FLiP filters and we
compare the cross-correlation method based on OPSs with that
based on PPSs and stochastic signals, and moreover with the
LS method. We consider three sets of experiments, with the
first two involving the identification of real nonlinear devices.
In the first set of experiments, we consider the identification
of the nonlinear device with different FLiP filters having
maximum diagonal number. In the second set of experiments,
to reduce the complexity of the model the nonlinear device
is identified with a simplified FLiP filter, whose memory and
diagonal number decrease with the kernel order. In the third
experiment, we consider the identification of a nonlinear sys-
tem often used for benchmark purposes, the Duffing oscillator.
In this experiment, the model is a simplified Volterra filter
composed only of odd kernels. We use the measured Volterra
kernels to estimate the Duffing model parameters and we
compare the results obtained with proposed approach, which
is non-parametric, with those of a parametric method based
on multi-tones.

A. First Experiment

The first experiment concerns the identification of a
Behringer MIC100 tube pre-amplifier. The acquisition was
performed at 16 kHz sampling frequency and the identification
was obtained with LN, WN and Volterra filters of order

3, memory 25, with full diagonals (D = N − 1 = 24).
For the OPSs, we used periodic inputs with the following
periods: {11700, 214, 215, 216, 217, 218}, with samples having
uniform or Gaussian distribution. PPSs for Legendre and WN
filters with period of 1, 393, 024 ' 220.4 samples were also
considered. Moreover, 1, 000, 000 samples of zero mean white
Gaussian and white uniform noise were also used as input. All
inputs with samples having uniform distribution had signal
power equal to 1/3, while those with uniform distribution had
power equal to 1/12. The maximum peak amplitude was the
same for both distributions and around 1. The input signals
at 16 kHz were up-sampled in Matlab at 48 kHz to allow
playback and recording on the Focusrite Scarlett 2i2 audio
interface and the recorded signals were downsampled back at
16 kHz. Thus, in this experiment we truly identify a chain
composed by the upsampler, the Scarlett digital to analog
converter (DAC), the MIC100 preamplifier, the Scarlett analog
to digital (ADC), and the downsampler. The output signal to
noise ratio was more the 60 dB.

Sixteen different settings were considered with increasing
level of nonlinear distortion. Fig. 1 provides an indication
of the level of nonlinearity at the different settings. It plots
the harmonic distortion for a tone having the same maximum
amplitude of the input signals. The harmonic distortion is
defined as the ratio in percent between the power of the
harmonics and that of the fundamental.

The Noise Gain for all OPSs is shown in Fig. 2. It can
be appreciated that the Noise Gain tends to decrease with the
period of the OPS. For the period of 11, 700, the minimum
possible OPS period for the considered system, the noise
gain is unacceptably high, the identification performance is
consequently very bad and is not plotted in the following.
For the orthogonal FLiP filters, i.e., LN and WN filters, with
an input sample distribution in accordance with that ensuring
the orthogonality of the basis functions, the Noise Gain tends
to zero for large periods L. On the contrary, with the Volterra
filter for large periods the Noise Gain tends to a constant value,
which is anyway acceptably small (2–3 dB).

The MIC100 tube pre-amplifier was identified with LN,
WN, and Volterra filters with OPSs considering both the
Gaussian and uniform periodic inputs. All filters were also
identified with the LS method over a segment of 218 samples
having Gaussian or uniform distribution. The LN and WN
filters were also identified with the cross-correlation method
using PPSs and stochastic inputs having a uniform and Gaus-
sian distribution, respectively.

All identified filters were then tested on 200, 000 samples of
a stochastic input different from that used for identification, but
having an input sample distribution matching that used for the
identification. Figure 3 shows the resulting normalized mean
square error (NMSE) in the identification with the different
methods. The NMSE is the mean square error normalized
by the power of the output signal. It is evident that the
OPSs are capable of obtaining very low levels of NMSE
in all filters (i.e., LN, WN and Volterra with uniform and
Gaussian distribution) and all settings. For periods equal to or
larger than 217 the OPSs provide results equivalent to those
obtained with PPS or with the LS method. On the contrary,
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Fig. 3. First experiment: NMSEs for (a) LN filter and (b) Volterra filter on
uniform distribution input, and for (c) WN filter and (d) Volterra filter on
Gaussian distribution input.
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Fig. 4. Second Experiment: Seconds, third, and total harmonic distortion.
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Fig. 5. Second Experiment: Noise Gain of OPSs for LN, WN and Volterra
filters.

the results of the cross-correlation method based on stochastic
inputs, indicated with XC in Fig. 3, provide poor results
in all conditions. It is thus possible to appreciate the great
improvement obtained in recent years in the identification with
the cross-correlation method, passing from stochastic inputs to
deterministic sequences as the PPS and OPS. Furthermore, it
is important to underline that OPSs reach these good results
with a lower computational complexity than PPSs and the LS
method. The OPSs with period 218 reduce the computational
complexity of the identification by at least a factor 5 in
comparison with the PPS that have period 220.4.

B. Second Experiment

In the second experiment, the identification of a Fender Hot
Rod Deluxe vacuum tube power amplifier working at 44.1 kHz
sampling frequency was performed. The guitar amplifier was
loaded with a Two Notes Torpado Load Captor 8 avoiding
the speaker influence. The acquisitions were performed using
a National Instruments Compact Rio chassis (cRIO-9024)
equipped with a 2-channel voltage analog output NI-9260 and
with a 3-channel voltage analog input NI-9232, connected to
a desktop PC. Both generation and acquisition boards were
configured to use the same sample clock with a sample rate
of 44,100 Hz. The National Instruments software LabView
was used to generate the test signals and to acquire the
measurements.
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Fig. 6. Second Experiment: NMSEs for (a) LN filter and (b) Volterra filter
on uniform distribution input, and for (c) WN filter and (d) Volterra filter on
Gaussian distribution input.

The amplifier was identified again with LN, WN, and
Volterra filters of order 3, but with kernels having different
memory and diagonal number:

• kernel 1 has memory 64,
• kernel 2 has memory 40 and diagonal number 15,
• kernel 3 has memory 32 and diagonal number 12.

For the OPSs, we used periodic inputs with periods:
{9573, 214, 215, 216, 217, 218}, and samples having uniform
or Gaussian distribution. PPSs for Legendre and WN filters
suitable to identify the same filter with period of 2, 097, 656 '
221 samples were also considered. Moreover, more than
1, 000, 000 random samples with Gaussian and uniform dis-
tribution were also applied as input. The input signal powers
and the peak amplitude for the samples having Gaussian and
uniform distribution were the same of the first experiment.

Ten different settings were considered with different level
of nonlinear distortion and different gain on the input signal.
To give an indication of the level of nonlinear distortion,
Fig. 4 plots the harmonic distortion at the different settings.
The settings are sorted for increasing second order harmonic
distortion. The output signal to noise ratio ranged from 16 dB
till 50 dB according to the different settings.

The Noise Gain for the considered signals is shown in
Fig. 5. For the Period 9573, the minimum OPS period that
allows us the identification of the considered filters, the
noise gain is unacceptably high, identification performance is
consequently very bad and is not plotted in the following.

The LN, WN, and Volterra filters were identified on the
periodic signals with the cross-correlation method using OPSs.
The LN and WN filters were also identified with the cross-
correlation method using PPSs and stochastic inputs. All
filters were identified also with the LS method over 218 input
samples having Gaussian or uniform distribution. The resulting
filters were then tested on a different segment of 200, 000
random samples having the same distribution used for the
identification. Figure 6 shows the NMSE in the identification
with the different methods. It is evident that also in this
case the OPSs are capable of obtaining very low levels of
NMSE in all filters (i.e., LN, WN and Volterra with uniform
and Gaussian distribution) and all settings. The performance
obtained with OPSs are similar to those of PPSs and LS
method. The performance of the cross-correlation method with
stochastic inputs, indicated with XC in the plots, is worse in all
conditions. It is important to underline that the good results of
the OPSs are reached with a lower computational complexity
than PPSs, as reported in the Figures. Considering an OPS of
period 216, the identification has a computational cost at least
32 time lower than the identification with PPSs.

C. Third Experiment

The third experiment considers the identification of an
analog nonlinear system, the Duffing oscillator model, which
has often been used as benchmark for nonlinear system
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identification, especially for continuous time system:

m
d2y

dt2
(t) + c

dy

dt
(t) + k1y(t) + k3y

3(t) = u(t),

y(0) = 0,

dy(0)

dt
(0) = 0.

(44)

In (44), u(t) and y(t) are the continuous-time input and output,
respectively, and m, c, k1, and k3 are the oscillator parameters.

The Duffing oscillator admits a Volterra series expansion
around the zero equilibrium point when the input is small
[56]–[58]. In what follows, we consider m = 1, c = 1.4,
k1 = 1 and k3 = 0.1, and we aim at identifying the system
with a discrete-time Volterra filter, and to estimate the model
parameters m, c, k1, and k3 from the knowledge of the
Volterra kernels. The system in (44) is an analog system and
we simulate the digital measurement chain as described in
Figure 7. Specifically, considering t measured in s, we work
with a sampling frequency of 2 Hz, which has been found
adequate in our experiments. We simulate the effect of the
digital-to-analog converter by i) upsampling the discrete-time
input signal by a factor 10, ii) filtering it by discrete time
low-pass filter of order 400 with 0.8 Hz passband, iii) linearly
interpolating the resulting signal (to find the input values
required by the ordinary differential equations solver). We then
apply the interpolated signal to the Duffing oscillator (using
the ode15s solver of Matlab). The analog-to-digital converter
is simulated by i) estimating the Duffing output signal on a
uniform time grid at 20 Hz sampling frequency (it requires
an interpolation of the ode15s output samples, which are
not uniformly distributed), ii) low-pass filtering the resulting
signal with a filter having order 400 and 0.8 Hz passband, ii)
downsampling the filter output with a 2 Hz frequency. The
delay introduced by the digital filters has been compensated
before the model identification.

Different signals have been applied and used to identify the
Duffing oscillator with a Volterra filter of order 3, memory
40, diagonal number 19, with only odd kernels since the even
kernels are zero [56], and thus with a total of 5780 coefficients.
The system has been identified as follows: i) with the cross-
correlation method considering an OPS for Volterra filters
of period 131, 072 and noise gain 1.62; ii) with the cross-
correlation method applied to stochastic inputs composed by
131, 072 and 3, 000, 000 samples of a zero mean white Gaus-
sian noise, estimating first a WN filter and then converting it to
a Volterra filter; iii) with the LS method over 131, 072 samples
of zero mean white Gaussian noise; iv) with multi-tone signals,
described later, that allow a parametric identification of the
model. All signals have the same variance equal to 1/12. The
Volterra models (case i, ii, iii) were then used to obtain the
step-response of the Duffing oscillator for a step of amplitude
0.1. Fig. 8 compares the estimated step-responses with the
actual step-response of the system in Figure 7. In the Figure,
y(t) is the actual step-response, LS, XC, OPS indicate the
step-responses obtained with the LS method, with the cross-
correlation method using a stochastic input and using an OPS,
respectively. We can see that system identified with OPS
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provides equally good results as the LS method. The system
identified with the cross-correlation method with a stochastic
input over 131, 072 samples provides a much worse estimation.
This estimation improves for 3, 000, 000 samples but it is still
worse than the other methods. The cross-correlations with
stochastic inputs, indeed, reach the ideal values only for very
large numbers of input samples [26], [59].

In this experiment, for the same identification performance,
the OPS allows us to identify the model with a computational
complexity which is 24 times lower than cross-correlation
method with stochastic input, and is several magnitude orders
lower than the LS method.

We next consider the estimation of the Duffing model
parameters m, c, k1, and k3 under different noise conditions.
These parameters can be estimated from the knowledge of
the Volterra kernels. In fact, as shown in [60], the Fourier
transform of the first order kernel of the Duffing model is

H1(jω) =
1

k1 + c(jω)−m(jω)2
, (45)

and the main diagonal of multidimensional Fourier transform
of the third order kernel is

H3(jω, jω, jω) = −k3[H1(jω)]3H1(3jω). (46)

Thus, m, c, k1 have been estimated by curve fitting the Fourier
transform of the first order Volterra kernel in the band [0, 0.8]
Hz. Then k3 has been obtained from (46) and averaged over
a few frequency samples around the zero frequency.

For comparison purposes, we have also estimated the same
parameters m, c, k1, and k3 with a multi-tone approach. Ac-
cording to [61], the outputs for a dual-tone signal and a single-
tone signal are sufficient to estimate the Duffing oscillator
parameters. The method of [61] estimates the output spectrum
on eight frequencies using the dual-tone and applies a single-
tone for obtaining a further measure. With these nine values, it
obtains a nonlinear equation system in nine variables, i.e., k3

and the Fourier transform of the first order kernel at the eight
frequencies. Parameters m, c, and k1 are obtained by curve
fitting the Fourier transform. Nevertheless, at the considered
settings we have obtained poor results with the method of
[61] due to a poor estimation of the tones harmonics. To
solve this problem, we have estimated the Duffing parameters
using four dual-tone signals with frequencies equal to those
of the fundamentals and harmonics of [61], i.e., with angular
frequencies, [0.4ωn, 0.5ωn], [1.2ωn, 1.5ωn], [0.6ωn, 1.4ωn],

[0.3ωn, 1.3ωn], where ωn =
√

k1
m . All signals have power

1/12. A single tone sequence with angular frequency 0.5ωn
and power 1/24 was also applied as input. From the values
of output spectra in correspondence to the tone frequencies,
using the formulas (22a), (22b), and (22i) of [61] it is possible
to obtain a nonlinear equation system of nine equations in
nine variables that allows to accurately estimate k3 and the
Fourier transform of the first order Volterra kernel at the tone
frequencies. From the latter, it is possible to estimate the
parameters m, c, and k1 by curve fitting as in [61].

Table II provides the ensemble average of the Duffing
oscillator parameters estimated over 100 identifications with
the OPS, the least-square method (LS) and the multi-tone

approach (MT), when the output signal is corrupted with a
zero mean white Gaussian noise at different signal-to-noise
(SNR) ratios. For all methods, the parameters are estimated
over the same number of input samples. Table III provides the
same results for a non-Gaussian output noise, specifically a
Gaussian mixture composed by a zero mean Gaussian noise
with probability 0.95 and a second zero mean Gaussian noise
with variance 100 times larger than the first and probability
0.05. We estimated also the same parameters for the cross-
correlation method applied to stochastic inputs, but these
results are not reported since the estimation of k3 is much
worse than with the other methods. From Table II and III we
can notice that the estimate of m, c, and k1 is very reliable,
while the estimate of k3 is generally affected by a larger error.
The proposed estimate with OPSs, provides results as good
as those of the LS method and of the multi-tone method,
confirming the good characteristics of the proposed approach.

TABLE II
ENSEMBLE AVERAGES OF DUFFING PARAMETERS ESTIMATED UNDER

DIFFERENT GAUSSIAN MEASUREMENT NOISES

SNR
0 dB 20 dB 40 dB 60 dB

M
et

ho
d

OPS

m = 1.011 m = 0.997 m = 0.999 m = 0.999
c = 1.381 c = 1.404 c = 1.404 c = 1.404
k1 = 1.011 k1 = 0.998 k1 = 0.999 k1 = 0.999
k3 = 0.071 k3 = 0.092 k3 = 0.098 k3 = 0.097

LS

m = 1.020 m = 1.003 m = 0.999 m = 0.999
c = 1.400 c = 1.403 c = 1.403 c = 1.403
k1 = 1.010 k1 = 1.001 k1 = 0.999 k1 = 0.999
k3 = 0.061 k3 = 0.086 k3 = 0.093 k3 = 0.093

MT

m = 1.003 m = 1.000 m = 1.001 m = 1.000
c = 1.400 c = 1.400 c = 1.400 c = 1.400
k1 = 0.998 k1 = 0.999 k1 = 0.998 k1 = 0.998
k3 = 0.061 k3 = 0.088 k3 = 0.091 k3 = 0.091

TABLE III
ENSEMBLE AVERAGES OF DUFFING PARAMETERS ESTIMATED UNDER

DIFFERENT NON-GAUSSIAN MEASUREMENT NOISES

SNR
0 dB 20 dB 40 dB 60 dB

M
et

ho
d

OPS

m = 0.964 m = 0.994 m = 0.999 m = 0.999
c = 1.423 c = 1.404 c = 1.404 c = 1.404
k1 = 0.969 k1 = 0.997 k1 = 0.999 k1 = 0.999
k3 = 0.150 k3 = 0.092 k3 = 0.097 k3 = 0.097

LS

m = 0.978 m = 0.997 m = 0.999 m = 0.999
c = 1.402 c = 1.406 c = 1.403 c = 1.403
k1 = 0.988 k1 = 0.998 k1 = 0.999 k1 = 0.999
k3 = 0.172 k3 = 0.094 k3 = 0.094 k3 = 0.093

MT

m = 0.999 m = 1.000 m = 1.000 m = 1.000
c = 1.400 c = 1.400 c = 1.400 c = 1.400
k1 = 0.999 k1 = 0.998 k1 = 0.998 k1 = 0.998
k3 = 0.094 k3 = 0.091 k3 = 0.091 k3 = 0.091

VI. CONCLUSION

The paper presents a novel family of deterministic input sig-
nals, the OPSs, that allows the identification of FLiP filters on
a finite time interval with the cross-correlation method. System
identification with OPSs requires applying a periodic input to
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the unknown system, recording the corresponding output for at
least one period2, computing each of the FLiP filter diagonals
from the cross-correlation between the output and the OPS
corresponding to the specific diagonal. The OPSs share many
similarities with the PPSs. In contrast to PPSs, OPSs allow also
the identification of non-orthogonal FLiP filters, as the popular
Volterra filter. They can also identify FLiP filters with a period
and a computational complexity much lower than PPSs. The
achievable performance of OPSs has been theoretically studied
and has been verified with experimental results. With more
than 1,300 filter identifications, it has been shown that OPSs
can achieve performance similar to PPSs and to LS method
with a much smaller computational complexity. It should also
be noted that OPSs could be developed also for other families
of LIP nonlinear filters, specifically all families of LIP filters
that share the filterbank structure of FLiP filters, as for example
the Hammerstein or the FLANN filters. In fact, these filters
can often be interpreted as particular cases of FLiP filters, or
parallel connections of FLiP filters. Future works will concern
the use of OPSs in machine learning and artificial intelligence
systems.

The OPSs used in the experiments of Section V and other
example of OPSs can be found at [62].

APPENDIX

PROOF OF (37)

By replacing in (36) the expression of hν(n) ∗ ν(n),

Nν−1∑
m=0

hν(m)ν(n−m) =

n∑
m=n−Nν+1

ν(m)hν(n−m),

we have

MSDi,j =

= E[<

n∑
m=n−Nν+1

ν(m)hν(n−m)zi(n− j) >2
L]

= E[(

L−1∑
n=0

n∑
m=n−Nν+1

ν(m)hν(n−m)zi(n− j))2]

= E[(

L−1∑
n=0

L−1∑
m=−Nν+1

ν(m)hν(n−m)zi(n− j))2],

since hν(n) = 0 for n /∈ [0, Nν −1]. By exchanging the order
of the two summations we obtain

MSDi,j =

= E[(

L−1∑
m=−Nν+1

ν(m)

L−1∑
n=0

hν(n−m)zi(n− j))2]

= E[(

L−1∑
m=−Nν+1

ν(m) < hν(n−m)zi(n− j) >L)2].

Computing the expectation of the squared summation in the
last expression, all autocorrelation functions of the white noise

2In practice, when we apply the periodic input starting from zero, we must
wait the transitory period to end before starting recording, with the transitory
period which is equal to the memory N of the FLiP filter.

ν(n) vanish except those equal to the variance of ν(n), letting
us to obtain (37).

ACKNOWLEDGMENT

The authors would like to thank Giovanni L. Sicuranza for
sharing his expertise and wisdom and for reviewing the first
version of this paper.

REFERENCES

[1] G. L. Sicuranza and A. Carini, “Nonlinear system identification using
quasi-perfect periodic sequences,” Signal Processing, vol. 120, pp. 174–
184, Mar. 2016.

[2] A. Carini, S. Cecchi, and S. Orcioni, Orthogonal LIP Nonlinear Filters.
Oxford, UK: Butterworth-Heinemann, 2018, ch. 2, pp. 15–46.

[3] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J. Arenas-
Garcia, and W. Kellermann, “Adaptive combination of Volterra kernels
and its application to nonlinear acoustic echo cancellation,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 19, no. 1,
pp. 97–110, 2011.

[4] N. Vanli and S. Kozat, “A comprehensive approach to universal piece-
wise nonlinear regression based on trees,” IEEE Transactions on Signal
Processing, vol. 62, no. 20, pp. 5471–5486, 2014.

[5] H. Vogt, G. Enzner, and A. Sezgin, “State-space adaptive nonlinear self-
interference cancellation for full-duplex communication,” IEEE Trans-
actions on Signal Processing, vol. 67, no. 11, pp. 2810–2825, 2019.

[6] F. C. Pinheiro and C. G. Lopes, “A low-complexity nonlinear least
mean squares filter based on a decomposable Volterra model,” IEEE
Transactions on Signal Processing, vol. 67, no. 21, pp. 5463–5478, 2019.

[7] C. Hofmann and W. Kellermann, Recent Advances on LIP Nonlinear
Filters and Their Applications: Efficient Solutions and Significance-
Aware Filtering. Oxford, UK: Butterworth-Heinemann, 2018, pp. 71 –
102.

[8] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, Spline Adap-
tive Filters: Theory and Applications. Oxford, UK: Butterworth-
Heinemann, 2018, pp. 47 – 69.

[9] V. Patel and N. V. George, “Design of dynamic linear-in-the-parameters
nonlinear filters for active noise control,” in 24th European Signal
Processing Conference (EUSIPCO), Aug. 2016, pp. 16–20.

[10] R. Claser, V. H. Nascimento, and Y. V. Zakharov, “A low-complexity
RLS-DCD algorithm for Volterra system identification,” in 24th Euro-
pean Signal Processing Conference (EUSIPCO), Aug. 2016, pp. 6–10.
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