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Performance of Analog Beamforming Systems with

Optimized Phase Noise Compensation
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Abstract—Millimeter-wave and Terahertz frequencies, while
promising high throughput and abundant spectrum, are highly
susceptible to hardware non-idealities like phase-noise, which
degrade the system performance and make transceiver imple-
mentation difficult. While several phase-noise compensation tech-
niques have been proposed, there are limited results on the post-
compensation system performance. Consequently, in this paper,
a generalized reference-signal (RS) aided low-complexity phase-
noise compensation technique is proposed for high-frequency,
multi-carrier systems. The technique generalizes several existing
solutions and involves an RS that is transmitted in each symbol,
occupies adjacent sub-carriers, and is separated from the data
by null sub-carriers. A detailed theoretical analysis of the post-
phase-noise compensation performance is presented for an ana-
log beamforming receiver under an arbitrary phase-noise model.
Using this analysis, the performance-impact of several system
parameters is examined and the throughput-optimal designs
for the RS sequence, RS bandwidth, power allocation, number
of null sub-carriers, and the number of estimated phase-noise
spectral components are also derived. Simulations performed
under 3GPP compliant settings suggest that the proposed scheme
is robust to phase-noise modeling errors and can, with the
optimized parameters, achieve better performance than several
existing solutions.

Index Terms—Phase noise, phase tracking reference signal,
analog beamforming, millimeter wave, Terahertz, massive
MIMO.

I. INTRODUCTION

Millimeter (mm) and Terahertz (THz) frequencies offer a

huge increase in bandwidth in comparison to the sub-6GHz

frequencies, and are thus strong candidate communication

bands to successfully deliver the exponentially rising wire-

less data traffic [1]. These higher frequencies also enable

implementation of massive antenna arrays on small form fac-

tors, making massive multiple-input-multiple-output (MIMO)

systems practically more viable. However, hardware non-

idealities like phase-noise (PhN) also tend to increase with the

carrier frequency, degrading the system performance. The PhN

arises from the device noise in the radio-frequency oscillator

circuit of the transceiver, and causes random perturbations

in the instantaneous frequency of the oscillator output [2].

While low levels of PhN can cause a slow channel aging

effect, also known as common phase error (CPE) [3], [4],

higher levels of PhN additionally induce symbol distortion.

This distortion manifests as inter-carrier-interference (ICI) in

multi-carrier systems, such as those operating with orthog-

onal frequency division multiplexing (OFDM) [5]–[8], and

can severely limit the signal-to-interference-plus-noise ratio

(SINR) gains offered by the massive antenna arrays, at mm-
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wave/THz frequencies.1 Consequently, the impact of PhN

on multi-carrier massive antenna transceivers has received

significant attention in the recent works.

Information theoretic bounds on the capacity of channels

affected by PhN have been explored for a few scenarios and

PhN models in [10], [11]. The performance degradation due

to PhN in different multi-antenna architectures has also been

investigated in [3], [12]–[18]. To alleviate the degradation,

several PhN estimation and compensation techniques for have

also been proposed [7]–[9], [19]–[31], as summarized in

the next paragraph. However, despite the plethora of PhN

estimation techniques, there are few analytical results on the

achievable performance after PhN compensation. Such an

analysis can help not only in determining the impact and opti-

mal values of the parameters for the PhN estimation scheme,

but also in determining the best transceiver architecture to

adopt [14]. As a step towards addressing this gap, in this

paper we propose a low-complexity PhN estimation technique

that generalizes several existing schemes and enjoys some

benefits over others. We then present a rigorous analysis of the

performance after the PhN compensation, and determine the

throughput maximizing values of many system parameters.

Before discussing the proposed PhN estimation scheme, we

provide a brief overview of the prior art. In one class of

PhN estimation techniques, the PhN and data are estimated

iteratively using a decision feedback estimation process [7],

[8], [19]–[22] for every symbol. This approach focuses on

estimating PhN with minimal pilot overhead, at the expense

of a higher computational cost and decoding latency [27].

In another class of techniques, pilot aided, non-iterative PhN

estimation approaches have been suggested [23]–[31].2 For

example, [23] explores the mitigation of CPE due to PhN

using pilot sub-carriers spread across the system bandwidth,

and a similar strategy was also adopted by the 3GPP Rel

15 new radio (NR) standard [9]; [24] explores the use of

time domain pilots for PhN estimation and [25] additionally

identifies the dominant PhN basis to estimate the principal

components; [26], [27] explore pilot aided joint CPE and

channel estimation, with linear interpolation between the

pilots; and [28] explores a pilot aided Bayesian estimation of

PhN via Kalman smoothing. In yet another approach [29]–

[31], a high power sinusoidal pilot/reference signal (RS),

separated from the data sub-carriers by a guard-band, is used

to estimate and compensate for both CPE and ICI in the

frequency domain. Recently, the use of such a sinusoidal RS

1With 3GPP adopting OFDM at mm-wave frequencies [9], it is expected
that multi-carrier systems such as OFDM will also be prime candidates for
adoption at THz frequencies.

2Some of these works also involve an optional decision-directed iterative
feedback loop for better performance but with higher complexity.
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for joint analog channel estimation and PhN compensation

in analog beamforming systems has also been explored [17],

[18]. While most of these works use simulations to quantify

the post-PhN-compensation performance [3], [5], [7], [8],

[19], [20], [22], [25], [26], [28]–[33], some analyze the CPE

correction case [34], [35] and some others use approximations

involving first-order Taylor approximations to the PhN or

assume independence of PhN estimation errors and channel

noise [21], [27].

Fig. 1. An illustration of the base-band, pre-beamforming TX signal with
phase noise.

In our proposed PhN estimation technique, the transmitter

transmits a known band-limited pilot/RS in every symbol

along with the data. The RS occupies a few adjacent sub-

carriers and is separated from the data sub-carriers by null

sub-carriers, as shown in Fig. 1. The receiver uses the received

RS to estimate the dominant spectral components of PhN in

the frequency domain. The benefits of the proposed scheme

are as follows: firstly, unlike the decision feedback iterative

approaches [7], [8], [19]–[22], the use of pilots reduces the

computational complexity of PhN estimation and prevents

error propagation. Secondly, unlike the pilots in [23]–[28],

the band-limitedness of the proposed RS obviates the need for

channel equalization prior to PhN estimation, thus reducing

estimation noise accumulation. Thirdly, the use of null sub-

carriers and frequency domain PhN estimation prevent ICI

from the data sub-carriers and inter-symbol interference (ISI)

from adjacent symbols, respectively, during PhN estimation.

Finally, the use of multiple sub-carriers for the RS spreads out

the RS power spectrum, which can help meet spectral mask

regulations with ease in comparison to [29]–[31], which are

special cases of the proposed estimation technique with a sinu-

soidal RS. In this paper, we consider a multi-antenna system

with receive analog beamforming and an arbitrary oscillator

PhN model, and derive closed-form bounds for the SINR and

throughput after PhN compensation with this technique. The

bounds are used to analyze the impact of different system

parameters on the performance. Furthermore, we also find

the throughput-optimal values3 of some of these parameters,

namely, the power allocation to the RS, the number of RS

sub-carriers and null sub-carriers to use and the number of

PhN spectral components to estimate. We also show that

sequences with good aperiodic auto-correlation properties, e.g.

Barker sequences [36], [37] and aperiodic Zero Correlation

Zone (ZCZ) sequences [38]–[40], are good candidates for

the RS. The proposed technique is also consistent with the

PhN estimation framework in 3GPP NR Rel 15, where such

an RS is referred to as the phase-tracking reference signal

(PTRS) [9], [32], [33]. However, the current 3GPP PTRS

3Throughout the paper, we use ‘throughput-optimal’ to refer to solutions
that maximize an approximate bound to the system capacity after accounting
for the RS overhead.

has a different time-frequency pattern and only estimates and

compensates for the CPE. The contributions of this paper are

as follows:

1) We propose a generalized RS aided PhN compensation

technique for multi-antenna OFDM systems.

2) We characterize the SINR and throughput of a multi-

antenna receiver using analog beamforming and the PhN

compensation technique, under an arbitrary PhN model

and in terms of easily computable PhN statistics.

3) These PhN statistics are also derived in closed form for

an important PhN model.

4) We find throughput-optimal designs for the RS and

also provide throughput-optimal solutions for the RS

bandwidth, power allocation, the number of null sub-

carriers and the number of PhN spectral components to

estimate with the technique.

5) We compare of the performance of the scheme to

several prior works under practically relevant simulation

scenarios.

The organization of the paper is as follows: the system

model is discussed in Section II; the PhN models and PhN

spectral statistics are discussed in III; the PhN estimation

and compensation is discussed in Section IV; the signal,

interference and noise components of the demodulated outputs

are characterized in Section V; the system throughput is

studied in Section VI; the optimal RS design is presented in

Section VII; simulation results are provided in Section VIII;

and the conclusions are summarized in Section IX.

Notation: scalars are represented by light-case letters; vec-

tors and matrices by bold-case letters; and sets by calligraphic

letters. Additionally, j =
√
−1, E{} represents the expectation

operator, c∗ is the complex conjugate of a complex scalar

c, ‖a‖ represents the ℓ-2 norm of a vector a, A† is the

Hermitian transpose of a complex matrix A, λ↓a{A} is the a-

th largest eigenvalue of a matrix A, δ(t) represents the Dirac

delta function, δAa,b is the modulo-A Kronecker delta function

with δAa,b = 1 if a = b (mod A) and δAa,b = 0 otherwise

and Re{·}/Im{·} refer to the real/imaginary components,

respectively.

II. GENERAL ASSUMPTIONS AND SYSTEM MODEL

Fig. 2. An illustration of a single user downlink system with RX analog
beamforming.

We consider the downlink of a single-user system, with

one base-station/transmitter (TX) having Mtx antennas and

one user-equipment/receiver (RX). The RX is assumed to

have an analog beamforming architecture [41], [42], with Mrx

antennas connected to one down-conversion chain via Mrx

phase-shifters, as illustrated in Fig. 2. While the TX may

have an arbitrary architecture, we assume that the TX allocates

one up-conversion chain and one data-stream to this RX. The



TX and RX are assumed to create narrow beams using an

arbitrary beamforming technique [43]–[52], and are assumed

to have sufficient prior channel knowledge to implement

the analog beamformers.4 The results in the paper can also

directly be extended to a multi-user scenario, where the TX

provides orthogonal access to the different users in time,

frequency or space. For this RX, the TX transmits OFDM

symbols with K sub-carriers. The sub-carriers are indexed

as K , {−K1, ...,K2} for convenience, where K1,K2 can

be arbitrary and K = K1 + K2 + 1. Data is transmitted

on the K1 − G lower and K2 − G higher sub-carriers, i.e.

on indices K \ G, where G , {−G, .., 0, .., G} and G is a

system parameter determining the number of non-data sub-

carriers. The RS for tracking PhN is transmitted on sub-

carriers Ĝ , {−Ĝ, .., 0, .., Ĝ}, where Ĝ ≤ G, while the

remaining sub-carriers G \ Ĝ are nulled to act as a guard-band

between the reference and data signals. Here Ĝ, G are system

parameters to be optimized later and the signal structure is

illustrated in Fig. 1 for convenience. Under these conditions,

the complex equivalent transmit signal of the 0-th OFDM

symbol to the representative RX can be expressed as:

stx(t) =

√

2

Ts
t

[

∑

g∈Ĝ

pge
j2πfgt

+
∑

k∈K\G

xke
j2πfkt

]

ej[2πfct+θtx(t)], (1)

for −Tcp ≤ t ≤ Ts, where Ts and Tcp are the symbol

duration and the cyclic prefix duration, respectively, t is

the Mtx × 1 unit-norm TX beamforming vector, pg is the

coefficient of the RS on the g-th subcarrier, xk is the data

signal on the k-th sub-carrier, fc is the carrier frequency,

fk = k/Ts represents the frequency offset of the k-th sub-

carrier from fc and θtx(t) represents the PhN process of

the TX oscillator. Here we define the complex equivalent

signal such that the actual (real) transmit signal is given

by Re{stx(t)}. For the data sub-carriers (k ∈ K \ G), we

assume the use of independent, zero-mean data streams with

equal power allocation E{|xk|2} = Ed and for RS, we define

Er ,
∑

g∈Ĝ |pg|2. The transmit power constraint is then given

by Er + (K − |G|)Ed ≤ Es, where Es is the total OFDM

symbol energy (excluding the cyclic prefix). In addition, to

emulate spectral mask regulations, we also consider a bound

Ē on the transmit power per sub-carrier, i.e., |pg|2, Ed ≤ Ē.

With a slight abuse of notation, throughout the paper we shall

use pk with an unrestricted subscript k, with the understanding

that pk = 0 if |k| > Ĝ. For convenience, we also define

the aperiodic auto-correlation function of the RS sequence as:

Rp(a) ,
∑Ĝ

g=−Ĝ pgp
∗
g+a.

The channel to the representative RX is assumed to have

L̃ multi-path components (MPCs), and the corresponding

Mrx ×Mtx channel impulse response matrix and its Fourier

transform, respectively, are given as [53]:

H(t) =

L̃−1
∑

ℓ=0

αℓarx(ℓ)atx(ℓ)
†δ(t− τℓ) (2a)

4Such channel knowledge may include either instantaneous channel pa-
rameters or average channel parameters [41].

H(f) =

L̃−1
∑

ℓ=0

αℓarx(ℓ)atx(ℓ)
†
e−j2π(fc+f)τℓ , (2b)

where αℓ is the complex amplitude, τℓ is the delay and

atx(ℓ), arx(ℓ) are the Mtx × 1 TX and Mrx × 1 RX response

vectors, respectively, of the ℓ-th MPC. For example, the ℓ-th
RX response vector for a uniform planar antenna array with

MH horizontal and MV vertical elements (Mrx =MHMV) is

given by arx(ℓ) = ãrx
(

ψrx
azi(ℓ), ψ

rx
ele(ℓ)

)

, where:

[ãrx
(

ψazi, ψele

)

]
MVh+v

= exp

{

j2π
∆Hh sin[ψazi] sin[ψele]

λ

+ j2π
∆V(v − 1) cos[ψele]

λ

}

, (3)

for h ∈ {0, ..,MH − 1} and v ∈ {1, ..,MV}, ψrx
azi(ℓ), ψ

rx
ele(ℓ)

are the azimuth and elevation angles of arrival for the ℓ-
th MPC, ∆H,∆V are the horizontal and vertical antenna

spacings and λ is the carrier wavelength. The expression for

atx(ℓ) can be obtained similarly. Without loss of generality,

let the channel MPCs with non-negligible power along the

TX-RX analog beams be indexed as {0, .., L − 1}, where

L ≤ L̃. Due to the large antenna arrays and associated narrow

analog beams at the TX and RX, the effective channel r†H(t)t
typically has a small delay spread (i.e., τL−1 ≪ Ts) and

a large coherence bandwidth [54]. Consequently, and since

the TX can afford an accurate oscillator, we shall neglect

variation of the TX PhN within this small delay spread, i.e.,

θtx(t − τL−1) ≈ θtx(t). Additionally, we shall also assume

that the non-data subcarriers (k ∈ G) lie within a coherence

bandwidth of the effective channel i.e. Ts/2g ≥ τL−1.

The RX is assumed to have a low noise amplifier followed

by a band-pass filter (BPF) at each antenna, that leaves the

desired signal un-distorted but suppresses the out-of-band

noise. The filtered signals at each antenna are then phase-

shifted by an RX analog beamformer, combined and down-

converted via an RX oscillator and then sampled by an analog-

to-digital converter (ADC) at K/Ts samples/sec, as depicted

in Fig. 2. Assuming perfect timing synchronization at the RX,

the sampled received base-band signal for the 0-th OFDM

symbol can be expressed as:

srx,BB[n] =

L−1
∑

ℓ=0

αℓr
†arx(ℓ)atx(ℓ)

†
t

[

∑

k∈Ĝ

pke
j2πfk(

nTs
K

−τℓ)

+
∑

k∈K\G

xke
j2πfk(

nTs
K

−τℓ)

]

ej[θtx[n]+θrx[n]] + w[n], (4)

for 0 ≤ n < K , where the Re/Im parts of srx,BB[n] are the

outputs corresponding to the in-phase and quadrature-phase

components of the RX oscillator, r is the Mrx × 1 unit norm

RX beamformer, θtx[n] , θtx(nTs/K), θrx[n] is the sampled

PhN process of the RX oscillator, w[n] ∼ CN (0,N0K) is the

post-beamforming effective additive Gaussian noise process

with independent and identically distributed samples and N0

is the noise power spectral density. Conventional OFDM

demodulation is then performed on the combined base-band

signal (4). The demodulated sub-carriers k ∈ G are used for

PhN estimation, while sub-carriers k ∈ K \ G are used for

data demodulation, as shall be discussed in Section IV. Prior



estimates of the effective channel r†H(t)t are not required

for the proposed PhN estimation algorithm in Section IV-A,

which prevents accumulation of estimation noise.

A. Phase Noise Model

The PhN of a free-running oscillator is often modeled as a

Wiener process [6], [8], [20]. In practice, however, oscillators

are usually driven by a phase lock loop (PLL) to reduce

the output PhN. Several models have been proposed for the

PhN of such PLL circuits: from the Ornstein-Ulhenbeck (OU)

process [20], [55] used in theoretical investigations, to the

filtered Gaussian models used in system level simulations

[56] etc. To keep the analysis compatible with any such PhN

models, in this work we model θ[n] , θtx[n] + θrx[n] as an

arbitrary random process satisfying the following criteria:

C1 e−jθ[n] is a wide-sense stationary process.

C2 The power spectrum of e−jθ[n] is dominated by the low

frequency components.

All of the aforementioned PhN models satisfy these two

generic criteria. Finally, since oscillator data sheets usually

report the PhN using metrics that quantify its power spectral

density [57], we shall strive to present our results only in

terms of the power spectral density of e−jθ[n].

III. PHASE NOISE AND CHANNEL NOISE STATISTICS

In this section, we analyze the statistics of the PhN and the

channel noise. Note that the sampled channel noise w[n] and

the sampled PhN ejθ[n] for 0 ≤ n < K can be expressed

using their normalized Discrete Fourier Transform (nDFT)

coefficients as:

w[n] =
∑

k∈K

Wke
j2πkn/K (5a)

ejθ[n] =
∑

k∈K

Ωke
j2πkn/K , (5b)

where Wk = 1
K

∑K−1
n=0 w[n]e

−j2πkn/K and Ωk =
1
K

∑K−1
n=0 e

−jθ[n]e−j2πkn/K are the corresponding nDFT co-

efficients. Here nDFT is a slightly unorthodox definition for

Discrete Fourier Transform, where the normalization by K
is performed while finding Wk,Ωk instead of in (5). These

coefficients satisfy the following remark:

Remark III.1. The nDFT coefficients Wk,Ωk are periodic

with period K and satisfy:
∑

k∈K

Ωk1+kΩ
∗
k2+k = δKk1,k2

(6a)

E{Wk1Wk2

†} = δKk1,k2
N0, (6b)

for arbitrary integers k1, k2.

The proof is skipped for brevity, and can be found in [18].

Note that (6a) implies that the nDFT coefficients are coupled

together, which makes the analysis difficult – a fact neglected

in first-order Taylor approximation based analysis [27]. Using

the fact that e−jθ[n] is wide-sense stationary from criterion

C1, we also define the second order statistical parameters:

∆k1,k2 , E{Ωk1Ω
∗
k2
} and µ(a, b) ,

∑a+b
c=a−b ∆c,c. Note

that from criterion C2, we have ∆k,k ≈ 0 and µ(0, a) ≈ 1
for 0 ≪ |k|, |a| ≤ K/2. These statistics can be computed

for an arbitrary PhN process using Monte Carlo simulations.

However for some important cases, such as the Wiener PhN

model, they can be computed in closed from as shown in

Appendix A. The analysis and observations from Appendix

A also justify criterion C2.

IV. PHASE NOISE ESTIMATION AND COMPENSATION

In this section, we discuss the PhN estimation and com-

pensation approach. From the definition of nDFT coefficients

and from (4), note that the received signal on sub-carrier k
can be expressed as:

Yk =
1

K

K−1
∑

n=0

srx,BB[n]e
−j2πkn/K

≈
∑

g∈Ĝ

β0pgΩk−g +
∑

k̄∈K\G

βk̄xk̄Ωk−k̄ +Wk, (7)

where βk , r†H(fk)t and we use βg ≈ β0 for g ∈ Ĝ as

discussed in Section II. As is evident from (7), the transmit

signal xk̄ on sub-carrier k̄ leaks into the received signal of

a neighboring sub-carrier k. This leakage is in proportion to

the nDFT coefficient Ωk−g and causes ICI. Such ICI can be

suppressed by appropriate PhN estimation and compensation,

as shall be discussed in the following subsections.

A. Phase noise estimation

From criterion C2, note that the PhN nDFT coefficients

Ωk for the lower frequency indices dominate its behavior

and impact. Consequently, we shall only estimate Ωk for the

dominant spectral components: k ∈ U , where we define U ,

{−U, .., U}. Here U is a design parameter whose throughput-

optimal value shall be discussed later in Section VII. These

coefficients {Ωk|k ∈ U} shall be estimated from the received

RS signal, via the sub-carrier outputs {Yk | |k| ≤ Ĝ + U}.

Note that to suppress the ICI from the data sub-carriers during

this estimation process, the number of null sub-carriers in

G can be chosen to be sufficiently large (see Fig. 1). Thus,

neglecting the interference from these data sub-carriers, from

(7), the received signal on a sub-carrier k ∈ [−Ĝ−U, Ĝ+U ]
can be expressed as:

Yk
(1)≈ β0

[

Ĝ
∑

g=−Ĝ

pgΩk−g

]

+Wk

= β0

[

∑

u∈U

pk−uΩu

]

+Wk

+β0

[

−U−1
∑

g=−2Ĝ−U

pk−gΩg +

2Ĝ+U
∑

g=U+1

pk−gΩg

]

, (8)

where pa = 0 if |a| > Ĝ. The first term in (8) involves

PhN components we desire to estimate, the second term is the

channel noise, while the last term involves interference from

the higher frequency PhN terms. Note that the neglected data

interference in
(1)
≈ is proportional to Ed[1−µ(0, G− Ĝ−U)],

which rapidly reduces to 0 with increasing G from crite-

rion C2. Thus, to keep this approximation tight, we assume



G ≥ Ĝ+2U for the rest of the analysis. Equation (8) can be

expressed in matrix form as:

Y(U) = β0P
(U)Ω(U) + β0Q

(U)Ω(inf) +W(U), (9)

where Y(U),W(U) are (2Ĝ+2U+1)×1 vectors with the i-th
entries being Yi−Ĝ−U−1 and Wi−Ĝ−U−1, respectively, Ω(U)

is a (2U + 1) × 1 vector with [Ω(U)]i = Ωi−U−1 and P(U)

is a (2Ĝ+ 2U + 1)× (2U + 1) rectangular, banded Toeplitz

matrix with [P(U)]i,j = p−Ĝ+i−j . Furthermore, Ω(inf) is a

4Ĝ × 1 vector with [Ω(inf)]i = Ω−2Ĝ−2U−1+i if i ≤ 2Ĝ

and [Ω(inf)]i = Ω4Ĝ+2U+1−i otherwise, and Q(U) is a (2Ĝ+

2U + 1) × 4Ĝ rectangular matrix with [Q(U)]i,j = pĜ+i−j

for j ≤ 2Ĝ and [Q(U)]i,j = pĜ−2U−1+i−j otherwise. For

convenience of the reader, the cumbersome (9) is represented

pictorially in Fig. 3. Assuming Rp , [P(U)]
†
P(U) to be full

Fig. 3. Pictorial depiction of equation (9).

rank without loss of generality, the least squares (LS) estimate

for β0Ω
(U) can then be obtained as:

̂
β0Ω

(U) = R−1
p [P(U)]

†
Y(U)

= β0(1 + χ)Ω(U) + β0Φ
(U) + Ŵ(U), (10a)

where Ŵ(U) ∼ CN
(

O(2U+1)×1,R
−1
p N0

)

and we define:

χ , E

{

Ω(U)†R−1
p [P(U)]

†
Q(U)Ω(inf)

}/

µ(0, U) (10b)

Φ(U)
, R−1

p [P(U)]
†
Q(U)Ω(inf) − χΩ(U). (10c)

Here, Ŵ(U) is the estimation noise, χ quantifies the fraction

of interference that is aligned with the desired signal Ω(U),

and Φ(U) is the uncorrelated component of the interference.

While in most practical settings we may have χ ≈ 0, here we

shall not make that assumption for generality.

While the linear minimum mean square error (LMMSE)

estimation of Ω(U) may lead to less estimation error than

with LS estimation, here we consider the latter due to two

reasons. Firstly, the LS estimate in (10a) does not require

knowledge of β0, thus preventing channel estimation errors

from affecting the PhN estimates, i.e., error propagation.

Secondly, unlike LMMSE, the LS estimate does not require

the knowledge of the PhN cross-statistics {∆u1,u2 |u1 6= u2},

which may be unavailable in practice for a realistic PhN

process. A comparison of the two estimators is performed

via simulations later in Section VIII. For convenience, let us

also define Φu , [Φ(U)]U+1+u and Ŵu , [Ŵ(U)]u+U+1
as the uncorrelated interference and the estimation noise,

respectively, in the LS estimate of Ωu for u ∈ U . We then

have the following result on Φ(U):

Lemma 1. The interference term in (10a), viz. Φ(U) satisfies:
∑

u∈U

|(1+χ)Ωu +Φu|2 ≤ 1 + Υp (11a)

∑

u∈U

E

{

|Φu|2
}

≤ Υpµ(0, 2Ĝ+ U)

−
(

Υp+|χ|2
)

µ(0, U) (11b)

|χ|2 ≤ Υp[µ(0, 2Ĝ+ U)− µ(0, U)]

µ(0, U)
, (11c)

∑

u∈U

E

{

ΦuΩ
∗
u

}

= 0 (11d)

where Υp , λ↓1
{

[Q(U)]
†
P(U)R−2

p [P(U)]
†
Q(U)

}

.

Proof. For (11a), we use:
∑

u∈U

|(1 + χ)Ωu +Φu|2 =
∑

u∈U

|Ωu + (Φu + χΩu)|2

(1)

≤
[

√

∑

u∈U

|Ωu|2 +
√

∑

u∈U

|Φu + χΩu|2
]2

(2)
=

[

∥

∥Ω(U)
∥

∥+
∥

∥R−1
p P(U)†Q(U)Ω(inf)

∥

∥

]2

(3)

≤
[

√

∑

u∈U

|Ωu|2 +
√

Υp

∥

∥Ω(inf)
∥

∥

2

]2

(4)

≤
[

√

∑

u∈U

|Ωu|2 +
√

Υp

(

1−
∑

u∈U

|Ωu|2
)

]2

(5)

≤ 1 + Υp,

where
(1)

≤ follows from the Triangle inequality,
(2)
= follows

from the definition of Φ(U),
(3)

≤ follows by defining Υp as the

largest singular value,
(4)

≤ follows from (6a), and
(5)

≤ follows

by optimizing
∑

u |Ωu|2. Similarly for (11b) we have:

∑

u∈U

E

{

|Φu|2
}

(6)
= E

{

∥

∥R−1
p P(U)†Q(U)Ω(inf)

∥

∥

2

− |χ|2
∥

∥Ω(u)
∥

∥

2
}

(7)

≤ E

{

Υp

∥

∥Ω(inf)
∥

∥

2 − |χ|2
∥

∥Ω(u)
∥

∥

2
}

(8)
= Υpµ(0, 2Ĝ+ U)−

(

Υp + |χ|2
)

µ(0, U),

where
(6)
= ,

(7)

≤ ,
(8)
= follow from the definitions of χ, Υp and µ(·),

respectively. Note that (11c) is a direct consequence of (11b)

in conjunction with
∑

u∈U E

{

|Φu|2
}

≥ 0. Finally for (11d)

we have:
∑

u∈U

E

{

ΦuΩ
∗
u

}

=E

{

Ω(U)†R−1
p P(U)†Q(U)Ω(inf)

− χΩ(U)†Ω(U)
}

=0,

where the last step follows from the definition of χ.



B. Phase noise compensation

To compensate for the PhN-induced phase rotation and ICI

in (7), a simple PhN compensation technique is considered,

where the post-compensation k-th OFDM output can be

expressed as:

Ŷk =
∑

u∈U

[ ̂β0Ω
(U)

]

∗

u+U+1
Yk+u

(1)
=

∑

u∈U

[β∗
0 (1 + χ∗)Ω∗

u + β∗
0Φ

∗
u + Ŵ ∗

u ]

[

Wk+u

+
∑

g∈Ĝ

β0pgΩk+u−g +
∑

k̄∈K\G

βk̄xk̄Ωk+u−k̄

]

, (12)

and
(1)
= follows from (10a). These PhN compensated sub-

carriers {Ŷk|k ∈ K \G} are then used to demodulate the data

signals xk . Note that CPE-only compensation [23], [58] is a

special case of (12), obtained by picking U = 0. Using (6a), it

can be shown that the above technique can completely cancel

the PhN in the absence of estimation noise Ŵu and for U ≫ 1
(albeit at a very high pilot overhead). These demodulated

outputs for more general system settings are analyzed in the

next section. From (10a) and (12), it can also be verified

that the proposed PhN estimation and compensation technique

only requires a small overhead of ≤ (2U + 1)K complex

multiplications per OFDM symbol.

V. ANALYSIS OF THE DEMODULATED OUTPUTS

We shall split Ŷk in (12) into three components as: Ŷk =
Ŝk + Îk + Ẑk. The first component Ŝk, referred to as the

signal component, involves the terms in (12) containing xk
and not containing the channel noise, PhN estimation errors

or interference. The second component Îk, referred to as

the interference component, involves the terms containing

{pg, xk̄|g ∈ Ĝ, k̄ ∈ K \ {k}} or estimation errors in
̂β0Ω

(U)

and not containing the channel or estimation noise. The third

component Ẑk, referred to as the noise component, contains

the remaining terms. These signal, interference and noise

components are analyzed in the following subsections.

A. Signal component analysis

From (12), the signal component for k ∈ K \ G can be

expressed as:

Ŝk =
∑

u∈U

β∗
0βkxk(1 + χ∗)E

{

|Ωu|2
}

. (13)

Note that since the coefficient
∑

u∈U |Ωu|2 can be unknown

and random for each symbol, we only consider its statistical

mean, viz. µ(0, U), to contribute to the signal component.

Thus the signal component is independent of the instantaneous

realization of {Ωu|u ∈ U}. As is evident, the phase rotation

due the PhN is suppressed by the compensation technique and

the magnitude of signal component increases with U . Taking

an expectation with respect to xk, the energy of the signal

component can be expressed as:

E{|Ŝk|
2} = |β0βk|2Ed|1 + χ|2µ(0, U)

2
. (14)

B. Interference component analysis

From (12), the interference component for k ∈ K \ G can

be expressed as: Îk = Î
(1)
k + Î

(2)
k , where:

Î
(1)
k =

∑

u∈U

∑

g∈Ĝ

|β0|2
[

(1 + χ∗)Ω∗
u +Φ∗

u

]

pgΩk+u−g (15a)

Î
(2)
k =

∑

u∈U

∑

k̄∈K\[G∪{k}]

β∗
0βk̄xk̄

[

(1 + χ∗)Ω∗
u +Φ∗

u

]

Ωk+u−k̄

+ β∗
0βkxk

[

∑

u∈U

(

(1 + χ∗)Ω∗
u +Φ∗

u

)

Ωu

− (1 + χ∗)µ(0, U)
]

. (15b)

Note that the last term (1 + χ∗)µ(0, U) in (15b) subtracts

out the contribution of the signal component (13). Using the

independent, zero mean assumption on the sub-carrier data,

the first and second moment of Îk, averaged over the PhN

and data can be expressed as:

E{Îk} =
∑

u∈U

∑

k∈Ĝ

|β0|2pk(1 + χ∗)∆k+u−k,u (16a)

E{|Îk|
2} = E{|Î(1)k |

2
}+ E{|Î(2)k |

2
}. (16b)

The terms in (16b) can further be bounded as:

E{|Î(1)k |
2
}

= E

∣

∣

∣

∣

∑

u∈U

[

(1 + χ∗)Ω∗
u +Φ∗

u

][

∑

g∈Ĝ

pg|β0|2Ωk+u−g

]

∣

∣

∣

∣

2

(1)

≤ E

{

[

∑

u∈U

∣

∣(1 + χ)Ωu +Φu

∣

∣

2
]

×
[

∑

u∈U

∣

∣

∣

∑

g∈Ĝ

pg|β0|2Ωk+u−g

∣

∣

∣

2]
}

(2)

≤ (1 + Υp)E
[

∑

u∈U

∣

∣

∣

∑

g∈Ĝ

pg|β0|2Ωk+u−g

∣

∣

∣

2]

(3)

≤
∑

u∈U

(1 + Υp)|β0|4Er

[

∑

g∈Ĝ

∆k+u−g,k+u−g

]

=
∑

g∈Ĝ

(1 + Υp)Er|β0|4µ(k − g, U) (16c)

E{|Î(2)k |
2
}

(4)

≤
∑

k̄∈K\{k}

|β0βk̄|2EdE

∣

∣

∣

∣

∑

u∈U

[

(1 + χ∗)Ω∗
u +Φ∗

u

]

Ωk+u−k̄

∣

∣

∣

∣

2

+ |β0βk|2EdE

∣

∣

∣

∣

∑

u∈U

[

(1 + χ∗)Ω∗
u +Φ∗

u

]

Ωu

−(1 + χ∗)µ(0, U)

∣

∣

∣

∣

2

(5)

≤
∑

ū,ü∈U

|β0β̄|2EdE

{

[

(1 + χ∗)Ω∗
ū + Φ∗

ū

][

(1 + χ)Ωü +Φü

]

×
[

∑

k̄∈K

Ωk+ū−k̄Ω
∗
k+ü−k̄

]

}

− |β0β̄|2Ed|1 + χ|2µ(0, U)
2



(6)
=

∑

ū∈U

|β0β̄|2EdE
{

|(1 + χ)Ωū +Φū|2
}

− |β0β̄|2Ed|1 + χ|2µ(0, U)
2

(7)

≤ |β0β̄|2Ed

[

(1 + χ+ χ∗)µ(0, U)− |1 + χ|2µ(0, U)
2

+Υp

(

µ(0, 2Ĝ+ U)− µ(0, U)
)

]

, (16d)

where
(1)

≤ follows by using the Cauchy-Schwartz inequality;
(2)

≤ follows by using (11a);
(3)

≤ follows by using the Cauchy-

Schwartz inequality again;
(4)

≤ also follows from the inde-

pendent, zero mean assumption for sub-carrier data and by

including summation over k̄ ∈ G for the first term;
(5)

≤ follows

by defining β̄ , maxk∈K |βk| and using (11d) for the second

term;
(6)
= follows from (6a); and

(7)

≤ follows from (11b).

C. Noise component analysis

The noise component of the received signal on sub-carrier

k ∈ K \ G can be expressed as:

Ẑk = Ẑ
(1)
k + Ẑ

(2)
k + Ẑ

(3)
k + Ẑ

(4)
k , where:

Ẑ
(1)
k =

∑

u∈U

∑

g∈Ĝ

Ŵ ∗
uβ0pgΩk+u−g

(1)
=

Ĝ+U
∑

v=−Ĝ−U

∑

u∈U

Ŵ ∗
uβ0pv+uΩk−v (17a)

Ẑ
(2)
k =

∑

u∈U

∑

k̄∈K\G

Ŵ ∗
uβk̄xk̄Ωk+u−k̄ (17b)

Ẑ
(3)
k =

∑

u∈U

β∗
0 [(1 + χ∗)Ω∗

u +Φ∗
u]Wk+u (17c)

Ẑ
(4)
k =

∑

u∈U

Ŵ ∗
uWk+u, (17d)

where
(1)
= is obtained by using change of variables v = g − u

and letting pa = 0 for |a| > Ĝ. From Remark III.1 and

equations (8)–(10a), it can be readily verified that Ŵu and Wk

are circularly symmetric, zero-mean Gaussian and mutually

independent for u ∈ U , k ∈ K \G. Additionally, they are also

independent of {Ωk|k ∈ K}. Therefore the first and second

moments of the noise signal, averaged over the PhN, channel

noise and data signals, can be expressed as:

E{Ẑk} = 0 (18a)

E{|Ẑk|
2} =

4
∑

i=1

E{|Ẑ(i)
k |

2
}. (18b)

Using ⋄ as short hand for U+1 to save space, these individual

moments can be expressed as:

E{|Ẑ(1)
k |

2
}

(1)

≤
[

Ĝ+U
∑

v=−Ĝ−U

∆k−v,k−v

]

×
[

Ĝ+U
∑

v=−Ĝ−U

E

∣

∣

∣

∣

∣

∑

u∈U

Ŵ ∗
ūβ0pv+ū

∣

∣

∣

∣

∣

2]

(2)
= µ(k, Ĝ+ U)

[ Ĝ+U
∑

v=−Ĝ−U

∑

ū,ü∈U

|β0|2N0

× [R−1
p ]⋄+ü,⋄+ūpv+ūp

∗
v+ü

]

(3)
= µ(k, Ĝ+ U)

[

∑

ū,ü∈U

|β0|2N0[R
−1
p ]⋄+ü,⋄+ū

( Ĝ+U
∑

v=−Ĝ−U

pv+ūp
∗
v+ü

)

]

(4)
= µ(k, Ĝ+ U)

[

∑

ū,ü∈U

|β0|2N0[R
−1
p ]⋄+ü,⋄+ū

[Rp]⋄+ū,⋄+ü

]

= µ(k, Ĝ+ U)|U||β0|2N0 (18c)

E{|Ẑ(2)
k |

2
} =

∑

k̄∈K\G

|βk̄|2EdE

∣

∣

∣

∑

u∈U

Ŵ ∗
uΩk+u−k̄

∣

∣

∣

2

(5)

≤
∑

k̄∈K

|β̄|2EdE

[

∑

ū,ü∈U

Ŵ ∗
ūŴüΩk+ū−k̄Ω

∗
k+ü−k̄

]

=
∑

ū,ü∈U

[R−1
p ]

⋄+ü,⋄+ū
N0|β̄|2EdE

[

∑

k̄∈K

Ωk+ū−k̄Ω
∗
k+ü−k̄

]

(6)
= Tr{R−1

p }N0|β̄|2Ed (18d)

E{|Ẑ(3)
k |

2
} (7)
=

∑

u∈U

|β0|2E
{

|(1 + χ∗)Ωu +Φu|2
}

N0

(8)

≤ |β0|2
[

(

1 + χ+ χ∗
)

µ(0, U)

+ Υp

(

µ(0, 2Ĝ+ U)− µ(0, U)
)

]

N0 (18e)

E{|Ẑ(4)
k |

2
} (9)
=

∑

u∈U

[R−1
p ]

⋄+u,⋄+u
N0

2

= Tr{R−1
p }N0

2, (18f)

where
(1)

≤ follows from the Cauchy Schwartz inequality;
(2)
=

follows by using the second moment of Ŵ(U) in (10a);
(3)
=

follows by changing the order of summation of v, u̇, ü;
(4)
= fol-

lows from the definition of Rp;
(5)

≤ by using β̄ , maxk∈K |βk|
and increasing the summation range for k̄;

(6)
= follows from

(6a);
(7)
= follows from definition of µ(·) in (14);

(8)
= follows

from (11b), (11d) and
(9)
= follows by observing that Ŵu and

Wk+u are independent for k ∈ K \ G.

VI. PERFORMANCE ANALYSIS

From the analysis in the previous section, the effective

channel between the k-th OFDM input and the k-th demodu-

lated output (after PhN compensation) can be expressed as:

Ŷk = β∗
0βkxk(1 + χ∗)µ(0, U) + Îk + Ẑk, (19)

where the statistics of the Îk, Ẑk are discussed in Section V.

Note that for demodulating xk from (19), the RX requires es-

timates of the channel coefficients {β∗
0βk(1+χ

∗)µ(0, U)|k ∈
K}. These coefficients can be tracked accurately at the RX

using pilot symbols, at the boosed SINR after PhN compen-

sation. For brevity, we shall assume perfect estimates of these



coefficients for the analysis.5 Noting that Ŝk, Îk, Ẑk in (19)

are uncorrelated, a lower bound to SINR on sub-carrier k can

be obtained as:

ΓLB
k (β) =

|β0βk|2Ed|1 + χ|2µ(0, U)
2

∑2
i=1 σ̄

2

Î
(i)
k

+
∑4

j=1 σ̄
2

Ẑ
(j)
k

, (20)

where σ̄2

Î
(i)
k

, σ̄2

Ẑ
(j)
k

are the upper bounds in (16) and (18),

respectively and β , {βk|k ∈ K}. Furthermore, considering

independent demodulation of each sub-carrier, the achievable

system throughput (conditioned on β) can be lower bounded

as:6

C(β)
(1)
=

1

K

∑

k∈K\G

[

H (xk)− H (xk|Ŷk, ̂
β0Ω

(U))

]

≥ 1

K

∑

k∈K\G

[

H (xk)− H (xk|Ŷk)
]

(2)

≥ 1

K

∑

k∈K\G

[

log [Ed]− log

[

Ed −
∣

∣E{Ŷkx∗k}
∣

∣

2

E{|Ŷk|
2}

]

]

(3)
=

1

K

∑

k∈K\G

log
(

1 + ΓLB
k (β)

)

, CLB(β), (21)

where
(1)
= follows by defining H (·) as the differential entropy;

(2)

≥ is obtained by using Gaussian signaling for xk and comput-

ing error variance of estimator x̂k = E{Ŷkx∗k}Ŷk
/

E{|Ŷk|
2};

and
(3)
= is obtained by noting that Ŝk, Îk, Ẑk in (19) are

uncorrelated. Note that the summation limits in (21) ensure

that the RS overhead is also considered in the throughput

analysis, and the dependence on the TX/RX beamformers is

captured in β.

VII. NEAR-OPTIMAL RS DESIGN AND SYSTEM

PARAMETERS

AlthoughCLB(β) in (21) is a closed-form throughput lower

bound, its dependence on the sub-carrier index k makes it

difficult to find near-optimal RS parameters. Therefore, for

optimizing parameters we shall focus only on the typical data-

subcarriers for which |k| ≫ G. Note that for these sub-

carriers, using G ≥ Ĝ + 2U , criterion C2 and assuming

Er ≪ Es, we observe that σ̄2

Î
(1)
k

, σ̄2

Ẑ
(1)
k

are negligibly small.7

So ignoring these two terms, (20) and (21) can be approxi-

mated as:

Γaprx
k (β) =

|β0βk|2Er(Es − Er)|1 + χ|2µ(0, U)
2

Ξ(β)
(22a)

Caprx(β) =
1

K

∑

k∈K\G

log
(

1 + Γaprx
k (β)

)

(22b)

5The impact of such channel estimation errors has been well explored

in literature [59] and can be incorporated by increasing power of Ẑk

appropriately.
6Here the expression for ergodic capacity is used, by assuming β remains

constant for infinite time but the PhN Ω experiences many independent
realizations. This capacity is representative of the throughput of practical
channel codes that have a block length spanning multiple OFDM symbols
but smaller than the coherence time of βk [60].

7Simulations have shown this approximation to be accurate even for Er

as high as Er = Es/2 and typical PhN levels.

where:

Ξ(β) ,|β0|2Er

[

|β̄|2(Es − Er) + (K − |G|)N0

][

µ(0, U)

× (1 + χ+ χ∗) + Υp

[

µ(0, 2Ĝ+ U)− µ(0, U)
]

]

− |β0β̄|2|1 + χ|2µ(0, U)2(Es − Er)Er

+Tr{ErR
−1
p }N0

[

|β̄|2(Es − Er) + (K − |G|)N0

]

.
(22c)

In this section, we shall analyze the impact of the 5 RS param-

eters: G, Ĝ, {p−Ĝ, .., pĜ}, Er and U on Caprx(β), and find

the Caprx(β)-maximizing designs of each of them, while the

remaining 4 parameters are held constant. The 5 parameters

can then be jointly optimized by simply iterating through these

conditionally optimal solutions. In practice, however, several

of these parameters may be pre-determined constants, thereby

obviating the need to iterate through them.

1) Worst case χ: From (10b), note that χ is a statistical

parameter whose value may be unknown. So here we con-

servatively use the worst case value of χ that maximizes

Ξ(β)/|1 + χ|2 (and thus minimizes Caprx(β)) while satis-

fying constraint (11c). Note that from (22c) this term can be

expressed in the form:

Ξ(β)
/

|1 + χ|2 = a+ (b− c|χ|2)
/

|1 + χ|2,

where a, b, c are constants independent of χ and b−c|χ|2 > 0
from (11c). It can readily be verified that for a given |χ|, this

term is maximized when χ is real and negative. Since the

worst-case solution is either a boundary point, singular point

or a stationary point of Ξ(β)
/

|1 + χ|2, the worst-case choice

is the one among the following two solutions which yields a

larger value of Ξ(β)
/

|1 + χ|2:

χ = max

{

−
√

Υp[µ(0, 2Ĝ+ U)− µ(0, U)]

µ(0, U)
,−1

}

, (23a)

χ = max

{

−
√

Υp[µ(0, 2Ĝ+ U)− µ(0, U)]

µ(0, U)
,

− Tr{R−1
p }N0

|β0|2µ(0, U)
− Υp

[

µ(0, 2Ĝ+ U)− µ(0, U)
]

µ(0, U)

}

. (23b)

Here (23a) results from (11c) and noting that Ξ(β)/|1 + χ|2
is not analytic at χ = −1 and (23b) is from (11c) and the

stationary point with
∂[Ξ(β)/|1+χ|2]

∂χ = 0.

2) Optimizing G: Using |G| = 2G+1, note that Caprx(β)
can be expressed in the form:

Caprx(β) =
∑

k∈K,|k|>G

log
[

1 +
βk

a+ b(K − 2G− 1)

]

,

where a and b are positive terms independent of G. Except in

pathological cases where βk ≪ β̄ for k ∈ G (a deep fade), it

can be verified that Caprx(β) is a strictly decreasing function

of G. Thus, the throughput optimal value of G is Gopt =
Ĝ + 2U viz., its lowest allowed value from Section IV-A.

In other words, a lower G (guard band size) is preferred to

improve the spectral efficiency. However a minimum size is

required to limit the ICI during the PhN estimation process.



3) Optimizing the RS sequence: We then have the follow-

ing theorem:

Theorem 1. For the worst case χ, Caprx(β) is maximized by

an RS with Rp(u) = 0 for u ∈ {−2U, ..., 2U} \ {0}, where

Rp(a) ,
∑Ĝ

g=−Ĝ pgp
∗
g+a, is the aperiodic auto-correlation

function of the RS sequence.

Proof. Note that for a given Ĝ, Ξ(β) (and hence Caprx(β))
depends on the RS sequence {pg|g ∈ Ĝ} via the terms: Υp

and Tr{R−1
p }. From the definition of Υp in Lemma 1, we

have:

0 ≤ Υp

(1)

≤ λ↓1{R−1
p }2λ↓1

{

[Q(U)]
†
P(U)[P(U)]

†
Q(U)

}

(2)

≤
2U+1
∑

i=1

4Ĝ
∑

j=1

λ↓1{R−1
p }2

∣

∣

∣

[

P(U)†Q(U)
]

i,j

∣

∣

∣

2

(3)

≤ λ↓1{R−1
p }24Ĝ(2U + 1)max

a 6=0
|R(a)|2 (24)

where
(1)

≤ follows from the results on eigenvalue majorization

[61, Eqn 3.20],
(2)

≤ follows from the Frobenius norm bound on

the matrix spectral norm and
(3)

≤ follows by observing that:

[

P(U)†Q(U)
]

i,j
=

{

Rp(−2Ĝ− i+ j) if j ≤ 2Ĝ

Rp(2U+1−2Ĝ− i+ j) if j > 2Ĝ.

On the other hand, from the definition of Rp in (10a) and

P(U) (see also Fig. 3), it follows that:

2U+1
∑

i=1

λ↓i {Rp} = Tr{Rp} = (2U + 1)Er

where λ↓i {Rp} is the i-th largest eigenvalue of Rp. Conse-

quently, we obtain the bounds:

λ↓1{R−1
p } =

1

λ↓2U+1{Rp}
≥ 1

Er
(25a)

Tr{R−1
p } = |U|

2U+1
∑

i=1

1

|U| [λ
↓
i {Rp}]

−1 (4)

≥ 2U + 1

Er
, (25b)

where
(4)

≥ follows from convexity of f(x) = 1/x for x > 0 and

using Jensen’s inequality. These bounds in (25) are satisfied

with equality iff λ↓i {Rp} = Er ∀i ≤ 2U+1. Since Rp is also

Hermitian symmetric, this implies (25) is met with equality iff

Rp = ErI2U+1. Using (24), (25) and observing that [Rp]a,b =

R(a−b), we conclude that both Υp and Tr{R−1
p } attain their

minimum values when Rp(u) = 0 for u ∈ {−2U, ..., 2U} \
{0}. Finally, noting that Ξ(β) is an increasing function of

Υp and Tr{R−1
p }, and a larger Υp also increases the feasible

values for the worst-case χ (see (11c)), the result follows.

From Theorem 1, it follows that an optimal choice for the

RS is a perfect aperiodic auto-correlation sequence, satisfying

Rp(u) = 0, ∀u 6= 0. A low auto-correlation essentially

reduces the power of the PhN estimation noise Ŵ(U) and

PhN estimation interference Φ(U) in (10a). While such a

perfect auto-correlation is not possible when Ĝ > 1, Barker

sequences can provide a close approximation [36], [37].

Several algorithms have also been proposed in literature to

find sequences with near-perfect auto-correlation [62].

Remark VII.1. With a good choice of U , the effective

channel (19) may operate in a noise limited regime where
∑4

j=1 σ̄
2

Ẑ
(j)
k

>
∑2

i=1 σ̄
2

Î
(i)
k

. In such scenarios, it may be

sufficient to only minimize Tr{R−1
p } by having Rp(u) = 0

for u ∈ {−2U, ..., 2U} \ {0}. Thus, aperiodic ZCZ sequences

[38]–[40] can also be good candidates for the RS.

4) Optimizing Ĝ: Using G = Ĝ + 2U and assuming the

use of a Theorem 1-satisfying RS for each Ĝ, we also observe

that Caprx(β) is a decreasing function of Ĝ for a fixed Er, χ.

Thus for a given RS energy per symbol Er, the throughput-

optimal choice of Ĝ is:

Ĝopt =
⌈

(Er − Ē)
/

2Ē
⌉

,

where Ē is the spectral mask limit on energy per sub-carrier

(see Section II). In other words, a smaller Ĝ (number of RS

sub-carriers) is preferred to improve the spectral efficiency,

but a minimum number is also required to satisfy the spectral

mask regulations for a given RS power Er. As a side note,

it should also be ensured that Ĝopt/Ts is sufficiently smaller

than the channel coherence bandwidth for (7) to hold.

5) Optimizing Er: Note that Er = 0 and Er = Es are

both poor allocations with Caprx(β) = 0, and thus the best

power allocation lies somewhere in between. Since Caprx(β)
is differentiable in Er, a valid stationary point for Er can be

computed by setting the partial derivative
∂[Er(Es−Er)/Ξ(β]

∂Er
=

0 as:

Estatn
r =

−A0 +
√

A2
0 +A0Es(A1 +A2Es)

A1 + A2Es
, (26)

where Ai is the coefficient of (Er)
i

in the cumbersome (22c),

and we note that Υp and Tr{ErR
−1
p } are independent of

Er. The best choice Eopt
r is then simply the solution among

{0, Es, E
statn
r } with the highest value of Caprx(β). Note that

if Ĝ is prefixed and cannot be updated based on (26) to meet

the spectral mask bound, then the reference power has to be

reduced to Eopt
r = min{Eopt

r , |Ĝ|Ē}.

6) Optimizing U : Finally, from (22c), it can be verified

that the power of the interference term decreases with U ,

while that of the noise term increases with U . Similarly,

from the summation limits in (21)-(22b) and G ≥ Ĝ + 2U ,

it can be observed that the RS overhead increases with

U . Thus U provides a trade-off between ICI suppression,

noise enhancement and RS overhead. While finding a closed

form expression for the Caprx(β)-maximizing U (for given

Er, Ĝ) is intractable, it can be computed numerically by

performing a simple line search of Caprx(β) over the range

0 ≤ U ≤ [min{K1,K2} − Ĝ]/2.

VIII. SIMULATION RESULTS

For the simulations, we consider a single cell THz system

with a λ/2-spaced 32 × 8 (Mtx = 256) antenna TX and

a representative RX with a λ/2-spaced 8 × 4 (Mrx = 32)

antenna panel. We also assume perfect timing synchronization

between the TX and RX. Using prior knowledge of the

channel spatial correlation matrix, the TX and RX are assumed



to beamform along the strongest cluster of channel MPCs

[44], [48]. The TX transmits one spatial OFDM data stream

with Ts = 1µs, K1 = K2 + 1 = 512 and transmits the

length 11 Barker sequence for the RS (Ĝ = 5). Unless

otherwise stated, the TX and RX are both assumed to have

fc = 90GHz oscillators with no carrier frequency offset and

the PhN is modeled as a Wiener processes, having variances of

σ2
θ,tx = σ2

θ,rx = 0.1/Ts (see Appendix A). This corresponds to

the practically relevant PhN level of −103 dBc/Hz at 10MHz

offset [63]. The RX is also assumed to have perfect knowledge

of β and N0. We first validate the derived analytical results

in Section VIII-A and shall compare performance of the

proposed optimized scheme to other PhN estimation schemes

in Section VIII-B. The results in this section are presented as a

function of the average post-beamforming SNR without PhN:

Es|βrms|2/N0K , where we define |βrms|2 ,
∑

k |βk|
2
/K .

A. Validating analytical results

To validate the analytically derived results in the paper, we

shall compare them to numerical results obtained via Monte-

Carlo simulations. For the numerical results, the SINR Γk(β)
for sub-carrier k is estimated, via Monte-Carlo iterations, as

the inverse mean-square distance of the soft decoded data-

symbols from the transmitted constellation points. Note that

this SINR definition is equivalent to the inverse square of the

signal error vector magnitude. Similarly, the ergodic through-

put is numerically computed using the numeric SINR values as
∑

k∈K\G log[1+Γk(β)]/K . For the numerical results, the ex-

act value of χ is statistically computed, while for the analytical

bounds we use the worst case χ from (23b). For easy repro-

ducibility, we consider a sample post-TX beamforming chan-

nel matrix H(t)t with L̃ = 3 MPCs, τℓ = [0, 20, 40]ns, angles

of arrival ψrx
azi = [0, π/10,−π/10], ψrx

ele = [0.45π, π/2, 0.4π]
and effective post-beamforming amplitudes αℓatx(ℓ)

†t =
[
√
0.6,−

√
0.3,

√
0.1]. The RX beamformer is assumed to be

r = ãrx(ψ
rx
azi(1), ψ

rx
ele(1))

/

|ãrx(ψrx
azi(1), ψ

rx
ele(1))| (see (3)).

1) Second order statistics: For the aforementioned channel

model and fixed Er = 0.01Es, the second moments of

the signal, interference and noise components Ŝk, Îk, Ẑk are

compared to their analytical bounds (14)-(18) in Fig. 4a. As

observed from Fig. 4a, the bounds on E{|Ŝk|
2},E{|Ẑk|

2} are

tight ∀k, while the bound on E{|Îk|
2} in (16) is only tight for

|k| ≫ 1. This is due to the looseness of the Cauchy-Schwartz

inequality in (16c). In addition in Fig. 4a, we also plot the

approximate bounds on E{|Îk|
2},E{|Ẑk|

2}, obtained after

ignoring the terms σ̄2

Î
(1)
k

and σ̄2

Ẑ
(1)
k

, as considered in Section

VII. Results show that these approximations are quite accurate

and also help significantly improve the tightness of the bound

on E{|Îk|
2}. For the same system settings, the simulated and

analytical SINR for the different sub-carriers are studied as

a function of average post-beamforming SNR in Fig. 4b. We

observe that while the SINR bound ΓLB
k (β) is tight for high

frequency sub-carriers, the approximate SINR bound Γaprx
k (β)

yields a tight bound ∀k. Note that these observations justify

our decision to optimize system parameters using (22) in

Section VII.

2) Optimal RS parameters: We next study the impact of

the parameters U,Er on the system throughput (including
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Fig. 4. Comparison of the analytical and simulated values of (a) E{|Ŝk|
2
},

E{|Îk|
2
}, E{|Ẑk|

2
} for Es|βrms|2/(N0K) = 20 dB and (b) SINR Γk(β)

for varying SNR. We use U = 3, G = 11, σ2
θ
= 0.2/Ts, Er = 0.01Es and

use 16-QAM modulated data symbols for simulations.

RS overhead) in Fig. 5. Here, while p/‖p‖ and Ĝ are

held constant, we use the throughput optimal G,Er, i.e.,

G = Ĝ+2U and Er from (26). As observed from the results,

the throughput changes unimodally with U . While the low

throughput at lower U is due to the PhN induced ICI, the

poor performance at high U is due to noise accumulation and

the RS + null sub-carrier overhead. We also note that the

throughput-optimal U increases with SNR. We also observe

that the analytical bound CLB(β) is loose for U ≫ 1,

which is due to the looseness of (16c). However, we observe

that Caprx(β) has an excellent match with the simulated

throughput. For simulation results, we additionally also use

brute-force search to find the optimal Er value. We observe

that the proposed Er value (26) provides almost identical

performance to the brute force search result. Furthermore, the

analytically optimal U coincides with the simulated optimal

U . For the simulation results, we also include in Fig. 5 the

performance of the RX when each sub-carrier coefficient of

the RS p is picked randomly from the 16QAM alphabet.

As evident from the results, the optimal design of the RS

suggested in Section VII provides significant gains over an



arbitrarily picked RS. These observations validate the choice

of parameters in Section VII.
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Fig. 5. Comparison of the analytical and simulated values of throughput
versus U with optimal Er. We use σ2

θ
= 0.2/Ts, Ē = Es, and we use

16-QAM modulated data symbols for numerically computing capacity.

3) LMMSE estimation and frequency offset: Next, we

compare the symbol error rate (SER) of the system, averaged

over sub-carriers, as a function of SNR in Fig. 6 for both

LS and LMMSE based PhN estimators for (9). Here, while

Er, Ĝ, G are held fixed, we use (i) U = 12 for the LMMSE

estimator and (ii) use U = Uopt for the LS estimator, where

the Caprx(β) maximizing Uopt is obtained for each SNR

value by a line search over U ∈ [0, 12] as discussed in Section

VII. While not require for the LS estimator, we assume perfect

knowledge of the PhN second-order cross-statistics ∆k1,k2

for the LMMSE estimator. Results show that knowledge of

the cross-statistics ∆k1,k2 for k1 6= k2 indeed provide some

performance gains for the MMSE estimator over the LS

estimator. However such knowledge might not be available

in practice or can even by faulty. As an example, in Fig. 6 we

also depict the performance of a scenario where the TX and

RX oscillators have a 1 MHz carrier frequency offset. As is

evident, the proposed PhN mitigation technique also provides

good performance and outperforms LMMSE estimator if there

exists an unknown oscillator frequency mismatch smaller than

Uopt/Ts. In other words, it is more resilient to PhN modeling

errors than LMMSE.8

B. Comparison to other schemes

Finally to justify the choice of our scheme, in Fig. 7 we

compare the performance of (i) our optimized PhN estimation

technique to (ii) PhN estimation with sinusoidal RS (Ĝ = 0)

[31], (iii) CPE only estimation [32], (iv) Iterative decision

feedback based PhN estimation [7], [20] and (v) system with

no PhN (an SER lower bound), under the 3GPP Rel. 15 UMa

LoS and NLoS channel models [64]. Additionally, we also

include the performance of (vi) cyclic prefix aided single

carrier transmission with symbol duration Ts/K and time

domain PhN estimation. While the schemes (i), (ii), (v) do

not require channel estimates prior to PhN estimation, for

8While not depicted here for brevity, the simulated SER of LMMSE
estimation by ignoring the cross-terms (i.e., using ∆k1,k2

= 0 for k1 6= k2)
is almost identical to the LS estimator.
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Fig. 6. Comparison of SER (averaged over data sub-carriers) versus SNR for
LS and LMMSE estimation of PhN. We use G = 30, σ2

θ
= 0.2/Ts, Er =

0.01Es, U = 12 for LMMSE, U ∈ [0, 12] for LS and we use 16QAM
modulated data symbols for simulations.

schemes (iii), (iv) and (vi) we assume apriori perfect channel

estimates. We also assume U ∈ [0, 20], G and Er for schemes

(i) and (ii) are designed in accordance to Section VII, and

the same values of U as in scheme (i) are used for scheme

(iv). A per sub-carrier spectral mask limit of Ē = 5Es/K is

considered, that limits the pilot/RS power boosting. To keep

the total pilot + null sub-carrier overhead comparable across

schemes, we use 30 uniformly-spaced pilot sub-carriers, each

with power Ē for schemes (iii) and (iv), while for scheme

(ii) we use a single RS with power Ē. For the single-carrier

transmission scheme (vi), use 30 uniformly spaced pilots of

energy Es/K in every K symbols, the RX estimates PhN

phase at pilot symbols after zero-forcing channel equalization,

and uses piece-wise linear phase interpolation to obtain PhN

phase at the intermediate data symbols. For these schemes,

the SERs with uncoded 16QAM transmission, averaged over

sub-carriers and channel realizations, are presented in Figs. 7a

and Fig. 7b. Here the RX beamformer is designed as r =
ãrx(ψ

rx
azi, ψ

rx
ele)

/

|ãrx(ψrx
azi, ψ

rx
ele)|, where ãrx(·) is from (3) and

ψrx
azi, ψ

rx
ele are the central azimuth and elevation angles of

arrival for the strongest MPC cluster. A similar design is used

for the TX beamformer t.

For LoS scenario, we observe that schemes (i) and (vi)

significantly outperform (ii), (iii) and (iv), while only requiring

a fraction of the computational effort as (iv). Here the poor

performance of scheme (ii) is due to the spectral mask

limit Ē on the power of the sinusoidal RS and of scheme

(iii) is due to the un-compensated ICI after CPE correction.

The decision feedback approach scheme (iv) achieves only

a limited performance improvement over (iii) even after two

decision feedback iterations due to the errors in data decoding

from previous iterations, i.e., error propagation. For the nLoS

scenario, the SER performance of all schemes, including the

no PhN bound (v), take a hit due to the higher amount

of frequency selective channel fading experienced. Here we

observe that the proposed scheme (i) also outperforms scheme

(vi), in addition to schemes (ii)-(iv), due to the high ISI

between data and pilot symbols experienced by single-carrier

systems in nLoS channels (with larger delay spreads). We also
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Fig. 7. Comparison of the average SER versus SNR for different PhN
compensation schemes (i)–(vi) in the UMa LoS and nLoS channels [64].
Here the SER averaging is performed over data sub-carriers and channel
realizations, and we use ψtx

azi
= ψrx

azi
= 0 and ψtx

ele
= ψrx

ele
= π/2 for the

LoS path in Fig. 7a.

observe that for a post-beamforming SNR < 25dB, scheme

(i) is reasonably close to the no PhN limit (v). Thus, with

appropriate PhN mitigation, multi-carrier systems can match,

and possibly out-perform, single-carrier systems even in a

PhN limited regime. Overall, we observe that the proposed

optimized PhN compensation technique outperforms several

existing solutions, and thus, the presented analysis is a good

representation of the state-of-the-art performance achievable

in analog beamforming systems by using PhN compensation.

IX. CONCLUSION

This paper proposes a novel RS-aided PhN estimation

and mitigation technique for multi-antenna multi-carrier high

frequency systems, wherein the RS is packed compactly in

the frequency domain and is separated from data by null

sub-carriers. The frequency concentration of the RS helps

decouple PhN estimation from channel estimation and also

helps keep the null sub-carrier overhead low, while the null

sub-carriers prevent the interference between the RS and

data. The detailed mathematical analysis shows that the low

frequency spectral components of the PhN dominate its be-

havior, and they can be estimated using the received sub-

carriers in the vicinity of the RS. The analysis also shows

that a trade-off exists between the RS overhead, ICI and noise

accumulation in the proposed scheme, which can be realized

by varying the estimated number of PhN spectral components.

Furthermore, we conclude that throughput-optimal designs

for the RS include Barker sequences and aperiodic ZCZ

sequences. Simulations support the analytical results and show

that the derived system parameters can enable achieving near

optimal performance. The results also show that the proposed

technique can compensate for small frequency offsets between

the TX and RX oscillators. Finally, simulations show that the

proposed PhN compensation technique outperforms several

other existing multi-carrier alternatives and can, in addition,

also outperform single-carrier schemes in channels with mod-

erately large delay spreads.

APPENDIX A

WIENER PHN MODEL

For the Wiener PhN model at ⋆ = tx/rx, θ⋆[n] is a non-

stationary Gaussian process. The increments θ⋆[n] − θ⋆[n −
1] are independent, zero-mean Gaussian with a variance of

σ2
θ,⋆Ts/K for each n, and σθ,⋆ is a parameter quantifying the

process. Consequently, the sum PhN θ[n] = θtx[n]+ θrx[n] is

also a Wiener process with parameter σ2
θ = σ2

θ,tx + σ2
θ,rx.

Lemma 2. For the Wiener model, the statistics of the PhN

nDFT coefficients satisfy:

∆k1,k2 , E{Ωk1Ω
∗
k2
}

=







































1
K2

[ K(1−|ρ1|
2)

(1−ρ∗
1)(1−ρ1)

− ρ∗
1(1−e−

σ2
θ
Ts
2 )

(1−ρ∗
1)

2

− ρ1(1−e−
σ2
θ
Ts
2 )

(1−ρ1)
2

]

for k1 = k2

1−e−
σ2
θ
Ts
2

K2(1−ρ2/ρ1)

[

1
1−ρ2

− 1
1−ρ∗

2

+ 1
1−ρ∗

1
− 1

1−ρ1

]

for k1 6= k2,

(27a)

for arbitrary integers k1, k2 and σθ > 0, where ρ1 ,

e−
σ2
θ
Ts−j4πk1

2K and ρ2 , e−
σ2
θ
Ts−j4πk2

2K . Furthermore, ∆k,k is a

decreasing function of |k| for K
2π cos−1

(

2ρ̄
1+ρ̄2

)

≤ |k| ≤ K/2,

where ρ̄ , e−
σ2
θ
Ts

2K .

Proof. Property (27a), for k1 6= k2 can be obtained as follows:

∆k1,k2 = E{Ωk1Ωk2

∗}

=
1

K2

K−1
∑

ṅ,n̈=0

E{e−j[θ[ṅ]−θ[n̈]}e−j2π
[k1ṅ−k2n̈]

K

(1)
=

1

K2

K−1
∑

ṅ,n̈=0

e−
σ2
θ
|ṅ−n̈|Ts
2K e−j2π

[k1ṅ−k2n̈]
K

(2)
=

1

K2

K−1
∑

d=0

K−1
∑

ṅ=d

e−
σ2
θ
dTs

2K e−j2π
k2d

K e−j2π
(k1−k2)ṅ

K

+
1

K2

0
∑

d=−K+1

K+d−1
∑

ṅ=0

e
σ2
θ
dTs

2K e−j2π
k2d

K e−j2π
(k1−k2)ṅ

K



(3)
=

1

K2

K−1
∑

d=0

e−
σ2
θ
dTs

2K
e−j2π

k2d

K − e−j2π
k1d

K

e−j2π
(k1−k2)

K − 1

+
1

K2

K−1
∑

d=0

e−
σ2
θ
dTs

2K
ej2π

k1d

K − ej2π
k2d

K

e−j2π
(k1−k2)

K − 1

(4)
=

1− e−
σ2
θ
Ts
2

K2(e−j2π
(k1−k2)

K − 1)
[

1

1− ρ∗2
− 1

1− ρ2
+

1

1− ρ1
− 1

1− ρ∗1

]

(28)

where
(1)
= follows by using the expression for the characteristic

function of the Gaussian random variable θ[ṅ] − θ[n̈]; (2)
=

follows by defining d = ṅ− n̈ and observing that the second

term is zero for d = 0;
(3)
= follows by computing the sum of

the geometric series over ṅ, and
(4)
= follows by computing the

sum of the geometric series over d and using the definition

of ρ1, ρ2 in the lemma statement. Similarly, for the case of

k1 = k2, we have:

∆k1,k1

(5)
=

1

K2

[

−K +

K−1
∑

d=0

K−1
∑

ṅ=d

e−
σ2
θ
dTs

2K e−j2π
k1d

K

+
K−1
∑

d=0

K−d−1
∑

ṅ=0

e−
σ2
θ
dTs

2K ej2π
k1d

K

]

=
1

K2

[

−K +

K−1
∑

d=0

(K − d)
[

(ρ∗1)
d
+ (ρ1)

d
]

]

(6)
=

1

K2

[

−K +
K

1− ρ∗1
+

K

1− ρ1

− ρ∗1(1− e−
σ2
θ
Ts
2 )

(1− ρ∗1)
2 − ρ1(1− e−

σ2
θ
Ts
2 )

(1− ρ1)
2

]

=
1

K2

[

K
(

1− e−
σ2
θ
Ts

K

)

(1− ρ∗1)(1 − ρ1)

− ρ∗1(1− e−
σ2
θ
Ts
2 )

(1− ρ∗1)
2 − ρ1(1− e−

σ2
θ
Ts
2 )

(1− ρ1)
2

]

(29)

where
(5)
= follows by using k1 = k2 and d = ṅ − n̈ in

(1)
= of

(28) and
(6)
= follows by using the expression for the sum of

an arithmetico-geometric series. Using (28) and (29), property

(27a) follows. Next, for ρ̄ = e−
σ2
θ

2K , let us define the function:

F(x) ,
(1 − ρ̄2)

K(1 + ρ̄2 − 2ρ̄x)
+

2ρ̄(1− ρ̄K)[2ρ̄− (1 + ρ̄2)x]

K2(1 + ρ̄2 − 2ρ̄x)
2 .

It can then be shown from (27a) that ∆k,k = F(cos(2πk/K)).
Furthermore, it can readily be observed that both terms of

F(x) are increasing functions of x for x ≤ 2ρ̄/(1 + ρ̄2).
Thus, ∆k,k is an increasing function of cos(2πk/K) for

cos(2πk/K) ≤ 2ρ̄/(1 + ρ̄2). Finally since cos(2πk/K) is

a decreasing function of |k| for 0 ≤ |k| ≤ K/2, the result

follows.

These second-order statistics are depicted for typical σ2
θ

values in Fig. 8a. From the monotone decreasing property

of ∆k,k with |k| and from Fig. 8a, we observe that most of

the PhN power is concentrated in a few dominant spectral

components around k = 0, thus justifying criterion C2.
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Fig. 8. Comparison of analytical and simulated statistics of the nDFT
coefficients of a Wiener PhN process with Ts = 1µs, K1 = K2 +1 = 512.
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M. H. Castañeda, J. Luo, R. D’Errico, G. Dussopt, A. Clemente,
T. Svensson, B. Makki, C. Fang, G. Durisi, Y. Zou, S. Armour, W. Yan,
U. Gustavsson, M. Fresia, M. Honglei, D. T. P. Huy, P. Ratajczak,
and H. Wang, “Initial multi-node and antenna transmitter and receiver



architectures and schemes; deliverable d5.1,” Tech. Rep. ICT-671650,
Horizon2020, Mar. 2016.

[58] V. Abhayawardhana and I. Wassell, “Common phase error correction
with feedback for OFDM in wireless communication,” in IEEE Global
Telecommunications Conference (GLOBECOM), 2002.

[59] Taesang Yoo and A. Goldsmith, “Capacity of fading mimo channels
with channel estimation error,” in 2004 IEEE International Conference
on Communications (IEEE Cat. No.04CH37577), vol. 2, pp. 808–813
Vol.2, 2004.

[60] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless Personal
Communications, vol. 6, pp. 311–335, Mar. 1998.

[61] R. Bhatia, Matrix Analysis (Graduate Texts in Mathematics). Springer
New York, 1997.

[62] P. Stoica, H. He, and J. Li, “New algorithms for designing unimodular
sequences with good correlation properties,” IEEE Transactions on
Signal Processing, vol. 57, pp. 1415–1425, apr 2009.

[63] J. Zhang, N. Sharma, W. Choi, D. Shim, Q. Zhong, and K. K. O.,
“85-to-127 GHz CMOS signal generation using a quadrature VCO
with passive coupling and broadband harmonic combining for rotational
spectroscopy,” IEEE Journal of Solid-State Circuits, vol. 50, pp. 1361–
1371, jun 2015.

[64] TR38.900, “Study on channel model for frequency spectrum above 6
GHz (release 14),” Tech. Rep. V14.3.1, 3GPP, 2017.

Vishnu V. Ratnam (S’10–M’19) received the
B.Tech. degree (Hons.) in electronics and electrical
communication engineering from IIT Kharagpur,
Kharagpur, India in 2012, where he graduated as
the Salutatorian for the class of 2012. He received
the Ph.D. degree in electrical engineering from
University of Southern California, Los Angeles, CA,
USA in 2018. He is currently a senior research
engineer in the Standards and Mobility Innovation
Lab at Samsung Research America, Plano, Texas,
USA. His research interests are in AI for wireless,

mm-wave and Terahertz communication, massive MIMO, channel estimation
and manifold signal processing, and resource allocation problems in multi-
antenna networks.

Dr. Ratnam is a recipient of the Best Student Paper Award at the IEEE
International Conference on Ubiquitous Wireless Broadband (ICUWB) in
2016, the Bigyan Sinha memorial award in 2012 and is a member of the
Phi-Kappa-Phi honor society.


	I Introduction
	II General Assumptions and System model
	II-A Phase Noise Model

	III Phase noise and channel noise statistics
	IV Phase noise estimation and compensation
	IV-A Phase noise estimation
	IV-B Phase noise compensation

	V Analysis of the demodulated outputs
	V-A Signal component analysis
	V-B Interference component analysis
	V-C Noise component analysis

	VI Performance Analysis
	VII Near-optimal RS design and system parameters
	VII-1 Worst case 
	VII-2 Optimizing G
	VII-3 Optimizing the RS sequence
	VII-4 Optimizing 
	VII-5 Optimizing Er
	VII-6 Optimizing U


	VIII Simulation Results
	VIII-A Validating analytical results
	VIII-A1 Second order statistics
	VIII-A2 Optimal RS parameters
	VIII-A3 LMMSE estimation and frequency offset

	VIII-B Comparison to other schemes

	IX Conclusion
	Appendix A: Wiener PhN model
	References
	Biographies
	Vishnu V. Ratnam


