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A Note on BIBO Stability
Michael Unser

Abstract—The statements on the BIBO stability of continuous-
time convolution systems found in engineering textbooks are
often either too vague (because of lack of hypotheses) or
mathematically incorrect. What is more troubling is that they
usually exclude the identity operator. The purpose of this note
is to clarify the issue while presenting some fixes. In particular,
we show that a linear shift-invariant system is BIBO-stable in
the L∞-sense if and only if its impulse response is included in
the space of bounded Radon measures, which is a superset of
L1(R) (Lebesgue’s space of absolutely integrable functions). As
we restrict the scope of this characterization to the convolution
operators whose impulse response is a measurable function, we
recover the classical statement.

I. INTRODUCTION

A statement that is made in most courses on the theory of
linear systems as well as in the English version of Wikipedia1

is that a convolution operator is stable in the BIBO sense
(bounded input and bounded output) if and only if its impulse
response is absolutely summable/integrable. While the proof
of this equivalence is fairly straightforward for discrete-time
systems, there seems to be some confusion in the continuous
domain (see Appendix B for specific references), especially
since the above statement excludes the identity operator,
whose impulse response is the Dirac distribution δ. Since δ
is not a measurable function in the sense of Lebesgue (see
explanations in Appendix A) and hence not a member of
L1(R), does this mean that the identity operator is not BIBO-
stable? Obviously not; this is what we want to clarify here. The
argument, which is somewhat technical, rests on the shoulders
of two giants: Laurent Schwartz and Lars Hörmander, who
were awarded the Fields medal in 1950 and 1962, respectively,
for their fundamental contributions to the theory of distribu-
tions and partial differential equations.

In the sequel, we shall revisit the topic of BIBO stability
with the help of appropriate mathematical tools. In Section
II, we recall the classical integral definition of a convolution
operator. We then present a correction to the standard charac-
terization of BIBO-stable filters (Proposition 1) together with a
new upgraded proof. Since the underlying assumption that the
impulse response should be a measurable function excludes the
identity operator, we first explain in Section III the extended
(distributional) form of convolution supported by Schwartz’
kernel theorem (Theorem 1). Based on this formalism, we
present two Banach-space extensions of the classical result
that should settle the issue: a first one (Theorem 2) that
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1 https://en.wikipedia.org/wiki/BIBO_stability. Accessed November 2019.

imposes that the result of the convolution be continuous, and a
second (Theorem 3) that characterizes the BIBO-stable filters
in full generality. The mathematical derivations are presented
in Section IV, where we also make the connection with known
results in harmonic analysis.

We like to mention a similar clarification effort by Hans Fe-
ichtinger, who proposes to limit the framework to convolution
operators that are operating on C0(R) (a well-behaved subclass
of bounded functions) in order to avoid pathologies [3]. This
is another interesting point of view that is complementary to
ours, as discussed in Section IV.

II. BIBO STABILITY: THE CLASSICAL FORMULATION

The convolution of two functions h, f : R → R is the
function usually specified by

t 7→ (h ∗ f)(t)
△

=

∫

R

h(τ)f(t− τ)dτ (1)

under the implicit assumption that the integral in (1) is well
defined for any t ∈ R. This latter point will be clarified as
we develop the mathematics. In particular, this requires that
the functions f and h both be measurable2 in the sense of
Lebesgue. Here, instead of designating the continuous-time
signal by f(t) and its convolved (or filtered) version by h(t)∗
f(t), as engineers usually do, we are using the less ambiguous
mathematical notations t 7→ f(t) or f ∈ Lp(R) and t 7→
(h ∗ f)(t) or h ∗ f ∈ L∞(R).

If we fix h and consider f as the input signal, then (1) de-
fines a linear shift-invariant (LSI) operator (or system) denoted
by Th : f 7→ h ∗ f . Its impulse response h is then formally
described as h = Th{δ}, where δ ∈ D′(R) is the Dirac
distribution and D′(R) Schwartz’ space of distributions [17].
This interpretation is backed by Schwartz’ kernel theorem, as
explained in Section III-A.

An important practical requirement for an LSI system is
that its response to any bounded input remains bounded.
There is one mathematical aspect, however, that makes the
formulation of BIBO stability nontrivial in the continuous
domain: Depending on the context, the input and output
boundedness requirements can be strict, with ‖f‖L∞

=

‖f‖sup
△

= supt∈R
|f(t)| < ∞, which arises when the function

f is continuous (i.e., f ∈ C(R)), or in the looser sense of
Lebesgue: |f(t)| ≤ ‖f‖L∞

< ∞ for almost any t ∈ R

(see Section III-B for additional explanations). This latter
condition is often expressed as f ∈ L∞(R) where L∞(R) =
{f : R → R s.t. f is measurable and ‖f‖L∞

< ∞} is
Lebesgue’s space of bounded functions.

2 A function f : R → R is said to be Lebesgue-measurable if the preimage
f−1(E) of any Borel set E in R is a Borel set [15]. The property is preserved
through pointwise multiplication and translation.

http://arxiv.org/abs/2005.14428v2
https://en.wikipedia.org/wiki/BIBO_stability
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Definition 1. The linear operator T : f 7→ T{f} is said to

be BIBO-stable if

1) T{f} is well-defined for any f ∈ L∞(R), and,

2) there exists a constant C > 0 independent of f such that

‖T{f}‖L∞
≤ C‖f‖L∞

for all f ∈ L∞(R).

The standard condition for the BIBO stability of the
continuous-time convolution operator Th : f 7→ h ∗ f that
is found in engineering textbooks is ‖h‖L1

< ∞, where the
L1-norm is defined by

‖h‖L1

△

=

∫

R

|h(t)|dt. (2)

A slightly more precise statement is h ∈ L1(R), where

L1(R) = {f : R → R s.t. f is measurable and ‖f‖L1
< ∞}

is Lebesgue’s space of absolutely integrable functions.
The sufficiency of the condition h ∈ L1(R) is deduced from

the standard estimate∣∣∣∣
∫

R

h(τ)f(t − τ) dτ

∣∣∣∣ 6
∫

R

|h(τ)| · |f(t− τ)| dτ

6

(∫

R

|h(τ)| dτ

)
‖f‖L∞

,

which is valid for any t ∈ R. The convolution integral (1) is
therefore well defined if f ∈ L∞(R), which then also yields
the classical bound on BIBO stability

‖h ∗ f‖L∞
≤ ‖h‖L1

‖f‖L∞
< ∞. (3)

By adapting the argument that is used in the discrete-time
formulation of BIBO stability, many authors (see Appendix
B) claim that the condition h ∈ L1(R) is also necessary. To
that end, they apply the convolution system to a “worst-case”
signal

f0(t) = sign
(
h(−t)

)
(4)

in order to produce the strongest response at t = 0,

(h ∗ f0)(0) =

∫ +∞

−∞
h(τ)sign

(
h(τ)

)
dτ =

∫ +∞

−∞
|h(τ)| dτ,

which is then claimed to saturate the stability bound (3)
with ‖h ∗ f0‖L∞

= ‖h‖L1
‖f0‖L∞

. Unfortunately, this simple
reasoning has two shortcomings. First, unlike in the discrete
setting, the characterization of what happens at t = 0, which
is a set of measure zero, is not sufficient to deduce that
‖h ∗ f0‖L∞

≥ (h ∗ f0)(0), unless one invokes the continuity
of t 7→ (h ∗ f0)(t), which is not yet known at this stage (see
Theorem 2). Second, one cannot ensure that the Lebesgue
convolution integral (1) is well defined for f0 ∈ L∞(R),
unless h is Lebesgue-integrable3, which then considerably
limits the scope of the claim about necessity.

Our first practical fix is an extension of the argumentation
to the larger space L1,loc(R) of measurable functions that are

3Any measurable function h : R → R admits a unique decomposition
as h = h+ − h− with h+, h− : R → R≥0. It is Lebesgue integrable if
min(‖h+‖L1

, ‖h−‖L1
) < ∞ [4].

locally integrable, meaning that
∫
K
|h(t)|dt < ∞ over any

compact domain K ⊂ R. The reassuring outcome, which
conforms with the practice in the field, is that one can
determine the stability of an LSI system by integrating the
absolute value of its impulse response—even if h is not
globally Lebesgue integrable, as in the case of an increasing
and possibly oscillating exponential.

Proposition 1. If h ∈ L1(R), then the convolution operator

f 7→ h ∗ f defined by (1) is BIBO-stable with ‖h ∗ f‖L∞
≤

‖h‖L1
‖f‖L∞

. Conversely, if the impulse response h is mea-

surable and locally integrable with
∫
R
|h(t)|dt = ∞, then

the system is not BIBO-stable, in which case it is said to be

unstable.

Proof. The first statement is a paraphrasing of (3). For the con-
verse part, we assume that h ∈ L1,loc(R) with

∫
R
|h(t)|dt =

∞. Because of the local integrability of h, one can then still
rely on the definition of the convolution given by (1), but only
if the input function f is bounded and compactly supported.
By considering the truncated versions f0,T = f0·1[−T,T ] of the
worst-case signal (4), we can therefore determine the maximal
value of the output signal as

(h ∗ f0,T )(0) =

∫ +T

−T

h(τ)sign
(
h(τ)

)
dτ =

∫ +T

−T

|h(τ)|dτ.

The additional ingredient is the continuity of t 7→ (h∗f0,T )(t)
in the neighborhood of t = 0 (see Proposition 4 in Ap-
pendix D), which allows us to conclude that (h ∗ f0,T )(0) ≤
supt∈R

|h ∗ f0,T (t)| = ‖h ∗ f0,T‖L∞
. While the latter quantity

is finite for any fixed value of T , we have that limT→∞(h ∗
f0,T )(0) =

∫
R
|h(t)|dt = ∞, which indicates that the output

signal becomes unbounded in the limit. This shows that the
underlying system is unstable.

Another way of obtaining Proposition 1 is as a corollary
of Theorem 3 (the complete characterization of BIBO-stable
systems) and Proposition 3 in Section IV. The important exam-
ples of unstable filters that fall within the scope of Proposition
1 are the systems ruled by differential equations with at
least one pole in the right-half complex plane; for instance,
h(t) = 1+(t)e

αt with Re(α) ≥ 0 [13]. The derivative operator
with h = δ′ and the Hilbert transform with h(t) = 1/(πt) are
unstable as well (as asserted by Theorem 3), but they fall
outside the scope of Proposition 1: the first because δ′ is not
a function (but a distribution), and the second because the
function 1/t is not locally integrable—in fact, the impulse
response of the Hilbert transform is the distribution “1/(πt)”
that requires the use of a “principal value” for the proper
definition of the convolution integral [18].

In the stable scenario, where h ∈ L1(R), we are able to
characterize the underlying filter by its frequency response

ĥ(ω)
△

= F{h}(ω) =

∫

R

h(t)e−jωtdt, (5)

which is the “classical” Fourier transform of h. Moreover,
the Riemann-Lebesgue lemma ensures that ĥ ∈ C0(R) with
‖ĥ‖sup ≤ ‖h‖L1

. We recall that C0(R) is the Banach space
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of continuous and bounded functions that decay at infinity,
equipped with the sup-norm.

III. BANACH FORMULATIONS OF BIBO STABILITY

The classical textbook statements on continuous-time BIBO
stability, including our reformulation in Proposition 1, have
two limitations. First, they exclude the identity operator with
h = δ, as explained in Appendix A. Second, they are often
evasive concerning the hypotheses under which the condition
h ∈ L1(R) is necessary (see Appendix B). In this section, we
show how this can be corrected by considering appropriate
Banach spaces.

A. Extension of the Notion of Convolution

The scope of our mathematical statements relies on
Schwartz’ famous kernel theorem [5], [16] which delineates
the complete class of linear operators that continuously map
D(R) → D′(R). We recall that D(R) = C∞

c (R) is the space of
smooth and compactly supported test functions equipped with
the usual Schwartz topology4. Its topological dual D′(R) is
the space of generalized functions also known as distributions.
In essence, a distribution f ∈ D′(R) is a linear map—more
precisely, a continuous linear functional—that assigns a real
number to each test function ϕ ∈ D(R); this is denoted by
f : ϕ 7→ 〈f, ϕ〉. For instance, the definition of Dirac’s impulse
as a distribution is δ : ϕ 7→ 〈δ, ϕ〉

△

= ϕ(0).
Beside linearity, the property that defines an LSI operator

is TLSI{ϕ(· − t0)}(t) = TLSI{ϕ}(t − t0) for any t0 ∈ R.
Schwartz’ theorem then tells us that there is a one-to-one
correspondence between continuous LSI operators D(R) →
C(R) and distributions, with the defining distribution h ∈
D′(R) being the impulse response of the operator. The relevant
space of continuous functions here is C(R) with the topology
of uniform convergence over compact sets, which involves the
system of seminorms ‖f‖N = sup|t|≤N |f(t)|, N ∈ N. The
latter is an extended functional setup that tolerates arbitrary
growth at infinity.

Theorem 1 (Schwartz’ kernel theorem for LSI operators). For

any given h ∈ D′(R), the operator Th : ϕ 7→ h ∗ ϕ with

t 7→ (h ∗ ϕ)(t)
△

= 〈h, ϕ(t− ·)〉 (6)

is LSI and continuously maps D(R)
c.
−→ C(R). Conversely, for

every LSI operator TLSI : D(R)
c.
−→ C(R), there is a unique

h ∈ D′(R) such that TLSI = Th : ϕ 7→ h ∗ ϕ where the

convolution is specified by (6).

Then, depending on the decay properties of h, it is generally
possible to extend the domain of the convolution operator Th

to some appropriate Banach space according to the procedure
described in Section IV. For instance, if h ∈ L1(R), then Th

has a continuous extension L∞(R) → Cb(R) ⊂ C(R) that
coincides with the classical definition given by (1).

4A sequence of functions ϕk ∈ D(R) is said to converge to ϕ in D(R)
if (i) there exists a compact domain F that includes the support of ϕ and of
all ϕk , and (ii) ‖ϕk − ϕ‖n → 0 for all n ∈ N, where ‖ϕ‖n

△

= ‖Dnϕ‖L∞

with Dn : D(R) → D(R) the nth derivative operator.

Finally, we note that, for the cases where the Dirac impulse
δ is in the domain of the extended operator (for instance, when
h ∈ C(R)), the distributional definition of the convolution
given by (6) yields Th{δ} = h ∗ δ = h, which explains the
term “impulse response.”

B. Banach Spaces of Bounded Functions

In order to investigate the issue of BIBO stability, it is help-
ful to describe the boundedness and continuity properties of
functions via their inclusion in appropriate Banach subspaces
of D′(R). The three relevant function spaces are

C0(R) ⊂ Cb(R) ⊂ L∞(R).

The central space consists of the subset of bounded functions
that are continuous:

Cb(R) = {f : R → R s.t. f is continuous and ‖f‖sup < ∞} .

It is a classical example of Banach space—a complete normed
vector space [12]. The smaller space C0(R), which is also
equipped with the sup-norm, imposes the additional constraint
that f(t) should vanish at t = ±∞. It is best described as the
completion of D(R) equipped with the sup-norm, which will
have its importance in the sequel. This property is indicated
by C0(R) = (D(R), ‖ · ‖sup). The concept is also valid for
L1(R), which can be described as L1(R) = (D(R), ‖ · ‖L1

),
where the L1-norm is defined by (2) with f ∈ D(R) and
the integral being classical—in the sense of Riemann. This
completion property applies to Lp(R) = (D(R), ‖ · ‖Lp

) with
p ∈ [1,∞) as well [4, Proposition 8.17, p. 254], but not for
p = ∞, which explains the importance of the space C0(R),
which is distinct from L∞(R).

In order to properly identify L∞(R) as a subspace of D′(R),
we shall exploit the property that the L∞-norm is the dual of
the L1-norm. We therefore choose to define the L∞-norm as

‖f‖L∞

△

= sup
ϕ∈D(R): ‖ϕ‖L1

≤1

〈f, ϕ〉 = sup
ϕ∈L1(R): ‖ϕ‖L1

≤1

〈f, ϕ〉,

(7)

where the central part of (7) takes advantage of the denseness5

of D(R) in L1(R). This yields a definition that is valid not
only for (measurable) functions, but also for all f ∈ D′(R).
Consequently, we can redefine our target space as

L∞(R) = {f ∈ D′(R) : ‖f‖L∞
< ∞}, (8)

which is readily identified as the topological dual of L1(R);
that is, L∞(R) =

(
L1(R)

)′
due to the dual specification of

the L∞-norm given by the right-hand side of (7).
While (8) defines L∞(R) as a subspace of D′(R), we can

also identify its elements as (bounded) measurable functions
f : R → R via the classical association

ϕ 7→ 〈f, ϕ〉
△

=

∫

R

ϕ(t)f(t)dt, (9)

5This means that, for any f ∈ L1(R) and any ǫ > 0, there exists a
function ϕǫ ∈ D(R) such that ‖f − ϕǫ‖L1

< ǫ. It is a direct consequence
of L1(R) = (D(R), ‖ · ‖L1

).
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where the right-hand side of (9) is a standard Lebesgue
integral. Now, the main difference between the sup-norm
and the L∞-norm is that, for f ∈ L∞(R) (identified as a
function), the inequality |f(t)| ≤ ‖f‖L∞

holds for almost
every t ∈ R. This means that it holds over the whole
real line except, possibly, on a set of measure zero. This
is often indicated as ‖f‖∞ = ess supt∈R

|f(t)|, using the
notion of essential supremum. In other words, the L∞-norm
is more permissive than the sup-norm with ‖f‖∞ ≤ ‖f‖sup.
However, the two norms are equal whenever the function f
is continuous, which translates into the isometric inclusion
C0(R)

iso.
−֒→ Cb(R)

iso.
−֒→ L∞(R).

C. Extended Results on BIBO Stability

Remarkably, the combination of the two latter function
spaces enables us to formulate a first Banach extension of the
classical statement on BIBO stability. To that end, we shall
restrict the distributional framework covered by Theorem 1
to the case where the impulse response h is identifiable as a
measurable function

(
i.e., h ∈ L1,loc(R) ⊂ D′(R)

)
. The linear

functional on the right-hand side of (6) then has an explicit
integral description given by (1) with f = ϕ ∈ D(R). Within
this class of convolution operators, we now identify the ones
whose domain can be extended to L∞(R).

Theorem 2. The convolution operator Th : f 7→ h ∗ f with

h ∈ L1,loc(R) has a continuous extension L∞(R)
c.
−→ Cb(R)

if and only if h ∈ L1(R). Moreover,

‖h ∗ f‖sup ≤ ‖h‖L1
‖f‖L∞

with the bound being sharp in the sense that it also yields the

norm of the underlying operator: ‖Th‖L∞→Cb
= ‖h‖L1

(see

Definition 2).

The proof of this result is deferred to Section IV
(
see Item

2) and the final statement of Theorem 4.
It is of interest to compare Proposition 1 and Theorem 2

because they address the problem of stability from different
but complementary perspectives. Proposition 1 is focused pri-
marily on the well-posedness of the convolution integral (1) for
f ∈ L∞(R). It can be paraphrased as: “Let h be a measurable
(and locally integrable) function. Then, the Lebesgue integral
(1) defines a convolution operator that is BIBO-stable if and
only if h ∈ L1(R).” By contrast, Theorem 2 considers the
complete family of “classical” convolution operators Th :
D(R) → C(R) with h ∈ L1,loc(R) and precisely identifies
the subset of operators that have a continuous extension from
L∞(R) → Cb(R). Since Cb(R) is isometrically embedded in
L∞(R), this is more informative than Proposition 1 because it
also tells us that (h∗f)(t) is a continuous function of t ∈ R. In
that respect, we note that the requirement that the convolution
of any bounded function f be continuous excludes the use of
the identity operator with h = δ at the onset, even if we extend
the framework to h ∈ D′(R).

To obtain a more permissive characterization of BIBO
stability, we need to extend the range of the operator from
Cb(R) to L∞(R), which should then also translate into a
corresponding enlargement of the class of admissible impulse

responses. We shall delineate the latter in a way that parallels
our definition of L∞(R), with the roles of the L1- and sup- (or
L∞-) norms being interchanged. To that end, we first define
the M-norm as

‖f‖M
△

= sup
ϕ∈D(R): ‖ϕ‖sup≤1

〈f, ϕ〉. (10)

This then yields the Banach space

M(R) = {f ∈ D′(R) : ‖f‖M < ∞}, (11)

which also happens to be the space of bounded Radon mea-
sures6 on C0(R). In other words, M(R) is the topological dual
of C0(R). Moreover, we can invoke the Riesz-Markov theorem
to identify M(R) =

(
C0(R)

)′
with the space of bounded

signed Borel measures on R [15]. Concretely, this means that
any h ∈ M(R) is associated with a unique Borel measure µh,
which then gives a concrete definition of the linear functional

f 7→ 〈h, f〉
△

=

∫

R

f(τ)dµh(τ) (12)

for any measurable function f , while the total-variation norm
of the measure µh is given by ‖µh‖TV

△

=
∫
R
d|µh| = ‖h‖M

(see Section IV-C). The main point for us is that M(R) is a
superset of L1(R), with ‖f‖M = ‖f‖L1

for all f ∈ L1(R).
Moreover, we have that δ(· − t0) ∈ M(R) for any t0 ∈ R

with ‖δ(· − t0)‖M = 1, as can be readily inferred from (10)
by considering a non-negative test function that achieves its
maximum ϕ(t0) = 1 at t = t0.

For the cases where the impulse response h ∈ M(R) is
not an L1 function, we extend our definition of the original
(Lebesgue) convolution integral as

t 7→ (h ∗ f)(t) = 〈h, f(t− ·)〉
△

=

∫

R

f(t− τ)dµh(τ), (13)

which is the same as (1) when we can write dµh(τ) = h(τ)dτ ,
which happens when the corresponding measure µh is abso-
lutely continuous7 with respect to the Lebesgue measure. A
standard manipulation then yields that

|(h ∗ f)(t)| ≤

∫

R

|f(t− τ)| d|µh|(τ)

≤ ‖f‖L∞

∫

R

d|µh| = ‖f‖L∞
‖h‖M, (14)

which is the basis for the direct (easy) part of Theorem 3,
where the complete class of BIBO-stable systems is identified,
including the identity operator.

Theorem 3. The convolution operator Th : f 7→ h ∗ f with

h ∈ D′(R) has a continuous extension L∞(R)
c.
−→ L∞(R) if

and only if h ∈ M(R). Moreover,

‖h ∗ f‖∞ ≤ ‖h‖M ‖f‖L∞

with the bound being sharp in the sense that ‖Th‖L∞→L∞
=

‖h‖M.

6We adhere with Bourbaki’s nomenclature to distinguish the two comple-
mentary interpretations of a measure: either as a continuous linear functional
on D(R) (Radon measure), or as a set-theoretic additive rule that associates
a real number to any Borel set of R (signed Borel measure) [2], [1].

7Another way to put it is that h is the Radon-Nikodym derivative of µh.
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This result, which is also valid in dimensions higher than 1,
is known in harmonic analysis [6, p. 140 Corollary 2.5.9], [18]
but much less so in engineering circles. It can be traced back
to an early paper by Hörmander that provides a comprehensive
treatment of convolution operators on Lp spaces [7]. The
reminder of the paper is devoted to the proof of the two
theorems on BIBO stability and of some interesting variants
(see Theorem 4). To that end, we shall rely on Schwartz’
powerful distributional formalism which, as we shall see,
allows for a rather soft derivation, once the prerequisites have
been laid out.

IV. MATHEMATICAL DERIVATIONS

A. Extension of Convolution Operators

The most general form of a convolution operator backed by
Schwartz’ kernel theorem (see Theorem 1) is Th : D(R) →
C(R) −֒→ D′(R) with h ∈ D′(R), where Th{ϕ} is defined by
(6) for any ϕ ∈ D(R). The two complementary ingredients
at play there are: (i) the restriction of the domain to D(R)—
the “nicest” class of functions in terms of smoothness and
decay—and (ii) the extension of the range to D′(R), which
can accommodate an arbitrary degree of growth (polynomial,
or even exponential) at infinity. In other words, the theoretical
framework is such that it can deal with the very worst sce-
narios, including unstable differential systems whose impulse
response is exponentially increasing.

Then, depending on the smoothness and decay properties
of h, it is usually possible to extend the domain of Th to
some Banach space X ⊇ D(R) that is continuously embedded
in D′(R), which is denoted by X −֒→ D′(R). For this to be
feasible, we require that ‖ · ‖X be a valid norm on D(R)
and that D(R) be dense in X , which is equivalent to X =
(D(R), ‖ · ‖X ). In other words, X is the completion of D(R)
equipped with the ‖ · ‖X -norm.

We start by recalling the definition of the norm of a bounded
operator.

Definition 2. Let (X , ‖ · ‖X ) and (Y, ‖ · ‖Y) be two Banach

spaces and T a linear operator X → Y . Then, the operator

is said to be bounded if

‖T‖X→Y
△

= sup
f∈X\{0}

‖T{f}‖Y
‖f‖X

< ∞.

A direct consequence of Definition 2 is that a bounded
operator T : X → Y continuously maps X into Y , as indicated
by T : X

c.
−→ Y .

Theorem 2 then describes a functional mechanism that
allows us to extend an operator initially defined on D(R).
It is a particularization of a fundamental extension theorem in
the theory of Banach spaces [14, Theorem I.7, p. 9].

Proposition 2 (Extension of a linear operator). Let X and

Y be two Banach subspaces of D′(R) with the additional

property that D(R) is dense in X . Then, the linear operator

T : D(R)
c.
−→ D′(R) has a unique continuous extension

X = (D(R), ‖ · ‖X )
c.
−→ Y with ‖T‖X→Y ≤ C if and only if

(i) T{ϕ} ∈ Y, and (15)

(ii) ‖T{ϕ}‖Y ≤ C‖ϕ‖X (16)

for all ϕ ∈ D(R) and some constant C > 0.

Since a convolution operator Th : D(R)
c.
−→ D′(R) is

uniquely characterized by its impulse response h ∈ D′(R),
the same holds true for its extension Th : X

c.
−→ Y , which

justifies the use of the same symbol. Rather than defining
Th{f} = h ∗ f through a Lebesgue integral as in (1) or
(13), we can therefore rely on (6) and define our extended
convolution operator Th : X → Y through a limit process.
Specifically, we pick a Cauchy sequence (ϕn) in (D(R), ‖·‖X )
such that limn→∞ ϕn = f ∈ X . Then, the sequence of
functions (gn = h ∗ ϕn) with

t 7→ (h ∗ ϕn)(t) = 〈h, ϕn(t− ·)〉 (17)

is Cauchy in Y and converges to a limit g = limn→∞(h ∗
ϕn) ∈ Y , independently of the choice of the ϕn since the
space Y is complete. We now recapitulate this process in the
form of a definition.

Definition 3 (Banach extension of a distributional convolution
operator). Let X and Y be two Banach subspaces of D′(R)
with the additional property that D(R) is dense in X . When

the two conditions in Theorem 2 hold, the unique continuous

extension Th : X
c.
−→ Y of the convolution operator specified

by (17) with h ∈ D′(R) is defined by

Th : f 7→ h ∗ f
△

= lim
n→∞

(h ∗ ϕn) ∈ Y, (18)

where (ϕn) is any sequence in D(R) such that limn→∞ ‖f −
ϕn‖X = 0.

Also important for our purpose is the adjoint operator T∗ :
Y ′ → X ′, which is the unique linear operator such that

〈g,T{f}〉Y′×Y = 〈T∗{g}, f〉X ′×X

for any g ∈ Y ′ and f ∈ X ′, where the spaces X ′ and
Y ′ are the duals of the topological vector spaces X and
Y , respectively. If T : X

c.
−→ Y is bounded with operator

norm ‖T‖, then the adjoint T∗ : Y ′ c.
−→ X ′ is bounded with

‖T∗‖ = ‖T‖. In particular, the adjoint of the convolution
operator Th : D(R)

c.
−→ D′(R) is Th∨ : D(R)

c.
−→ D′(R),

where h∨ is the time-reversed impulse response such that
〈h∨, ϕ〉 = 〈h, ϕ∨〉, where ϕ∨(t)

△

= ϕ(−t).
We now briefly show how we make use of these two mech-

anisms to specify the continuous extension Th : L∞(R) →
L∞(R) with h ∈ M(R) (or, h ∈ L1(R)) that is implicitly
referred to in Theorems 2 and 3. The enabling ingredient there
is the continuity bound ‖h∨∗ϕ‖L1

≤ ‖h∨‖M‖ϕ‖L1
(see proof

of Theorem 4, Item 4), which also yields h∨ ∗ϕ ∈ L1(R) for
all ϕ ∈ D(R). We then apply Definition 3 to specify the unique
extension Th∨ : L1(R)

c.
−→ L1(R). An important point for our

argumentation is that this (pre-adjoint) convolution operator
also has a concrete implementation as

t 7→ (h∨ ∗ ϕ)(t) = 〈h∨, ϕ(t− ·)〉 =

∫

R

ϕ(τ + t)dµh(τ),

(19)

which is supported by the same continuity bound with ϕ now
ranging over L1(R) instead of the smaller space D(R). The
existence and uniqueness of Th∨ : L1(R)

c.
−→ L1(R) then
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guarantees the existence and unicity of the adjoint T∗
h∨ :

L∞(R)
c.
−→ L∞(R). To show that T∗

h∨ = Th, we use the
explicit representation of Th∨ given by (19) with h∨ ∈ M(R)
and invoke Fubini’s theorem to justify the interchange of
integrals in

〈Th∨{f}, g〉 =

∫

R

(∫

R

f(τ + t)dµh(τ)

)
g(t)dt

=

∫

R

∫

R

f(x)g(x− τ)dµh(τ)dx

=

∫

R

f(x)

(∫

R

g(x− τ)dµh(τ)

)
dx

= 〈f,Th{g}〉

for any f ∈ L1(R) and g ∈ L∞(R). This proves that the
original convolution operator defined by (13) coincides with
the adjoint of Th∨ : L1(R)

c.
−→ L1(R), which is also consistent

with the property h = (h∨)∨. Since D(R) ⊂ L∞(R), we can
therefore uniquely identify Th : L∞(R)

c.
−→ L∞(R) as the

extension of Th : D(R) → D′(R) that preserves the adjoint
relation T∗

h∨ = Th.

B. Proof of Banach Variants of BIBO Stability

The Banach spaces of interest for us are X = C0(R), Lp(R)
and Y = C0(R), Cb(R), Lp(R) with p ≥ 1.

Theorem 4. Depending on the functional properties of its

impulse response h ∈ D′(R), the convolution operator Th :
D(R)

c.
−→ D′(R) defined by (6) admits the following (unique)

continuous extensions8

1) Let p, q ∈ (1,∞) be conjugate exponents with 1
p+

1
q = 1.

Then, h ∈ Lq(R) ⇒ Th : Lp(R)
c.
−→ C0(R) with

‖Th‖Lp→C0
≤ ‖h‖Lq

.

2) h ∈ L1(R) ⇒ Th : L∞(R)
c.
−→ Cb(R) with

‖Th‖L∞→Cb
= ‖h‖L1

.

3) h ∈ M(R) ⇔ Th : C0(R)
c.
−→ Cb(R).

4) h ∈ M(R) ⇔ Th : L1(R)
c.
−→ L1(R).

5) h ∈ M(R) ⇔ Th : L∞(R)
c.
−→ L∞(R).

Moreover, the operator norms for Items 3-5, characterized by

an equivalence relation, are ‖Th‖C0→Cb
= ‖Th‖L1→L1

=
‖Th‖L∞→L∞

= ‖h‖M. Finally, under the hypothesis of local

integrability h ∈ L1,loc(R), the continuity of Th : L∞(R)
c.
−→

Cb(R) implies that h ∈ L1(R), which is the converse part of

Item 2.

Proof:

Item 1. Under the assumption that h ∈ Lq(R) with q ≥ 1,
we invoke Hölder’s inequality

|(h ∗ ϕ)(t)| ≤

∫

R

|h(τ)| · |ϕ(t− τ)|dτ ≤ ‖h‖Lq
‖ϕ(· − t)‖Lp

for any ϕ ∈ D(R), which yields the required upper bound
‖h ∗ ϕ‖L∞

≤ ‖h‖Lq
‖ϕ‖Lp

. Likewise, by linearity, we get that

|(h ∗ ϕ)(t)− (h ∗ ϕ)(t−∆t)| =
∣∣h ∗

(
ϕ(t) − ϕ(t−∆t)

)∣∣
≤ ‖h‖Lq

· ‖ϕ− ϕ(· −∆t)‖Lp
.

8See Definition 3 and accompanying explanations. The bottom line is that
the definition of these operators is compatible with the convolution integral
(1) or (13) depending on whether h is a function or a Radon measure.

Due to the constraining topology of D(Rd), lim∆t→0 ‖ϕ −
ϕ(· −∆t)‖Lp

= 0 for any p ≥ 1, which proves the continuity
of the function t 7→ (h ∗ ϕ)(t). This leads to the intermediate
outcome h ∗ ϕ ∈ Cb(R) for all ϕ ∈ D(R).

If we now replace h by φ ∈ D(R), we readily deduce that
Tφ{ϕ} = φ ∗ ϕ is compactly supported; hence, Tφ{ϕ} ∈
C0(R) for all ϕ ∈ D(R) with ‖φ ∗ ϕ‖L∞

≤ ‖φ‖Lq
‖ϕ‖Lp

.
We then invoke Theorem 2 with X = (D(R), ‖ · ‖p) to
deduce that Tφ : Lp(R)

c.
−→ C0(R) for p ∈ [1,∞) and

Tφ : C0(R)
c.
−→ C0(R) for any φ ∈ D(R). Since the convolu-

tion is commutative, this implies that φ ∗ h = h ∗ φ ∈ C0(R)
for any h ∈ Lq(R) with q ∈ (1,∞)

(
resp., h ∈ C0(R)

)
and

φ ∈ D(R) ⊂ Lp(R) which, by completion with respect to the
‖ · ‖Lp

norm with p ∈ (1,∞), gives Th : Lp(R)
c.
−→ C0(R)

with ‖Th‖Lp→C0
≤ ‖h‖Lq

(resp., Th : C0(R)
c.
−→ C0(R)

with ‖Th‖C0→C0
= ‖h‖L1

).
Item 3. Since Cb(R)

iso.
−֒→ L∞(R), the relevant duality bound

there is (14), which yields ‖h ∗ ϕ‖L∞
≤ ‖h‖M ‖ϕ‖L∞

. This
allows us to use the same argument as in Item 1 to show
that Th{ϕ} ∈ Cb(R) for all ϕ ∈ D(R). Since C0(R) =
(D(Rd), ‖ · ‖L∞

), we then apply the proven completion tech-
nique to specify the unique operator Th : C0(R) → Cb(R)
with ‖Th‖C0→Cb

≤ ‖h‖M. Conversely, let Th : C0(R)
c.
−→

Cb(R) with operator norm ‖Th‖C0→Cb
< ∞. Then, for any

ϕ ∈ C0(R),

(h ∗ ϕ)(0) = 〈h, ϕ∨〉 ≤ ‖Th‖C0→Cb
‖ϕ‖L∞

with ϕ∨ ∈ C0(R) and ‖ϕ∨‖L∞
= ‖ϕ‖L∞

. By substituting ϕ
for ϕ∨ and by recalling that D(R) is dense in C0(R), we get
that

sup
ϕ∈C0(R)\{0}

〈h, ϕ〉

‖ϕ‖L∞

= sup
ϕ∈D(R)\{0}

〈h, ϕ〉

‖ϕ‖L∞

= ‖h‖M ≤ ‖Th‖C0→Cb
, (20)

which then also proves that the bound is sharp.
Item 4. The key here is the estimate

∫

R

∣∣(h ∗ f)(t)
∣∣ dt ≤

∫

R

∫

R

|f(t− τ)| d|µh|(τ) dt

=

∫

R

(∫

R

|f(x)|dx

)
d|µh|(τ)

(by Fubini)

=

(∫

R

|f(x)|dx

)(∫

R

d|µh|

)

= ‖f‖L1
‖h‖M,

from which we deduce the boundedness of Th : L1(R) →
L1(R) with ‖Th‖L1→L1

≤ ‖h‖M. (The extension technique
is essentially the same as in Item 1 with p = 1 and L1(R) =
(D(R), ‖ · ‖L1

).) The converse implication and the sharpness
of the bound will be deduced from Item 5 by duality.

Item 5. Since L∞(R) =
(
L1(R)

)′
, the adjoint of Th :

L1(R)
c.
−→ L1(R) is T∗

h = Th∨ : L∞(R)
c.
−→ L∞(R). The

equivalence h ∈ M(R) ⇔ h∨ ∈ M(R) implies the continuity
of Th : L∞(R)

c.
−→ L∞(R) with ‖Th‖L∞→L∞

≤ ‖h‖M =
‖h∨‖M. As for the converse implication, we take advantage
of the embedding C0(R)

iso.
−֒→ L∞(R), which allows us to reuse

the argument of Item 3.
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Item 2 and Its Converse. The first part follows from the
beginning of the proof of Item 1, the application of the
extension principle for p = 1, and the commutativity of the
convolution integral, which yields f ∗h = h∗f ∈ Cb(R) with
‖h ∗ f‖L∞

≤ ‖h‖L1
‖f‖L∞

for any f ∈ L∞(R). We show
that the bound is sharp by applying the convolution operator
to the “worst-case” signal f0 identified in (4). Conversely, let
Th : L∞(R)

c.
−→ Cb(R) with ‖Th‖L∞→Cb

< ∞. Taking
advantage of the isometric embedding Cb(R)

iso.
−֒→ L∞(R),

we then invoke the equivalence in Item 5 to deduce that
‖h‖M < ∞, which implies that h ∈ M(R). The announced
equivalence then follows from Proposition 3 in Section IV-C.

The result in Item 1 is discussed in most advanced treatises
on the Fourier transform (e.g., [4, Proposition 8.8, p 241]).
We are including it here in a self-contained form—at the
expense of a few more lines in the proof of Item 2—because
it nicely characterizes the regularization effect of convolution.
The equivalences stated in Item 4 and Item 5 are known
in the context of the theory of Lp Fourier multipliers [6,
Section 2.5], even though the latter does not seem to have
permeated to the engineering literature. The equivalence in
Item 4 may also be identified as a special instance of Wendel’s
theorem in the abstract theory of multipliers on locally com-
pact Abelian groups [11, Theorem 0.1.1, p. 2]. Interestingly,
the condition h ∈ M(R) is also sufficient for the continuity
of Th : Lp(R)

c.
−→ Lp(R), a claim that is supported by the

Young-type norm inequality

‖h ∗ f‖Lp
≤ ‖h‖M ‖f‖Lp

, (21)

which holds for any f ∈ Lp(R) with p ≥ 1. However,
(21) is only sharp at the two end points p = 1,+∞, in
conformity with the statements in Items 4 and 5. In fact,
the only other case where the complete class of convolution
operators Th : Lp(R)

c.
−→ Lp(R) has been characterized is

for p = 2, with the necessary and sufficient condition being
ĥ ∈ L∞(R) (bounded frequency response) [18, Theorem
3.18, p. 28], which is slightly more permissive than the BIBO
requirement. Indeed, h ∈ M(R) ⇒ ĥ ∈ L∞(R), whereas the
reverse implication does not hold.

We like to single out Item 3 in Theorem 4 as the pivot
point that facilitates the derivation of the (nontrivial) reverse
implications—namely, the necessity of the condition h ∈
M(R). While the listed property is sufficient for our purpose,
we can refer to a recent characterization by Feichtinger [3,
Theorem 2, p. 499] which, in the present context, translates
into the refined statement “h ∈ M(R) ⇔ Th : C0(R)

c.
−→

C0(R).” The additional element there is the vanishing of
(h ∗ f)(t) at infinity, which calls for a more involved proof.

While the statement in Item 2 is a special case of Item 5,
as made explicit in Section IV-C, the interesting part of the
story is that this restriction induces a smoothing effect on the
output, ensuring that the function t 7→ (h∗f)(t) is continuous.
There is obviously no such effect for the case h = δ ∈ M(R)
(identity) or, by extension, hd =

∑
n∈Z

a[n]δ(· −n) ∈ M(R)
with ‖hd‖M = ‖a‖ℓ1 , which corresponds to the continuous-
time transposition of a digital filter.

C. Explicit Criterion for BIBO Stability

We now show how to determine ‖h‖M (our extended
criterion for BIBO stability) under the assumption that h ∈
L1,loc(R). Any such impulse response can be identified with
a distribution by considering the linear form

h : ϕ 7→ 〈h, ϕ〉 =

∫

R

h(t)ϕ(t)dt, (22)

which continuously maps D(R) → R. It turns out that the
latter is a special instance of a real-valued Radon measure,
which is an extended type of measure whose ‖ · ‖M-norm is
not necessarily finite.

Definition 4 ([17]). A distribution f ∈ D′(R) is called a real-

valued Radon measure if, for any compact subset K ⊂ R, there

exists a constant CK > 0 such that

〈f, ϕ〉 ≤ CK sup
t∈K

|ϕ(t)| (23)

for all ϕ ∈ D(K) =
{
ϕ ∈ D(R) : ϕ(t) = 0, ∀t /∈ K

}
.

A distribution f+ ∈ D′(R) is said to be positive if

〈f+, ϕ〉 ≥ 0 for all ϕ ∈ D+(R) =
{
ϕ ∈ D(R) : ϕ(t) ≥

0, t ∈ R
}

.

The connection between the two kinds of distributions in
Definition 4 is that a positive distribution is a special instance
of a Radon measure, while any real-valued Radon measure f
admits a unique decomposition as f = (f+−f−), where both
f+, f− ≥ 0 are positive distributions [19, Theorem 21.2, p.
218]. One then also defines the corresponding “total-variation
measure” |f | = f+ + f−, which is positive by construction.

It turns out that the Dirac impulse δ is a positive Radon
measure with a universal bounding constant CK = 1. Like-
wise, the minimal constant in (23) for f ∈ L1,loc(R) is
CK =

∫
K
|f(t)|dt, which is essentially what is expressed in

Proposition 3.

Proposition 3 (Total-variation norm for measurable functions).
Let h ∈ L1,loc(R). Then, ‖h‖M = ‖h‖L1

=
∫ +∞
−∞ |h(t)|dt.

Consequently, h ∈ M(R) if and only if
∫ +∞
−∞ |h(t)|dt < ∞.

Proof: In accordance with Definition 4, we view h ∈
L1,loc(R) as a real-valued Radon measure with h+(t) =
max

(
h(t), 0

)
and h−(t) = max

(
0,−h(t)

)
, while the corre-

sponding total-variation measure is |h| = h++h− ∈ L1,loc(R)
with |h| : t 7→ |h(t)|, which is consistent with the notation.
We then distinguish between two cases.

(i) Bounded Scenario. When ‖h‖M < ∞, we can invoke
the classical Jordan decomposition of a measure (see [4]),

∀f ∈ M(R) : ‖f‖M = ‖f+‖M + ‖f−‖M = ‖|f |‖M < ∞,

which allows us to reduce the problem to the easier determina-
tion of ‖|h|‖M. Accordingly, for any given T > 0, we define
hT = |h| · 1[−T,T ] ≥ 0 and observe that

‖hT ‖M = sup
ϕ∈D(R): ‖ϕ‖L∞

≤1

〈hT , ϕ〉 = 〈hT , 1〉

= ‖hT‖L1
< ∞,

where the supremum is achieved by considering any test func-
tion ϕT ∈ D(R) such that ϕT (t) = 1 for all t ∈ [−T, T ]. In
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the limit, we get that limT→∞ ‖hT ‖L1
= limT→∞ ‖hT ‖M =

‖|h|‖M < ∞, from which we conclude that ‖|h|‖M =
‖h‖M = ‖h‖L1

.
(ii) Unbounded Scenario. The condition ‖h‖M = ∞ can

be formalized as: for any n ∈ N, there exists ϕn ∈ D(R) with
‖ϕn‖L∞

= 1 such that 〈h, ϕn〉 > n. However,

〈h, ϕn〉 ≤
∣∣
∫

R

h(t)ϕn(t)dt
∣∣ ≤

∫

R

|h(t)|dt ‖ϕn‖L∞
= ‖h‖L1

.

Therefore, ‖h‖L1
> n for all n ∈ N, leading to ‖h‖L1

= ∞.

Let us now conclude with a few more observations.
Since L1,loc(R) can be identified as the subspace of mea-

sures that are absolutely continuous (see [17, p. 18]), the result
in Proposition 3 is consistent with the well-known property
in probability theory that L1(R) coincides with the subset of
bounded measures that are absolutely continuous.

Under the minimalistic assumption that h ∈ L1,loc(R), the
convolution integral (1) is well defined for any t ∈ R provided
that the input function f : R → R is bounded and compactly

supported. Equation (1) then even yields an output function
t 7→ (h ∗ f)(t) that is continuous, as shown in Appendix D.
However, the trouble comes from the fact that the output then
inherits the potential lack of decay of h when h /∈ L1(R).

One can also make a connection between the result in
Proposition 3 and the standard argument that is presented to
justify the necessity of h ∈ L1(R). When the latter condition
is fulfilled, we have that

‖h‖M = sup
ϕ∈D(R): ‖ϕ‖L∞

≤1

〈h, ϕ〉

= ‖h‖L1
= sup

φ∈L∞(R): ‖φ‖L∞
≤1

〈h, φ〉 =

∫

R

h(t)φ0(t)dt,

(24)

where φ0(t) = sign
(
h(t)

)
. While the supremum is achieved

exactly over L∞(R) by taking φ = φ0, it is a bit trickier
over D(R) because of the additional smoothness requirement.
Yet, due to the definition of the supremum, for any ǫ > 0
there exists a function ϕǫ ∈ D(R) with ‖ϕǫ‖∞ = 1 such that∫
h(t)ϕǫ(t)dt = (1 − ǫ)‖h‖M ≤ ‖h‖M = ‖h‖L1

. By taking
ǫ arbitrarily small, we end up with ϕǫ being a “smoothed”
rendition of φ0, so that the spirit of the initial argument is
retained.

APPENDIX

A. Is the Dirac Distribution a Member of L1(R)?

Let us start with the historical observation that the epony-
mous impulse δ is already present in the (early) works of both
Fourier and Heaviside [10]. The former, as one would expect,
defined it via an “improper” integral (the inverse Fourier
transform of “1”), while the latter identified δ as the “formal”
derivative of the unit step (a.k.a. the Heaviside function).
However, the mathematics for giving a rigorous sense to these
identifications were missing at the time; one had to wait for
the development Schwartz’ distribution theory in the 1950s
[17], which already shows that the mere process of obtaining
a rigorous definition of δ was far from trivial.

From the pragmatic point of view of an engineer, the title
question is at the heart of the matter to understand the scope
of Proposition 1, and the source of some confusion, too. Let us
start by listing the elements that could suggest that the answer
to the question is positive.

1) It is common practice to make liberal use of what
mathematicians consider abusive notations; in particular,
equations such as f(t) =

∫
R
δ(τ)f(t−τ)dτ , which could

suggest that δ(τ) can be manipulated as if it were a
classical function of τ .

2) Dirac’s δ has the unit “integral” 〈δ, 1〉 = 1, which is
indicated formally as

∫
R
δ(τ)dτ = 1. Moreover, δ ≥ 0 in

the sense that it is a positive distribution (see Definition
4).

3) The Dirac impulse is often described as the limit of
ϕn(t) = n√

2π
e−(tn)2/2 as n → ∞, with ϕn ∈ S(R).

Since ‖ϕn‖L1
= 1 for any n > 0, this could suggest that

limn→∞ ‖ϕn‖L1
= 1 as well.

In order to convince the reader that the answer to the title
question is actually negative, we now refute these intuitive
arguments one by one.

1) The explicit description of the Dirac impulse as a centered
Gaussian distribution whose standard deviation σn = 1/n
tends to zero suggests that δ = limn→∞ ϕn must be
entirely localized at t = 0. The best attempt at describing
this limit in Lebesgue’s world of measurable functions
would be

p0(t) =

{
+∞, t = 0
0, otherwise,

which is equal to zero almost everywhere. However,
since the width of the impulse is zero, we get that∫
R
p0(t)dt = 0, which is incompatible with the property

that
∫
R
δ(t)dt = 1. This points to the impossibility of rep-

resenting δ by a function in L1(R) or even in L1,loc(R).
Strictly speaking, δ is defined as a continuous linear
functional on D(R)—or, by extension, C0(R)—which
precludes the application of any nonlinear operation (such
as | · |p) to it.

2) The generalized Fourier transform of δ is F{δ} = 1,
which is bounded, but not decreasing at infinity. If δ was
included in L1(R), this would contradict the Riemann-
Lebesgue Lemma, which is equivalent to F : L1(R)

c.
−→

C0(R) with ‖F‖L1→C0
= 1. By contrast, the inclusion

δ ∈ M(R) is compatible with the (dual) continuity prop-
erty of the Fourier transform F∗,F : M(R)

c.
−→ L∞(R)

with ‖F∗‖M→L0
= 1.

3) While the sequence of rescaled Gaussians (ϕn) converges
to δ ∈ S ′(R) −֒→ D′(R) in the (weak) topology of S ′(R)
(Schwartz’ space of tempered distributions), the problem
is that it fails to be a Cauchy sequence in the (strong)
norm topology of L1(R). Hence, there is no guarantee
that δ = limn→∞ ϕn stays in L1(R).

B. Examples of Inaccurate Statements on BIBO Stability

This list is far from exhaustive and not intended to downplay
the important contributions of the listed people who are
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internationally recognized leaders in the field. Its sole purpose
is to illustrate the omnipresence of the misconception in the
engineering literature, including in some of the most popular
and authoritative textbooks in the theory of linear systems and
signal processing.

As a start, one can read in the English version of Wikipedia
that a necessary and sufficient condition for the BIBO stability
of a convolution operator is that its impulse response be ab-
solutely integrable, formulated as

∫
R
|h(τ)|dτ = ‖h‖L1

< ∞.
In view of the discussion around Proposition 1, this is only
correct if one restricts the scope of the statement to those
impulse responses that are Lebesgue-measurable and locally
integrable.

Kailath mentions in [9, p. 175] that the equivalence between
BIBO stability and h ∈ L1(R) is well known, and attributes
the result to James, Nichols, and Phillips [8]. It turns out that
the pioneers of the theory on control and linear systems were
focusing their attention on analog systems ruled by ordinary
differentiable equations whose impulse responses are sums
of causal exponentials and, therefore, Lebesgue-measurable.
Kailath then presents a proof on p. 176 that is essentially the
one we used for Proposition 1, except that he neither considers
a limit process nor explicitly says that h must be (locally)
integrable.

Oppenheim and Willsky discuss the property in [13, p.
113-114]. To justify the BIBO stability of the pure time-shift
operator (including the identity), they then present an argument
in support of the inclusion of δ(·−t0) in L1(R) (Example 2.13)
which, in view of the discussion in Appendix A, is flawed.

Vetterli et al. claim in [20, Theorem 4.8, p. 357] that the
operator Th is BIBO-stable from L∞(R) → L∞(R) if and
only if h ∈ L1(R), a statement that is incompatible with
Theorem 3. This can be corrected by limiting the scope of
the equivalence as in the statement of Theorem 2.

D. Convolution in the “Unstable” Scenario

Here, we characterize the output of a potentially “unstable”
filter when the input signal is compactly supported. The
enabling hypothesis is the local integrability of the impulse
response.

Proposition 4. Let f ∈ L∞(R) be compactly supported and

h ∈ L1,loc(R). Then, the function t 7→ (h ∗ f)(t) defined by

(1) is bounded on any compact set K ⊂ R and continuous;

that is, h ∗ f ∈ C(R).

Proof. Because of the local integrability of h, the convolution
integral (1) is well-defined for any t ∈ R with

(h ∗ f)(t) =

∫

R

h(τ)f(t − τ)dτ =

∫

M

f(x)h(t− x)dx

(by change of variable)

and

|(h ∗ f)(t)| ≤ ‖f‖L∞

∫

M

|h(t± τ)|dτ < ∞,

where M is the smallest symmetric interval such that f(t) =
f(−t) = 0 for all t /∈ M. For any given open bounded set
K ⊂ R, we then observe that

∀t ∈ K : (h ∗ f)(t) = (hK+M ∗ f)(t)

where hK+M = h · 1K+M is the restriction of the original
impulse response to the set K+M = {t+ τ : t ∈ K, τ ∈ M}.
Since hK+M ∈ L1(R), one has that

sup
t∈K

|h ∗ f(t)| ≤ ‖f‖L∞
‖hK+M‖L1

< ∞. (25)

Likewise, for any t, t0 ∈ K, we have that

|h ∗ f(t)− h ∗ f(t0)|

≤ ‖f‖L∞
‖hK+M(t− ·)− hK+M(t0 − ·)‖L1

. (26)

Next, we invoke Lebesgue’s dominated-convergence theorem
and the property that C0(R) is dense in L1(R) to show that
‖hK+M(t−·)−hK+M(t0−·)‖L1

→ 0 as t → t0. This, together
with (26), implies that limt→t0 |(h ∗ f)(t)− (h ∗ f)(t0)| = 0,
which expresses the continuity of t 7→ h ∗ f(t) at t = t0 for
any t0 ∈ K.
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