

Aalborg Universitet

Privacy-Preserving Distributed Optimization via Subspace Perturbation

A General Framework

Li, Qiongxiu; Heusdens, Richard; Christensen, Mads Græsbøll

Published in:
I E E E Transactions on Signal Processing

DOI (link to publication from Publisher):
10.1109/TSP.2020.3029887

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Li, Q., Heusdens, R., & Christensen, M. G. (2020). Privacy-Preserving Distributed Optimization via Subspace
Perturbation: A General Framework. I E E E Transactions on Signal Processing, 68, 5983 - 5996. Advance
online publication. https://doi.org/10.1109/TSP.2020.3029887

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://doi.org/10.1109/TSP.2020.3029887
https://vbn.aau.dk/en/publications/06e2350e-fd1d-439c-9d36-1430f10c9c23
https://doi.org/10.1109/TSP.2020.3029887

1

Privacy-Preserving Distributed Optimization via Subspace
Perturbation: A General Framework

Qiongxiu Li, Student Member, IEEE, Richard Heusdens and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—As the modern world becomes increasingly digitized
and interconnected, distributed signal processing has proven to
be effective in processing its large volume of data. However,
a main challenge limiting the broad use of distributed signal
processing techniques is the issue of privacy in handling sensitive
data. To address this privacy issue, we propose a novel yet general
subspace perturbation method for privacy-preserving distributed
optimization, which allows each node to obtain the desired
solution while protecting its private data. In particular, we show
that the dual variable introduced in each distributed optimizer
will not converge in a certain subspace determined by the graph
topology. Additionally, the optimization variable is ensured to
converge to the desired solution, because it is orthogonal to this
non-convergent subspace. We therefore propose to insert noise
in the non-convergent subspace through the dual variable such
that the private data are protected, and the accuracy of the
desired solution is completely unaffected. Moreover, the proposed
method is shown to be secure under two widely-used adversary
models: passive and eavesdropping. Furthermore, we consider
several distributed optimizers such as ADMM and PDMM to
demonstrate the general applicability of the proposed method.
Finally, we test the performance through a set of applications.
Numerical tests indicate that the proposed method is superior to
existing methods in terms of several parameters like estimated
accuracy, privacy level, communication cost and convergence
rate.

Index Terms—Distributed optimization, privacy, subspace,
noise insertion, consensus, least squares, LASSO.

I. INTRODUCTION

In a world of interconnected and digitized systems, new
and innovative signal processing tools are needed to take
advantage of the sheer scale of information/data. Such systems
are often characterized by “big data”. Another central aspect
of such systems is their distributed nature, in which the data
are usually located in different computational units that form
a network. In contrast to the traditional centralized systems,
in which all the data must be firstly collected from different
units and then processed at a central server, distributed signal
processing circumvents this limitation by utilizing the network
nature. That is, instead of relying on a single centralized
coordination, each node/unit is able to collect information from
its neighbors and also to conduct computation on a subset of
the overall networked data. This distributed processing has
many advantages, such as allowing for flexible scalability of

Q. Li and M. G. Christensen are with the Audio Analysis Lab,
CREATE, Aalborg University, 9000 Aalborg, Denmark (emails:
{qili,mgc}@create.aau.dk).

R. Heusdens is with the Netherlands Defence Academy (NLDA), Het
Nieuwe Diep 8, 1781 AC Den Helder, The Netherlands, and with the
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
(email: r.heusdens@{mindef.nl,tudelft.nl}).

the number of nodes and robustness to dynamical changes in
the graph topology. Currently, the computational unit/node in
distributed systems is usually limited in resources, as tablets
and phones become the primary computing devices used by
many people [1], [2]. These devices often contain sensors
that can use wireless communication to form so-called ad-hoc
networks. Therefore, these devices can collaborate in solving
problems by sharing computational resources and sensor data.
However, the information collected from sensors such as GPS,
cameras and microphones often includes personal data, thus
posing a major concern, because such data are private in
nature.

There has been a considerable growth of optimization
techniques in the field of distributed signal processing, as
many traditional signal processing problems in distributed
systems can be equivalently formed as convex optimization
problems. Owing to the general applicability and flexibility of
distributed optimization, optimization has emerged in a wide
range of applications such as acoustic signal processing [3],
[4], control theory [5] and image processing [6]. Typically,
the paradigm of distributed optimization is to separate the
global objective function over the network into several local
objective functions, which can be solved for each node through
exchanging data only with its neighbors. This data exchange
is a major concern regarding privacy, because the exchanged
data usually contain sensitive information, and traditional
distributed optimization schemes do not address this privacy
issue. Therefore, how to design a distributed optimizer for
processing sensitive data, is a challenge to be overcome in the
field.

A. Related works

To address the privacy issues in distributed optimization,
the literature has mainly used techniques from differential pri-
vacy [7], [8] and secure multiparty computation (SMPC) [9].
Differential privacy is one of the most commonly used non-
cryptographic techniques for privacy preservation, because it
is computationally lightweight, and it also uses a strict privacy
metric to quantify that the posterior guess of the private
data is only slightly better than the prior (quantified by a
small positive number ε). This method of protecting private
data has been applied in [10]–[16] through carefully adding
noise to the exchanged states or objective functions. However,
this noise insertion mechanism involves an inherent trade-
off between the privacy and the accuracy of the optimization
outputs. Additionally, some approaches [17]–[19] have applied
differential privacy with the help of a trusted third party
(TTP) like a server/cloud. However, requiring a TTP for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

coordination makes the protocol not completely decentralized
(i.e., peer-to-peer setting). Consequently, it thus hinders use in
many applications such as wireless sensor networks in which
centralized coordinations are unavailable.

SMPC, in contrast, has been widely used in distributed pro-
cessing, because it provides cryptographic techniques to ensure
privacy in a distributed network. More specifically, it aims to
compute the result of a function of a number of parties’ private
data while protecting each party’s private data from being
revealed to others. Examples of how to preserve privacy by
using SMPC have been applied in [20]–[24], in which partially
homomorphic encryption (PHE) [25] was used to conduct
computations in the encrypted domain. However, PHE requires
the assistance of a TTP and thus cannot be directly applied in a
fully decentralized setting. Additionally, although PHE is more
computationally lightweight than other encryption techniques,
such as fully homomorphic encryption [26] and Yao’s garbled
circuit [27], [28], it is more computationally demanding than
the noise insertion techniques, such as differential privacy,
because it relies on the computational hardness assumption. To
alleviate the bottleneck of computational complexity, another
technique in SMPC, called secret sharing [29], has become
a popular alternative for distributed processing, because its
computational cost is comparable to that of differential privacy.
It has been applied in [30] to preserve privacy by splitting
sensitive data into pieces and sending them to the so-called
computing parties afterward. However, secret sharing gener-
ally is expensive in terms of communication cost, because
it requires multiple communication rounds for each splitting
process.

B. Paper contributions

The main contribution of this paper is that we propose
a novel subspace perturbation method, which circumvents
the limitations of both the differential privacy and SMPC
approaches for distributed signal processing. We propose to
insert noise in the subspace such that not only the private data
is protected from being revealed to others but also the accuracy
of results is not affected. The proposed subspace perturbation
method has several attractive properties:
• Compared to differential privacy based approaches, the

proposed approach is ensured to converge to the optimum
results without compromising privacy. Additionally, it is
defined in a completely decentralized setting, because no
central aggregator is required.

• In contrast to SMPC based approaches, the proposed
approach is efficient in both computation and commu-
nication. Because it does not require complex encryption
functions (such as those involved in PHE), and it does not
have high communication costs (such as those required
in the secret sharing approaches).

• The proposed subspace perturbation method is generally
applicable to many distributed optimization algorithms
like ADMM, PDMM or the dual ascent method.

• The convergence rate of the proposed method is invariant
with respect to the amount of inserted noise and thus to
the privacy level.

We published preliminary results in [31], [32] where the main
concept of subspace perturbation was introduced using PDMM
based on a specific application. Here we give a more complete
analysis of the proposed subspace perturbation in a broader
context, i.e., for all convex problems, and further generalize it
into other optimizers such as ADMM and dual ascent.

C. Outline and notation

The remainder of this paper is organized as follows: Section
II reviews distributed convex optimization and some important
concepts for privacy preservation. Section III defines the
problem to be solved and provides qualitative metrics to eval-
uate the performance. Section IV introduces the primal-dual
method of multipliers (PDMM), explaining its key properties
used in the proposed approach. Section V introduces the
proposed subspace perturbation method based on the PDMM.
Section VI shows the general applicability of the proposed
method by considering other types of distributed optimizers,
such as ADMM and the dual ascent method. In Section VII
the proposed approach is applied to a wide range of applica-
tions including distributed average consensus, distributed least
squares and distributed LASSO. Section VIII demonstrates
the numerical results for each application and compares the
proposed method with existing approaches. Finally, Section
IX concludes the paper.

The following notations are used in this paper. Lowercase
letters (x), lowercase boldface letters (x), uppercase boldface
letters (X), overlined uppercase letters (X̄) and calligraphic
letters (X) denote scalars, vectors, matrices, subspaces and
sets, respectively. An uppercase letter (X) denotes the random
variable of its lowercase argument, which means that the
lowercase letter x is assumed to be a realization of random
variable X . null{·} and span{·} denote the nullspace and
span of their argument, respectively. (X)† and (X)> denote
the Moore-Penrose pseudo inverse and transpose of X , re-
spectively. xi denotes the i-th entry of the vector x, and Xij

denotes the (i, j)-th entry of the matrix X . 0, 1 and I denote
the vectors with all zeros and all ones, and the identity matrix
of appropriate size, respectively.

II. FUNDAMENTALS

In this section, we review the fundamentals and some
important concepts related to privacy preservation. We first
review the distributed convex optimization and highlight its
privacy concerns. Then we describe the adversary models that
will be addressed later in this paper.

A. Distributed convex optimization

A distributed network is usually modeled as a graph
G = (N , E), where N = {1, 2, ..., n} is the set of nodes,
and E ⊆ N × N is the set of edges. Let n = |N | and
m = |E| denote the numbers of nodes and edges, respectively.
Ni = {j | (i, j) ∈ E} denotes the neighborhood of node i, and
di = |Ni| denotes the degree of node i.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Let xi ∈ Rui denote the local optimization variable at node
i. A standard constrained convex optimization problem over
the network can then be expressed as

min
xi

∑
i∈N

fi(xi)

s.t. Bi|jxi +Bj|ixj = bi,j ∀(i, j) ∈ E
(1)

where fi : Rui 7→ R∪{∞} denote the local objective function
at node i, which we assume to be convex for all nodes i ∈ N .
Additionally, let vi,j denote the dimension of constraints at
each edge (i, j) ∈ E , Bi|j ∈ Rvi,j×ui , bi,j ∈ Rvi,j are defined
for the constraints. Note that we distinct the subscripts i|j
and i, j, where the former is a directed identifier that denotes
the directed edge from node i to j and the later i, j is an
undirected identifier. Stacking all the local information and let
Nn =

∑
i∈N ui and Mm =

∑
(i,j)∈E vi,j , we can compactly

express (1) as
min
x

f(x)

s.t. Bx = b
, (2)

where f : RNn 7→ R ∪ {∞}, x ∈ RNn , B ∈ RMm×Nn ,
b ∈ RMm . For simplicity, we assume the dimension of xi of
all nodes are the same and set it as u, i.e., u = ui,∀i ∈ N , all
Bi|j be square matrices, i.e., vi,j = ui = u,∀(i, j) ∈ E , and
the constraints be zeros, i.e., b = 0. We thus have Mm = m×u
and Nn = n × u. We further define matrix B based on the
incidence matrix of the graph: Bi|j = I , Bj|i = −I if and
only if (i, j) ∈ E and i < j and Bi|j = −I , Bj|i = I if and
only if (i, j) ∈ E and i > j. Note that B reduces to the graph
incidence matrix if u = 1.

To solve the above problem without any centralized coordi-
nation, several distributed optimizers have been proposed, such
as ADMM [33] and PDMM [34], [35], to iteratively solve the
problem by communicating only with the local neighborhood.
That is, at each iteration (denoted by index k), each node
i updates its optimization variable x(k)

i by exchanging data
only with its neighbors. The goal of distributed optimizers is
to design certain updating functions to ensure that x(k)

i → x∗i ,
where x∗i denotes the optimum solution for node i.

B. Privacy concerns

As mentioned in the introduction, the sensor data cap-
tured by an individual’s device are usually private in nature.
For example, health conditions like Parkinson’s disease can
be detected by voice signals [36], [37], and activities of
householders can be revealed by power consumption data
[38]. In the context of distributed optimization, such private
information regarding each node i is contained in its local
objective function fi(xi) [12]. Recall that after each iteration,
node i will send the updated optimization variable x(k+1)

i

to all of its neighbors. Since this variable is related to
fi(xi), the revealed x(k+1)

i leaks information about fi(xi),
e.g., its subgradient ∂fi(xi), thereby violating privacy. This
privacy concern, however, has not been addressed in existing
distributed optimizers. Therefore, in this paper, we attempt to
investigate this privacy issue and propose a general solution
to achieve privacy-preserving distributed optimization.

C. Adversary model

When designing a privacy-preserving algorithm, it is im-
portant to determine the adversary model that qualifies its
robustness under various types of security attack. By colluding
with a number of nodes, the adversary aims to conduct
certain malicious behaviors, such as learning private data
or manipulating the function result to be incorrect. These
colluding and non-colluding nodes are referred to as corrupted
nodes and honest nodes, respectively. Most of the literature
has considered only a passive (also called honest-but-curious
or semi-honest) adversary, where the corrupted nodes are
assumed to follow the instructions of the designed protocol,
but are curious about the honest nodes’ private data. Another
common adversary is the external eavesdropping adversary,
which is assumed to infer the private data of the honest
nodes by eavesdropping all the communication channels in
the network. The eavesdropping adversary in the context of
privacy-preserving distributed optimization is relatively unex-
plored. In fact, many SMPC based approaches, such as secret
sharing [30], [39], [40], assume that all messages are trans-
mitted through securely encrypted channels [41], such that
the communication channels cannot be eavesdropped upon.
However, channel encryption is computationally demanding
and is therefore very expensive for iterative algorithms, such
as those used here, because they require use of communication
channels between nodes many times. In this paper, we design
the privacy-preserving distributed optimizers in an efficient
way, such that the channel encryption needs to be used only
once.

III. PROBLEM DEFINITION

Given the above-mentioned fundamentals, we thus conclude
that the goal of privacy-preserving distributed convex opti-
mization is to jointly optimize the constrained convex problem
while protecting the private data of each node from being
revealed under defined adversary models. More specifically,
there are two requirements that should be satisfied simultane-
ously:

1) Output correctness: at the end of the algorithm, each node
i obtains its optimum solution x∗i and its correct function
result fi(x∗i), which implies that the global function
result f(x∗) has been also achieved.

2) Individual privacy: throughout the execution of the al-
gorithm, the private data, i.e., the information regarding
fi(xi), held by each honest node should be protected
against both passive and eavesdropping adversaries; ex-
cept for the information that can be directly inferred from
the knowledge of the function output and the private data
of the corrupted nodes (in Section VII we will explain
this in detail).

To quantify the above requirements, two metrics must be
defined.

A. Output correctness metric

For each node i, achieving the optimum solution x∗i implies
obtaining the correct function output fi(x

∗
i) as well. To

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

measure the output correctness for the whole network in
terms of the amount of communication, we thus use the mean
squared error ‖x(k) − x∗‖22 over all the nodes as a function
of number of transmission: one transmission denotes that one
message package is transmitted from one node to another.

B. Individual privacy metric
In the literature, information-theoretic measures like mutual

information and ε-differential privacy are often adopted as
the privacy metric (see [42] for details). In this paper, we
deploy mutual information as the metric for quantifying the
individual privacy. The reason of choosing mutual information
over ε-differential privacy is because ε-differential privacy
corresponds to a worst-case metric and the worst-case privacy
leakage can in practice be quite far from the typical leakage
of the average user [43]. Notably, mutual information and ε-
differential privacy are closely related with each other and it is
shown in [44] that Bayesian mutual information is a relaxation
of ε-differential privacy.

Given a continuous random variable X with a probability
density function fX , the differential entropy of X is defined
as h(X) = −

∫
f(x) log f(x)dx. Let Y be another random

variable, the conditional entropy h(X|Y) quantifies the uncer-
tainty of X after knowing Y . The mutual information I(X;Y)
[45] measures the amount of information learned about X by
observing Y , or vice versa, which is given by1

I(X;Y) = h(X)− h(X|Y). (3)

C. Lower bound of information leakage
When defining the individual privacy, we explicitly exclude

the information that can be deduced from the function output
and the private data of the corrupted nodes, because each node
will eventually obtain its function output from the algorithm,
and in some cases, this output may contain certain information
regarding the private data held by the individual honest node.
To explain this scenario more explicitly, take the distributed
average consensus as an example. Let Nc and Nh denote the
set of corrupted and honest nodes, respectively. A group of n
people would like to compute their average salary, denoted by
save, while keeping each person’s salary si unknown to the
others. If the average result is accurate, the salary sum of the
honest people can always be computed by

∑
i∈Nh

si = n ×
save −

∑
i∈Nc

si assuming the adversary knows n, regardless
of the underlying algorithms. With the mutual information
metric, the salary sum will leak I(Si;

∑
j∈Nh

Sj) amount of
information about the salary of the honest node i. Provided that
this information leakage is unavoidable, we therefore refer to
it as the lower bound of information leakage. We now give
a definition of perfect security in the context of distributed
processing.

Definition 1. (Perfect privacy-preserving algorithms.) Given
a specific application, let δ ≥ 0 denote its lower bound
of information leakage. A privacy-preserving algorithm is
considered perfect (or achieves perfect security) as long as
it reveals no more information than this lower bound δ.

1In the case of discrete random variables, the condition is expressed in
terms of the Shannon entropy H(·)

IV. PRIMAL-DUAL METHOD OF MULTIPLIERS

To introduce the main idea of subspace perturbation, we
first use PDMM as an example and then generalize it to
other distributed optimizers in Section VI, like ADMM or
dual ascent. The main reasons for choosing PDMM over other
optimizers are its general applicability and its broadcasting
property (see Section IV-B) which allows for simplification of
the individual privacy analysis. In this section, we first provide
a review of the fundamentals of the PDMM and introduce
its main properties, which will be used later in the proposed
approach.

A. Fundamentals

PDMM is an instance of Peaceman-Rachford splitting of
the extended dual problem (refer to [35] for details). It is an
alternative distributed optimization tool to ADMM for solving
constrained convex optimization problems and is often char-
acterized by a faster convergence rate [34]. For the distributed
optimization problem stated in (1), the extended augmented
Lagrangian of PDMM is given by

L(x,λ) = f(x) + (Pλ(k))>Cx+
c

2
‖Cx+ PCx(k)‖22,

(4)
and the updating equations of PDMM are given by

x(k+1) = arg min
x
L
(
x,x(k),λ(k)

)
, (5)

λ(k+1) = Pλ(k) + c(Cx(k+1) + PCx(k)), (6)

where P ∈ R2Mm×2Mm is a symmetric permutation matrix
exchanging the first Mm with the last Mm rows of the matrix
it applies, c > 0 is a constant controlling the convergence
rate. λ(k) ∈ R2Mm denotes the dual variable at iteration k,
introduced for controlling the constraints. Each edge (i, j) ∈ E
is related to two dual variables λi|j ,λj|i ∈ Ru, controlled by
node i and j, respectively. Additionally, C ∈ R2Mm×Nn is a
matrix related to B: C = [B>+ B>−]>, where B+ and B− are
the matrices containing only the positive and negative entries
of B, respectively. Of note, C + PC = [B> B>]> and
∀(i, j) ∈ E : λj|i = (Pλ)i|j .

B. Broadcast PDMM

On the basis of (5), the local updating function at each node
i is given by

x
(k+1)
i = arg min

xi

fi(xi) +
∑
j∈Ni

λ
(k)>

j|i Bi|jxi

+
c

2

∑
j∈Ni

‖Bi|jxi +Bj|ix
(k)
j ‖

2
2

 (7)

∀j ∈ Ni :λ
(k+1)
i|j = λ

(k)
j|i + c

(
Bi|jx

(k+1)
i +Bj|ix

(k)
j

)
. (8)

We can see that updating λ(k+1)
i|j requires only λ(k)

j|i ,x
(k)
j and

x
(k+1)
i , of which λ(k)

j|i and x(k)
j are already available at node

j. Thus, node i needs to broadcast only x(k+1)
i after which

the neighboring nodes can update λ(k+1)
i|j themselves. As a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

consequence, the dual variables do not need to be transmitted
at all, except for the initialization step.

More specifically, each node i, regarding each iteration k,
has the following knowledge:

{x(k)
i ,λ

(k)
i|j }j∈Ni

∪ {x(k)
j ,λ

(k)
j|i }j∈Ni

, (9)

where the first term represents the local variables of node i,
and the latter is the variables of its neighbors that are related
to node i. Note that the optimization variables {x(k)

j }j∈Ni

are sent by the neighbouring nodes during the (iterative)
optimization process whereas the dual variables {λ(k)

j|i }j∈Ni

are computed and kept locally at node i, except for the
initialization step (k = 0) where these variables need to be
exchanged through securely encrypted channels.

C. Convergence of dual variables

Consider two successive λ-updates in (6), in which we have

λ(k+2) = λ(k) + c(Cx(k+2) + 2PCx(k+1) +Cx(k)), (10)

as P 2 = I . Let H̄p = span(C) + span(PC) and H̄⊥p =
null(C>) ∩ null((PC)>). Denote ΠH̄p

as the orthogonal
projection onto H̄p. From (10), we conclude that every two
λ-updates affect only ΠH̄p

λ ∈ H̄p, and (I − ΠH̄p
)λ ∈ H̄⊥p

remains the same. Moreover, as shown in [35],
(
I −ΠH̄p

)
λ

will only be permuted in each iteration and ΠH̄p
λ will

eventually converge to λ∗ given by

λ∗ = −
(

C>

(PC)>

)†(
∂f(x∗) + cC>Cx∗

∂f(x∗) + cC>PCx∗

)
+ cCx∗.

(11)
We thus can separate the dual variable into two parts:

λ(k) = ΠH̄p
λ(k) + (I −ΠH̄p

)λ(k),

→ λ∗ + P k
(
I −ΠH̄p

)
λ(0) (12)

since P 2 = I . Below, H̄p and H̄⊥p are respectively referred to
as the convergent subspace and non-convergent subspace as-
sociated with PDMM, and similarly ΠH̄p

λ and
(
I −ΠH̄p

)
λ

are called the convergent and non-convergent component of
the dual variable, respectively.

V. PROPOSED APPROACH USING PDMM

Having introduced the PDMM algorithm, we now introduce
the proposed approach. To achieve a computationally and com-
municationally efficient solution for privacy preservation, one
of the most used techniques is obfuscation by inserting noise,
such as those used in differential privacy based approaches.
However, inserting noise usually compromises the function ac-
curacy, because the updates are disturbed by noise. To alleviate
this trade-off, we propose to insert noise in the non-convergent
subspace only so that the accuracy of the optimization solution
is not affected (see also Remark 4), thus achieving both privacy
and accuracy at the same time. The proposed noise insertion
method is referred to as subspace perturbation. Below, we first
present some information-theoretic results regarding privacy,
after which we explain the proposed subspace perturbation in
detail and prove that it satisfies both the output correctness
and individual privacy requirements stated in Section III.

A. Privacy preservation using noise insertion
We first present the following information theoretic results

regarding privacy, which serve as fundamentals for the pro-
posed approach.

Proposition 1. Let {Xi}i=1,...,n denote a set of continuous
random variables with mean and variance µXi and σ2

Xi
, re-

spectively, assuming they exist. Let {Yi}i=1,...,n be a set of mu-
tually independent random variables, i.e., I(Yi, Yj) = 0, i 6= j,
which is independent of {Xi}i=1,...,n, i.e., I(Xi, Yj) = 0 for
all i, j ∈ N . Let Zi = Xi + Yi and let Z ′i = Zi/σZi

be the
normalized random variable with unit variance. We have

lim
σ2
Yi
→∞

I(X1, . . . , Xn;Z1, . . . , Zn) = 0, (13)

Proof. See Appendix A. �

Proposition 1 states that, if the lower bound of information
leakage δ = 0, we have perfect security if the variance of
the inserted noise goes to infinity. That is, the system is
asymptotically optimal. In the context of distributed signal
processing, however, δ is usually positive as the optimum
solution is often an aggregation of the local information of all
nodes. In these cases, perfect security can be achieved through
finite noise insertion. The following result gives a lower bound
on the noise variance for guaranteeing perfect security.

Proposition 2. Consider two independent random variables
X and Y with variance σ2

X and σ2
Y , where X denotes the

private data and Y denotes the inserted noise for protecting
X . Let Z = X + Y . Given δ > 0, if we choose to insert
Gaussian noise, we can obtain

I(X;Z) ≤ δ
as long as

σ2
Y ≥

σ2
X

22δ − 1
, (14)

Proof. See Appendix B. �

Proposition 2 provides a simple way to set the noise variance
for achieving perfect security. As an example, if δ = 7×10−2

bits, then perfect security can be guaranteed by setting the
variance of the inserted Gaussian noise to be 10 times that of
the variance of the private data.

B. Subspace perturbation
We first give the following assumption.

Assumption 1. The communication channels in the network
are securely encrypted when transmitting the initialized dual
variable λ(0).

Because of the broadcasting property of the PDMM, after
transmission of the initialized dual variables, the updated opti-
mization variable x(k+1)

i is the only information transmitted in
the network at each iteration. Based on (7), x(k+1)

i is computed
by 2

0 ∈∂fi(x(k+1)
i) +

∑
j∈Ni

Bi|jλ
(k)
j|i + c

∑
j∈Ni

(x
(k+1)
i − x(k)

j).

(15)

2Note that B>
i|j = Bi|j , Bi|jBj|i = −I , and Bi|jBi|j = I .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

We can see that the information about the local objective func-
tion fi(x

(k+1)
i) is contained in the subgradient ∂fi(x

(k+1)
i).

The main goal of privacy preservation thus becomes min-
imizing the information loss about ∂fi(x

(k+1)
i) given the

information known by the adversary. To do so, we first need to
analyze how much knowledge the adversary knows regarding
(15). Based on the defined adversary models, there are two
ways for the adversary to collect information. The first way
is to eavesdrop the communication channels. By doing so,
the adversary is able to collect, at every iteration k ≥ 0, all
optimization variables {x(k)

i }i∈N in the network. The dual
variables {λ(k)}, on the other hand, cannot be eavesdropped
because they are only transmitted during the initialization
phase (k = 0) through securely encrypted channels (see
Assumption 1). The second way is to collect the information of
all corrupted nodes (a passive adversary model), which is given
by (9) for every i ∈ Nc. Combining the above information
together, we conclude that the adversary has the following
knowledge regarding x and λ:

{x(k)
i }i∈N ∪ {λ

(k)
i|j }(i,j)∈Ec , (16)

where Ec = {(i, j) : (i, j) ∈ E , (i, j) /∈ Nh × Nh}
denotes the corrupted edge set. Let Ni,c = Ni ∩ Nc and
Ni,h = Ni∩Nh denote the corrupted and honest neighborhood
of node i, respectively. By inspecting (15), we can see that
with the knowledge (16), the adversary is able to compute both
c
∑
j∈Ni

(x
(k+1)
i − x(k)

j) and the partial sum contributed by
the corrupted neighborhood of node i, i.e.,

∑
j∈Ni,c

Bi|jλ
(k)
j|i .

Therefore, after deducing the known terms from (15), what
the adversary observes is

∂fi(x
(k+1)
i) +

∑
j∈Ni,h

Bi|jλ
(k)
j|i . (17)

In order to achieve perfect security (see Definition 1), the
information loss at every iteration should not exceed δ, i.e.,

I

∂fi(X(k+1)
i) ; ∂fi(X

(k+1)
i) +

∑
j∈Ni,h

Bi|jΛ
(k)
j|i

 ≤ δ.
(18)

Note that the lower bound δ is given by the application. The
only freedom we have, in order to obtain perfect security, is
to control the variance of

∑
j∈Ni,h

Bi|jΛ
(k)
j|i .

Using (12), we can express (17) as

∂fi(x
(k+1)
i) +

∑
j∈Ni,h

Bi|j

(
ΠH̄p

λ(k)
)
j|i

+
∑

j∈Ni,h

Bi|j

(
P k
(
I −ΠH̄p

)
λ(0)

)
j|i
, (19)

from which we conclude that the variance of the convergent
term

∑
j∈Ni,h

Bi|j

(
ΠH̄p

λ(k)
)
j|i

can not be manipulated to

be large as it will always converge since ΠH̄p
λ(k) → λ∗.

On the contrary, the variance of the non-convergent term∑
j∈Ni,h

Bi|j

(
P k
(
I −ΠH̄p

)
λ(0)

)
j|i

can be made arbitrar-

ily large as it only depends on the initialization of the
dual variable. As a consequence, we propose to exploit this
non-convergent term to guarantee perfect security. That is,
given an arbitrary δ > 0, we can adjust the variance of

∑
j∈Ni,h

Bi|j

(
P k
(
I −ΠH̄p

)
λ(0)

)
j|i

such that (18) is sat-

isfied. In particular, by applying Proposition 2 to the problem
at hand, we conclude that a sufficient condition to guarantee
perfect security (18) is to initialize the dual variable with
Gaussian distributed noise with

∃j ∈ Ni,h : var
(

((I −ΠH̄p
)Λ(0))j|i

)
≥ var(∂fi(X

(k+1)
i))

22δ − 1
.

(20)
By inspecting the above condition, we have the following

remarks.

Remark 1. (
(
I −ΠH̄p

)
λ(0) 6= 0 can be realized by ran-

domly initializing λ(0)). Of note, [C PC] ∈ R2Mm×2Nn

can be viewed as a new graph incidence matrix with 2Nn
nodes and 2Mm edges (see (c) in Fig. 1 for an example);
we thus have dim(H̄p) ≤ 2Nn − 1, and H̄⊥p is non-
empty. For a connected graph with the number of edges
not less than the number of nodes (i.e., Mm ≥ Nn), we
conclude that a randomly initialized λ(0) ∈ R2Mm will achieve(
I −ΠH̄p

)
λ(0) 6= 0 with probability 1.

Remark 2. (The privacy is still guaranteed if the adversary
has full knowledge of the subspace H̄p). If the network
topology, i.e., B, is known to the adversary, it is able to
construct the subspace H̄p by using C and PC. However,
knowing H̄p will not compromise the privacy because the
term

∑
j∈Ni,h

Bi|jλ
(k)
j|i in (17) can not be determined by

the adversary. The reason is that as long as λ(0) /∈ H̄p,
the adversary is not able to reconstruct the dual variables
transmitted between the honest nodes.

Remark 3. (The privacy will not be compromised even though
the adversary collects information over iterations). Since the
updates are only conducted in the convergent subspace, even if
the adversary collects information over iterations, it can only
know the difference λ(k+2) − λ(k) ∈ H̄p. With the knowledge
of the dual variables associated with the corrupted nodes only,
again the adversary is not able to determine the dual variables
related to the honest nodes. Hence,

∑
j∈Ni,h

Bi|jλ
(k)
j|i in (17)

can not be determined and the privacy is thus guaranteed.

Remark 4. (No trade-off between privacy and accuracy). No
matter how much noise is inserted in the non-convergent sub-
space, the convergence of the optimization variable x → x∗

is guaranteed. By inspecting (4), we can see that the x-update
is independent of (I −ΠH̄p

)λ as λ>
(
I −ΠH̄p

)
PC = 0.

Details of the proposed approach using PDMM are shown
in algorithm 1. And the analysis of both output correctness
and individual privacy is summarized below.

1) Output correctness: As proven in [35], with strictly
convex f(xi), the optimization variable x(k)

i of each node i of
the PDMM is guaranteed to converge geometrically (linearly
on a logarithmic scale) to the optimum solution x∗i , regardless
of the initialization of both x(0) and λ(0), thereby ensuring
the correctness. Moreover, for convex functions that are not
strictly convex, a slightly modified version called averaged
PDMM (see Section VII-C for an example) can be used to
guarantee the convergence.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Algorithm 1 Privacy-preserving distributed optimization via
subspace perturbation using PDMM

1: Each node i ∈ N initializes its optimization variable
x

(0)
i arbitrarily, and its dual variables λ(0)

i|j , j ∈ Ni are
randomly initialized with a certain distribution with large
variance (specified by the required privacy level).

2: Node i broadcasts x(0)
i and sends the initialized {λ(0)

i|j } to
its neighbor j through secure channels [41].

3: while ‖x(k) − x∗‖2 < threshold do
4: Activated a node uniformly at random, e.g., node i,

updates x(k+1)
i using (5).

5: Node i broadcasts x(k+1)
i to its neighbors j ∈ Ni

(through non-secure channels).
6: After receiving x(k+1)

i , each neighbor j ∈ Ni updates
λ

(k+1)
i|j using (6).

7: end while

2) Individual privacy: From (20), we conclude that the
proposed algorithm is able to achieve perfect security, against
both passive and eavesdropping adversaries as long as the
honest node has at least one honest neighbor, i.e., Ni,h 6= ∅
and Assumption 1 holds.

Overall, the proposed subspace perturbation approach is
able to achieve perfect security without compromising the
accuracy.

C. Discussions

In Remark 4 we mentioned that the proposed approach has
no trade-off between privacy and accuracy. When considering
practical signal processing tasks that require quantization, the
above claim still holds if the quantizer has a fixed resolution
(cell width), but there will be a trade-off between privacy and
bit rate as an increase in variance will require a higher bit
rate. On the other hand, there will be a trade-off between
privacy and accuracy if the quantizer has a fixed bit rate,
since increasing the noise will end up with a lower resolution.
These quantization related trade-offs, however, exist in all
approaches using noise insertion for example the differential
privacy approaches. One way to circumvent these trade-offs
is to adopt a fixed-rate quantizer that change the cell width
adaptively during the iterations [46], [47].

In connection to the above quantization effects, we note that
the lower bound of information leakage is very important in
reducing these trade-offs, i.e., minimizing the communication
bandwidth (bit rate) or the error in the algorithm output,
because it helps to specify the minimum noise variance that
needs to be added for perfect security; it is not necessary to
set the noise variance to be large if the lower bound is not
low enough.

VI. PROPOSED APPROACH USING OTHER OPTIMIZERS

In this section, we demonstrate the general applicability
of the proposed subspace perturbation method. In fact, the
proposed method can be generally applied to any distributed
optimizer if the introduced dual variables converge only in a
subspace (i.e., there is a non-empty nullspace), which is indeed

usually true, because these optimizers often work in a subspace
determined by the incidence matrix of a graph. To substantiate
this claim, we will show that the subspace perturbation also
applies to ADMM and the dual ascent method. We then
illustrate their differences by linking the convergent subspaces
to their graph topologies.

A. ADMM

Given a standard distributed optimization problem stated in
(1), the augmented Lagrangian function of ADMM [33] is
given by

L(x,v, z) = f(x) + v>(Mx+Wz) +
c

2
‖Mx+Wz‖2,

(21)
where M ∈ R2Mm×Nn , like PDMM, is a matrix related to
the graph incidence matrix, and M =

[
B>+ −B>−

]>
, W =[

−I> − I>
]> ∈ R2Mm×Mm . v ∈ R2Mm and z ∈ R2Mm

are the introduced dual variables and auxiliary variable for
constraints, respectively. The updating functions of ADMM
are given by

x(k+1) = arg min
x
L
(
x, z(k),v(k)

)
(22)

z(k+1) = arg min
z
L
(
x(k+1), z,v(k)

)
(23)

v(k+1) = v(k) + c
(
Mx(k+1) +Wz(k+1)

)
. (24)

By inspecting the v-update in (24), we can see that it has a
similar structure to that of the λ-update in (10) in PDMM.
Let H̄a = span(M) + span(W) and the matrix [M W] can
also be seen as an incidence matrix of an extended bipartite
graph (see (b) in Fig. 1 for an example). Therefore, we have
dim(H̄a) ≤ Mm + Nn − 1 and every v-update only effects(
ΠH̄a

)
v ∈ H̄a and leaves (I − ΠH̄a

)v ∈ H̄⊥a , H̄
⊥
a =

null(M>)∩null(W>), unchanged. In addition to this, similar
as (15) in PDMM, the local optimization variable x(k+1)

i of
node i is computed by

0 ∈∂fi(x(k+1)
i) +

∑
j∈Ni

v
(k)
i|j + c

∑
j∈Ni

(x
(k+1)
i − z(k)

i,j). (25)

Note that ADMM is not a broadcasting protocol, i.e., it
requires pairwise communications for the auxiliary variable.
The individual privacy is thus dependent on both x and z. To
simplify the analysis, we remark that revealing the auxiliary
variable z will not disclose more information than revealing
x by the data processing inequality [45]. As a consequence, it
is sufficient to analyze the individual privacy through (25). As
for the knowledge of the adversary, we note that, in addition
to the optimization variable and the dual variable, all the
auxiliary variables {z(k)

i,j }(i,j)∈E are assumed to be known by
the adversary as they can be eavesdropped. We then conclude
that after deducing all the known terms, i.e.,

∑
j∈Ni,c

v
(k)
i|j

and c
∑
j∈Ni

(x
(k+1)
i − z(k)

i,j), from (25), what the adversary
observes is

∂fi(x
(k+1)
i) +

∑
j∈Ni,h

v
(k)
i|j

= ∂fi(x
(k+1)
i) +

∑
j∈Ni,h

(
ΠH̄a

v(k)
)
i|j

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

+
∑

j∈Ni,h

(
(I −ΠH̄a

)v(0)
)
i|j
. (26)

The proof for both the output correctness and individual
privacy using ADMM follows a similar structure as that of
PDMM. The sufficient condition for perfect security using
ADMM becomes

∃j ∈ Ni,h : var
(

((I −ΠH̄a
)v(0))i|j

)
≥ var(∂fi(X

(k+1)
i))

22δ − 1
.

(27)
We thus conclude that perfect security can be achieved using
ADMM via subspace perturbation.

Of note, there are variations in ADMM. For example, [48]
showed that the auxiliary variable can be eliminated and the
dual variable update can be simplified by proper initialization;
it requires that the dual variable should be initialized properly
such that it is in the column space of [(B)> (−B)>]>.
However, such initialization ensures (I − ΠH̄a

)v(0) = 0 and
thus there is no subspace noise for protecting the private data.
Instead, we need to randomly initialize the dual variable v(0)

such that (27) can be satisfied.

B. Dual ascent method

The Lagrangian of the dual ascent method for solving (1)
is given by

L(x,u) = f(x) + u>Bx, (28)

where u ∈ RMm is the introduced dual variable. The updating
function is given by

x(k+1) = arg min
x
L
(
x,u(k)

)
(29)

u(k+1) = u(k) + t(k)Bx(k+1), (30)

where t(k) denotes the step size at iteration k. Likewise, the
u-update in (30) has a similar structure as the λ-update of
PDMM and the v-update of ADMM. Here the convergent
subspace is H̄d = span(B) and B is also rank deficient as it
is related to the graph incidence matrix. Hence, we conclude
that the proposed subspace perturbation method also works for
the dual ascent method.

C. Linking graph topologies and subspaces

Thus far, we have shown that the dual variable updates of
PDMM, ADMM and the dual ascent method are dependent
only on their corresponding subspaces: H̄p = span(C) +
span(PC), H̄a = span(M)+span(W) and H̄d = span(B).
As mentioned before, each of the matrices [C PC], [M W]
and B can be seen as an incidence matrix of a graph,
therefore they all have a non-empty left nullspace for subspace
perturbation as long as m ≥ n (Remark 1). To examine the
appearance of these constructed graphs, in Fig. 1 we give an
example of these graphs and provide illustrative insights into
the differences among these optimizers.

VII. APPLICATIONS

To demonstrate the potential of the proposed approach to
be used in a wide range of applications, we now present the
application of the proposed subspace perturbation to three fun-
damental problems: distributed average consensus, distributed
least squares and distributed LASSO, because they serve as
building blocks for many other signal processing tasks, such
as denoising [49], interpolation [50], machine learning [51],
[52] and compressed sensing [53], [54]. We first introduce the
application and then perform the individual privacy analysis.
We will continue using PDMM to introduce the details, but
the numerical results of using all the discussed optimizers will
be presented in the next section.

A. Privacy-preserving distributed average consensus

The optimization problem setup (1) for distributed average
consensus becomes

min
xi

∑
i∈N

1

2
‖xi − si‖22

s.t. xi = xj ,∀(i, j) ∈ E ,
(31)

where si denotes the initial state value held by node i. The
optimum solution for each optimization variable is x∗i =
n−1

∑
i∈N si and x∗ = (x∗1, . . . ,x

∗
n)>. Privacy-preserving

distributed average consensus is widely investigated in the
literature [55]–[63] and it aims estimate the average of all the
nodes’ initial state values over a network and keep each node’s
initial state value unknown to others. Such privacy-preserving
solutions are highly desired in practice. For example, in face
recognition applications, computing mean faces is usually
required, thus prompting privacy concerns. Here, a group of
people may cooperate to compute the mean face, but none of
them would like to reveal their own facial images during the
computation.

1) Individual privacy: Note that in distributed average
consensus, the requirement of protecting the initial state value
si is equivalent to protecting ∂fi(x

(k+1)
i) = x

(k+1)
i − si,

since the optimization variable x
(k+1)
i is known to the

adversary and can thus be seen as a constant. To
comply with existing approaches, in what follows we
will analyze the privacy in terms of the initial state
value si. Substitute ∂fi(x

(k+1)
i) = x

(k+1)
i − si in

(17) and remove the known term x
(k+1)
i , we then have

− si +
∑

j∈Ni,h

Bi|jλ
(k)
j|i . (32)

As shown in [31], [55], the only revealed information here
would be the partial sums of all the honest components
(connected subgraphs consist of honest nodes only) after
removal of all the corrupted nodes. Let H denote the node
set of the component that the honest node i belongs to, the
lower bound of information leakage for node i is thus given by
I(Si;

∑
j∈H Sj) = δ. We conclude that, given δ, the proposed

approach is able to achieve perfect security, i.e.,

I

Si ; Si +
∑

j∈Ni,h

Bi|jΛ
(k)
j|i

 ≤ δ, (33)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Fig. 1: An example of graph topologies associated with dual ascent, ADMM and PDMM with u = 1: (a) A graph with n = 5
nodes and m = 6 edges. (b) The bipartite graph constructed by ADMM with n + m nodes and 2m edges. (c) The bipartite
graph constructed by PDMM with 2n nodes and 2m edges.

by satisfying (20) in which var(∂fi(X
(k+1)
i)) is replaced by

var(Si).

B. Privacy-preserving distributed least squares

Privacy-preserving distributed least squares aims to find a
solution for a linear system (here we consider an overde-
termined system in which there are more equations than
unknowns) over a network in which each node has only partial
knowledge of the system and is only able to communicate
with its neighbors, and in the meantime the local information
held by each node should not be revealed to others. More
specifically, here the local information of node i means both
the input observations, denoted by Qi ∈ Rpi×u, pi > u and
decision vector, denoted by yi ∈ Rpi . That is, each node i has
pi observations, and each contains an u-dimensional feature
vector. Collecting all the local information, we thus have Q =
[Q>1 , . . . ,Q

>
n]> ∈ RPn×u and y = [y>1 , . . . ,y

>
n]> ∈ RPn ,

where Pn =
∑
i∈N pi.

The least-squares problem in a distributed network can
be formulated as a distributed linearly constrained convex
optimization problem, and the problem setup in (1) becomes

min
xi

∑
i∈N

1
2‖yi −Qixi‖22

s.t. xi = xj ,∀(i, j) ∈ E ,
(34)

where the optimum solution is given by x∗i =
(Q>Q)−1Q>y ∈ Ru,∀i ∈ N .

1) Individual privacy: Note that the local information yi
and Qi usually contain users’ sensitive information [24]. Take
the distributed linear regression as an example, which is widely
used in the field of machine learning, and consider the case
that several hospitals want to collaboratively learn a predictive
model by exploring all the data in their datasets. However,
such collaborations are limited because they must comply with
policies such as the general data protection regulation (GDPR)
and because individual patients/customers may feel uncom-
fortable with revealing their private information to others,
such as insurance data and health condition. In this context,
since ∂fi(x

(k+1)
i) = Q>i (Qix

(k+1)
i − yi) contains sensitive

information regarding the local information Qi and yi of node
i, it is thus important to protect it from being revealed. We
can see that at the end each node obtains the optimum solution
∀i ∈ N : x∗i = (Q>Q)−1Q>y. The lower bound δ is thus the
amount of information learned about ∂fi(xi) of honest node

i ∈ Nh by knowing x∗i given the knowledge of the corrupted
nodes, i.e., {fi(xi)}i∈Nc . Hence, the propose approach is able
to achieve privacy-preserving distributed least squares, i.e.,
perfect security (18) is guaranteed as long as (20) is satisfied.

C. Privacy-preserving distributed LASSO

Privacy-preserving distributed LASSO aims to securely find
a sparse solution when solving an underdetermined system
(in which the number of equations is less than number of
unknowns). We thus have a network similar to the previous
least squares section but with the dimension Pn < u to
ensure an underdetermined system. The distributed LASSO
is formulated as a `1-regularized distributed least squares
problem given by

min
xi

∑
i∈N

(
1

2
‖yi −Qixi‖22 + α|xi|

)
s.t. xi = xj ,∀(i, j) ∈ E (35)

where α the constant controlling the sparsity of the solution.
Because the objective function is convex but not strictly
convex, we use averaged PDMM to ensure convergence, the
x-updating function remains the same, and the λ-updating
function in (6) is replaced with a weighted average by

λ(k+1) = θ(λ(k) + cC(x(k+1) − x(k)))

+ (1− θ)
(
Pλ(k) + c(Cx(k+1) + PCx(k))

)
, (36)

where 0 < θ < 1 is the constant controlling the average
weight. The output correctness is ensured by simply replacing
the equation (6) in step 6 of algorithm 1 with the above
equation. The rest analysis follows similarly as the example
for distributed least squares described above. Hence, with (20),
we are able to achieve perfect security in distributed LASSO.

VIII. NUMERICAL RESULTS

In this section, several numerical tests3 are conducted to
demonstrate both the generally applicability and the benefits
of the proposed subspace perturbation in terms of several
important parameters including accuracy, convergence rate,
communication cost and privacy level.

3The code for reproducing these results is available at
https://github.com/qiongxiu/PrivacyOptimizationSubspace

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

(a) (b) (c)

Fig. 2: Distributed average consensus with two different initializations of the dual variable with a variance of 106: convergence
of the optimization variable, the convergent and non-convergent component of the dual variable, using (a) dual ascent, (b)
ADMM and (c) PDMM.

(a) (b) (c)

Fig. 3: Distributed least squares with two different initializations of the dual variable with a variance of 106: convergence of
the optimization variable, the convergent and non-convergent component of the dual variable of (a) dual ascent, (b) ADMM
and (c) PDMM.

(a) (b) (c)

Fig. 4: Distributed LASSO with two different initializations of the dual variable with a variance of 106: convergence of the
optimization variable, the convergent and non-convergent component of the dual variable of (a) dual ascent, (b) ADMM and
(c) PDMM.

We simulated a distributed network by generating a random
graph with n = 20 nodes and the communication radius r was
set at r2 = 2 logn

n so ensure that the graph is connected with
high probability [64]. For simplicity, all the local data regard-
ing f(xi) in each application, i.e., si in distributed average
consensus, Qi and yi in distributed least squares and LASSO,
are randomly generated from a Gaussian distribution with unit
variance, and the optimization variables are initialized with
zeros. Additionally, we initialize all the dual variables with a
Gaussian distribution with different variances.

A. General applicability

In Fig. 2, 3 and 4, we compare the convergence behavior of
the proposed subspace perturbation methods (blue lines) with
traditional non-private approaches (red lines) by using three
distributed optimizers in three applications: distributed aver-
age consensus, least squares and LASSO. More specifically,
the blue lines indicate that the dual variables are randomly
initialized with a variance of 106, such that the non-convergent
component (blue line with triangle markers) can protect the
private data, whereas the red lines mean that the dual variables
are initialized within the convergent subspace, and the private

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

(a) (b) (c)

Fig. 5: Convergence of the optimization variable in terms of three different privacy levels, i.e., approximately 7×10−3, 7×10−5

and 7×10−7 bits, for (a) proposed dual ascent (p-Dual), (b) proposed ADMM (p-ADMM) and (c) proposed PDMM (p-PDMM)
in a distributed least squares application.

data are therefore not protected, because the non-convergent
component is zero (the red lines with triangle markers are not
shown in the plots). We can see that the proposed approach
has no effect on the accuracy, because all the optimization
variables converge to the same optimum solution as the non-
private counterparts. Overall, we can conclude that

1) the proposed approach is able to achieve both accuracy
and privacy simultaneously;

2) it is able to solve a variety of convex problems;
3) it is generally applicable to a broad range of distributed

convex optimization methods.

B. Privacy level-invariant convergence rate
Another important aspect to quantify the performance is the

influence on the convergence rate when considering privacy.
Because the convergence rates of the discussed distributed
optimizers depend only on the underlying graph topologies
rather than the initializations, initializing the dual variables
with greater variance will therefore not change the conver-
gence rate; and it will only result in only a larger offset in
the initial error. To validate these results, in Fig. 5 we show
the convergence behavior of the proposed approaches in the
distributed least squares problem under three different privacy
levels: δ = 7× 10−3, 7× 10−5, and 7× 10−7 bits. In order to
achieve perfect security, based on Proposition 2, the variance
of each dual variable is set as 102, 104 and 106, respectively.
As expected, in all optimizers, the convergence rate remains
identical regardless of the privacy level.

C. Comparison with differential privacy
To demonstrate the benefits of the proposed method, in Fig.

6, we compare the proposed approaches (both p-PDMM and p-
ADMM) with a differential privacy approach [60] by using the
distributed average consensus application. We consider three
cases in which the variance of each dual variable is set as
0, 102, 104. We can see that the accuracy of the differential pri-
vacy approach decreases with increasing privacy level. Hence,
there is a trade-off between privacy and accuracy. Additionally,
the convergence rates of differential privacy approaches will
also be affected when increasing the level of privacy, because
noise is inserted at every iteration, and a higher privacy level
will also result in a slower convergence rate.

Fig. 6: Performance comparison: convergence behavior under
three different noise variances using the proposed p-PDMM,
p-ADMM and an existing differential privacy (DP) approach.

Fig. 7: Normalized mutual information of an arbitrary node i
(i.e., I(Si;X

(k)
i)

I(Si;Si)
) using the proposed p-PDMM and non-private

PDMM (n-PDMM) for each iteration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

D. Information loss over the iterative process

To visualize how the information loss behaves during the
iterative process, we perform 105 Monte Carlo simulations and
estimate the normalized mutual information (NMI) I(Si;X

(k)
i)

I(Si;Si)
of distributed average consensus using the non-parametric
entropy estimation toolbox (npeet) [65]. In Fig. 7, we show
the estimated normalized mutual information of the proposed
p-PDMM with a noise variance of 106 and traditional non-
private PDMM, in which the dual variables are initialized with
zeros. Since both approaches converge to the same average
result x∗i = n−1

∑
i∈N si, they ultimately have the same

information loss I(Si;X
∗
i), which corresponds to the lower

bound of information leakage under the condition that there
is no passively corrupted nodes. As expected, the information
loss of the proposed p-PDMM never exceeds the lower bound;
hence, the proposed approach achieves perfect security. How-
ever, the n-PDMM reveals all the information about si at the
first iteration as no noise is inserted; thus the privacy is not
protected at all.

IX. CONCLUSIONS

In this paper, a novel and general subspace perturbation
method was proposed for privacy-preserving distributed op-
timization. As a noise insertion approach, this method is
more practical than SMPC based approaches in terms of both
computation and communication costs. Additionally, by insert-
ing noise in subspace, it circumvents the trade-off between
privacy and accuracy in traditional noise insertion approaches
such as differential privacy. Moreover, the proposed method
guarantees perfect security and is generally applicable to
various optimizers and all convex problems. Furthermore, we
consider both passive and eavesdropping adversary models; in
which the private data of each honest node are protected as
long as the node has one honest neighbor, and only secure
channel encryption in the initialization is required.

APPENDIX A
PROOF OF PROPOSITION 1

Proof.

I(X1, . . . , Xn;Z1, . . . , Zn)

= h(Z1, . . . , Zn)− h(Z1, . . . , Zn|X1, . . . , Xn)
(a)
= h(Z1, . . . , Zn)− h(Y1, . . . , Yn)

(b)
=

n∑
i=1

h
(
Zi|Z1, . . . , Zi−1

)
−

n∑
i=1

h
(
Yi
)

(c)
≤

n∑
i=1

h
(
Zi)−

n∑
i=1

h(Yi)

(d)
=

n∑
i=1

I(Xi;Zi)

(e)
=

n∑
i=1

I(Xi/σZi ;Z
′
i).

Step (a) holds, as h(Zi|Xi) = h(Yi), (b) holds from the chain
rule of differential entropy and the condition that the Yi’s

are independent random variables, (c) holds, as conditioning
decreases entropy, (d) holds, as h

(
Zi) − h(Yi) = h(Zi) −

h(Zi|Xi) = I(Xi;Zi), and (e) holds from the fact that mutual
information is scaling invariant. As a consequence,

lim
σ2
Yi
→∞

n∑
i=1

I(Xi;Zi) = lim
σZi
→∞

n∑
i=1

I(Xi/σZi
;Z ′i)

=
n∑
i=1

I(0;Z ′i) = 0,

thereby proving our claims. �

APPENDIX B
PROOF OF PROPOSITION 2

Proof. As X and Y are independent, we have σ2
Z = σ2

X +
σ2
Y . For a Gaussian random variable with variance σ2, the

differential entropy is given by 1
2 log(2πeσ2), so that

δ = I(X;Z) = h(Z)− h(Z|X)

= h(Z)− h(Y)
(a)
≤ 1

2
log(2πeσ2

Z)− 1

2
log(2πeσ2

Y)

=
1

2
log(1 + σ2

X/σ
2
Y), (37)

where (a) holds, because the maximum entropy of a random
variable with fixed variance is achieved by a Gaussian distribu-
tion; and equality holds if X is also Gaussian distributed. �

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful com-
ments to improve this manuscript. In particular the reviewer
who suggested to directly define the subgradient as the private
data helped to simplify and clarify this manuscript.

REFERENCES

[1] M. Anderson, Technology device ownership, 2015, Pew Research Center,
2015.

[2] J. Poushter and others, “Smartphone ownership and internet usage
continues to climb in emerging economies,” Pew Research Center, vol.
22, pp. 1–44, 2016.

[3] T. Sherson, W. B. Kleijn, R. Heusdens, “A distributed algorithm for
robust lcmv beamforming,” in ICASSP, pp. 101-105, 2016.

[4] A. I. Koutrouvelis, T. W. Sherson, R. Heusdens, and R. C. Hendriks, “A
low-cost robust distributed linearly constrained beamformer for wireless
acoustic sensor networks with arbitrary topology,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 26, no. 8, pp. 1434–1448, 2018.

[5] M. Zhu, S. Martı́nez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control, vol.
57, no. 1, pp. 151–164, 2011.

[6] M. Zibulevsky, M. Elad, “L1-L2 optimization in signal and image
processing,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 76–88,
2010.

[7] C. Dwork, “Differential privacy,” in ICALP, pp. 1–12, 2006.
[8] C. Dwork, F. McSherry, K. Nissim, A. Smith, “Calibrating noise to

sensitivity in private data analysis,” in Proc. Theory of Cryptography
Conf. , pp. 265-284, 2006.

[9] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing, Cambridge University Press, 2015.

[10] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proc. Int. Conf. Distrib. Comput. Netw, 2015, pp. 1–10.

[11] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Trans. Autom. Control, vol. 62, no. 1,
pp. 50–64, 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

[12] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private dis-
tributed convex optimization via functional perturbation,” IEEE Trans.
Control Netw. Syst., vol. 5, no. 1, pp. 395–408, 2018.

[13] T. Zhang and Q. Zhu, “Dynamic differential privacy for ADMM-based
distributed classification learning,” IEEE Trans. Inf. Forensics Security,
vol. 12, no. 1, pp. 172–187, 2016.

[14] X. Zhang, M. M. Khalili, and M. Liu, “Recycled ADMM: Improve
privacy and accuracy with less computation in distributed algorithms,” in
in Proc. 56th Annu. Allerton Conf. Commun., Control, Comput. pp.959–
965, 2018.

[15] X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and
accuracy of ADMM-based distributed algorithms,” arXiv:1806.02246,
2018.

[16] Y. Xiong, J. Xu, K. You, J. Liu and L. Wu, “Privacy preserving
distributed online optimization over unbalanced digraphs via subgradient
rescaling,” IEEE Trans. Control Netw. Syst., 2020.

[17] Z. Huang, R. Hu, Y. Gong, and E. Chan-Tin, “DP-ADMM: ADMM-
based distributed learning with differential privacy,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 1002–1012, 2019.

[18] M. T. Hale, M. Egerstedt, “Differentially private cloud-based multi-
agent optimization with constraints,” in Proc. American Control Conf.,
pp. 1235-1240, 2015.

[19] M. T. Hale, M. Egerstedt, “Cloud-enabled differentially private multi-
agent optimization with constraints,” IEEE Trans. Control Netw. Syst.,
vol. 5, no. 4, pp. 1693–1706, 2018.

[20] Z. Xu and Q. Zhu, “Secure and resilient control design for cloud enabled
networked control systems,” in Proc. 1st ACM Workshop Cyber-Phys.
Syst.-Secur. Privacy, 2015, pp. 31–42.

[21] N. M. Freris and P. Patrinos, “Distributed computing over encrypted
data,” in Proc. IEEE 54th Annu. Allerton Conf. Commun., Control,
Comput., 2016, pp. 1116–1122.

[22] Y. Shoukry et al., “Privacy-aware quadratic optimization using partially
homomorphic encryption,” in Proc. IEEE 55th Conf. Decis. Control,
2016, pp. 5053–5058.

[23] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing of
linear programming in cloud computing,” in INFOCOM, 2011, pp. 820–
828.

[24] C. Zhang, M. Ahmad, and Y. Wang, “ADMM based privacy-preserving
decentralized optimization,” IEEE Trans. Inf. Forensics Security, vol.
14, no. 3, pp. 565–580, 2019.

[25] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in EUROCRYPT, pp. 223–238, 1999.

[26] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009, pp. 169–178.

[27] A. C. Yao, “Protocols for secure computations,” in FOCS, pp. 160–164,
1982.

[28] A. C. Yao, “How to generate and exchange secrets,” in FOCS, pp.
162–167, 1986.

[29] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology–CRYPTO, pp. 643–662. Springer, 2012.

[30] K. Tjell and R. Wisniewski, “Privacy preservation in distributed
optimization via dual decomposition and ADMM,” in CDC, 2020.

[31] Q. Li, R. Heusdens and M. G. Christensen, “Convex optimisation-based
privacy-preserving distributed average consensus in wireless sensor
networks,” in ICASSP, pp. 5895-5899, 2020.

[32] Q. Li, R. Heusdens and M. G. Christensen, “Convex optimization-based
privacy-preserving distributed least squares via subspace perturbation,”
in EUSIPCO, to appear, 2020.

[33] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine learning, vol. 3, no.
1, pp. 1–122, 2011.

[34] G. Zhang and R. Heusdens, “Distributed optimization using the primal-
dual method of multipliers,” IEEE Trans. Signal Process., vol. 4, no. 1,
pp. 173–187, 2018.

[35] T. Sherson, R. Heusdens, W. B. Kleijn, “Derivation and analysis of the
primal-dual method of multipliers based on monotone operator theory,”
IEEE Trans. Signal Inf. Process. Netw., vol. 5, no. 2, pp 334-347, 2018.

[36] A. H. Poorjam, Y. P. Raykov, R. Badawy, J. R. Jensen, M. G. Christensen
and M.A. Little, “Quality control of voice recordings in remote
parkinson’s disease monitoring using the infinite hidden markov model,”
in ICASSP, 2019.

[37] A. H. Poorjam, M. S. Kavalekalam, L. Shi, Y. P. Raykov, J. R. Jensen,
M. A. Little and M. G. Christensen, “Automatic quality control and
enhancement for voice-based remote parkinson’s disease detection,”
arXiv preprint arXiv:1905.11785, 2019.

[38] G. Giaconi, D. Gündüz, H. V. Poor, “Privacy-aware smart metering:
Progress and challenges,” IEEE Signal Process. Mag., vol. 35, no. 6,
pp. 59-78, 2018.

[39] Q. Li and M. G. Christensen, “A privacy-preserving asynchronous
averaging algorithm based on shamir’s secret sharing,” in EUSIPCO,
pp. 1-5, 2019.

[40] K. Tjell, I. Cascudo and R. Wisniewski, “Privacy preserving recursive
least squares solutions,” in ECC, pp.3490–3495, 2019.

[41] D. Dolev, C. Dwork, O. Waarts, M. Yung, “Perfectly secure message
transmission,” J. Assoc. Comput. Mach., vol. 40, no. 1, pp. 17-47,, 1993.

[42] I. Wagner and D. Eckhoff, “Technical privacy metrics: a systematic
survey,” ACM Comput. Surv., vol. 51, no. 3, pp. 1–38, 2018.

[43] M. Lopuhaä-Zwakenberg, B. Škorić and N. Li, “Information-theoretic
metrics for local differential privacy protocols,” arXiv preprint
arXiv:1910.07826, 2019.

[44] P. Cuff and L. Yu, “Differential privacy as a mutual information
constraint,” in Proc. 23rd ACM SIGSAC Conf. Comput. Commun. Secur.,
pp 43–54, 2016.

[45] T. M. Cover and J. A. Tomas, Elements of information theory, John
Wiley & Sons, 2012.

[46] D. H. M. Schellekens, T. Sherson, and R. Heusdens, “Quantisation
effects in PDMM: A first study for synchronous distributed averaging,”
in ICASSP, pp. 4237–4241, 2017.

[47] D. H. M. Schellekens, T. Sherson, and R. Heusdens, “Quantisation
effects in distributed optimisation,” in ICASSP, pp. 3649–3653, 2018.

[48] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus optimization,”
IEEE Trans. Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[49] J. Pang, G. Cheung, A. Ortega, O. C. Au, “Optimal graph Laplacian
regularization for natural image denoising,” in ICASSP, pp 2294-2298,
2015.

[50] SK Narang, A Gadde, A Ortega, “Signal processing techniques for
interpolation in graph structured data,” in ICASSP, pp 5445-5449, 2013.

[51] Tibshirani, Robert, “Regression shrinkage and selection via the lasso,”
J. Royal Statistical Soc. B, vol. 58, no. 1, pp. 267–288, 1996.

[52] J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, 2008.

[53] E. J. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?,” IEEE Trans. Inf. Theory.,
vol. 52, no. 12, pp. 5406–5425, 2006.

[54] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory., vol.
52, no. 4, pp. 1289–1306, 2006.

[55] Q. Li, I. Cascudo, and M. G. Christensen, “Privacy-preserving dis-
tributed average consensus based on additive secret sharing,” in
EUSIPCO, pp. 1-5, 2019.

[56] N. Gupta, J. Katz, N. Chopra, “Privacy in distributed average consensus,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 9515-9520, 2017.

[57] N. Gupta, J. Kat and N. Chopra, “Statistical privacy in distributed
average consensus on bounded real inputs,” in ACC, pp 1836-1841,
2019.

[58] M. Kefayati, M. S. Talebi, B. H. Khalajand H. R. Rabiee , “Secure
consensus averaging in sensor networks using random offsets,” in Proc.
of the IEEE Int. Conf. on Telec., and Malaysia Int. Conf. on Commun.,
pp. 556–560, 2007.

[59] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative
synchronous consensus,” in ACM workshop Privacy electron. Soc., pp.
81–90, 2012.

[60] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private average
consensus: Obstructions, trade-offs, and optimal algorithm design,”
Automatica, vol. 81, pp. 221–231, 2017.

[61] N. E. Manitara and C. N. Hadjicostis, “Privacy-preserving asymptotic
average consensus,” in ECC, pp. 760–765, 2013.

[62] Y. Mo and R. M. Murray, “Privacy preserving average consensus,” IEEE
Trans. Automat Contr., vol. 62, no. 2, pp. 753–765, 2017.

[63] J. He, L. Cai, C. Zhao, P. Cheng, X. Guan, “Privacy-preserving average
consensus: privacy analysis and algorithm design,” IEEE Trans. Signal
Inf. Process. Netw., vol. 5, no. 1, pp. 127–138, 2019.

[64] J. Dall and M. Christensen, “Random geometric graphs,” Physical
review E, vol. 66, no. 1, pp. 016121, 2002.

[65] G. Ver Steeg, “Non-parametric entropy estimation toolbox (npeet),”
2000.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2020.3029887

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

