
1

On Maintaining Linear Convergence of Distributed
Learning and Optimization under Limited

Communication
Sindri Magnússon, Hossein Shokri-Ghadikolaei, and Na Li

Abstract—In distributed optimization and machine learning,
multiple nodes coordinate to solve large problems. To do this,
the nodes need to compress important algorithm information
to bits so that it can be communicated over a digital channel.
The communication time of these algorithms follows a complex
interplay between a) the algorithm’s convergence properties, b)
the compression scheme, and c) the transmission rate offered by
the digital channel. We explore these relationships for a general
class of linearly convergent distributed algorithms. In particular,
we illustrate how to design quantizers for these algorithms that
compress the communicated information to a few bits while still
preserving the linear convergence. Moreover, we characterize
the communication time of these algorithms as a function of
the available transmission rate. We illustrate our results on
learning algorithms using different communication structures,
such as decentralized algorithms where a single master coor-
dinates information from many workers and fully distributed
algorithms where only neighbours in a communication graph can
communicate. We conclude that a co-design of machine learning
and communication protocols are mandatory to flourish machine
learning over networks.

I. INTRODUCTION

Large-scale distributed computing systems are the cor-
nerstone of recent advancements in many disciplines such
as machine learning (ML), communication networks, and
networked control. For example, efficient parallel processing
has enabled analysis and optimization over big datasets.
Similarly, spatially separated wireless networks with cheap
and low-complexity sensor nodes (e.g., Internet of things,
smart grids, and intra-body wireless sensor networks) are
revolutionizing our infrastructures and societies. In these
systems, multiple processors coordinate to solve large and often
spatially separated computational problems. The computational
burden of the individual processors is usually manageable, if not
small, and based on elementary operations. Instead, the main
complexity often lies in the coordination and communication
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among the processors. This problem is exacerbated in wireless
networks where bandwidth-limited and faulty wireless links
may further complicate the coordination and consequently
become a bottleneck of the distributed computing system.
One may implement a set of communication techniques
(e.g., quantization, coding and modulation, and scheduling) to
reliably exchange information bits among processors at the
expense of a slower communication rate.

In an attempt to quantify this coordination challenge in
distributed computing, [1] introduced the notion of com-
munication complexity in 1970s. It measures the minimal
number of transmitted bits required between multiple processors
to compute a binary function whose inputs are distributed
among them (in the minimax sense). More recent works have
investigated communication complexity and communication-
efficient algorithms in various systems, such as in networked
control [2], distributed optimization [3]–[11], and equilibrium
seeking in games [12]–[14]. Communication-efficiency has also
gained a massive recent interest in the ML community, where
parallel and distributed algorithms are becoming increasingly
important in dealing with the huge data size [15]–[19]. In fact,
when training many of the state-of-the art deep neural networks
the communication time is starting to outweigh the computing
time [16]. A main approach to address the communication
complexity is to reduce the number of bits to represent the
exchanged information vectors. Recent works have analyzed
the possibility of updating based on the quantized gradients,
both in deterministic [14], [18], [20] and stochastic [21]–[24]
settings.

The conventional wisdom, validated by empirical observa-
tions, is that there exists a precision-accuracy tradeoff: the fewer
the number of bits the lower the accuracy of the final solution.
Some recent studies, however, challenged that wisdom in the
deterministic [20], [25], [26] and stochastic [27], [28] settings.
In particular, these papers illustrate how the convergence rate
can be preserved under limited data-rates by using adaptive
quantization scheme that shrinks as the algorithm converges.
This idea is, to the best of our knowledge, first presented
in [3], which provides almost tight upper and lower bounds
on the number of bits two nodes need to communicate to
approximately solve a strongly convex optimization problem.
All of the above adaptive quantization schemes are, however,
designed for particular algorithms. It is one of the goals of this
paper to illustrate how such adaptive quantization scheme can
be designed for general distributed algorithms that converges
linearly in any norm.
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In the second part of this paper, we highlight that the design
of the existing distributed optimization algorithms are often
ignorant to some important objectives including end-to-end
latency, required to solve an optimization problem. These
factors become of paramount importance when we implement
ML and distributed optimization algorithms over a network
to support low-latency services, such as industrial automation
and online gaming. We consider a set of mappings between
some design parameters (the packet size, the reliability of
the communication channel, and multiple access protocol)
and the achievable transmission rate. We then characterize
the aggregated latency required for the convergence of the
distributed algorithm. We show a surprising result that reducing
the number of bits per iteration (even if we can maintain the
linear convergence rate) may not necessarily lead to the lowest
latency for solving an optimization problem. In particular,
in a contention-based resource allocation such as slotted-
ALOHA [29], a high-dimensional ML problem may enjoy
sending the fewest number of bits per iteration (to control the
channel contention at an optimal level) even though it may not
lead to the optimal convergence rate in terms of the number
of iterations, whereas a high rate point-to-point network may
enjoy a much higher value for the optimal number of bits.

The main contributions of this paper are as follows.

• Iteration complexity analysis: We considers general paral-
lel/distributed algorithms that have a linear convergence
rate in an arbitrary norm. For these algorithms, we
develop an adaptive quantization that maintains the non-
asymptotic and asymptotic linear convergence rate while
communicating only few bits per iteration.

• Novel performance measure: In the second part of the
paper, we introduce the novel notion of transmission time
complexity of running a distributed optimization over a
generic communication network. We consider abstract
transmission rate functions that take as inputs the size of
the payload (number of quantization bits) and overhead
of each packet and the probability of package failure and
quantify.

• Transmission time complexity analysis: We build on
our iteration-complexity results and characterize the
transmission time convergence of distributed algorithms
for different communication channels, such as AWGN
channels and multiple access channels. Our algorithm
class/framework is generic enough to cover many ML
algorithms of practical interest and with different commu-
nication protocols.

• Example use cases: We illustrate the usage of our
algorithm to maintain convergence of distributed ML and
optimization algorithms where i) a master node coordi-
nates information received from many worker nodes and
ii) where the nodes communicate over a communication
graph with no central coordinator.

• Extensive experiments We show the implications of our
theoretical convergence results on large dimensional data
sets, including the MNIST.

This paper addresses the problem of communication complex-
ity from the point of view of information and communication

theory, which is still in its infancy. A conference version
containing part of this work was presented in [20]. All of
the work in Section III-C, IV, and V is appearing here for the
first time. Moreover, the discussions and results in Section II
and Section III have been largely improved. Moreover, the
conference version did not include any proofs and almost all
of the numerical results are new.

Notations. Normal font small letters x, bold font small
letters x, bold font capital letters X, and calligraphic font
X stand for scalars, vectors, matrices, and sets respectively.
For a matrix X, Xij denotes its (i, j)-th entry. A⊗B is the
Kronecker product A and B and Im(A) is the span of A. We
denote by λ+

min(A) and λmax(A), respectively, the smallest
non-zero eigenvalue of A and the largest eigenvalue of matrix
A. We denote by |L| the cardinality of the set L.

II. ALGORITHM MODEL:
COMMUNICATION AND LINEAR CONVERGENCE

In this section, we start by introducing the abstract form of
our distributed algorithms. We then provide two examples of
algorithms in this form that are popular in distributed learning
over networks.

A. Distributed Iterative Algorithms

Consider a network of N nodes that cooperatively solve a
distributed computational problem involving some communica-
tion. In particular, we consider the following general algorithm
framework

xk+1 =A(ck,xk), (1a)

ck+1
i =Ci(x

k+1), for i = 1, . . . , N, (1b)

where ck = (ck1 , . . . , c
k
N ). The function A : RNd × X → X

represents an algorithm update of the decision variable x ∈ X ,
where X is a subset of a finite dimensional Euclidean space.
The function Ci : X → Rd picks out the relevant information
ci = Ci(x) that node i needs to communicate to run the
algorithm.1 This general algorithmic framework covers many
ML algorithms. One example is that a master server performs
the algorithm update based on information computed and
communicated from many servers; see the first example in
Section II-B. The framework in Eq. (1) also covers distributed
learning algorithms where the nodes communicate over a
communication graph (N , E) where N := {1, 2, · · · , N}
stands for the nodes and E ⊂ N × N stands for the
communication links. This can be captured by the following
iterations

xk+1
i =Ai(c

k
Ni ,x

k
i ),

ck+1
i =Ci(x

k+1
i ),

(2)

where Ni := {j ∈ N : (i, j) ∈ E} denotes the set of neighbors
of node i, the function Ai : Rd×Xi → Xi is the local algorithm
update at node i, and Ci : Xi → Rd is the information that

1To simplify the presentation we have assumed that ci has the same
dimension for all i. However, all the results in this paper also hold for
cki ∈ Rdi by replacing d with maxi di followed by a zero padding.
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node i communicates to its neighbors. To express the algorithm
in the form of Eq. (1) we set

xk = (xk1 , . . . ,x
k
N ) and ck = (ck1 , . . . , c

k
N ),

and define the function A : RNd × X → X , X =
∏N
i=1 Xi,

resulting in

A(c,x) = (A1(cN1 ,x1), . . . , AN (cNN ,xN )).

The focus of this paper are algorithms in the form of Eq. (1)
that have linear convergence rates, which we define as follows.

Definition 1. We say that the algorithm in the form of Eq. (1)
is σ-linear convergent in the norm || · || if:
a) The function x 7→ A(C(x),x) is σ-pseudo contractive on
X , i.e., there exists x? ∈ X such that

||A(C(x),x)− x?|| ≤ σ||x− x?||,

for all x ∈ X .
b) There exist LC and LA such that

||A(c1,x)−A(c2,x)|| ≤LA||c1 − c2||∞, (3a)
||C(x1)− C(x2)||∞ ≤LC ||x1 − x2||, (3b)

for all x1,x2,x ∈ X and c1, c2 ∈ RNd.

Note that this definition implies that the algorithm converges
linearly in both c and x to some fixed points x? ∈ X and
c? ∈ RNd. In particular, we have

||xk − x?|| ≤σk||x0 − x?|| and

||ck − c?||∞ ≤LCσk||x0 − x?|| for all k ∈ N.

Definition 1-b) is a smoothness condition on the mapping
between the algorithm iterations x and the communication
variables c. This is needed when considering quantized
communication because quantization creates a noise that affects
the algorithm performance. We use L∞-norm to measure
the distance between communication variables because our
quantization (given in Section III) is a rectangular grid where
distances are measured in the L∞-norm (Manhattan distance).

Many parallel and distributed algorithms can be expressed
in this form and have σ-linear convergence under certain con-
ditions [30]. For example, algorithms for learning Equilibriums
in games [14], [31], [32], coordination algorithms in com-
munication networks [33]–[35], and distributed optimization
algorithms [36]–[38]. Below, we give two concrete examples
of distributed learning algorithms in this form.

B. Application: Distributed Learning and Optimization

Consider the following optimization problem

minimize
z∈Rd

F (z) =

N∑
i=1

fi(z) (4)

where N nodes wish to learn a parameter z ∈ Rd by
minimizing the sum of local loss functions fi : Rd → R
based on the private data locally available at node i. We make
the following assumption.

Assumption 1. For i=1, . . ., N , fi(·) is µ-strongly convex and
has L-Lipschitz continuous gradient.

Below, we illustrate two typical algorithms, covered by our
model in Eq. (1), that use different communication structures.

1) Decentralized Learning: This problem is typically solved
using the decentralized gradient update

xk+1 = xk − γ
N∑
i=1

∇fi(xk).

To perform this update some communication is needed. The
most common communication protocols are a) the nodes
broadcast their gradients, then the nodes perform the gradient
update locally, b) the nodes communicate their gradients to a
master node that performs the gradient update. In either case,
this algorithm is captured by the model in Eq. (1) as follows

xk+1 =A(ck,xk) = xk − γ
N∑
i=1

cki

ck+1
i =Ci(x

k+1) = ∇fi(xk+1) for i = 1, . . . , N.

(5)

This algorithm is linearly convergent, following the standard
analysis of gradient descent.

Proposition 1 ( [39]). Let A(·) and C(·) be the functions
defined in Eq. (5) and x? be the optimal solution to the
optimization problem in Eq. (4). Then

||A(C(x),x)− x?||2 ≤ σ||x− x?||2, for all x ∈ Rd,

where σ ∈ [0, 1) if γ is small enough. For example, σ =
1 − 2/(κ + 1) if γ = 2/[N(µ + L)], where κ = L/µ. It
can also be verified that Eq. (3a) and Eq. (3b) hold with
LA = γN

√
d and LC = L.

Borrowing terminology from Communication and Informa-
tion Theory, the communication channel from the master node
to the workers is called a broadcast channel, whereas the reverse
is called a multiple-access channel (MAC) [40]. Generally
speaking, the main bottleneck in this two-way communication
system (between workers and master node) is the MAC channel
where there is a risk of co-channel interference if multiple
workers simultaneously send their information messages. In the
case of strong interference, also called collision, the information
messages might not be decodable at the master node and
the workers should re-transmit their messages, consuming
much energy if they are battery-powered. These challenges are
exacerbated in wireless networks due to random channel atten-
uation and background noise [41]. Consequently, state-of-the-
art communication technologies need additional coordination
and advanced coding techniques in the MAC channel. In the
algorithm in Eq. (5), we focus on the communication from
the worker nodes to the master node (the MAC channel) and
do not specially formulate how the master node broadcasts
xk and assume zero latency (a conventional ideal broadcast
channel). However, our framework can easily be adjusted to
include the latency due to the broadcast channel of the master.
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2) Distributed Learning over a Network: Dual Decompo-
sition: Distributed algorithms where the nodes cooperatively
solve the problem in Eq. (4) over a connected communication
network (N , E) can also be modelled in the form of Eq. (1),
e.g., using dual decomposition [38], ADMM [36], or distributed
consensus gradient methods [37]. All of these algorithms have
linear convergence rate under Assumption 1. We illustrate this
for the distributed dual decomposition. Suppose that the nodes
communicate over an undirected graph and let W ∈ RN×N
denote the Laplacian matrix of that graph, i.e., Wij = −1 if
(i, j) ∈ E , Wij = |Ni| if i = j, and Wij = 0 otherwise. We
can then write the problem in Eq. (4) equivalently as

minimize
c

N∑
i=1

fi(ci)

subject to W̄c = 0

(6)

where W̄ = W⊗ I, c = (c1, . . . , cN ), and ci is a local copy
node i has of the variable z. The constraint W̄c = 0 ensures
the consensus between all the local copies ci for i = 1, . . . , N ,
provided that the network is connected. We obtain a distributed
algorithm by considering the dual of the problem in Eq. (6),
we illustrate the details of algorithm derivation in Appendix.
The algorithm reduces to the following steps. Initialize x0

i = 0
and c0

i = argminci fi(ci) and for k ∈ N

xk+1
i =Ai(c

k
Ni ,x

k
i ) := xki + γ

n∑
j=1

Wijc
k
i

ck+1
i =Ci(x

k+1
i ) := argmin

ci

fi(ci) + 〈ci,xk+1
i 〉.

(7)

Note that here xi are the dual variables and ci are primal
problem variables. The algorithm is in the form of Eq. (2)
which is a special case of our algorithm framework in Eq. (1). It
is also linear convergent as presented in the following theorem,
proved in Appendix E.

Proposition 2. If we set X := Im(W⊗ I) then A(c,x) ∈ X
for any c ∈ Rd and x ∈ X . Moreover, if we choose

γ =
2Lµ

µλ+
min(W) + Lλmax(W)

then for all x ∈ X we have

||A(C(x),x)− x?||M ≤ σ||x− x?||M, (8)

where σ = 1 − 2/(κ(W) + 1), κ(W) =
λmax(W)L/(µλ+

min(W)), || · ||M is a norm on X , and
x? is the unique fixed point of A(C(x),x) in X . There exist
constants LA and LC such that Eq. (3a) and Eq. (3b) hold
true. See Appendix E for LA, LC , and the definition of || · ||M.

The proposition shows that the distributed algorithm in Eq. (7)
over the communication graph (N , E) is indeed contractive.
Note that the contractivity parameter σ depends on the spectral
properties of the graph via κ(W). For example, for a complete
graphs, we have λmax(W) = λ+

min(W) = N meaning that
κ(W) = L/µ, which is the condition number of the convex
problem in Eq. (6). In other words, for complete graphs
the algorithm in Eq. (7) has the same convergence rate as
the decentralized algorithm in Eq. (5). For general graphs,

•
qki

•qk+1
i • cki

r

r

δk

1

2

3

4

5

...

2b

2 3 4 5 · · · 2b

Fig. 1: The b-bit (per entry) quantization qk+1
i = quanti(c

k
i ,q

k
i , r

k, bk)
projects the point cki to the closest point on the grid. The grid is centered at
qk
i (which is available to the receiver from the previous iteration) and has the

width 2rk and the length between points is δ = 2rk/(2b − 1).

the convergence rate becomes slower as λmax(W)/λ+
min(W)

grows. Note that since the graph is connected, λ+
min(W) is

the second smallest eigenvalue of the graph Laplacian matrix
(also known as the algebraic connectivity of the graph), which
is often used to characterize connectivity or propagation times
in networks [42, Appendix B].

III. MAINTAINING CONVERGENCE UNDER LIMITED
COMMUNICATION

In this section, we illustrate how we can limit the communica-
tion of algorithms with σ-linear convergence rate (Definition 1)
to a few bits per iteration while still maintaining the linear
convergence rate. We first illustrate how we quantize the
communication in the algorithm (Section III-A) and then
provide our main convergence results (Section III-B).

A. Limited Communication Algorithms

We consider the following b-bit (per dimension) quantized
version of the algorithms in the form of Eq. (1). We initialize
by setting x0 ∈ X and q0

i = c0
i = Ci(x

0
i ) for i = 1, . . . , N

and then do the following iterations for k ∈ N:

xk+1 =Ai(q
k,xk), (9a)

ck+1
i =Ci(x

k+1) (9b)

qk+1
i =quanti(c

k+1
i ,qki , r

k, b) (9c)

where q = (q1, . . . ,qN ). The steps in Eq. (9a) and Eq. (9b)
are essentially the same as the original unquantized algorithm
in Eq. (1). The main difference is in the quantization step in
Eq. (9c). The variable qk+1

i denotes a b-bit (per dimension)
quantization of ck+1

i . The quantization is done by using the
quantization function quanti(ci,qi, r, b) that projects the
point ci to the closest point on the grid illustrated in Figure 1,
which can be represented by db-bits. The grid is centered
at qki , which is available to the receiver from the previous
iteration. The grid has the width 2rk and therefore rk controls
the accuracy of the quantization. We will show how we can
control the accuracy rk so that its decrease will follow the
convergence of the algorithm. This allows us to maintain the
convergence rate of the algorithms even though we use only b
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bits to quantize and communicate per iteration. We can formally
define the quantization as follows:

Definition 2. Let quanti : Rd × Rd × R+ × N → Rd be
the quantization function defined component-wise as follows,
where δ(r, b) := r/(2b − 1),

[quanti(c,q, r, b)]j =
qj − r if qj ≤ cj − r + δ(r, b)

qj + r if qj ≥ cj + r − δ(r, b)
qj − r + 2δ(r, b)

⌊
cj−qj+r+δ(r,b)

2δ(r,b)

⌋
otherwise.

The following result connects the number of quantization
bits b and the precision of the quantization.

Lemma 1. Let qi ∈ Rd be given for some i = 1, . . . , N . Then
for all ci ∈ Rd, such that ||ci − qi||∞ ≤ r we have

||quanti(ci,qi, r, b)− ci||∞ ≤
r

2b − 1
.

B. Main Result: Maintaining the Linear Convergence

We now illustrate our main results. We first provide few
assumptions on what information must be available a priori to
running the algorithm so that the quantization can be performed.

Assumption 2. The algorithm is A(C(x),x) is σ-linear
(Definition 1) and the following information is available before
running the algorithm: a) The parameter σ; b) The initialization
of the quantization variable q0

i for i = 1, . . . , N ; c) A bound D
such that either i) ||x1−x0|| ≤ (1−σ)D or ii) ||x0−x?|| ≤ D.

That is, we assume that the parameters σ, D, and the
initialization q0

i , for i = 1, . . . , N , are known before running
the algorithm. The convergence rate σ can often be computed
easily in advance, e.g., similarly as we did in Theorem 1 and 2
in Section II-B. Prior knowledge of q0

i is also reasonable since
setting its value is part of initializing the algorithm. To obtain
the prior knowledge of D, we note that it suffices to find any
upper bound on either ||x1−x0|| or ||x0−x?||. In optimization
we can often use the problem structure to bound ||x0−x?||. For
example, the optimization problem in Eq. (4) is Nµ-strongly
convex so from [39, Theorem 2.1.8] we have

||x0 − x?||2 ≤ (2/µ)(F (x0)− F (x?)) ≤ (2/µ)F (x0) =: D,
(10)

where the final inequality can be obtained if F (x) ≥ 0 for
all x, which is usually the case in ML. The function value
F (x0) is often easily available, e.g., in logistic regression
F (x0) = log(2) if x0 = 0, see Section VI. Similarly, if the
algorithm projects the iterates to a compact set, which is often
done in constrained optimization, then the diameter of that set
gives us the bound D. Moreover, bounding ||x1 − x0|| only
requires us, at worst, to do some initial coordinations. We note
that c-i) implies c-ii) since no quantization is done at the first
iteration so we have

||x0−x?|| ≤ ||x0−x1||+||x1−x?|| ≤ ||x0−x1||+σ||x0−x?||

implying that ||x0 − x?|| ≤ 1/(1− σ)||x0 − x1||.
We obtain the following linear convergence rate result for

the quantized algorithm.

Theorem 1. Consider the quantized algorithm in Eq. (9) and
suppose that Assumption 2 holds. Set

rk =
K

LA
α(b)k+1D where α(b) =

K

2b − 1
+ σ (11)

and K = max

{
1,

2LALC
σ

}
. (12)

Then the following holds:

||xk − x?|| ≤α(b)kD, for all k ∈ N. (13)

For any ε > 0 we have

||xk − x?|| ≤ε for all k ≥ kε(b) :=
1

1− α(b)
log

(
D

ε

)
.

(14)

Proof. A proof is presented in Appendix A.

Theorem 1 states that we can maintain a linear convergence
of the algorithms in Definition 1 with communicating only
a fixed number of bits, bd, per iteration. This is possible by
adaptively squeezing the grid size based on the local geometry
of the optimization landscape, using the designed contraction
factor σ, as well as LA and LC ; see Figure 1. Parameter α(b)
plays an important role in the performance of our distributed
optimization with quantized information exchange. It is the
decrease rate of the grid size (see Eq. (11)), the convergence
rate of the limited communication algorithm (see Eq. (13)). In
both cases, we need α(b) < 1 to ensure the convergence of
the limited communication algorithm. It is easy to show that
there is a critical b = bc for which α(bc) < 1. For any b > bc,
α(b) converges exponentially to σ, the convergence rate of the
original unquantized algorithm. Part b) of the theorem provides
a bound on the total number of bits needed to find a given
solution accuracy, for a given number of bits per iteration b.
In particular, we need to run up to kε(b) iterations to obtain
ε-accurate solution for any arbitrary accuracy ε > 0.

Besides the number of iterations, we can measure the total
number of bits needed to ensure any ε > 0 accuracy.

Corollary 1. Define Bε(b) as the total number of communi-
cated bits (per dimension) needed to ensure an ε-solution using
the bound in Eq. (14), provided that we communicate b bits
per iteration. We have

Bε(b) = bkε(b). (15)

Note that for given desired solution accuracy ε > 0, we can
easily minimize Bε(b) since it has only one variable b. That
is, we can find optimal quantization that ensures convergence
using the fewest bits. We explore this further in the numerical
experiments in Sections V and VI.

C. Decentralized Optimization and Comparison to [3]

We now illustrate how Theorem 1 can be used to provide
a dimension dependent upper bound on the decentralized
optimization algorithms in Section II-B1. This result generalizes
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the upper bound in [3]. The work in [3] considers the
constrained optimization problem

minimize
x∈Rd

f1(x) + f2(x),

subject to x ∈ [0, 1]d,
(16)

in a network of the two nodes i = 1, 2. The objective functions
{fi}i, maintained by node i, are strongly-convex and smooth.
The paper studied the following question: how many bits do
the two nodes need to communicate to reach an ε accurate
solution to the optimization problem in Eq. (16)? To answer
this question, the authors of [3] first provide a lower bound
showing that to find an ε-accurate solution, all algorithms need
to communicate at least

Ω

(
d

(
log(d) + log

(
1

ε

)))
bits
node

. (17)

The authors also show that an ε-accurate solution can be
achieved with an algorithm that communicates2

O
(

log(κd)κd

(
log(d) + log

(
1

ε

)))
bits
node

. (18)

The upper bound is tight, except for factor κ log(dκ). The
algorithm that is used to achieve this upper bound is a projected
gradient method with a quantization similar to Eq. (9).

Our results can generalize this upper bound to a multiple
nodes. In the following discussion, we assume that each node
can communicate to every other node. We first consider the
unconstrained case of Section II-B1.

Corollary 2. Consider the quantized algorithm in Eq. (9)
with A(·) and Ci(·) from Eq. (5), γ = 2/(N(µ + L)), K
from Eq. (12), rk from Eq. (11), b = dlog2(24(κ + 1)

√
d)e,

and κ = L/µ ≥ 2. For any ε > 0, we find xε such that
||xε − x?|| ≤ ε after the algorithm has communicated3

O
(

log (κd)κd

(
log (D) + log

(
1

ε

)))
bits

nodes
.

Proof. A proof is presented in Appendix B.

This corollary shows that the quantized version of the
unconstrained decentralized gradient method archives a similar
upper bound as the projected gradient method in [3] (see
Eq. (18)), even for N > 2. The only difference is that the
log(d) factor in Eq. (18) has been replaced with log(D). The
bound D does not always depend on the dimension d, e.g., the
upper bound in Eq. (10).

We can generalize the two-node optimization algorithm [3]
to a network as

minimize
x∈Rd

n∑
i=1

fi(x) ,

subject to x ∈ [0, 1]d.

(19)

2Recall that κ = L/µ is the condition number of the optimization problem.
In [3] κ does not show up in the upper bound. However, a thorough inspection
of the proof reveals this dependence on κ.

3The condition number κ my be replaced by any upper bound on κ. Hence,
the assumption κ = L/µ ≥ 2 does not restrict the results, in this case we
may replace κ with its upper bound 2.

The optimization algorithm we use is projected gradient method,
which we write in our algorithm framework by setting

A(c,x) =

⌈
x− γ

N∑
i=1

ci

⌉
[0,1]d

and Ci(x) = ∇fi(x) (20)

for i = 1, . . . , N . Note that for any x0 ∈ [0, 1]d we satisfy
Assumption 2 with D =

√
d, since ||z − y||2 ≤

√
d for any

z,y ∈ [0, 1]d. The quantized version of this algorithm leads to
the following result.

Corollary 3. Consider the quantized algorithm in Eq. (9) with
A(·) and Ci(·) from Eq. (5), K from Eq. (12), rk from Eq. (11),
γ = 1/(NL), b = dlog2(24(κ + 1)

√
d)e, and κ = L/µ ≥ 2.

For any ε > 0, we find xε such that ‖xε − x?‖ ≤ ε after the
algorithm has communicated

O
(

log(κd)κd

(
log(d) + log

(
1

ε

)))
bits
node

.

Proof. A proof is presented in Appendix B.

This corollary illustrates that we can use the results developed
in this paper to extend the upper bound in [3] to multi-nodes.
The upper bound almost matches the lower in Eq. (17), within
a log(κd)κ factor. The linear dependence on the condition
number κ is an artifact of the gradient method and cannot be
improved unless we use another optimization algorithm, e.g.,
accelerated gradient method or a conjugate gradient method.
Improving the log(κd) factor might be possible.

IV. TRANSMISSION-TIME COMPLEXITY

Although quantization (lossy compression) saves commu-
nication resources, it may fail in characterizing the actual
cost of running distributed algorithms. This is because, from
the engineering perspective, the tangible costs are usually
the latency (time needed to run the algorithm) or energy
consumption. In the following, we focus on the latency and
characterize the transmission-time convergence of running the
distributed algorithms from the previous section. We introduce
the transmission time model that we use in subsection IV-A. We
provide convergence rate results in terms of transmission time
with and without communication errors in subsections IV-B
and IV-C, respectively.

A. Transmission-Time Model

To perform an iteration of the quantized algorithms in Eq. (9)
each node needs to communicate a package of

n := bd+ θ bits.

In particular, db bits are used to transmit the quantized
message qki , b per dimension. The remaining θ bits model
all protocol overheads, including packet headers (source and
destination IDs), parity bits for channel coding, and scheduling
overheads [43]. These overheads, among other purposes, are
added to realize reliable communications over an unreliable
communication link and to regulate the data transmissions of
multiple nodes. We discuss the overhead in more detail in
Section V.
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To characterize the transmission time of running the algo-
rithms we need to define the transmission rate. To simplify the
discussion we let the transmission rate be the same for each
communication link.4 The transmission rate is denoted by the
function

R(n, p) =
communicated bits

second
,

where p ∈ (0, 1) is the probability that each n-bit communica-
tion package fails in transmission. We discuss specific forms
of the rate function R(n, p) in Section V. To quantify the
transmission time per iteration, we introduce the delay function
∆(n, p). In particular, the time needed to perform 1 iteration
of the algorithm is denoted by

∆(n, p) :=
n

R(n, p)
seconds (21)

and performing k iterations takes

t := k∆(n, p) =
kn

R(n, p)
seconds. (22)

If we let xi(t) be the decision of node i after t transmission
seconds then

xi(t) =xki , for t ∈
[
k∆(n, p), (k + 1)∆(n, p)

)
, (23)

x(t) =(x1(t), . . . ,xN (t)). (24)

We now explore the algorithm convergence in terms of
transmission time.

B. Error-free Transmission

We start by considering an error-free communication, i.e.,
when p = 0. In this case, we drop the variable p from the
notation R(·) and ∆(·). We get the following transmission-time
convergence.

Theorem 2. Consider the quantized algorithm in Eq. (9).
Suppose that Assumption 2 holds and that the parameters
rk, α(b), and K are chosen as in Eq. (11) and Eq. (12) in
Theorem 1. Then we have the following convergence in terms
of transmission time t

||x(t)− x?|| ≤

([
K

2b − 1
+ σ

]R(n)/n
)t−∆(n)

D. (25)

Moreover, for any ε > 0 following holds:

||x(t)− x?|| ≤ε for all t ≥ Tε(b, θ), (26)

where

Tε(b, θ) := kε(b)∆(b+ θ) seconds, (27)

with kε(b) defined in Eq. (14).

Proof. This result is obtained by using Eq. (22) in Theorem 1.

Eq. (25) provides us with an upper bound on the convergence
of x(t) to fixed point x? in terms of transmission time. The

4This is without loss of generality, since we only need to consider the
transmission rate of slowest communication link.

algorithm converges linearly in terms of transmission time with
the rate

ρ(b, θ) =

[
K

2b − 1
+ σ

]R(db+θ)/(db+θ)

. (28)

Unlike the convergence rate in Eq. (13) of Theorem 1, a finer
quantization (larger b) does not necessarily ensure a faster
convergence rate anymore. This is because the convergence
rate ρ(b, θ) for the transmission time captures the tradeoff
between spending more time to send large packets with more
information (larger b) at the cost of doing fewer iterations
per second or spending less time per iteration (by sending a
packet with less information) but achieving more iterations per
seconds. Even though ρ(b, θ) seems complicated, it is easily
optimized numerically since it is a function of only 2 variables.

Eq. (27) is an upper bound on the transmission time (in
seconds) needed to reach an ε-accurate solution. In comparison
to Theorem 1, the transmission-time needed to find an ε-
optimal solution is the iteration count kε(b) multiplied by
the nonlinear delay function ∆(n). We will see in Section V
how the nonlinearities in ∆(n) affect the transmission rate.

C. Faulty Transmission

We now consider the transmission time convergence in the
presence of message failures, i.e., p > 0. In particular, each
transmitted message from node i to node j fails with probability
p. We assume that the success of the transmissions are
independent events across time and among different transmitter-
receiver pairs.

To perform the algorithm in Eq. (9) a successful communi-
cation of each message qki is required. In case of messages
failures, the nodes need to re-transmit their messages until
success. We let mk denote the number of re-transmissions of
messages at iteration k. This means that the communication
time of one iteration (cf. Eq. (21) and Eq. (22)) is mi∆(n, p)
seconds and performing k iterations takes

t := ∆(n, p)

k∑
i=0

mi =
n

R(n, p)

k∑
i=1

mi seconds. (29)

We consider two chooses of mi:

1) Communicate until success: mi is the number of com-
munication rounds until every message has bee succesfully
received.

2) Constant communication rounds: mi = m, where m is
a predefined constant independent of i.

The communication scheme 1) is easily realizable in decentral-
ized and parallel computing where a master node handles the
coordination, like in the application in Section II-B1. However,
in fully distributed algorithms in networks it is unrealistic that
a single node can know when every communication has been
successfully received. In this case, we can go for alternative 2)
and let each node communicate a fixed number of times. We
now study these two cases separately.
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1) Communicate until success: From our results in Sec-
tion III-B and Theorem 1, to find an ε > 0 accurate solution
with b-bit resolution per dimension we need kε(b) iterations.
In terms of transmission time that translates to

Tε(b, θ, p) = ∆(n, p)

kε(b)∑
k=1

mk seconds. (30)

Here mk are realizations of the random variable M indicating
the number of communication rounds needed until success at
iteration k. To formally define M we first define the set L
of all communication links (sender-receiver pairs) used in the
algorithm. Then

M = max
l∈L

Sl (31)

where Sl is a random variable indicating the number of
times the communication in link l is transmitted until it is
successfully received. It is easily verified that Sl follows a
geometric distribution and that P [Sl = m] = pm−1(1−p) and
P [Sl ≤ m] = 1 − pm. With this in mind, we can derive the
following bound on the expected transmission-time needed to
ensure ε-accuracy.

Theorem 3 (Communicate until success). Consider the quan-
tized algorithm in Eq. (9). Suppose that Assumption 2 holds
and that the parameters rk, α(b), and K are chosen as in
Eq. (11) and Eq. (12) in Theorem 1. Then for any ε > 0 we
have

||x(t)− x?|| ≤ε for all t ≥ Tε(b, θ, p), (32)

where Tε(b, θ, p) is the random variable defined in Eq. (30).
We have the following bounds on Tε(b, θ, p)

LBε(b, θ, p) ≤E[Tε(b, θ, p)] ≤ UBε(b, θ, p)

where

LBε(b, θ, p) =kε(b)×∆(b+θ, p)× log(|L|)
log(1/p)

UBε(b, θ, p) =kε(b)×∆(b+θ, p)×
(

1+ log(|L|)
log(1/p)

+1

)
.

Proof. A proof is presented in Appendix C.

The theorem tells us that the expected transmission time
needed to obtain an ε-accurate solution is bounded by

E[Tε(b, θ, p)] = kε(b)×∆(b+θ, p)×O
(

log(|L|)
log(1/p)

)
.

This bounds consists of three multiplicity terms. The first term
kε(b) comes from the iteration count in Theorem 1, for the
number of iterations needed to find an ε-solution. The second
term is the nonlinear delay function ∆(b+θ, p) accounting for
the achievable communication rate. The final term accounts for
the re-transmitting the messages until success. This means that
the transmission time follows nonlinear relationship between b,
θ, and p. This relationship can easily be optimized numerically
if we know the delay function ∆(·), since there are only three
free variables. We explore this in Section V. The third term also
depends logarithmically on the number of communication links
|L|. In a network with N nodes, the number of communication
links is bounded as |L| ≤ N2. This means that log(|L|) ≤
log(N2) = 2 log(N).

2) Fixed Number of Communication Rounds: Consider now
communication scheme 2), where each node broadcast constant
number of times, i.e. mk = m is a constant. In this case, with
some probability, a message will be dropped meaning that the
quantized algorithm in Section III is not guaranteed terminate
successfully (we discuss how we can relax this assumption
after the theorem). However, we can make the probability that
the algorithm terminates successfully (finds an ε-solution) as
high as we want by increasing m. We illustrate this now.

Theorem 4 (Fixed number of communication rounds). Con-
sider the quantized algorithm in Eq. (9). Suppose that Assump-
tion 2 holds and that the parameters rk, α(b), and K are
chosen as in Eq. (11) and (12) in Theorem 1. Let ε > 0 and
δ ∈ [0, 1). Suppose that each node transmits its message

mδ
ε(b, p) =

⌈
|L|kε(b)

(1− δ) log(1/p)

⌉
times

iteration
.

Then with with probability δ following holds:

||x(t)− x?|| ≤ε for all t ≥ T δε (b, θ, p) (33)

where T δε (b, θ, p) = kε(b)×∆(b+ θ, p)×mδ
ε(b, p).

Proof. A proof is presented in Appendix D.

The theorem provides the transmission time needed to
successfully compute an ε-solution with δ probability. The
upper bound is similar to the bound in Theorem 3, except the
final multiplicity factor has been replaced by mδ

ε . In particular,
as we increase δ to 1, the increase in the transmission time is
proportional to O(1/(1− δ)). The transmission time linearly
grows with |L|, meaning that it can grow quadratically with
number of nodes in the worst case when then communication
network is a complete graph (every node communicate to every
other node). As before, the convergence rate is easily optimized
since it has only few parameters.

Remark 1. The algorithms considered in this paper are
synchronous meaning that we require every communication
to successfully terminate at every iteration. This is only an
artifact of the theoretical analysis, in particular of Theorem 1.
However, we may be able to extend Theorem 1 to handle
asynchronous communications with delays at the cost of a
slower convergence rate. In particular, if a message is delayed
then we center the communicated grid at the last received
qi and use the associated grid. But the grid size should be
delicately controlled (intuitively decreasing slower) so that
the old grid still captures the new communicated information.
This leads to slower convergence which has been traded-off
for more robustness to asynchronous communications. We will
leave a detailed implementation of these ideas as future work.

V. INTERPLAY BETWEEN DISTRIBUTED ALGORITHMS
AND COMMUNICATION PROTOCOL

In this section, we build on the results of the previous section
to explore the interplay between communication protocols and
distributed algorithms. We first introduce three abstract rate
functions, R(n, p), modeling various communication protocols.
Afterward, we characterize the relationship between bd, θ p
and then provide numerical illustrations.



9

C

Case 1

Case 2

Case 3

(a) Communication rate vs package size.

4 20 40 60 80

10
3

10
4

(b) Transmission-time to find ε-solution vs
packet size (cf. Theorem 3).

0 0.2 0.4
10

3

10
4

(c) Transmission time to find ε-solution vs packet
drop probability (cf. Theorem 3).

Fig. 2: Illustrations of the transmission-time convergence for different rate functions R(n, p).

A. Transmission Rate Models

Information and communication theory has a rich literature
on rate functions in various communication settings [29], [40],
[44], [45]. The shape of R(n, p) typically depends on 1) the
network setting, 2) communication channel, and 3) protocol
overheads such as packet headers (source and destination IDs),
parity bits for channel coding, and scheduling overheads in the
MAC layer. Most realizations of the transmission rate function
have a shape resembling one of the following three cases.
• Case 1 (constant): R(n, p) = C for some constant

positive C for all n and p.
• Case 2 (saturating): R(n, p) for some constant p > 0 is

a non-decreasing function of n that saturates for large n.
The saturation is slower for smaller p.

• Case 3 (bell-shape): R(n, p) for some constant p > 0
increases with n up to some critical nc and gradually
decreases to zero afterward.

Case 1 models the fundamental rate upper-bound, which has
been the basis for the design of many communication protocols.
The seminal works of Shannon showed that for any fixed
p > 0 there exist codes such that R(n, p) converges C as n
grows large [40]. However, these results have two fundamental
drawbacks. Firstly, the codes constructed by Shannon cannot be
realized in practice. Secondly and more importantly, the result
of Shannon requires n to grow to infinity meaning that the
latency (the time it takes to deliver a single packet) may grow
to infinity. This is clearly not feasible for iterative algorithms
where the updates of each iteration depends on the results of
previous iterations. Case 2 extends Case 1 by looking at finite
n [45]. In particular, we can model the achievable rate as [45]

R(n, p) = C − P (n, p)
bits

second
, (34)

where P (n, p) is a penalty on the transmission-rate that is
decreasing with n and increasing with p. Polyanskiy et. al. [45]
showed that the maximal achievable rate in the finite packet
length regime is

R(n, p) = C −
√
V

n
Q−1(p) +O

(
log n

n

)
bits

second
,

where V is the so-called channel dispersion, and Q(·) is the
Q-function. To give a concrete example, an additive white

Gaussian noise (AWGN) channel with average signal-to-noise-
ratio of κ = 1 [46] has

C = log(1 + κ) = log(2) and V = κ
2 + κ

(1 + κ)2
(log e)2 ≈ 3

2
.

Although this approach substantially extends Case 1, this
rate function is known for a handful of network settings. In
practice, various communication standards may have specific
limitations on the transmission power and MAC layer protocol
and use various approaches to handle incoming interference
from unintended transmitters. Consequently, the rate function
for most practical communication networks are either unknown
or is very different from the upper-bounds provided by Case
1 and Case 2, especially for multiple access channels. Case 3
models the rate function of a multiple access channel, regulated
by contention-based protocols such as slotted-ALOHA and
carrier-sense-multiple-access (CSMA) [29], [44]. The rationale
behind this model is that increasing the offered network load
(e.g., by increasing n) improves the rate up a certain point
at which the network becomes congested. Further increase of
the offered load only increases the collision among packets,
leading to a drastic drop of the successful packet reception.
The contention-based protocols are heavily used in most
modern standards for wireless local area networks, such as
IEEE 802.11 family, due to their easy implementation and
inherent distributed coordination [29]. Fig. 2(a) illustrates our
three example rate models.

B. The Relationship between bd, θ, and p

In communication systems, there are internal relationships
between the number of payload bits bd, overhead bits θ, and
reliability p. For example, bd and θ might be related by an
affine function θ = A(db) + B, where A and B are some
constants, modeling various overheads and packet headers such
as channel coding, source and destination IDs, and scheduling
overheads [43]. The constant A models the channel coding
overhead (to ensure a reliable communication over an unreliable
channel) for linear codes. In a more generic class of codes,
our affine θ is a first-order approximation of the overheads
required to send bd bits [47]. Moreover, there exist a non-
zero packet failure probability p, which is usually a non-linear
function of b and θ. The exact expression depends on the
transmission scheme and channel model [47], as we illustrate
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below. Parameter B can also model the background traffic,
which a node will send in parallel to running the algorithm.

C. Illustrative Examples

We now illustrate the impact of different rate functions
R(n, p) on the transmission-time convergence. For illustration
purposes, consider Theorem 3 with K = 1, D = 1, ε = 0.1,
σ = 0.9, |L| = 20, d = 1, and θ = 0, for the three cases of
R(n, p) in Subsection V-A. We consider the following rate
functions in bits per seconds

R1(n, p) = C, R2(n, p) = C −
√
V

n
Q−1(p),

R3(n, p) =
n

5
exp

(
−n

5

)
,

and an AWGN channel with signal-to-noise-ratio of 1, leading
to C = log(2) and V = 1.5 as explained in the last subsection.

Fig. 2(a) illustrates our three rate models, and Fig. 2(b)
shows the impact of b on the transmission-time upper bound
UBε(b, 0, p). In Case 1, where the effects of packet size are
ignored, it is the best to use a very small b, the optimal choice
is b = 5. In Case 2, where larger packet sizes can achieve
higher rates, the optimal b becomes much larger, i.e., b ≈ 40
and b ≈ 20, respectively, for p = 0.01 and p = 0.05. In Case 3,
where sending very large packets by all the nodes may overload
the channel (congestion), the optimal value for b reduces.
Commered to Case 1, channel congestion and reduced rate of
Case 3 lead to have a higher penalty after optimal b, indicated
by a sharper increase in UBε(b, 0, p). Fig. 2(c) demonstrates the
effect of p on the transmission-time convergence for rate mode
R2(n, p). The blue solid curve shows the optimal convergence
rate UBε(b, 0, p) for each p by optimizing over b. The results
indicate on the importance of optimal b on the convergence
time. Interestingly, there is a delicate trade-off between having
p too small or too big, which we explore in the next section.

VI. NUMERICAL EXPERIMENTS

We test our result by training a logistic regression model
on two data sets: a) SP-data [48] and b) MNIST [49]. The
SP-data has dimension d = 61 and consists of 24, 075 points
from smart phone sensors used to classify whether the person
carrying the phone is moving (walking, running, or dancing)
or not (sitting or standing). We use random m = 10, 000 to
train our model and the rest for validation. The MNIST has
dimension d = 785 and consists of pictures of handwritten
digits. It has 10 labels, m = 60, 000 samples for training and
10, 000 samples for validation. We have trained a multiclass
logistic regression using one-vs-rest approach.

We consider logistic regression with l2 regularization [50]

minimize
z∈Rd

F (z) =
1

m

m∑
i=1

log
(
1 + exp(−yi · zTvi)

)
+
ρ

2
||z||22,

(35)
where ρ > 0 is a regularization parameter, vi ∈ Rd the
explanatory feature vector, and yi ∈ {−1, 1} the binary
output outcome. Note that F (z) is ρ-strongly convex and
has ρ + V Lipschitz continuous gradients, where V can be
computed by using that for each data point i the gradient of

log
(
1 + exp(−yi · zTvi)

)
is Vi-Lipschitz continuous where

Vi = ‖vi‖22/4. Note that from Eq. (10), if z0 = 0 then we
have ||z0 − z?|| ≤

√
(2/ρ) log(2) =: D. The problem has a

unique optimizer z?, provided that ρ > 0. With z? the logistic
classifier outputs the label y = sign(z?Tv) for the new data
v. We use ρ = 350 for the SP-data and ρ = 1 for MNIST,
giving 99% and 80% accuracy on the test data, respectively.

A. Communication Complexity

We use the quantized version of the decentralized algorithm
(Figs. 3 and 4) and the distributed algorithm (Fig. 5) in
Section II-B. In both cases there are N = 20 nodes and we
split the data equally among them. Unless otherwise mentioned,
we choose the parameters according to Theorems 1 and 3, e.g.,
for the SP-data γ = 2/(µ + L) ≈ 6 × 10−5, σ ≈ 0.98,
and K ≈ 15.8. We compare the results to the algorithm
without quantizing (but using double precision floating points,
64 bits per dimension). Fig. 2(b) illustrates the convergence of
the decentralized algorithm on the SP-data, indicating that
our approach can maintain the convergence of unquantized
algorithm (b = 64) by just b = 14 or 16. This means that the
quantized version of the algorithm reduces the communicated
bits by 75% without slowing down the convergence speed.
Fig. 3(b) depicts the convergence on the MNIST data, whose
sample dimension is 13 times larger than that of the SP-
data. Again, when we communicate b = 14 or b = 16 bits
per dimension we get almost the same convergence as the
unquantized algorithm, suggesting that the results of the paper
scale well with the dimension.

This convergence can be improved further if we use smaller
α than suggested in Theorem 1 and smaller γ than suggested
in Proposition 1. These choices are usually fine in practice
since the theorems are generally conservative and derived to
capture the worst case behaviour. By setting γ = 2 × 10−4

and α = 0.92, Fig. 2(c) shows that b = 12 guarantees the
same convergence rate as the non-quantized algorithm. More
interestingly, our approach allows for an extreme quantization,
like b = 2. With b = 2 we need to communicate only 800 bits
per dimension after 400 iterations to reach ε = 10−12 accuracy.
To reach the same accuracy without quantizing we need about
300 iterations so about 19200 bits per dimension. This means
that our approach reaches the same solution accuracy with 96%
less communications overhead. Note that when α is smaller
than suggested in Theorem 1 then it can happen that the grid
in Fig. 1 decreases to quickly, so the communicated message
cki falls outside of the grid. This did not happen for α = 0.92
but may happen smaller α. In practice, when the grid decreases
too fast (α too small) then the nodes could send a distress
signal (requiring an additional bit) indicating that they need to
increase the grid. We leave such studies for future work.

Fig. 4 depicts the total number of bits/dimension needed
to reach ε = 10−12 when varying b. The figure compares the
algorithms when the parameters are selected as in Figure 3(a)
(case 1, red curve), Figure 3(c) (case 2, yellow curve), and
when no quantization is done (dashed and dotted lines) using
64 bit floating points. We also plot the upper bound in Eq. (15)
(blue curve) on the total number of bits needed to achieve
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Fig. 3: Convergence of the quantized version of the decentralized algorithm in Section II-B1.

2 10 20 30 40 50 60

b (bits/dimension)

0.1

1

2

3

4

5

6

10
4

Upper Bound
Case-1
Case 2
Case-1: 64-bit floats
Case-2: 64-bit floats

Fig. 4: SP-data Bound in Eq. (15),
ε = 10−12.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Communication graph.

0 500 1000 1500 2000
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

b=2

b=6

b=9

b=12

no quantization

(b) Convergence.

Fig. 5: Distributed algorithm from Section II-B2.
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Fig. 6: Transmission time complexity of logistic regression.

ε-accuracy. The results show that the upper bound is almost
tight. The quantized algorithms always use fewer bits to reach
the ε accuracy. The optimal b are b = 14 and b = 2 for the red
curve and yellow curve, respectively, communicating only 25%
and 4% of the bits needed if there is no quantization. Note
that the red curve has a different shape than the yellow curve
because in Theorem 1 α is varies depending on b, whereas
α = 0.92 is fixed for the yellow curve.

Fig. 5 shows the convergence of the quantized version of the
distributed algorithm in Eq. (7) where the nodes communicate
over a graph with α = 0.99 and γ = 0.7. The communication
graph is shown in Fig. 5(a). It is randomly generated by
distributing the nodes randomly in the box [0, 1] × [0, 1]
and creating an edge between nodes if the distance between
them is less than 0.3. The results are similar as before, with
b = 12 bits/dimension we get almost the same convergence
rate as without quantizing. To achieve ε = 10−6 accuracy
with b = 2 the quantized algorithm communicates 3466
bits/dimension during 1733 iterations but the non-quantized
algorithm communicates 71808 bits during 1122 iterations.
This means that we reduce the communication by 95% to get
the ε accuracy compared to the non-quanitzed algorithm. We
use α = 0.98

B. Transmission Time Complexity

We now explore the transmission time complexity of the
logistic regression algorithm from the previous section using
rate functions of Case 3 and Case 2, as illustrated in
Section V-A. In these simulations we do not consider the
overhead bits, i.e., we set θ = 0.

Fig. 6(a) illustrates the convergence on the SP-data as a
function of transmission time when the rate function follows

R(n) = Max_Rate× n

A
exp

(
1− n

A

) bits
seconds

,

for some positive constants Max_Rate and A. The constant
A captures the level of channel congestion. Larger A implies
that the channel get congested faster (with smaller n). In a
slotted-ALOHA or CSMA protocol with n nodes, for example,
A is inversely linearly proportional to n [29], [44]. 5 The
constant Max_Rate is the maximum rate, it is achieved by
setting n = A. We set Max_Rate = 1012 and A = 50, 100,
and 200 and b = 10 and 14. From the previous subsection we
know that b = 14 is the optimal quantization size if we want
to minimize the total number of communicated bits needed
to reach an ε-accurate solution. However, Fig. 6(a) illustrates
that as A increases (the channel contention level increases),
the network enjoys smaller b. In particular, for A = 50, it
takes roughly twice the transmission time to reach the same
solution accuracy with b = 10 as compared to b = 14. On
the other hand, when A = 200, it takes roughly twice the
transmission time to reach the same solution accuracy with
b = 14 as compared to b = 10. In general, the optimal b
decreases as A increases.

Fig. 6(b) illustrates the convergence for the Case 2
transmission-rate function R2(·) given in Section V-C. We
explore how the problem dimension d affects the transmission
time convergence. To see the affects of d, we run logistic
regression on a synthetic data set with tuneable d: set yi = 1
and vi = 1 + ni ∈ Rd with probability 0.5 and yi = −1
and vi = −1 + ni ∈ Rd otherwise where ni ∈ Rd are
i.i.d. Gaussian variables with zero mean and variance 1. We
use α = 0.98 and b = 2. The figure illustrates the scaled
transmission time needed to reach ε = 10−6 accuracy as a
function of p. In particular, if T̄ε(p, d) is the transmission time

5In particular, with the common assumption of Poisson packet arrival for
every node and i.i.d. traffics, the additivity of the Poisson distribution implies
that we can model the network of n nodes by one virtual node having
aggregated arrival of n time [29].
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until we find an ε accuracy then the scaled transmission time is
T̄ε(p, d)/minp∈[0,1] T̄ε(p, d). The results show that for small
dimensions, d = 1, 5, and 10, there is a delicate trade-off
between having p too small or too big, however, as d increases
it becomes better to choose small p. This means that in the
small packet region (d is small) it is good to trade-off packet
reliability for quicker messages. However, as the packet size
increases (with growing d) and R2(·) saturates it becomes
better to spend more time to communicating more reliable
packets. This can in parts been explained by the fact that when
we use large packets R2(·) approximates the Shannon capacity
and we efficiently achieve more reliable communication.

VII. CONCLUSIONS

We investigated the convergence of distributed algorithms
under limited communication. We proved that a simple quantiza-
tion scheme that maps a real-valued vector to a constant number
of bits can maintain the linear convergence rate of unquantized
algorithms. We exemplified our results on two classes of
communication graphs: i) decentralized one where a single
master coordinates information from workers, and ii) fully
distributed one where nodes coordinate over a communication
graph. We numerically illustrated our theoretical convergence
results in distributed learning on test data including MNIST.
Our quantization can reduced the communicated overhead (in
terms of bits) by 95% in some cases to reach a predefined
solution accruacy, compared to using floating points. Future
work includes exploring adaptive quantization schemes for more
general classes of algorithm, including accelerated optimization
algorithms and algorithms with sub-linear converge rates.

APPENDIX A
PROOF OF THEOREM 1

Eq. (13): We prove by mathematical induction that ||xk −
x?|| ≤ α(b)kD and||ck − qk||∞ ≤ τrk−1, where τ =
1/(b2bc − 1). For k = 0 we have ||x0 − x?|| ≤ D by
Assumption 2-c) and ||c0 − q0|| = 0 ≤ τr−1 since q0 = c0.
Suppose that the result holds for some integer k ≥ 0. Then by
the triangle inequality and Eq. (3a) we have

||xk+1 − x?|| ≤LA||qk − ck||∞ + σ||xk − x?||
≤LAτrk−1 + σ||xk − x?||
≤Kτα(b)kD + σα(b)kD

=(Kτ + σ)α(b)kD = α(b)k+1D

where we have used that A(c,x) is LA-Lipschitz continuous
in c and that A(C(x),x) is σ-pseudo-contraction in x. We

also have by the triangle inequality and Eq. (3b) that

||ck+1 − qk||∞ ≤||ck+1 − ck||∞ + ||ck − qk||∞
≤LC ||xk+1 − xk||+ rk−1τ,

≤LC(||xk+1−x?||+||xk−x?||)+rk−1τ

≤2LCα(b)kD + τ
K

LA
α(b)kD,

≤K
(
σ

LA
+ τ

K

LA
K−1

)
α(b)kD

≤K
(
σ

LA
+ τ

K

LA

)
α(b)kD = rk

Therefore, from Lemma 1, ||ck+1 − qk+1||∞ ≤ τrk.
Prove of Eq. (14): By using the inequality 1 + t ≤ exp(t)

for all t ∈ R we have that

α(b)kD = (1− (1− α(b)))kD ≤ exp(−(1− α(b))k)D.

Hence, the result follows by part a) by rearranging exp(−(1−
α(b))k)D ≤ ε.

APPENDIX B
PROOF OF COROLLARY 2 AND 3

Corollary 2: From Proposition 1 and Theorem 1 we have
σ = (κ− 1)/(κ+ 1), LA = 2

√
d/(µ+ L), LC = L and

K ≤ 2LALC
σ

≤ 12
√
d,

since L/(µ + L) ≤ 1 and κ ≥ 2. Therefore, using that 2b −
1 ≥ 2b−1, we have α(b) ≤ 1 − (2/κ+ 1) + 24

√
d/2b, or by

rearranging

1

1− α(b)
≤ κ+ 1

2

1

1− 12
√
d(κ+ 1)/2b

≤ κ+ 1,

where we have used that b = dlog2(24
√
d(κ+ 1))e. Eq. (14)

in Theorem 1 now yields

log2

(
24(κ+ 1)

√
d
)

(κ+ 1)d

(
log (D) + log

(
1

ε

))
bits

node
.

Corollary 3: From [39], the algorithm is σ-linear with

σ =

√
1− 1

κ
≤ 1− 1

2κ
.

We also have LA =
√
d/L, LC = L meaning that K ≤ 2

√
2d,

α(b) ≤ 1− 1

2κ
+

4
√

2d

2b
,

and
1

1− α(b)
=

2κ

1− 8κ
√

2d/2b
≤ 4κ,

since b =
⌈
log2(16κ

√
2d)
⌉

. Eq. (14) now yields

4
⌈
log2(16κ

√
2d)
⌉
κd

(
log (d) + log

(
1

ε

))
bits

node
.
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APPENDIX C
PROOF OF THEOREM 3

Let M be the random variable defined in Eq. (31). Since mi

are all realizations of M we have E[Tε(b, θ, p)] = ∆(b, θ, p)×
kε(b)× E[M ]. To finish the prove we derive the inequality

log((N − 1)N)

log(1/p)
≤ E[m] ≤ 1 +

1

log(1/p)
+

log((N − 1)N)

log(1/p)
.

Recall that P [Sl = m] = pm−1(1 − p) and P [Sl ≤ m] =
1− pm. Using that the communications are independent across
links L we have P (M ≤ m) = (1− pm)|L|. This means that

E[M ] =

∞∑
m=1

mP (M = m) =

∞∑
m=0

P (M > m)

=

∞∑
m=1

(1− P (M ≤ m)) =

∞∑
m=1

(1− (1− pm)|L|).

The last sum can be bounded by integral as follows∫ ∞
0

(1− h(z)|L|)dz ≤
∞∑
m=1

(1− h(m)|L|)

≤1 +

∫ ∞
0

(1− h(z)|L|)dz

where h(z) = 1− pz and we have used that (1− h(z)|L|) ≥ 0
is decreasing in z. Using that h′(z)/(1 − h(z)) = − log(p),
integration by substitution gives∫ ∞

0

(1−h(z)|L|)dz =
−1

log(p)

∫ ∞
0

1− h(z)|L|

1− h(z)
h′(z)dz

=
−1

log(p)

∫ 1

0

1− w|L|

1− w
dw

=
−1

log(p)

∫ 1

0

|L|−1∑
i=0

widw=
−1

log(p)

|L|∑
i=1

1

i
.

The result now follows from the fact that

log(|L|) ≤
|L|∑
i=1

1

i
≤ 1 + log(|L|).

APPENDIX D
PROOF OF THEOREM 4

Using the independence of failure events in all links L we
have P (M ≤ m) = (1 − pm)|L|. From Theorem 1, we find
an ε-accurate solution after k ≥ kε(b) successful iterations.
Therefore, we just have to ensure that the communication of
the first k iterations is successful. In particular, we need

P (M1 ≤ m, . . . ,Mk ≤ m) =P (M1 ≤ m)· · ·P (Mk ≤ m)

=(1− pm)|L|k ≥ δ

where k = kε(b). By rearranging we get that

m ≥ logp(1− δ1/(|L|k)) =
log
(
1− δ1/(|L|k)

)
log(p)

.

Using that log(y + 1) ≥ y/(y + 1) for all y > −1 we have

log
(
1−δ1/(|L|k)

)
log(p)

=
− log

(
1− δ1/(|L|k)

)
log(1/p)

,

≤ 1

1−δ1/(|L|k)

1

log(1/p)
,

where the last inequality is due to δ1/(|L|k) ≤ 1. To finish the
proof, we should show that

1

1−δ1/(|L|k)
≤ |L|k

1− δ
.

This inequality can be derived by using the following variant
of Bernoulli’s inequality: (1 + x)r ≤ 1 + rx for all r ∈ [0, 1]
and x ≥ −1. By applying the change of variables δ = 1 + x
and r = 1/(|L|k) and rearranging we obtain the result.

APPENDIX E
PROOF OF PROPOSITION 2

The algorithm in Eq. (7) in Section II-B2 is a variant of
dual decomposition and is similar to the algorithm [38]. To
derive the algorithm we reformulate the optimization problem
in Eq. (4) in consensus form as follows:

minimize
x

F (c) :=

N∑
i=1

fi(ci)

subject to W̄c = 0 ⇐⇒ Ac = 0

(36)

where W̄ = W⊗I and A =
√

W̄ is the matrix square root of
W̄, i.e., ATA = W̄, obtained by eigenvalue decomposition.6

In particular, since W̄ is symmetric and semi-positive-definite
we can write A =

√
ΛQ where W̄ = QTΛQ and the columns

of Q are the normalized eigenvectors of W̄, and Λ is a diagonal
matrix where the diagonal elements are the eigenvalues of W̄
in descending order, i.e.,

Λ = diag

λmax(W̄), . . . , λ+
min(W̄)︸ ︷︷ ︸

d(N−1) components

, 0, . . . , 0︸ ︷︷ ︸
d components

 .

Note that because the last d diagonal elements of Λ are zero
the last d rows of a A are zero. Define Ā ∈ Rd(N−1)×d as the
non-zero rows of A. Ā has full row rank since the eigenvectors
are linearly independent, so the square matrix ĀĀT is non-
singular. We show that the algorithm function x 7→ A(C(x),x)
is contractive on X := Im(W̄) in the following norm.

Lemma 2. Define M := (ĀĀT)−1Ā. Then ||x||M := ||Mx||2
is a norm on X .7 Moreover, if we define M1 = ||M||2 and
M2 = ||AT||2 then ||x||M ≤M1||x||2 and ||x||2 ≤M2||x||M,
for all x ∈ X .

Proof. To prove that ||x||M is a norm on X , we need to
show that following holds for all x,y ∈ X [51, Definition
5.1.1]: (1a) ||x||M ≥ 0, (1b) ||x||M = 0 if and only if x =
0, (2) ||cx||M = c||x||M for any positive scalar c, and (3)
||x + y||M ≤ ||x||M + ||y||M.

6W̄ and A have the same null-space so the constraints W̄x = 0 and
Ax = 0 are equivalent.

7Note that || · ||M is not a norm on all of RNd.
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Conditions (1a), (2), and (3) follow directly from the fact
that || · ||2 is a norm. To show that (1b) holds true note that
if x ∈ X = Im(W̄) then there exists z ∈ RdN such that x =
W̄z. Moreover, by using that W̄ = ATA and the definition of
Ā we also have that x = ĀTĀz and ||x||M = Āz. Therefore,
if x 6= 0 then ||x||M = ||Āz||2 6= 0, since Āz = 0 implies
that x = 0, which proves that condition (1b) holds true.

The inequality ||x||M ≤M1||x||2 follows directly from the
definition of the norm ||·||M. The inequality ||x||2 ≤M2||x||M
can be obtained similarly by noting that x = ATMx.

To prove the contraction, we show that the algorithm is a
standard dual decomposition algorithm after some change of
variables. The dual function of the problem in Eq. (36) is

D(v) = min
c
F (c) + vTAc = c(ATv)

where c(x) = argminc F (c) + 〈x, c〉. The dual gradient is
∇D(v) = Ac(ATv) and the dual function can be maximized
by the gradient method

vk+1 =vk + γAck,

ck+1 =argmin
c

F (c) + 〈ATvk+1, c〉.

By doing the change of variables x = ATv and multiplying
the v-update by AT the gradient method can be written on the
following form

xk+1 = xk + γW̄ck,

ck+1 = argmin
c

F (c) + 〈xk+1, c〉,

which is the same as the algorithm in Eq. (7) in Section 2.2.2.
Note that if v0 ∈ V := Im(A) and x0 ∈ X then all the iterates
are in V and X , respectively, i.e., vk ∈ V and xk ∈ X for
all k ∈ N. We can go from x = ATv ∈ X to v ∈ V by the
transform v = Mx = (ĀĀT)−1Āx. We now conclude the
prove by showing that the function

G : V → V, v 7→ v + γAc(ATv) (37)

is a contraction in the 2-norm and that x 7→ A(C(x),x) is a
contraction on X in the norm || · ||M.

Lemma 3. Suppose that the step-size is chosen as

γ ∈
(

0,
2Lµ

µλ+
min(W) + Lλmax(W)

]
.

Then for all v ∈ V and x ∈ X we have

||G(v)− v?||2 ≤σγ ||v − v?||2,
||A(C(x),x)− x?||M ≤σγ ||x− x?||M,

where G(·) is as defined in Eq. (37) and

σγ :=

√
1− 2γλ+

min(W)λmax(W)

µλ+
min(W) + Lλmax(W)

,

and v? is a maximizer of the dual function D(·) and x? =
ATv?. In particular, if we choose γ = 2Lµ/(µλ+

min(W) +
Lλmax(W)) then for any v ∈ V we have

||G(v)− v?||2 ≤σ||v − v?||2,
||A(C(x),x)− x?||M ≤σ||x− x?||M,

where σ = 1− 2/(κ+ 1) and κ = λmax(W)L/(µλ+
min(W)).

Proof. The iterative algorithm defined by G(·) is a gradient as-
cent for the concave dual function D(·), which is λ+

min(W)/L-
strongly concave and λmax(W)/µ-smooth (we show this in
Lemma 4 below). Therefore, by standard results in convex
optimization, G(·) is contractive on V with the contractivity
parameter σγ , see e.g. [39, Theorem 2.1.15]. To prove that
A(C(x),x) is a contraction on X , take x ∈ X and Mx ∈ V .
Then by setting x+ = A(C(x),x) and v+ = G(v), we have

||x+−x?||M = ||v+−v?||2 ≤ σγ ||v−v?||2 = σ||x−x?||M,

which yields the results.

Lemma 4. D(·) is a) λ+
min(W)/L-strongly concave on the

set V and λmax(W)/µ-smooth.

Proof. We can write D(v) = −F ∗(−ATv) and ∇D(v) =
A∇F ∗(−ATv) where F ∗(·) is the convex conjugate of F (·).
To prove the strongly concavity we use that F ∗(·) is 1/L-
strongly convex since F (·) is L-smooth, see [52, Proposition
12.60]. Take v1,v2 ∈ V , then

〈∇D(v2)−∇D(v1),v1 − v2〉
=〈F ∗(ATv1)− F ∗(ATy2),v1 − v2〉
=〈F ∗(ATv1)− F ∗(ATv2),ATv1 −ATv2)〉

=
1

L
||AT(v1 − v2)||2 ≥ λ+

min(W)

L
||v1 − v2||2

where we have used that y1,y2 ∈ V and λ+
min(AAT) =

λ+
min(W) to get the last inequality.
To prove the smoothness of D(·) we use that F ∗(·) is 1/µ-

strongly convex. Take some v1,v2, then

||∇D(v1)−∇D(v2)||2 ≤||A||||∇F ∗(ATv1)−∇F ∗(ATv2)||2

≤||A||||A
T||

µ
||v1 − v2||2

≤λmax(W)

µ
||v1 − v2||2,

which concludes the proof.
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finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[46] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proceedings of
the IEEE, vol. 104, no. 9, pp. 1711–1726, 2016.

[47] R. Roth, Introduction to coding theory. Cambridge University Press,
2006.

[48] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in International workshop on ambient assisted
living. Springer, 2012, pp. 216–223.

[49] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[50] K. Koh, S.-J. Kim, and S. Boyd, “An interior-point method for large-scale
l1-regularized logistic regression,” Journal of Machine learning research,
vol. 8, no. Jul, pp. 1519–1555, 2007.

[51] R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis 2nd Edition.
Cambridge university press, 2013.

[52] R. T. Rockafellar and R. J.-B. Wets, Variational analysis. Springer
Science & Business Media, 2009, vol. 317.

https://www.dropbox.com/s/ceqjsmwv28mdj1i/asilomar_paper.pdf?dl=0
https://www.dropbox.com/s/ceqjsmwv28mdj1i/asilomar_paper.pdf?dl=0

	I Introduction
	II Algorithm Model: Communication and Linear Convergence
	II-A Distributed Iterative Algorithms
	II-B Application: Distributed Learning and Optimization
	II-B1 Decentralized Learning
	II-B2 Distributed Learning over a Network: Dual Decomposition


	III Maintaining Convergence Under Limited Communication
	III-A Limited Communication Algorithms
	III-B Main Result: Maintaining the Linear Convergence
	III-C Decentralized Optimization and Comparison to tsitsiklis1987communication

	IV Transmission-time Complexity
	IV-A Transmission-Time Model
	IV-B Error-free Transmission
	IV-C Faulty Transmission
	IV-C1 Communicate until success
	IV-C2 Fixed Number of Communication Rounds


	V Interplay Between Distributed Algorithms and Communication Protocol
	V-A Transmission Rate Models
	V-B The Relationship between bd, , and p
	V-C Illustrative Examples

	VI Numerical Experiments
	VI-A Communication Complexity
	VI-B Transmission Time Complexity

	VII Conclusions
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Corollary 2 and 3
	Appendix C: Proof of Theorem 3
	Appendix D: Proof of Theorem 4
	Appendix E: Proof of Proposition 2
	References

