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Abstract

We propose an algorithm for the Wireless Sensor Network localization problem, which is based on

the well-known algorithmic framework of Alternating Minimization. We start with a non-smooth and

non-convex minimization, and transform it into an equivalent smooth and non-convex problem, which

stands at the heart of our study. This paves the way to a new method which is globally convergent: not

only does the sequence of objective function values converge, but the sequence of the location estimates

also converges to a unique location that is a critical point of the corresponding (original) objective

function. The proposed algorithm has a range of fully distributed to fully centralized implementations,

which all have the property of global convergence. The algorithm is tested over several network

configurations, and it is shown to produce more accurate solutions within a shorter time relative to

existing methods.

1 Introduction

Sensor networks consist of several wireless sensors located in a given area, for purposes such as environ-

ment monitoring, battlefields surveillance, etc. (see [2] for more examples and details). In our setting,

each sensor is composed of a low-powered radio transceiver which monitors its immediate surroundings

(e.g., temperature, sound, etc.), and a processor that collects and manipulates the data. Therefore, the

location of each sensor has a significant role. Since the number of sensors in a network can be large (even

thousands of sensors), it is not cost effective to equip each one of them with a GPS device, nor to deploy

the sensors in a known logged location.

A network in this context is described as a group of K sensors, each denoted by an index in the set

{1, 2, . . . ,K}. The communication between two sensors i and j is made available only if the distance
∗This research was partially supported by Israel Science Foundation Grant 1460/19.
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between the two is at most r ≥ 0, which is a given radio range for communication. In this case, we say

that the sensors i and j are neighbors. The Wireless Sensor Network (WSN) localization problem aims at

finding the location of all sensors in the network based on a few anchors, which are sensors with a known

location (e.g., via GPS devices), and noisy distance measurements from each sensor to its neighbors.

Mathematically speaking, given K sensors and anchors in Rn, where m of which (m < K) are anchors,

we wish to estimate the location of all N = K −m sensors in Rn.

We denote, for simplicity, the set of the N sensors to be located by V := {1, 2, . . . , N}, and the set

of the m anchors by A := {N + 1, N + 2, . . . ,K}. For an anchor j ∈ A we denote its given location by

aj ∈ Rn. Additionally, we denote by E the set of all pairs of neighboring sensors, i.e., (i, j) ∈ E if i < j

and sensors i and j are neighbors, which means that the distance between them is at most r. For each

pair (i, j) ∈ E , the (noisy) measurement of their distance is denoted by dij (following [32], we assume

w.l.o.g. that dij = dji)1. We use the notation M = |E|. Note that since the locations of the anchors are

known exactly, we can ignore all edges between anchor nodes, which means that if (i, j) ∈ E then i ∈ V.

Moreover, we denote by xi ∈ Rn the true location of sensor i ∈ {1, 2, . . . , N}, and we denote by x ∈ RnN

the vector obtained by concatenating the vectors xi for all i ∈ {1, 2, . . . , N} into a single column vector.

Using these notations, in this work we adopt the following non-smooth and non-convex formulation of

the WSN localization problem:

min
x∈RnN

 ∑
(i,j)∈E1

(‖xi − xj‖ − dij)2 +
∑

(i,j)∈E2

(‖xi − aj‖ − dij)2

 , (1)

where E1 is the subset of E with all pairs (i, j) for which both sensors i and j are non-anchors, while E2

is the subset of all pairs (i, j) in E for which sensor i is a non-anchor and sensor j is an anchor.

This formulation enjoys a statistical interpretation as of finding the maximum-likelihood estimator

of the locations, given that the measurement noises are independently normally (Gaussian) distributed

(see, for example, [28]).

It should be noted that a closely related problem is the Single Source Localization (SSL), which can

be seen as a particular case of the WSN problem for N = 1. However, the network variant possess

several challenges which do not exist in the SSL problem both from an algorithmic and a computational

standpoints as we highlight below (for instance, distributed and/or parallel implementations).
1Note that, in this paper, we use the standard assumption that all distance measurements for sensor pairs which are

within the communication radius are available.
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1.1 Existing Methods for Convex Relaxations

One common approach for tackling the non-convex Problem (1), is by solving certain convex relaxations

of the problem2. For example, in [32], the authors show that the first summed terms in Problem (1)

are just the squared distance in Rn, of the point xi − xj to the sphere with radius dij centered at the

origin (similarly for the other sum in the objective). Thus, the convexification presented in [32] is derived

by taking the squared distance to the ball of radius dij , instead to the sphere. This yields a smooth

and convex problem with separable ball constraints that can be solved by classical techniques of convex

optimization, especially the well-known Accelerated Projected Gradient method of Nesterov [23].

Another popular relaxation, which stands at the basis of many works in this area, is based on the

classical “lifting” technique, in which the non-convexity in the objective is replaced by quadratic equality

constraints. These constraints are then relaxed to inequality constraints, and the problem is reformulated

as a Semi-Definite Programming (SDP) problem (see, for instance, [12, 31, 21] and references therein).

These SDP problems can then be solved using off-the-shelf external solvers that utilize interior-point

methods, and are known to be computationally expensive. Thus, these techniques may suffer from

an increased computational complexity, which is less desirable when dealing with large-scale problems,

where thousands of sensors are deployed (it should be remembered that the "lifting" process significantly

increases the dimension of the problem to be solved). Thus, in many cases a further relaxation of the

SDP constraints, called edge-based SDP [34], is used in order to obtain a distributed algorithm, which

is less computationally demanding (see, for instance, [31] and [21]). However, this still requires the

implementation of an interior-point method on each sensor, which could be a major limitation due to the

small computational power of individual sensors.

While convex relaxations guarantee convergence to a global minimum point, this point is not neces-

sarily a global minimizer, or even a critical point, of the original (non-relaxed) formulation. See [27] for

a discussion on this phenomenon. In order to demonstrate this phenomenon, we have also conducted a

numerical comparison between our method, which is applied to the original non-convex and non-smooth

formulation of the problem, to the relaxation approach suggested in [32] (see Section 6). Indeed, due to

the superior estimation quality of our method compared to the relaxation, as well as similar evidences

in previous papers, we do not compare our method to other methods which aim at solving any kind of

convex relaxation of the problem.

An alternative formulation used in the literature, that also allows for inaccurate location estimates of
2The literature on convex relaxations is extensive, however, since this is not the focus of our paper we do not give a

thorough review of this approach, but rather highlight few ideas and their limitations.
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the anchor sensors (see, for example, [11] and references therein), is given by the following smooth and

non-convex problem:

min
x∈RnN

 ∑
(i,j)∈E1

(
‖xi − xj‖2 − d2

ij

)2
+

∑
(i,j)∈E2

(
‖xi − aj‖2 − d2

ij

)2

 . (2)

While this formulation is smooth, it lacks the statistical interpretation of Problem (1). Additionally,

it is suggested in [10], that at least for the Single Source Localization problem, solving formulation (1)

produces more accurate estimations when compared with formulation (2). Moreover, it does not change

the fact that Problem (2) remains non-convex. Therefore, also in this case convex relaxations, such

as SDP relaxations, are often used. However, solving these relaxations come with drawbacks, which

have already been discussed above. Therefore, even though many methods were developed to tackle this

formulation, we focus our study on the formulation (1) and provide a comparison between methods that

tackles this model.

It is worth mentioning that the literature on the WSN localization problem also includes heuristic

approaches (see, for example, [24], [16] and [1]). However, these approaches have either weak or no

theoretical guarantees on both the convergence of the sequence and quality of the resulting solution.

1.2 Related First-Order Methods

In this paper, we aim at solving the original unconstrained non-smooth and non-convex Problem (1)

directly, using first-order methods, namely methods that exploit information on values and (sub)gradients

of the involved functions. We now focus on three relevant works [27], [30] and [33], which also propose,

among other things, first order methods for solving Problem (1). In these works, the first-order method

to solve Problem (1) is used to improve the localization accuracy of solutions that were obtained from

solving some convex relaxation of Problem (1), see Section 1.1 for a discussion about convex relaxations.

The description of this two-stage strategy is postponed to Section 6. At this moment, we focus the

discussion on the first-order algorithms as standalone optimization algorithms for solving Problem (1).

In [27], a linear constrained equivalent reformulation of Problem (1) is studied and a fully distributed

ADMM method was suggested to solve the non-convex reformulated problem. The theoretical result of

this work, which is based on [3], says that the generated sequence convergence to a local minima3. While

this algorithm performance seems to be promising, it posses some practical challenges: (i) tuning of
3We have found this result misleading. In [3] the authors provides conditions, in the non-convex setting, for a sequence

generated by ADMM to have limit points, and for these limit points to be KKT points, however no guarantees for local
minima are established there.
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several parameters, (ii) a sub-algorithm to solve the non-convex problems with respect to the non-anchor

sensors and (iii) the algorithm may generate iterations which are not well-defined. We will discuss these

limitations further in Section 6.

In [30], a reformulation of Problem (1) as a constrained minimization is considered4, similar to the

reformulation that we suggest below. This reformulation requires the definition of new variables, and

immediately suggests an Alternating Minimization based algorithm that they call Non-Convex Sequential

Greedy method. The obtained algorithm, as the algorithm of [27], is not always well-defined (as we discuss

below). This is a fully distributed algorithm that is shown to generate a converging sequence of function

values. The authors also show that any limit point of the generated sequence is a KKT point of the

reformulated problem (but no relations to the original problem are provided)

In [33], the authors reformulate the problem as in [32], but instead of employing a convex relax-

ation, they aim at solving the reformulated non-convex problem using the classical Projected Gradient

algorithm. However, the paper does not provide any theoretical guarantees about their algorithm.

1.3 Our Contribution

As we wish to solve the original non-smooth formulation given in Problem (1) using first-order methods,

we first address the inherent non-smoothness of the problem. We adopt a simple variational representation

of the Euclidean norm, which enables us to transform Problem (1) into an equivalent constrained smooth

and non-convex minimization problem. This formulation, which is closely related to the formulation used

in [30], will serve as a starting point for our study.

Our first contribution is an algorithmic framework for solving the original non-convex Problem (1),

that includes the whole spectrum ranging from a fully centralized to a fully distributed algorithm. The

concept of Alternating Minimization (AM), which stands at the heart of our framework, exploits the

structure of our reformulation, to produce a well-defined and parameter-free algorithm. Moreover, our

second contribution is proving theoretical guarantees of this algorithm, which are stronger in comparison

to those obtained in the two mentioned works [27] and [30]. More precisely, we prove global convergence

of the generated sequence of network location estimates (in the sense that the whole sequence converges),

that is, the location estimates of each sensor converges to a unique limit point5. In addition, we show

that this unique limit point of the network location estimates is a critical point of the function under

minimization in Problem (1), where a point is a critical point if its sub-differential contains the zero
4It should be noted that the authors of [30] study a more general form of Problem (1), which allows for the anchors to

have noisy location estimates.
5Since we are dealing with a non-convex problem, this point obviously depends on the starting point of the algorithm.

5



vector. In order to do so, we use a recent proof technique, which was proposed in [4] and [5], and later

was unified and simplified in [14] (see also [15] for a recent concise description of this technique). To

the best of our knowledge, this is the first work that proves a global convergence result for a first-order

algorithm that solves the original non-convex WSN problem.

As mentioned above, our algorithm implementation can range from fully distributed, i.e., each sensor

updates its own location estimate through information received over communication, to fully centralized,

where the location estimate of the entire network is calculated on one central processor.

Additionally, we show that the fully distributed version of our algorithm, to be developed below, can

be seen as a modification of the algorithm presented in [30], which is always well-defined, and enjoys our

stronger convergence results.

The paper is organized as follows: the smooth and non-convex equivalent formulation of Problem (1)

is introduced in Section 2. In Section 3, we introduce the fully centralized and fully distributed algorithms

for tackling Problem (1). We present the Unifying AM Algorithm that captures both centralized and

distributed versions, in Section 4, and discuss the capability of this unified approach to also capture

partially-distributed and partially-parallelized algorithmic variations. We analyze the convergence of the

Unifying AM Algorithm in Section 5. In Section 6, we conduct numerical experiments to evaluate the

performance of our algorithms and compare them with existing methods.

2 Problem Formulation

In the introduction above, we have already mentioned that since Problem (1) is non-smooth, our first

step is to derive an equivalent smooth reformulation of the problem, where by equivalent we mean that

a critical point of the reformulated problem is also a critical point of Problem (1), and vice versa.

Notice that the first sum in the objective function of Problem (1) can be written explicitly as

∑
(i,j)∈E1

(
‖xi − xj‖2 − 2dij ‖xi − xj‖+ d2

ij

)
. (3)

The non-smoothness of (3) comes from the terms ‖xi − xj‖ (the true distance between sensors i and

j) for all (i, j) ∈ E1. To eliminate this, we first denote by B ≡ B1 (0n) the unit ball in Rn centered at

the origin, and by BM the Cartesian product of M such balls, where M is the number of edges in the

network. Motivated by the recent work [22] that focuses on the Single Source Localization problem, we
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use the following fact on the WSN problem, which easily follows from the Cauchy-Schwartz inequality:

‖xi − xj‖ = max
{
uT
ij (xi − xj) : uij ∈ B

}
,

where uij ∈ Rn is an auxiliary variable defined for each pair (i, j) ∈ E1, that achieves the optimal value

of ‖xi − xj‖ at (xi − xj) / ‖xi − xj‖ when xi − xj 6= 0n (otherwise any uij ∈ B would be an optimal

solution, but in this paper we will always take uij = 0n).

Similar manipulations can be done on the second sum in the objective function of Problem (1).

Therefore, by omitting the constant terms d2
ij , (i, j) ∈ E , we arrive at the following smooth and constrained

equivalent reformulation of Problem (1):

min
x∈RnNu∈BM

 ∑
(i,j)∈E1

(
‖xi − xj‖2 − 2diju

T
ij (xi − xj)

)
+

∑
(i,j)∈E2

(
‖xi − aj‖2 − 2diju

T
ij (xi − aj)

) , (4)

where u is the vector obtained by concatenating the vectors uij for all (i, j) ∈ E into a single column

vector.

For the sake of simplifying the developments to come, we wish to rewrite Problem (4) using matrix

notations. To this end, one could notice that the network of the original problem can be viewed as an

undirected graph, where the vertices are the sensors, and E is the set of edges. For simplicity, we fix some

ordering of the set E such that all edges in E1 proceed the edges in E2. We now define several essential

matrices for the formulation of the WSN localization problem:

• Q̃ ∈ R|E1|×N is the arc-node incidence matrix of the subgraph containing only the vertices in V and

edges in E1, i.e., if (i, j) ∈ E1 is the l-th edge in the set E1, then Q̃li = 1, Q̃lj = −1 and all other

entries in the l-th row are equal to 0.

• Ã ∈ R|E2|×N is the indicator matrix of the set of edges E2, i.e., Ãli = 1 if the l-th edge of E2 connects

the sensor i ∈ V to an anchor in A and all other entries in the l-th row are equal to 0.

• B̃ ∈ R|E2|×m is such that B̃lj = −1 if the l-th edge of E2 connects a certain sensor in V to the anchor

j + N ∈ A. It should be noted that the matrices Ã and B̃ form together an arc-node incidence

matrix of the subgraph containing the vertices in V ∪ A and edges in E2.

• D̃ ∈ RM×M is the diagonal matrix with dij , (i, j) ∈ E , as the entries on the diagonal.

• P̃ ≡ Q̃T Q̃ + ÃT Ã ∈ RN×N (note that the matrix Q̃T Q̃ is the so-called Laplacian matrix of the

corresponding subgraph).

7



Since each sensor is in Rn it will be convenient to define the Kronecker matrix product of Ã, B̃, D̃, P̃

and Q̃ with the identity matrix In, which are denoted by A, B, D, P and Q, respectively.

Finally, denoting by a ∈ Rnm, the vector derived by concatenating the vectors aj , j ∈ A, into a single

column vector, we see that Problem (4) can be written equivalently as:

min
x∈RnN

u∈BM

{
xTPx− 2

(
Wu + ATBa

)T
x + 2sTu

}
, (5)

where we define the matrix W =
[
QT ,AT

]
D and the vector s =

([
0nm×n|E1|,B

T
]
D
)T

a.

We denote the objective function of Problem (5) by G (x,u). We will also use the following function

which takes the constraints on the block u via its indicator formulation

F (x,u) := G (x,u) +
∑

(i,j)∈E

δB (uij) , (6)

where δB (·) denotes the indicator function of the set B (which is defined to be zero in B and +∞ outside).

This results in the following unconstrained optimization problem

min
{
F (x,u) : x ∈ RnN , u ∈ RnM

}
. (7)

This formulation will be the starting point of our study. We are interested in designing a simple

and parameter-free algorithm for solving Problem (1) via its equivalent reformulation (7), which globally

converges to a critical point of the original problem (1). To this end, we will show that our algorithm

finds a critical point of F (·, ·), that is, a pair (x,u) which satisfies

(0nN ,0nM ) ∈ ∂F (x,u) = {∇xF (x,u)} × {∂uF (x,u)} ,

where ∂ϕ denotes the classical subdifferential of ϕ, that can be used here since the function u→ F (x,u)

is convex for any fixed x ∈ RnN .

In order to simplify the inclusion above we will first need the following additional notation. We denote

by N (i) the set of sensor i’s neighbors, i.e., j ∈ N (i) means that (i, j) ∈ E or6 (j, i) ∈ E . We also denote

Mi = |N (i)| and thus M = 1
2

∑N
i=1Mi.

6Since E includes only pairs (i, j) for which i < j, we need to consider also the pairs where j < i.
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Therefore, the inclusion above easily translates into the following conditions:

0n =
∑

j∈N (i)∩V

(xi − xj − dijuij) +
∑

j∈N (i)∩A

(xi − aj − dijuij) , (8)

for all i ∈ {1, 2, . . . , N} and

0n ∈ −2dij (xi − xj) + ∂δB (uij) , ∀ (i, j) ∈ E1, (9)

0n ∈ −2dij (xi − aj) + ∂δB (uij) , ∀ (i, j) ∈ E2, (10)

where we define uji = −uij for all (i, j) ∈ E1. In the Appendix below we prove that a vector x, which

satisfies these inequalities, must be a critical point of the original problem (1) as recorded in the following

result.

Proposition 1. Let (x∗,u∗) be a critical point of Problem (7), then x∗ is a critical point of the original

problem (1).

In the forthcoming section we develop a simple solution scheme for solving Problem (7), which glob-

ally converges to a pair that satisfies the premises of Proposition (1) and therefore finds a critical point

of the original WSN problem. To the best of our knowledge, this is the first algorithm that is guaranteed

to converge to a critical point of the original non-smooth and non-convex problem (in the papers men-

tioned in Section 1.2 only subsequences convergence to critical/KKT points of the reformulated problem

is proven).

3 Centralized and Distributed Algorithms

The two blocks structure of Problem (7) (in addition to the fact that there is no coupling constraint

between these blocks) immediately suggests the application of optimization methods that employ the

concept of Alternating Minimization (AM), which is a very useful technique to tackle complex convex

and non-convex problems. The main reason for that is the ability to exploit the following nice feature

of Problem (7): each sub-problem with respect to one block of variables (while the other block remains

fixed) can be easily solved.

In the context of Problem (7), a basic AM based algorithm will have the following form

9



A Centralized Alternating Minimization for WSN

Initialization. u0 ∈ RnM

General Step. For k ∈ N,

1. Sensors update.

xk+1 = argmin
x∈RnN

F
(
x,uk

)
= P−1

(
Wu + ATBa

)T
. (11)

2. Auxiliary update. For all (i, j) ∈ E we denote

vk+1
ij =


xk+1
i − xk+1

j , (i, j) ∈ E1,

xk+1
i − aj , (i, j) ∈ E2.

Then

uk+1
ij =


vk+1
ij

‖vk+1
ij ‖

, vk+1
ij 6= 0n,

0n, otherwise.

uk+1
ji = −uk+1

ij

(12)

The sub-problem in (11) is solved explicitly by solving the linear equation ∇xF
(
xk+1,uk

)
= 0 (in

this respect see also Proposition 2 below). Therefore, the obtained solution (see exact formula above)

means that this algorithm is centralized in the sense that the location update rule (11) requires to perform

the computation on a single processing unit. The problem of minimizing the function F
(
xk+1,u

)
with

respect to u consists of separable minimization problems (see (4)), each of minimizing a linear function

over the unit ball, which results with the formula given in (12). Before proceeding, we note that this

algorithm generates a well-defined sequence (this is a property that the algorithms mentioned in the

Introduction do not necessarily possess, more on that in Section 6).

A closer look on Problem (7) reveals that the AM approach can be used in a more refined way to

produce a fully distributed algorithm. More precisely, we would like to allow each sensor to update its

own location estimate, and to this end, we will look at each sub-block xi, i ∈ {1, 2, . . . , N}, as a separated

block of variables and employ the AM approach on the N + 1 blocks: x1,x2, . . . ,xN and u, as explicitly

recorded now.
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A Distributed Alternating Minimization for WSN

Initialization. x0 ∈ RnN and u0 ∈ RnM

General Step. For k ∈ N,

1. Sensors update. For all i ∈ {1, 2, . . . , N}

xk+1
i =

1

Mi

 ∑
j∈N (i)

j<i
∩V

xk+1
j +

∑
j∈N (i)

j>i
∩V

xk
j +
∑

j∈N (i)

diju
k
ij +

∑
l∈N (i)∩A

al

 . (13)

2. Auxiliary update. The same as in (12).

The update rule of the sensors as given in (13) easily follows from writing the optimality condition

of minimizing the function xi → F
(
xk+1

1 , . . . ,xk+1
i−1 ,xi,x

k
i+1, . . . ,x

k
N

)
(see (8) in this respect).

Note that while this algorithm is fully distributed, it is serial in updating the blocks x1,x2, . . . ,xN .

However, parallelization can be achieved in the updating of the auxiliary variables uij , (i, j) ∈ E . In the

upcoming section we discuss how one can further parallelize this algorithm when updating the blocks

x1,x2, . . . ,xN .

4 A Unifying AM Algorithm for WSN

The centralized and distributed algorithms presented above are both particular instances of our Unifying

AM Algorithm, which is developed next. The idea is to divide the set of sensors into q ∈ {1, 2, . . . , N}

disjoint clusters C1, C2, . . . , Cq such that C1 ∪ C2 ∪ · · · ∪ Cq = {1, 2, . . . , N}, thus forming a partition of the

set of sensors V. It is easy to see that the fully centralized version can be recovered when the number of

clusters is q = 1, while the fully distributed version is recovered when q = N .

In order to derive an AM based algorithm that exploits the division of the block x into clusters we

will need to denote sub-vectors with respect to this division. For each cluster Ci, 1 ≤ i ≤ q, we denoted

by x̄i the vector which is constructed by concatenating the vectors xj for all j ∈ Ci. Therefore, we can

now apply the AM technique to Problem (7), with respect to the q+1 blocks: x̄1, x̄2, . . . , x̄q and u. More

precisely, the algorithm is recorded now in an abstract form (explicit formulas can be easily derived by

writing the corresponding optimality conditions).
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A Unifying Alternating Minimization for WSN

Initialization. x0 ∈ RnN and u0 ∈ RnM

General Step. For k ∈ N,

1. Sensors update. For all i ∈ {1, 2, . . . , N}

x̄k+1
1 = argmin

x̄1

F
(
x̄1, x̄

k
2, . . . , x̄

k
q ,u

k
)
,

x̄k+1
2 = argmin

x̄2

F
(
x̄k+1

1 , x̄2, . . . , x̄
k
q ,u

k
)
,

...

x̄k+1
q = argmin

x̄q

F
(
x̄k+1

1 , x̄k+1
2 , . . . , x̄q,u

k
)
.

2. Auxiliary update. The same as in (12).

Before analyzing the Unifying AM Algorithm presented above, we would like to provide another

advantage of the idea of dividing the sensors into disjoint clusters.

There are many ways in which one may divide the sensors into clusters, each with its own benefits. The

most naive approach would be geographical clustering, in which several neighboring sensors are collected

into one cluster. This division makes the algorithm more centralized, since the updates of each cluster

take into account the interrelations between the sensors that comprise it. Alternatively, one may use

colored clustering, i.e., clusters that consist of non-neighboring sensors. In this clustering approach, each

cluster update is equivalent to independently updating each of the sensors that comprise it, similar to

their update in the fully distributed algorithm presented above (see step (13)). However, in sharp contrast

to the fully distributed update, the independent sensor updates in each colored cluster can be done in

parallel rather than serially. Obtaining a colored clustering can be done efficiently via a distributed

graph-coloring algorithm [6]. To summarize, colored clustering results in a fully distributed and partially

parallel algorithm. We demonstrate the benefits of the colored clustering approach in Section 6, and

therefore it deserves a deeper study in a future work.

5 Analysis of the Unifying AM Algorithm

5.1 Basic Properties

Recalling Problem (5)

min
x∈RnN

u∈BM

{
xTPx− 2

(
Wu + ATBa

)T
x + 2sTu

}
,
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throughout the rest of the paper we will pose the following mild assumption on the networks that we can

handle.

Assumption 1. (i) The graph obtained by the network is connected.

(ii) There is at least one anchor sensor, that is, m ≥ 1.

It should be noted that if Item (i) does not hold, namely, the network has more than one connected

component, then it can be divided into disjoint connected sub-networks that can be treated separately,

as long as each such sub-network contains an anchor node.

Under this assumption on the network we can obtain the following basic properties of our problem

(due to the technical nature of the proof, we postpone it to the Appendix below).

Proposition 2. (i) The matrix P is positive definite.

(ii) The function x→ F (x,u) is strongly convex for any fixed u.

(iii) The function F (·, ·) is coercive, that is, F (x,u)→∞ as ‖(x,u)‖ → ∞.

(iv) Problem (7) attains its optimal solution.

5.2 Global Convergence

Our main goal in this part is to show that the Unifying AM Algorithm presented above globally converges

to a critical point of the original Problem (1). As discussed in Section 2, we will first show that our

algorithm finds critical points (x∗,u∗) of Problem (7) and then the desired conclusion will follow from

Proposition 1. To this end we will rely on a recent proof methodology of first-order methods in the

non-convex setting, which was developed first in [4, 5] and was extended and simplified in [14] (see [15]

for a recent simple and concise summary of the methodology). The main mathematical tool that stands

at the heart of this proof methodology, is the Kurdyka-Łojasiewicz (KL) property [20, 19] (see [13] for

an extension to non-smooth functions).

The general result in [14] states that if an algorithm, which is designed to solve a specific optimization

problem, generates a gradient-like descent sequence (in terms of [15, Definition 6.1, p. 2147]), then it

globally converges to a critical point of the problem. A recent modification, given in [29], shows that if

the algorithm generates a gradient-like descent sequence only with respect to a subset of the variables

(see [29, Definition 4.2, p. 661]), then global convergence can be shown with respect to that subset. In

our case, we are interested in proving global convergence only with respect to the original variable x.
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Therefore, we focus on showing that the Unifying AM Algorithm for solving Problem (7) generates a

sequence {xk}k∈N which is indeed a gradient-like descent sequence for minimizing the objective function

F . Our main result is as follows.

Theorem 3. Let
{(

xk,uk
)}

k∈N be a sequence generated by the Unifying AM Algorithm. Then, the

sequence {xk}k∈N has a finite length, i.e.,
∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞, and it converges to some x∗, which

is a critical point of Problem (1).

In order to prove this result, we first present three auxiliary lemmas. For the sake of proving the

lemmas, we need to recall that the vector x is split into q blocks according to the clusters C1, C2, . . . , Cq,

that is, x = (x̄1, x̄2, . . . , x̄q). During the updating process of the Unifying AM Algorithm, we will need

the following notations. Fix an iteration k ∈ N and a block index 1 ≤ i ≤ q,

xk,i =
(
x̄k+1

1 , . . . , x̄k+1
i−1 , x̄

k+1
i , x̄k

i+1, . . . , x̄
k
q

)
.

Therefore, we obviously have that xk,0 = xk and xk,q = xk+1. We will also need to specify the objective

function G (defined in (4)) with respect to each block x̄i, 1 ≤ i ≤ q, separately. We define

F k
i (ξ) := F

(
x̄k+1

1 , . . . , x̄k+1
i−1 , ξ, x̄

k
i+1, . . . , x̄

k
q ,u

k
)
.

It is easy to see that F k
i (ξ) is a quadratic function in ξ, which is strongly convex (similar proof as in

Proposition 2(ii)). Lastly, for convenience of the proofs, and to correspond with the scheme in [29], we

denote from now on wk+1 = uk, for all k ∈ N.

We begin with the first lemma that show a sufficient decrease property of the sequence of function

values.

Lemma 4. Let
{(

xk,uk
)}

k∈N be a sequence generated by the Unifying AM Algorithm. Then, there exists

ρ1 > 0 such that for all k ∈ N, we have

ρ1

∥∥∥xk+1 − xk
∥∥∥2
≤ F

(
xk,wk

)
− F

(
xk+1,wk+1

)
.

Proof. Fix k ∈ N. Since each F k
i (ξ), 1 ≤ i ≤ q, is σi-strongly convex (for some σi > 0), we obtain from

its definition that

F k
i

(
x̄k
i

)
≥ F k

i

(
x̄k+1
i

)
+
〈
∇F k

i

(
x̄k+1
i

)
, x̄k

i − x̄k+1
i

〉
+
σi
2

∥∥∥x̄k
i − x̄k+1

i

∥∥∥2
= F k

i

(
x̄k+1
i

)
+
σi
2

∥∥∥x̄k
i − x̄k+1

i

∥∥∥2
,

14



where the last equality follows from the fact that ∇F k
i

(
x̄k+1
i

)
= 0, which follows from the optimality of

x̄k+1
i with respect to F k

i according to the update rule of the Unifying AM Algorithm. In addition, using

our compact notations, we obviously have that F k
i

(
x̄k
i

)
= F

(
xk,i−1,uk

)
and F k

i

(
x̄k+1
i

)
= F

(
xk,i,uk

)
.

Therefore, for all 1 ≤ i ≤ q we have

F
(
xk,i−1,uk

)
≥ F

(
xk,i,uk

)
+
σi
2

∥∥∥x̄k
i − x̄k+1

i

∥∥∥2
.

Summing this inequality for all 1 ≤ i ≤ q, yields

F
(
xk,uk

)
= F

(
xk,0,uk

)
≥ F

(
xk,q,uk

)
+

q∑
i=1

σi
2

∥∥∥x̄k
i − x̄k+1

i

∥∥∥2
≥ F

(
xk+1,uk

)
+
σ

2

∥∥∥xk − xk+1
∥∥∥2
,

where σ = min {σ1, σ2, . . . , σq}. In addition, from the updating rule of the u-block we have that

F
(
xk,uk−1

)
≥ F

(
xk,uk

)
.

Combining the last two inequalities and using the fact that wk+1 = uk, k ∈ N, yields the desired

result.

An immediate consequence of the first lemma is that the Unifying AM Algorithm generates a bounded

sequence.

Lemma 5. Let
{(

xk,uk
)}

k∈N be a sequence generated by the Unifying AM Algorithm. Then, the sequence

is bounded.

Proof. From Lemma 4 that the sequence
{
F
(
xk,wk

)}
k≥1

decreases and therefore the sequence
{(

xk,wk
)}

k≥1

belongs to the level set of the function F at the level F
(
x1,w1

)
. Using Proposition 2(iii), we know that F

is coercive and thus has bounded level sets [7, Proposition 11.12, p. 158], which completes the proof.

The last lemma shows that at each iteration of the Unifying AM Algorithm, there exists a subgradient

of the objective function F that is bounded by the norm of the difference between two corresponding

iterates of the x block.

Lemma 6. Let
{(

xk,uk
)}

k∈N be a sequence generated by the Unifying AM Algorithm. Then, there exist

a scalar ρ2 > 0 and a vector yk+1 ∈ ∂F
(
xk+1,wk+1

)
for all k ∈ N, such that

∥∥∥yk+1
∥∥∥ ≤ ρ2

∥∥∥xk+1 − xk
∥∥∥ .
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Proof. Let k ∈ N. Since wk+1 = uk, by the definition of F (·, ·) (see (6)) we get

∂F
(
xk+1,uk

)
= ∇G

(
xk+1,uk

)
+
(
0nN , ∂δBM

(
uk
))

.

Therefore, by using the optimality condition of the updating rule for the u-block, we have that

0nM ∈ ∇uG
(
xk,uk

)
+ ∂δBM

(
uk
)
.

Setting,

yk+1 := ∇G
(
xk+1,uk

)
−
(
0nN ,∇uG

(
xk,uk

))
,

we have that yk+1 ∈ ∂F
(
xk+1,uk

)
. For simplicity, we define yk+1 :=

(
yk+1
x ,yk+1

u

)
. In addition, from

the optimality condition of the updating rule of each x̄i-block, 1 ≤ i ≤ q, we have that ∇x̄iG
(
xk,i,uk

)
=

∇x̄iF
(
xk,i,uk

)
= ∇F k

i

(
x̄k+1
i

)
= 0. Therefore,

∥∥∥yk+1
x

∥∥∥ =
∥∥∥∇xG

(
xk+1,uk

)∥∥∥ ≤ q∑
i=1

∥∥∥∇x̄iG
(
xk+1,uk

)∥∥∥ =

q∑
i=1

∥∥∥∇x̄iG
(
xk+1,uk

)
−∇x̄iG

(
xk,i,uk

)∥∥∥ .
Since G

(
·,uk

)
(see (5)) is a quadratic function, there exist positive constants αi, 1 ≤ i ≤ q, such that

∥∥∥∇x̄iG
(
xk+1,uk

)
−∇x̄iG

(
xk,i,uk

)∥∥∥ ≤ αi

∥∥∥xk+1 − xk,i
∥∥∥ ≤ αi

∥∥∥xk+1 − xk
∥∥∥ ,

where the last inequality follows from the definition of xk,i. Similarly, since u → G (x, ·) is linear (see

(5)), there exists a positive parameter β > 0 for which

∥∥∥yk+1
u

∥∥∥ =
∥∥∥∇uG

(
xk+1,uk

)
−∇uG

(
xk,uk

)∥∥∥ ≤ β ∥∥∥xk+1 − xk
∥∥∥ ,

Combining these bounds and setting ρ2 =
∑q

i=1 αi + β > 0, results in the following

∥∥∥yk+1
∥∥∥ ≤ ∥∥∥yk+1

x̄

∥∥∥+
∥∥∥yk+1

u

∥∥∥ ≤ ρ2

∥∥∥xk+1 − xk
∥∥∥ ,

which completes the proof.

Now, we are ready to provide the proof of our main result.

Proof of Theorem 3. The proof is based on [29, Theorem 4.3, p. 662], which involves two requirements:
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Table 1: Computation and communication cost per iteration

Sensor i Total Computational Cost
Computational Storage In Msg. Out Msg.

Method Operations Size # size # size Sequential Parallelized
AM-FC - - - - - - O(nN3 + nM) -
AM-FD O(nMi) n Mi n 1 n O(nM) -
AM-CC O(nMi) n Mi n 1 n O(nM) O

(∑q
j=1 maxi∈Cj nMi

)
SF O(nMi) n Mi n 1 n O(nM) O (maxi∈V nMi)
AG O(nMi) n Mi n 1 n O(nM) O (maxi∈V nMi)

ADMM-H O(nMi + n3Ti)
a nMi Mi 2n Mi 2n O(nM + n3T )b O

(
maxi∈V∪A nMi +maxi∈V n

3Ti

)
a Notation Ti refers to the number of iteration required by the non-convex Newton algorithm to converge.
b T =

∑
i∈V Ti.

(i) showing that
{(

xk,wk
)}

k∈N is a bounded gradient-like descent sequence for minimizing F , and (ii)

proving that F is a semi-algebraic function. Since the function G is a quadratic polynomial function (see

(4)) and the ball B is a semi-algebraic set, it follows immediately that F is semi-algebraic. In order to

prove the first requirement and in view of Lemmas 4, 5 and 6, it is left to show that (cf. [29, Definition

4.2, p. 661])

lim sup
nk→∞

F (xnk ,wnk) ≤ F (x∗,w∗) ,

where (x∗,w∗) is a limit point of the subsequence {(xnk ,wnk)}k∈N. Indeed, using the fact that F
(
xk,wk

)
=

G
(
xk,wk

)
, for all k ∈ N, and by the continuity of G we obtain that

lim sup
nk→∞

F (xnk ,wnk) = lim sup
nk→∞

G (xnk ,wnk) = lim
nk→∞

G (xnk ,wnk) = G (x∗,w∗) ≤ F (x∗,w∗) ,

where the last inequality follows since we always have that G (x,u) ≤ F (x,u) for all x ∈ RnN and

u ∈ RnM . This completes the requirements and therefore we obtain from [29, Theorem 4.3, p. 662] that

{xk}k∈N converges to some x∗, and, for any limit point w∗ of {wk}k∈N, (x∗,w∗) is a critical point of F .

Since wk+1 = uk, k ∈ N, we obtain that the same statement is true for any limit point u∗ of {uk}k∈N,

which proves that (x∗,u∗) is a critical point of F . The result now follows from Proposition 1.

6 Numerical Experiments

In order to provide a complete insight on the relation of our range of algorithms with the methods already

available in the literature, the following algorithms are compared:

1. AM-U-q, our Unifying AM Algorithm with q clusters presented above in Section 4. This is a

semi-distributed version, where we randomly generated q geographical clusters. The geographical

clusters were created similarly to well-known LEACH algorithm described in [18], where q sensors
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are randomly chosen as cluster-heads and sensors are associated to the sensor with the closest

cluster-head. However, in order to use only available information, the distance between the sensors

and the cluster-heads are measured by the minimal number of edges between them, and in the case

of a draw the sensor is associated with the cluster-head with minimal measured distance.

2. AM-FC, our Fully Centralized Alternating Minimization presented above in Section 3, which is

equivalent to the AM-U-q algorithm with q = 1.

3. AM-FD, our Fully Distributed Alternating Minimization presented above in Section 3, which is

equivalent to the AM-U-q algorithm with q = N .

4. AM-CC, the Colored Clustered Alternating Minimization, in which clusters are built from uncon-

nected sensors using a graph coloring algorithm taken from [6, Section 3.1], such that the updates

of each node in the clusters can be parallelized, and the algorithm is fully distributed.

5. SF, namely the Nesterov’s Accelerated Projected Grdaient method of [32] which solves a convex

relaxation version of Problem (1) implemented in a distributed fashion.

6. EML, an SDP relaxation of Problem (1) presented in [31].

7. ADMM-H, hybrid ADMM algorithm suggested by [27] which is a distributed method with an active

transition from the convex relaxation suggested by [32] to the non-convex model of Problem (1).

The ADMM-H requires several parameters, including a regularization parameter, and parameters

that control the shift from the convex to the non-convex model. The parameters used in our

experiments are given in Table 2.

We define an iteration of each of these methods, as the period in which all sensor locations are updated.

Specifically, for the fully distributed versions, each iteration consists of each sensor receiving updates

messages from all its neighbors, updating its location estimation, and sending update messages to all its

neighbors.

We begin by discussing the computational complexity and communication requirements of each

method. Table 1 summarizes the computational cost, storage requirements, and communication cost

(ingoing and outgoing messages) per iteration for each sensor i, as well as the computational cost per

iteration of the parallelized and sequential implementation of each algorithm. In the methods compared

we also include Nesterov’s Accelerated Gradient (AG) Method [23] which is used for initialization of some

methods (see details below). For methods which are not parallelizable, such as AM-FC and AM-FD, we
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only give the sequential computational cost. For the centralized method AM-FC, the total sequential

computation cost is derived by noting that step (11) requires calculating the inverse of an N ×N matrix

in Rn during initialization, while in step (12) we calculate the Euclidean norm ofM vectors in Rn. As for

the distributed methods AM-FD, AM-CC, SF and AG, each iteration of the algorithm calculates n inner

products of two vectors of size Mi (in addition to step (12)). The total parallelized computational cost

of AM-CC is determined by the cluster with greatest computation cost, since the method is parallelized

within each cluster and sequential among the clusters. However, since SF and AG are fully parallelizable

among the sensors, their total parallelized computation cost is determined by the greatest computation

cost among the sensors. We note that in each iteration of ADMM-H, each non-anchor i runs a non-convex

Newton’s method which may not converge, and the number of iterations it uses, which is denoted in the

table by Ti, is unknown. Furthermore, when using the ADMM-H method, each sensor maintains a vector

with a size which is proportional to the number of its neighbors, and at each iteration it sends different

messages to each neighbor, each consisting of a vector in Rn. In contrast, all other distributional methods

maintain only one vector in Rn, and at each iteration each sensor broadcasts its own estimated location

(a vector in Rn) to all its neighbors, resulting in lower energy consumption and communication time.

We now investigate the empirical performance of our proposed method for several networks. We

use two benchmark networks available in the Standford’s Computational Optimization Laboratory web

site [35]. The first network consists of K = 500 sensors with m = 10 anchor sensors, and the second

network consists of K = 1000 sensors with m = 20 anchors. In addition, for the latter set of parameters

we generated a random network for K = 1000 in which all sensor locations (anchor and non-anchor)

are randomly generated in the two dimensional box [−0.5, 0.5]2. Similarly, we generated four additional

random networks with K = 2000, K = 3000, K = 5000 and K = 10000, and for all four networks 2% of

the sensors are anchors. We also used the random K = 1000 network to create six more networks, which

differ in the amount of anchors and in their average node degree. For all networks, the measurement

noise for each of the distance measurements between the sensors is a Gaussian random variable with zero

mean and a standard deviation of σ. Similarly to the two benchmark networks, we took σ to be 7% of

the radio communication radius r.

For each network, a random initial point x0 from a uniform distribution Unif(-0.01,0.01)nN is taken,

and is used for all the compared methods. For the AM based-methods we always initialized u0 = 0nM .

Note that the ADMM-H uses a two-stage approach in the sense that it first solves a relaxation of

Problem (1), as explained in Section 1, to obtain a more favorable starting point for solving the non-

convex formulation, by using a “smooth transition" from one stage to the other (for exact details see

19



Table 2: Network and Method Parameters

Network Parameters Method Parameters

K m r σ
Average ADMM-H AG
Mi εc ζc τc dmax

Benchmark
500 10 0.3 0.02 14.15 0.04 0.2 0.015 70
1000 20 0.1 0.007 11.01 0.003 0.05 0.002 50

Random
Changing K

1000 20 0.061 0.00427 11.09

0.003 0.05 0.002

25
2000 40 0.043 0.00301 11.22 23
3000 60 0.035 0.00245 11.07 22
5000 100 0.029 0.00203 12.79 27
10000 200 0.025 0.00172 18.43 37

Changing m
985 5 0.061 0.00427 10.90

0.003 0.05 0.002
25

990 10 0.061 0.00427 10.97 25
1010 30 0.061 0.00427 11.19 25

Changing Mi

1000 20 0.049 0.00340 7.21
0.003 0.05 0.002

18
1000 20 0.057 0.00398 9.71 24
1000 20 0.067 0.00466 13.03 27

[27]). Such a two-stage approach enables reaching the vicinity of better solutions. We also utilized such

an approach when applying our AM-U-q, AM-FD, and AM-CC algorithms. Specifically, before starting

to run the algorithm we first run a fixed number of iterations (in our experiments we did 100) of the

Accelerated Gradient (AG) method [23] on the following optimization problem:

min
x∈RnN

F
(
x,u0

)
,

where u0 is given. The AG method is applicable due to the fact that, given u0, the objective function is

a strongly convex quadratic function of x, which has a Lipschitz continuous gradient with a parameter

that can be bounded by L = 2 (2dmax +m), where dmax is the maximal degree of any non-anchor sensor

in the network with respect to other non-anchors (see Table 2). We add the suffix “-AG100” to the

methods’ names to denote this initialization. Note that running the AG method on this problem can be

done in a fully distributed and fully parallelized fashion, with the same communication cost per iteration

as AM-FD and AM-CC (for more details see Table 1 and Section 6.3). All methods were ran for 103

iterations, in order to have the same number of communication rounds. The parameters of the networks,

as well as the specific parameters used for each method, are summarized in Table 2.
6We note that in the benchmark instances, the communication radius is as reported in [35]. However, in these instances,

not all sensor pairs with distance lower than the communication radius generate edges. In fact, for all sensors the number of
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Figure 1: Comparison with convex relaxation on the benchmark networks with K = 500 (two left graphs)
and K = 1000 (two right graphs). The root of the CRLB divided by N is given by the dashed black line.

We now discuss the criteria for comparing the methods. For each instance we generated R = 50

random realizations of the measured distances, and run each method on each of these inputs. We then

compared the methods using several criteria - the average objective value (OBV) of Problem (1), the

root average mean squared error (RMSE), and the estimated bias. The OBV will serve as an indication

of how good are the methods in solving Problem (1), whereas the RMSE, given by

RMSE =

√√√√ R∑
l=1

∑
i∈V

∥∥xl
i − xreal

i

∥∥2

R
,

where xreal
i is the real location of sensor i, will provide the true average approximation error of the tested

method, and xl
i is the estimated location for realization l ∈ {1, 2, . . . , R}. Although the tested method

may be biased we are going to compare the RMSE with the root of the Cramer-Rao lower bound (CRLB)

(see [26] and [25]). For completeness, we will also provide an estimation of the bias of each method, given

by:

b̂ias =

R∑
l=1

xl
i − xreal

i

R
.

We also compare the methods’ running times, where the running times of parallelizable steps in each

iteration were computed as the maximal computation time over all parallelized components.

All experiments were ran on an Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz with a total of 300GB

RAM and 72 threads, using MATLAB 2019a, where each method was allowed to run on only one thread

and up to 16GB of RAM.

neighbors was truncated, and anchor sensors have neighbors which are further away than the communication radius. The
values of σ for these instances are taken from [27].
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6.1 Solving the Original Formulation vs. Relaxation

We begin by presenting a comparison between the centralized method AM-FC, and the distributed

methods AM-FD and AM-CC, for solving Problem (1), with the SF method of [32] and EML of [31],

which both solve different relaxations of Problem (1). We note that the results for the EML method are

reported as the final value obtained by the centralized algorithm, and therefore the iterations count has

no significance. Indeed, while the EML has a distributed version, which is also described in [31], when

attempting to run this distributed version on the benchmark networks, each iteration took approximately

a second for each sensor, making this method not practical for sequential experiments. The results of

running 103 iterations of these methods, starting from a common random point x0 ∈ U(−0.01, 0.01)2N

on the benchmark networks with K = 500 and K = 1000, are presented in Figure 1. The summary of

the results after 103 iterations is also available in Table 3. For K = 500 and K = 1000 the AM-CC used

127 clusters and 32 clusters, respectively, where the clusters for K = 1000 are depicted in Figure 2.

We note that the AM-FC has lower RMSE than both SF and EML, illustrating that the non-relaxed

problem leads to a better location estimation than the global optimal solution of the relaxed problem.

In contrast, the distributed methods without initilization AM-FD and AM-CC have worse location es-

timation in terms of RMSE than the EML and sometimes SF method (although both the EML and SF

methods have worse average function value). However, when initialized by the AG method (where the

AG method is used in the first 100 out of the 1000 iterations) both AM-FD-100AG and AM-CC-100AG

have superior RMSE and function values to EML and SF, demonstrating the benefit of using the AG

method as an initialization procedure before solving the non-convex model. Moreover, the benefit of using
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Figure 2: The colored clusters used by the AM-CC algorithm for the benchmark instance with K = 1000.
There are 32 clusters, each with non-neighboring sensors, with sizes ranging from 1 to 200.
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Figure 3: RMSE Comparison for AM-U-q with various number of clusters on benchmark example with
K = 1000. The left graph shows the comparison without AG initialization and the right graph shows
the comparisons with AG initialization.

parallelization through clustering, as done in AM-CC and AM-CC-100AG, is evident in the short running

times of these methods, which require less than a second to run. This is in contrast to the distributed

but non-parallizable AM-FD, which takes almost as much time as the centralized AM-FC, despite the

problem’s size. We also see that for all methods that solve the non-convex Problem (1), there is a high

correlation between OBV and RMSE, whereas both EML and SF have a higher OBV than AM-CC and

AM-FD while having a lower value of RMSE, suggesting that Problem (1) is a good predictor of the

RMSE performances for low enough objective values.

6.2 The Effect of Clustering

We next explore the effect of geographical clustering on the performance of our method, with and without

AG initialization. We note that AG initialization is not shown for the AM-FC algorithm since no

improvement was achieved by adding this initialization.

The RMSE results for q = 2, 10, 50, 100 clusters are presented in Figure 3, and in order to illustrate

the output of the geographical clustering, the clusters produced for q = 2 and q = 10 are presented in

Figure 4.

As one might expect, when the number of clusters decreases the algorithm becomes more centralized

and produces lower RMSE values. Moreover, initializing the methods via the AG method improved the

results significantly, reducing the RMSE of AM-U-2 and AM-U-10 close to that of the AM-FC. Thus,

we can conclude, that if we can not run the fully centralized version AM-FC due to computational or

storage restriction, there is still a benefit of using the AM-U method with some level of clustering, since

together with an AG initialization, this could lead to a lower RMSE value. We note that, as shown in the
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Figure 4: Results of geographical clustering for the benchmark example with K = 1000, with q = 2
clusters (right) and q = 10 clusters (left). The sensors which belong to each cluster are represented as
dots with the same color and its cluster head is denoted by a diamond with the same color, whereas
anchors are denoted by stars.

previous section, we observed a high correspondence between the OBV and RMSE values for different

clustering techniques, where a lower OBV implied a lower RMSE value.

6.3 Comparison to ADMM-H

We now compare the performance of the AM-U method to this of the ADMM-H method of [27]. As

we saw in Figure 1 and Table 3, ADMM-H has superior performance to that of AM-CC-100AG for the

Table 3: Method comparison on benchmark networks

Method RMSE
∥∥∥b̂ias∥∥∥ OBV Avg. run time (seconds)

Avg. (stdv) Avg. (stdv) Parallelized Sequential
Benchmark K = 500

AM-FC 3.24e-01 (1.28e-02) 0.049 1.02e+00 (2.75e-02) - 4.28
EML 5.96e-01 (2.17e-02) 0.492 1.90e+00 (7.05e-02) - 25.28
AM-CC 9.86e-01 (5.88e-02) 0.859 1.49e+00 (1.05e-01) 0.90 4.27
AM-CC-AG100 3.69e-01 (3.54e-02) 0.132 1.03e+00 (2.91e-02) 0.87 3.97
AM-FD 6.36e-01 (1.51e-01) 0.330 1.21e+00 (1.51e-01) - 3.70
AM-FD-AG100 3.42e-01 (2.60e-02) 0.071 1.02e+00 (2.81e-02) - 3.43
SF 8.80e-01 (2.39e-02) 0.798 3.49e+00 (1.16e-01) 0.24 63.09
ADMM-H 3.29e-01 (1.36e-02) 0.492 1.01e+00 (2.75e-02) 1.40 452.6

Benchmark K = 1000

AM-FC 2.30e-01 (1.26e-02) 0.105 1.75e-01 (4.45e-03) - 8.99
EML 7.28e-01 (1.89e-02) 0.697 6.41e-01 (2.68e-02) - 59.43
AM-CC 1.56e+00 (1.78e-01) 1.429 4.52e-01 (3.96e-02) 0.30 7.31
AM-CC-AG100 3.34e-01 (3.05e-02) 0.218 1.86e-01 (6.96e-03) 0.24 6.31
AM-FD 1.48e+00 (2.18e-01) 1.259 5.29e-01 (5.85e-02) - 8.19
AM-FD-AG100 4.98e-01 (5.95e-02) 0.415 3.13e-01 (1.38e-02) - 7.11
SF 9.05e-01 (2.12e-02) 0.875 9.04e-01 (3.07e-02) 0.23 107.07
ADMM-H 4.94e-01 (1.80e-01) 0.308 1.95e-01 (1.71e-02) 1.38 875.95
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benchmark with K = 500 but inferior for the benchmark with K = 1000. Moreover, the parallelized

time of ADMM-H is five times larger than that of AM-CC-100AG.

We now investigate the performance of our leading centralized and distributed methods, AM-FC and

AM-CC-100AG, vs. that of ADMM-H for various settings, which are specified in Table 2.

We start with investigating the performance for random networks of sizesK = 1000, 2000, 3000, 5000, 10000,

where the anchor number is 2% of network size, r is chosen to be the minimal radius which ensures that

there exists a CRLB (Fisher Information matrix is invertible) and resulting in an average Mi closest to

11, and σ is chosen to be 7% of r. Note that high sequential running times of ADMM-H did not allow

to run it on the larger networks. We present the results of this sensitivity analysis in Figure 5 and Ta-

ble 4. We observe that the AM-CC-100AG achieves lower RMSE values than ADMM-H after about 100

iterations, and continues to improve the RMSE values with more iterations while the ADMM-H already

converged. Moreover, AM-FC achieves the lowest RMSE followed by AM-CC-100AG, except for the case

for K = 10000. Indeed, for the case of K = 10000, AM-CC-100AG achieves the lowest RMSE although

its objective value is higher than that of AM-FC, implying that in this case the objective function is not

necessarily a good predictor of the RMSE value, which might be due to a high variance in the connectivity

of the sensors due to the network’s size.

Next we investigate the impact of the number of anchors m, the average degree Mi of the non-anchor

nodes in the network (or equivalently the radius r), and the initialization of x0 on the results. For all

these experiments we take as a base-line the network with K = 1000, and change one parameter at each

time. The results are given in Figure 6 and Table 4.

When changing the number of anchors, for m = 5 the AM-FC obtains the worst RMSE although

it obtains the best function value. We deduce that in this case, Problem (1) is not a good predictor of

the estimation ability of a method. However, as m increases, the performance of all methods improve,

where AM-FC again provides the lowest RMSE eventually equal to the CRLB value, followed by AM-CC-

100AG. When changing the degree of the network, we choose a minimal degree by choosing the minimal

R which ensures that the graph is connected and a maximal R which results in an average Mi of 13. All

methods improve as the degree gets larger. However, as expected, the influence is more significant for the

distributed methods. Regardless, AM-CC-100AG is superior to ADMM-H for all tested degree values.

Finally, we see that different initialization of the starting point has very limited impact on AM-FC and

AM-CC after 1000 iterations, while the ADMM-H algorithm improves as the variance of the initialization

increases, making it less robust to different initialization procedures.
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Table 4: Method comparison on random networks

Method RMSE
∥∥∥b̂ias∥∥∥ OBV Avg. run time (seconds)

Avg. (stdv) Avg. (stdv) Parallelized Sequential
Random K = 1000, m = 20, Deg = 11.09,

√
CRLB = 8.03e-01

AM-FC 8.21e-01 (5.54e-02) 0.761 7.09e-02 (2.34e-03) - 9.28
AM-CC 4.70e+00 (1.04e-01) 4.652 2.26e-01 (1.42e-02) 0.19 6.97
AM-CC-AG100 2.95e+00 (8.21e-02) 2.890 1.25e-01 (4.74e-03) 0.17 6.26
ADMM 4.99e+00 (4.15e-02) 4.964 1.53e-01 (5.58e-03) 1.52 876.18

Random K = 2000

AM-FC 7.58e-01 (4.72e-02) 0.703 7.53e-02 (2.67e-03) - 29.77
AM-CC 3.31e+00 (5.88e-02) 3.243 2.52e-01 (1.09e-02) 0.26 19.15
AM-CC-AG100 1.45e+00 (6.28e-02) 1.379 1.07e-01 (3.58e-03) 0.23 17.09
ADMM 3.42e+00 (2.32e-02) 3.387 1.70e-01 (5.72e-03) 1.67 1959.50

Random K = 3000

AM-FC 5.13e-01 (2.81e-02) 0.461 7.00e-02 (1.46e-03) - 59.95
AM-CC 3.16e+00 (4.13e-02) 3.120 2.31e-01 (1.10e-02) 0.30 32.25
AM-CC-AG100 1.29e+00 (4.36e-02) 1.221 9.16e-02 (4.36e-03) 0.27 29.09
ADMM 3.26e+00 (2.25e-02) 3.239 1.45e-01 (3.41e-03) 1.94 2909.90

Random K = 5000

AM-FC 2.39e-01 (1.59e-02) 0.169 9.23e-02 (9.26e-04) - 156.30
AM-CC 3.28e+00 (4.58e-02) 3.230 3.13e-01 (1.08e-02) 0.44 69.46
AM-CC-AG100 1.30e+00 (4.12e-02) 1.271 1.13e-01 (2.31e-03) 0.40 62.69

Random K = 10000

AM-FC 1.02e+00 (1.27e-02) 1.009 2.34e-01 (1.64e-03) - 819.25
AM-CC 2.60e+00 (3.61e-02) 2.556 5.17e-01 (1.85e-02) 0.86 247.93
AM-CC-AG100 6.72e-01 (4.20e-02) 0.624 2.53e-01 (3.76e-03) 0.78 223.1

Random K = 985, m = 5, Deg = 10.9,
√
CRLB = 8.19e-01

AM-FC 1.06e+01 (3.70e-01) 10.583 1.02e-01 (3.93e-03) - 8.88
AM-CC 9.93e+00 (1.09e-01) 9.884 2.49e-01 (8.93e-03) 0.19 6.81
AM-CC-AG100 9.08e+00 (1.10e-01) 9.040 1.78e-01 (8.12e-03) 0.17 6.13
ADMM-H 1.01e+01 (3.46e-02) 10.077 2.13e-01 (5.86e-03) 1.61 939.04

Random K = 990, m = 10, Deg = 10.97,
√
CRLB = 8.07e-01

AM-FC 2.04e+00 (1.26e-01) 1.992 7.27e-02 (2.52e-03) - 9.38
AM-CC 6.68e+00 (1.21e-01) 6.633 2.49e-01 (1.40e-02) 0.21 7.19
AM-CC-AG100 4.92e+00 (1.07e-01) 4.857 1.66e-01 (6.24e-03) 0.19 6.41
ADMM 7.33e+00 (3.81e-02) 7.310 1.77e-01 (7.17e-03) 1.70 964.16

Random K = 1010, m = 30, Deg = 11.19,
√
CRLB = 7.99e-01

AM-FC 8.08e-01 (8.38e-02) 0.743 7.60e-02 (2.84e-03) - 9.67
AM-CC 3.49e+00 (6.62e-02) 3.425 2.15e-01 (2.06e-02) 0.22 7.25
AM-CC-AG100 1.57e+00 (8.89e-02) 1.47 1.04e-01 (7.13e-03) 0.19 6.49
ADMM 3.42e+00 (4.02e-02) 3.396 1.19e-01 (7.41e-03) 1.69 958.21

Random K = 1000, m = 20, Deg = 7.2

AM-FC 2.03e+00 (1.37e-01) 1.918 2.39e-02 (9.87e-04) - 5.90
AM-CC 5.44e+00 (5.29e-02) 5.405 5.84e-02 (2.70e-03) 0.11 4.78
AM-CC-AG100 4.83e+00 (4.57e-02) 4.792 4.25e-02 (2.46e-03) 0.10 4.30
ADMM 6.00e+00 (2.78e-02) 5.984 4.68e-02 (1.82e-03) 1.28 811.11

Random K = 1000, m = 20, Deg = 9.71,
√
CRLB = 8.07e− 01

AM-FC 1.00e+00 (7.22e-02) 0.935 5.02e-02 (1.75e-03) - 8.57
AM-CC 4.86e+00 (7.74e-02) 4.810 1.61e-01 (8.82e-03) 0.21 6.77
AM-CC-AG100 3.56e+00 (8.04e-02) 3.513 9.36e-02 (4.33e-03) 0.18 6.07
ADMM 5.31e+00 (3.20e-02) 5.286 1.05e-01 (4.03e-03) 1.74 961.34

Random K = 1000, m = 20, Deg = 13.03,
√
CRLB = 1.81e− 01

AM-FC 6.99e-01 (8.09e-02) 0.637 1.08e-01 (3.90e-03) - 10.83
AM-CC 4.65e+00 (1.06e-01) 4.601 3.66e-01 (1.82e-02) 0.23 8.13
AM-CC-AG100 2.69e+00 (1.83e-01) 2.608 1.90e-01 (1.20e-02) 0.21 7.34
ADMM-H 4.71e+00 (5.06e-02) 4.678 2.33e-01 (9.35e-03) 2.42 1027.1026
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Figure 5: RMSE of AM centralized and distributed methods vs. ADMM-H for various network sizes.

In general, when the objective function of Problem (1) is a good predictor of the performance, the

centralized method AM-FC obtains the lowest RMSE and converges after the fewest iterations. More-

over, the distributed method AM-CC-100AG generally has lower RMSE values than ADMM-H after

100 iterations, although it takes longer to converge. We attribute this to the fact that ADMM-H has

many parameters which need to be tuned well for each setting, and are therefore less robust to slight

changes, including the choice of starting point. This is a further advantage of the AM-U method, which

is parameter-free, and the AG initialization that relies only on parameters given by the network structure

and can be easily approximated. Furthermore, the AM-CC method is at least five times faster than

ADMM-H.

7 Summary

In this paper we suggest a first-order framework based on the Alternating Minimization technique to solve

the non-convex and non-smooth formulation of the WSN localization problem. This framework, provides

a range of implementation, from fully distributable to fully centralized, while also allowing for partial

parallelization. We prove that the algorithms generated by this general framework globally converge to

critical points of the non-convex and non-smooth problem. We show in our numerical experiments that

the fully centralized version is both scalable (up to 10000 sensors), and provides near optimal solution

for various instances, while the distributed versions with proper initialization are still superior to existing

methods. We also would like to emphasize that as far as we know, there is no other centralized method

that efficiently solves the WSNL problem for such large networks.
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Figure 6: RMSE of AM centralized and distributed methods vs. ADMM-H on a network with N =
980, for various number of anchors m (first row), various node degree Mi (second row), and various
initialization of x0 (third row).
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Appendix A Proofs of Proposition 1 and Proposition 2

In this section we prove the two promised results: Proposition 1 and Proposition 2.

Proof of Proposition 1. Using the conditions obtained in (8), (9) and (10), we obtain that x∗i − x∗j ∈

∂δB

(
u∗ij

)
for all (i, j) ∈ E1 and x∗i − aj ∈ ∂δB

(
u∗ij

)
for all (i, j) ∈ E2. Since δB (·) is a proper, lower

semicontinuous and convex function it follows from [8, Theorem 4.20, p. 104] that u∗ij ∈ ∂δ∗B
(
x∗i − x∗j

)
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for all (i, j) ∈ E1 and u∗ij ∈ ∂δ∗B (x∗i − aj) for all (i, j) ∈ E2, where δ∗B is the Fenchel conjugate of δB. From

[8, Example 2.31, p. 28] it also follows that δ∗B (·) = ‖·‖. Hence u∗ij ∈ ∂ ‖·‖
(
x∗i − x∗j

)
, (i, j) ∈ E1, and

that u∗ij ∈ ∂ ‖·‖ (x∗i − aj), (i, j) ∈ E2. The result now follows by using these facts in (8).

Proof of Proposition 2. We start by assuming, without the loss of generality, that the sub-graph built

from the sensors with edges E1 is connected. While this is not necessarily the case, all the arguments

given below can be applied to each connected component, and from the fact that the entire network is

connected, according to Assumption 1(ii), we can derive the same result.

Now, in order to prove item (i), we first show that ker Q̃ = span{1N}. Indeed, let v ∈ ker Q̃. Each

row of Q̃ corresponds with some (i, j) ∈ E1, and includes only two non zero entries, which are 1 at the i-th

entry and −1 at the j-th entry. Thus, we obtain that vi = vj for all (i, j) ∈ E1, and since the sub-graph

is connected we obtain that v ∈ span{1N}. The converse inclusion trivially follows from the structure of

Q̃.

Now we will show that ker Q̃ ∩ ker Ã = {0N}. Let v ∈ ker Q̃ ∩ ker Ã. Since the graph is connected

(see Assumption 1(i)), and since we have at least one anchor (see Assumption 1(ii)), there exists a sensor

i ∈ V such that i is connected to an anchor j ∈ A. Thus, by construction, the row associated with edge

(i, j) ∈ E2 in the matrix Ã equals to the unit vector eTi . Therefore, since v ∈ ker Ã we obtain that vi = 0,

and since v ∈ ker Q̃ = span{1N}, we must have that v = 0N , which completes the proof.

We now show that P is positive definite. Take v ∈ RN , then

vT P̃v = vT
(
Q̃T Q̃ + ÃT Ã

)
v = vT

(
Q̃T , ÃT

)Q̃

Ã

v =

∥∥∥∥∥∥∥
Q̃

Ã

v

∥∥∥∥∥∥∥
2

.

Since P̃ is obviously a positive semi-definite matrix and vT P̃v = 0 if and only if v ∈ ker Q̃∩ker Ã = {0N},

P̃ is positive definite. By [17, Property IX, p. 27]), the eigenvalues of P and P̃ are the same, and so P

is also positive definite.

Item (ii) now follows immediately from item (i) since x → G (x,u) is a quadratic function (see (4))

for any fixed u.

From [9, Lemma 2.42, p.32] it follows that G is coercive and since F ≥ G, the result of Item (iii)

follows. Lastly, Item (iv) follows from [8, Theorem 2.14, p. 20].
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