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Sampling and Inference of Networked Dynamics

using Log-Koopman Nonlinear Graph Fourier

Transform
Zhuangkun Wei1, Bin Li2, Chengyao Sun3, Weisi Guo1,3,4*

Abstract—Monitoring the networked dynamics via the subset
of nodes is essential for a variety of scientific and operational
purposes. When there is a lack of an explicit model and net-
worked signal space, traditional observability analysis and non-
convex methods are insufficient. Current data-driven Koopman
linearization, although derives a linear evolution model for se-
lected vector-valued observable of original state-space, may result
in a large sampling set due to: (i) the large size of polynomial
based observables (O(N2), N number of nodes in network),
and (ii) not factoring in the nonlinear dependency between
observables. In this work, to achieve linear scaling (O(N)) and
a small set of sampling nodes, we propose to combine a novel
Log-Koopman operator and nonlinear Graph Fourier Transform
(NL-GFT) scheme. First, the Log-Koopman operator is able to
reduce the size of observables by transforming multiplicative
poly-observable to logarithm summation. Second, a nonlinear
GFT concept and sampling theory are provided to exploit the
nonlinear dependence of observables for observability analysis
using Koopman evolution model. The results demonstrate that
the proposed Log-Koopman NL-GFT scheme can (i) linearize
unknown nonlinear dynamics using O(N) observables, and
(ii) achieve lower number of sampling nodes, compared with
the state-of-the art polynomial Koopman based observability
analysis.

Index Terms—network dynamics, sensor placement, Koopman
operator, Graph Fourier Transform, compression

I. INTRODUCTION

Many engineering, social, and biological complex systems

consist of dynamical elements connected via a large-scale net-

work. These include both explicit [1], [2] and latent dynamics,

spanning: urban structure [3], social networks [4], economics

[5], engineering infrastructure [6], ecology [7], biology clocks

[8], epidemic spreading [9], and organizational structure [10].

Collecting data on networks is important for a variety of

scientific and practical reasons, ranging from scientific model

development to Digital Twin informed maintenance [11], [12].

However, when the size of the network is large, as is the

case for national infrastructure, gene regulatory networks, or

social networks; effective monitoring through a small subset of

critical nodes is essential. Optimal data collection (sampling)

and inference in networked nonlinear dynamical systems is

challenging. Current observability analysis and non-convex

methods rely on either a state evolution model or the signal-

space (e.g., sparsity or bandlimitedness - subject to a designed

operator). Often, either the sparse property and/or the desirable

1University of Warwick, UK. 2Beijing university of Posts and Telecom-
munications, Beijing, China. 3Cranfield University, UK 4The Alan Turing
Institute, UK. *Corresponding Author: weisi.guo@cranfield.ac.uk.

operator to exploit this does not exist. As such, in the absence

of explicit model and sparse signal-space to exploit, we tackle

the challenge of how to characterize the dynamic evolution

of the network, and how to use such evolution model for

network sampling and signal recovery. We first leverage on

the Koopman operator to derive a linearized evolution model

of observable defined on original signal state. Next, we exploit

the observable dependency to discover the optimal sampling

points, and design signal recovery algorithm using nonliner

GFT.

A. Literature Review

In classic topology-centric analysis, the influential nodes

are often determined using eigen analysis resulting in wide

measures such as PageRank centrality. However, when the

dynamics are also important, the relationship between topo-

logical influence and cascade dynamics is unclear [13]. When

nonlinear dynamics is coupled with complex networks, current

methods fall into two categories. First, reduced order models

(e.g. heterogeneous mean field around equilibrium conditions

[14]) cannot well approximate cascade transient dynamics.

This means we can only understand the equilibrium conditions

and the impact of perturbations.

1) Model Driven: In order to achieve transient behaviour

understanding (also known as graph observability), a well-

studied group of schemes is state-based reconstruction. Popu-

lar methods include convex optimisation [15], causal modeling

[16], and observability analysis using linear evolution mod-

els (e.g., checking rank conditions of the linear model that

maps initial state to all forward states, or maximizing energy

of sampled states computed by model-relevant observability

gramians) [17]–[21]. These approaches all provide attractive

performances on sampling node compression and state re-

covery accuracy, under the important premise of a known

and linear/linearized underlying model. Their drawback is the

inability to address the sampling and recovery challenges in

the absence of dynamic equations.

2) Data Driven: Instead of relying on explicit dynamic

equations, an alternative group resorts to the prior knowledge

of the signal-space [11]. The methods include sparsity and

spectral analysis. For instance, the compressed sensing (CS)

schemes [22], [23] selected the sampling nodes by analyzing

the principal components. Graph sampling methods [17], [24]–

[34] determine a sampling node set for signals that belong to

a sub-space (referred to as band-limited) of a Graph Fourier
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Transform (GFT) operator (e.g., Laplacian [24]–[27], [29]–

[31], joint time-graph Fourier transform [34], and data-driven

[11] operators). One obvious disadvantage lies in the signal-

dependent sampling nodes selection and recovery process,

which is not suitable for different signal-space caused by

perturbations with significantly different spectral characteris-

tics. As such, there is a strong demand to design (i) signal-

independent network sampling and recovery schemes, (ii) in

the absence of explicit dynamic equations.

3) Koopman Operator: To address the aforementioned

signal-independence and unknown dynamic models, another

set of approaches relies on the Koopman operator [35]–[39],

which is a linear but infinite dimensional operator that governs

the evolution of scalar-value observables (functions) defined

on the state space of a nonlinear dynamical system. To approx-

imate a definite-dimensional operator for nonlinear systems

with N nodes (variables), extended dynamic mode decom-

position (E-DMD) and deep-DMD approaches are developed.

For E-DMD, the work in [38] developed a polynomial-based

Koopman operator for dynamics linearization, by selecting the

observables as the M = O(N2) key polynomial terms of

Taylor series (e.g., the multiplicative terms of node 1 and

node 2, x1 · x2). Similarly, by the multiplications of the

Logistic functions defined on each node, they also proposed

in [40] to generate a group of state-inclusive observables

with proved error-bound. Based on the designed Koopman

linearized evolution model, they further derived a minimum

number of sampling nodes in [39], by treating the observable

set as R
M and using graph observability analysis (which

maps the sampling nodes to the leading eigenvectors of the

Koopman observability gramian). However, the scheme has

two drawbacks. First, to ensure linearization accuracy, the

polynomial-based and logistic-based Koopman operator lead

to a size explosion (O(N2)) by their multiplicative observ-

ables, when addressing large-scale networks (see Figs. 5-6).

Second, the direct use of graph observability analysis (e.g.,

rank and gramian analysis) on observable overlooked the

intrinsic nonlinear relations between the defined observables,

which are all determined by the originally lower sized state

space. For example, x1, x2, x1x2, x21x
2
2 are all observables

for polynomial-based Koopman linearized model, but are

determined by original networked data x1 and x2. Therefore,

treating them as R
4 is unreasonable, and will result in extra

redundant sampling nodes for signal recovery. We will explain

this in greater detail in Section V. A, and in Figs. 5-6.

In order to explore a lower-sized Koopman operator, deep-

DMD was developed by Yeung, Hodas, and Kundu using

Neural networks (NN). The work in [41] further designed

an auto-encoder method, by minimizing the mean squared

errors (MSEs) of reversible mapping between observables and

original states, and of observable and state predictions. The

problem lies in that the learned observables may involve cou-

pling signals on different nodes (e.g., one learned observable

is x2− bx
2
1 in their discrete spectrum example, containing the

signal on node 1 and node 2). This is not suitable for sensor

placement, as selecting the leading observables may require

to place sensors on every nodes.

B. Contributions & Organization

In this work, we propose a novel logarithm-based Koopman

and non-linear GFT scheme (abbreviated as Log-Koopman

NL-GFT) for sampling and recovering the large-scale net-

worked data. The detailed contributions are listed in the fol-

lowing, each addressing an aforementioned shortfall in current

approaches:

(1) We propose a logarithm based Koopman operator to

linearize the unknown nonlinear networked dynamics. Here,

the logarithm-form observables of original state-space are de-

signed to approximate the multi-element multiplicative terms

of Taylor series by logarithm summation. In this view, the size

of observables can be reduced to O(N), as smaller number

of logarithm terms can be used and linearly combined for

large number of polynomial-based observables in [38]. This

suggests the ability of the proposed Log-Koopman to prevent

the size explosion when linearizing large-scale networked data.

(2) We combine the linearization ability of the Log-

Koopman operator with a novel nonlinear GFT, by exploiting

the nonlinear dependence between the M observables that are

defined on the lower size of N original state-space. As such,

the proposed Log-Koopman NL-GFT sampling and recovery

scheme is able to combine the linear evolution property with

nonlinear dependency between observable, thereby outper-

forming the scheme [38] that only relies on graph observability

analysis on the Koopman linearized model. Also, other than

a signal-space dependent bandlimited property of linear GFT

[17], [24]–[27], [29]–[34], the nonlinear GFT captures the

signal-space independent relations of observables, thereby

capable of obtaining a signal-independent sampling node set.

(3) We evaluate our proposed Log-Koopman NL-GFT

sampling and recovery scheme via two different application

domains: (a) networked Biochemical Dynamics of protein-

protein interactions, and (b) networked gene Regulatory Dy-

namics. The results demonstrate that (i) the proposed Log-

Koopman operator is able to reduce the observable size to

O(N) as opposed to O(N2) of Poly-Koopman in [38], and (ii)

the proposed nonlinear GFT scheme can reduce the number

of sampling nodes, compared with the direct use of graph

observability analysis in [39] after the derivation of Koop-

man linearized model. This suggests a promising prospect of

the proposed Log-Koopman NL-GFT sampling and recovery

scheme to a wide range of scientific and engineering monitor-

ing applications.

The rest of this paper is structured as follows. In Section

II, we detail the networked nonlinear dynamical system and

the problem formulation. In Section III, we provide our

designed logarithm based Koopman operator. In Section IV,

we elaborate the nonlinear GFT concept and theory. Then, a

greedy algorithm for sampling node selection and a gradient

descend algorithm for recovery are provided. In Section V,

we theoretically compare our proposed Log Koopman NL-

GFT scheme with other state of the art approaches. Section VI

gives the data-driven experiments and performance discussion.

In Section VII, we finally conclude the paper and discuss

potential future areas of research.
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II. MODEL AND PROBLEM FORMULATION

A. Networked Dynamic Model

The networked dynamic is described by its underlying graph

topology and the dynamic data flow over it. The network

topology is configured by a static graph, denoted by G(N ,A).
Here, N = {1, · · · , N} represents a set of node subscripts. A
of size N × N is the binary adjacent matrix, in which the

(i, j)th element ai,j ∈ {0, 1} reflects the existence of link

from node j to node i.

Given the topology of the network, the dynamic data over

each node evolves in accordance with its self-dynamic and the

coupling interactions from its adjacent nodes. By denoting the

data for each t ∈ N
+ discrete time as a vector of size N × 1,

i.e., xt = [x1,t, · · · , xN,t]
T , such evolution can be expressed

as:

xt+1 = F(xt,A), (1)

where F : R
N → R

N is an unknown combined self and

coupling nonlinear operator that evolves tth state to (t+ 1)th
state via the adjacent matrix A. At t = 1, we regard x1 ∈ R

N

as an external input, which is also unknown.

B. Problem Formulation

The purpose of this work is to reconstruct the networked

dynamical data via a subset of sampling nodes’ data. To be

specific, given the sampling node set S = {ni} ⊂ N , we

define the sampling matrix of size |S| ×N with elements:

S = [si,j ], with si,ni
= 1, si,j 6=ni

= 0. (2)

Then, the samples collected from the sampling nodes are: S ·
xt+1. As such, given the monitoring discrete time-span as t ∈
{1, · · · , τ}, the aim is to find the sampling node set S and to

design the recovery process to reconstruct x1:τ = [x1, · · · ,xτ ]
via the samples S · x1:τ .

As aforementioned, the challenges on the design of sam-

pling and recovery methods lie in the absences of both the

evolution model F in Eq. (1), and the signal-space (i.e., a

subspace of R
N ), which make existing works on equation-

driven graph observability [17]–[21], and signal-space depen-

dent compression approaches [17], [24]–[27], [29]–[34] less

attractive. As such, this motivates our work to 1) approximate

a linear evolution model, and 2) find orthogonal nodes for data

sampling and recovery.

C. Sketch of Design

The sketch of the design of sampling and recovery scheme

is illustrated via Fig. 1. We firstly adopt the Koopman theory

to linearize the unknown nonlinear networked data. Then, the

concept and theory of nonlinear GFT will be proposed and

used for sampling node selection and signal recovery. We will

elaborate them in the following sections.

III. KOOPMAN OPERATOR AND LINEARIZATION

A Koopman operator of one dynamical system is a linear

operator that evolves the selected observable functions of the

state space as the time advances. By defining the space of

all observable functions as F , and stacking such observable

functions as ψ = [ψ1, · · · , ψM ]T with ψm ∈ F : RN → R

and m ∈ {1, · · · ,M},M ∈ N
+, the Koopman operator is

specified as [35], [38], [39]:

Kψ(xt) = ψ (F(xt)) = ψ(xt+1). (3)

As such, by selecting appropriate observable functions, one

could derive the Koopman operator, and use it as an equivalent

evolution model for the corresponding non-linear dynamic

system.

A. State-of-the-art Polynomial-based Koopman Operator

It is noteworthy that one main difficulty lies in the infinite

dimension of F , i.e., M → +∞, which makes the Koopman

operator K infinite, and thereby impractical in real-world

systems. To address it, many works [35], [38], [39] tried to

approximate the Koopman operator, by using definite observ-

able functions and span them as the approximated observable

space: FD ⊂ F . Specially, the work in [38] selected from

a proven complete of observable function space leveraged on

the polynomial terms of Taylor expansion, i.e., [38]

F =

{
N∏

i=1

xpii,t, ∀pi ∈ N

}

. (4)

By selecting ψ(xt) = [xpii,t · x
pj
j,t]

T with ∀i, j ∈ N , pi, pj ∈
{0, 1, 2}, they constructed the approximated Koopman opera-

tor for small-scale (i.e., N < 10) networked dynamic lineariza-

tion. However, for large-scale networks (N > 50), in order to

maintain the linearzation accuracy, the scheme leads to a size

explosion of observables by selecting complex multi-element

multiplicative basic functions (e.g., xpii,t · x
pj
j,t · x

pm
m,t · x

pn
n,t). We

explain this by showing how the multi-element multiplicative

terms contributes to the existing observable functions in [38],

i.e.,

xi,t · xj,t = fi(xt−1) · fj(xt−1)

=
∑

m,n∈N
pi,pj ,pm,pn∈{0,1,2}

αi,j,m,n · xpii,t−1 · x
pj
j,t−1 · x

pm
m,t−1 · x

pn
n,t−1,

(5)

where αi,j,m,n denotes the weight. As is illustrated in Eq.

(5), the number of 4-element multiplicative terms is increasing

with the increase of network scale N . Therefore, in order to

keep the accuracy of the Koopman linearization, one have

to expand the selected observable function set ψ(xt) that

covers such terms. This will lead to a size of > N2 size

increase for the approximated Koopman operator, which if

used for large-scale network (e.g., N > 50), may cause heavy

computational burden for further sampling selection and signal

recovery processes.
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(a) Log-Koopman NL-GFT

Linear evolved 

observable set, 𝐳1𝑇 , … , 𝐳𝜏𝑇 𝑇 ∈ ∁𝑑⋈𝜏

Observable set, 𝐳𝑡 ∈ ∁𝑑⊆ ℝ𝑀

Original state-space, 𝐱𝑡 ∈ ℝ𝑁

Sampling node set, 𝒮 ⊆ {1,… ,𝑁}

Koopman linearization

Linear evolution

NL-GFT sampling

𝐳𝑡 = 𝐊 ∙ 𝐳𝑡−1𝒛1 …𝒛2 𝒛𝑡𝐳𝑡 = 𝐊𝑡−1 ∙ 𝐳1

𝐱1 …𝐱2 𝐱𝑡
𝐱𝑡 = 𝐅(𝐱𝑡−1, 𝐀)

Network of Expanded 

observables, M nodes

Expanded by 

observables of 𝑥1,𝑡
𝑥1,𝑡

Original network N nodes

Koopman 

linearization𝐳1:6,𝑡

(b) Koopman linearization

Nonlinear dynamics

Linearized dynamics

(c) Signal recovery

Linear 

evolution NL-GFT
Samples

Estimate of 

initial original 

state ො𝐱1 Derived Initial 

observable ො𝐳1 Linear 

evolved 

observable ො𝐳𝑡
Estimated 

original 

state ො𝐱𝑡
NL-GFT 

recovery Koopman 

Fig. 1. Schematic flow of the proposed Log-Koopman NL GFT sampling and recovery method. (a) illustrates the sampling process. (b) shows Koopman
linearization, which generates a linear evolution model of extended size M = O(N) observables on original state-space of size N . (c) gives the recovery
process.

B. Logarithm-based Koopman Operator

To address the aforementioned size explosion, we design

a novel group of observable functions that can transform the

multiplicative terms (e.g., xpii,t · x
pj
j,t) into summation terms.

The idea is the use of logarithm summations to approximate

polynomial terms, e.g.,

log(1 + x) + log(1 + y) = log ((1 + x)(1 + y))

≈ x+ y + xy,
(6)

holds, when x, y ∈ (0 − δ, 0 + δ) given δ → 0. As such,

by assigning a constant C such that sup{xi,t/C, i ∈ N , t ∈
N

+} < δ, we design the vector-valued observable function as:

ψ (xt) =
[

1,
xi,t
C
, log

(

1 +
(xi,t
C

)pi)]T

, ∀i ∈ N , (7)

with some pi ∈ P ⊂ N
+. Also, we write the vector-valued

observable of size M × 1, with its range set Cd ⊂ R
M as:

zt = ψ(xt), zt ∈ Cd ⊂ R
M . (8)

Given Eq. (7), we show in the following that each observ-

able function at time t can be evolved and approximated by

the summation of others at time t−1. The observable function

xi,t/C is expressed by:

xi,t
C

=
fi(xt−1)

C

=
1

C

(

fi(0) + xTt−1 ▽fi (0) +
1

2
xTt−1Hfi(0)xt−1 + on

)

=
fi(0)

C
+

∑

m,n∈N
p,q∈P

am,n,p,q ·
(xm,t−1

C

)p

·
(xn,t−1

C

)q

≈
fi(0)

C
+

∑

m∈N

am
xm,t−1

C
+

∑

m∈N
p∈P

log
(

1 +
(xm,t−1

C

)p)

,

(9)

where the function fi(·) is the ith element of F(·), ▽fi(·)
is its gradient function, Hfi(·) is its Hessian matrix. am,n,p,q
and am are coefficients invariant with time. The observable

function log(1 + (xi,t/C)
pi) can be expressed by:

log
(

1 +
(xi,t
C

)pi)

≈
(xi,t
C

)pi
=

(
fi(xt−1)

C

)pi

=
fi(0)

pi

Cpi
+

∑

p1,··· ,pN∈P

bp1,··· ,pN
∏

m∈N

(xm,t−1

C

)pm

≈
fi(0)

pi

Cpi
+

∑

m∈N ,p∈P

bm,p log
(

1 +
(xm,t−1

C

)p)

,

(10)

where bp1,··· ,pN and bm,p are coefficients invariant with time.

Given Eqs. (9)-(10), any observable functions in Eq. (7)

at time t can be approximated from those at time t − 1,

via a linear matrix operator, i.e., the approximated Koopman

operator, denoted as K of size M ×M :

ψ (xt) = K ·ψ (xt−1) . (11)

Here, the elements of K is the coefficients from Eqs. (9)-

(10). As such, the approximated Koopman operator K can

be derived either from the theoretical deduction if the dy-

namic model in Eq. (1) is known, or from the simulated

networked training data. We use the second method in this

work, by simulating D groups of training data denoted as

x
(d)
1:τ with d = 1, · · · , D. Then, by separating the training

data into two matrix as Y = [ψ(x1
2:τ ), · · · ,ψ(x

D
2:τ )], and

X = [ψ(x1
1:τ−1), · · · ,ψ(x

D
1:τ−1)], we train the Koopman

operator K via:

K = argmin ‖Y −KX‖2F , (12)

where ‖·‖F denotes the Frobenius norm. The training data are

generated via the simulated system with random initialization.

For the aim of network sampling, the linearization accuracy

of Koopman operator can be further improved by the use
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of samples. For instance, one can generate new training data

with initialization where the values of sampling points are the

corresponding initial samples, and others values are random.

Compared with the existing polynomial-based observable

functions for Koopman linearization in [38], the advantage of

the proposed logarithm-based observable functions lies in its

ability to replace the complex and substantial multi-element

multiplicative observable functions with logarithm summation.

This reduces the size of the observable zt from O(N2)
to O(N) given the comparison from Eq. (4) and Eq. (7),

especially for the large-scale network with N > 50. Also, with

the help of the logarithm-form, one observable composition is

determined by signals on only one node. This is important for

the sensor placement applications, as selecting one observable

does not require the placement of sensors on more than one

nodes. As such, we are able to model the unknown evolution

of the networked state-space via the linear Koopman operator,

which now enables the analysis of optimal sensor placement

using linear theory.

IV. SAMPLING WITH NONLINEAR GRAPH FOURIER

TRANSFORM

In this section, we elaborate the concept and sampling

theory of the nonlinear GFT. The purpose is to determine

where to place sensors on nodes of original network in order

to recover the initial observable ẑ1, so that the original time-

evolved signal states xt can be recovered by ẑt = Kt−1 · ẑ1
and x̂t = ψ

−1(ẑt) (shown by Fig. 1(c)).

Notice that, direct use of graph observability methods leads

to a larger sampling set than necessary, as they ignore the

nonlinear dependency of the initial observable (i.e., treating

the elements of z1 independent). Such nonlinear dependency

is expressed by the definition of observable function in Eq. (7),

i.e., z1 = ψ(x1), showing that all M elements of observable

z1 are determined by the N < M independent elements in

x1 ∈ R
N . In this view, we leverage on the observable function

ψ−1 that maps the observable z1 to its N independent bases,

and try to find the sampling set that can recover the signal on

N independent bases. This is achieved by the nonlinear GFT

concept and sampling theory in the following.

A. Nonlinear GFT Concept

The general concept of the GFT operator and its bandlim-

itedness is given as follows:

Definition 1: The general GFT operator is an invertible

vector-valued function that one-to-one maps a range set Cr
from another set Cd, where Cr is called the frequency response.

We call Cr a bandlimited frequency response if the size of

x ∈ Cr is smaller than that of z ∈ Cd.

Here, different from the traditional linear GFT where the

vector-valued function is a linear operator [17], [24]–[27],

[29]–[34], we generalize the definition which also accounts

for the non-linear GFT operator.

For this work, the Koopman linearization process yields a

new network with M > N nodes linked by the Koopman

operator K, as is shown in Fig. 1(b). The indexed signals are

the M constructed scalar-valued observables in zt = ψ(xt).

As such, a nonlinear GFT operator that combines the network

topology and dynamic information can be assigned as the

inverse of Koopman observable in Eq. (7), i.e., ψ−1 : Cd →
Cr = R

N . The frequency response is the original signal with

the bandlimitedness property (i.e., N < M ), which is signal-

independent for any zt ∈ Cd.

B. Sampling Theory of Nonlinear GFT

With the help of the generalized GFT operator, we next

propose the nonlinear graph sampling theory, by providing (i)

the conditions for the sampling matrix, and (ii) how to recover

the signal from the samples.

Theorem 1: Given a GFT operator ψ−1 : Cd → Cr, any

z ∈ Cd ⊂ R
M , and a matrix Θ of size L ×M , a sampling

operator (matrix) SΘ of size S × L ensuring the recovery of

z from SΘ · Θ · z should maintain the one-to-one mapping

characteristic of the function SΘ ·Θ◦ψ. The recovered signal

of z, denoted as ẑ is expressed as:

ẑ = ψ
(

(SΘ ·Θ ◦ψ)−1
(SΘ ·Θ · z)

)

, (13)

where ◦ denotes the function composition operator.

Proof: We denote frequency response of z as x ∈ Cr. As

such, the process of GFT and inverse GFT can be expressed

as:

x = ψ−1(z), (14)

z = ψ(x), (15)

given the invertible property of the GFT operator. We then

multiply the sampling matrix SΘ on both side of Θ · z =
Θ ·ψ(x), i.e.,

SΘ ·Θ ·ψ(x) = (SΘ ·Θ ◦ψ) (x) = SΘ ·Θ · z. (16)

As such, equation

x = (SΘ ·Θ ◦ψ)−1
(SΘ ·Θ · z) (17)

holds if and only if the existence of the inverse function of

SΘ · Θ ◦ ψ, which is equivalent to its one-to-one mapping

characteristic. Then, by taking Eq. (17) into Eq. (15), the

recovered signal ẑ can be computed as Eq. (13).

For the Koopman observable z1 that has nonlinear de-

pendency i.e., determined by the lower-sized original states,

z1 = ψ(x1), Theorem 1 treats it as a bandlimited signal with

nonlinear graph frequency response x1 to the GFT operator

assigned as the inverse of Koopman observable function ψ−1.

Then, it proves that the one-to-one mapping from samples to

such bandlimited response x1 can ensure the recovery of z1.

Based on this, following two Propositions are provided to show

how such one-to-one mapping can be achieved.

Proposition 1: Given a GFT operator ψ−1 : Cd → Cr with

dimC, one prerequisite for signal recovery is that the number

of rows of sampling matrix SΘ is no lesser than dimC.

Proof: Otherwise the number of rows of the sampling

matrix SΘ is dimC −1. Given from Theorem 1, SΘ ·Θ◦ψ is

one-to-one mapping. This suggests that all dimC − 1 scalar-

valued functions of SΘ·Θ◦ψ constitute a set of basic functions

of Cr, which contradicts its dimension, i.e., dimC 6= dimC−1.
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Proposition 2: Given a GFT operator ψ−1 : Cd → Cr with

dim C, one prerequisite for sampling matrix SΘ is that, at

least dim C scalar-valued functions of SΘ · Θ ◦ ψ are linear

independent.

Proof: Otherwise, if any dim C scalar-valued functions of

SΘ · Θ ◦ ψ are linear dependent, then there exists < dim C
linear independent scalar-valued functions that constitute a set

of basic function, suggesting dim Cd = dim Cr < dim C.

After the elaboration of the non-linear GFT and the rules

for the sampling node selection, we next describe how this

can be combined with sequential state-space information for

optimal sampling and signal recovery.

C. Nonlinear GFT-based Network Sampling and Recovery

Given the Koopman operator in Eq. (11), we specify the

Koopman linearized evolution model for discrete time t =
1, · · · , τ as follows:








z1
z2
...

zτ







=








K0

K1

...

Kτ−1







· z1. (18)

With the help of the non-linear GFT theory, we assign

Θ = [(K0)T , · · · (Kτ−1)T ]T . The GFT operator is ψ−1,

which maps the range set of the observable z1 to x1, the

original signals with dimC = N indexed on N original nodes

over graph G(N ,A). The aim then can be converted to how

to determine the sampling nodes set S ⊂ N for the recovery

of the frequency response x1.

1) Selection of Sampling Nodes: It is noteworthy that the

mapping from the sampling node set S ⊂ N of original

network, to the sampling matrix SΘ in Theorem 1, is:

Sψ =
{

m
∣
∣
∣ψm(xt) = ψm (S · xt)

}

, (19)

Sψ = [si,mi
= 1] ,mi ∈ Sψ, (20)

SΘ = Sψ ⊗ [1, · · · , 1
︸ ︷︷ ︸

τ

], (21)

where ⊗ is the Kronecker product. For convenience, we denote

the above relations by

SΘ = Γ (S) . (22)

Given Theorem 1, the optimal selection of S should ensure

the one-to-one mapping characteristic of the function SΘ ·Θ◦
ψ, which is a NP-hard challenge. As such, we provide a sub-

optimal requirement based on the Propositions 1-2, aiming to

find dim C = N linearly independent rows of Θ, i.e.,

rank(Γ(S) ·Θ) = N. (23)

Here, the difference between Eq. (23) and the full column-rank

sampling selection, i.e., rank(Γ(S) · Θ) = M > N will be

detailed in Section V. A. We realize Eq. (23) by minimizing

the quotient between the 1st and N th singulars of SΘ ·Θ =
Γ(S) ·Θ, i.e.,

S = argmin
S⊂N

{
σ1 (Γ (S) ·Θ)

σN (Γ (S) ·Θ)

}

, (24)

Algorithm 1 Sampling Node Selection

Input: N ,Θ
1: Initialize S = ∅.

2: while
σ1(Γ(S)·Θ)

σN (Γ(S)·Θ)
> γ do

3: n = argminn∈N\S

{
σ1(Γ(S∪{n})·Θ)

σN (Γ(S∪{n})·Θ)

}

.

4: S = S ∪ {n}.

5: end while

Output: Return S .

where σi(·) denotes the ith singular of the matrix.

Eq. (24) is implemented via a greedy algorithm in Algo. 1.

The inputs are the original node set N from graph G(N ,A),
and the matrix Θ that describes the linear relations between

initial observable z1 and further linear evolved observables

z1:τ . Step 1 is to initialize the sampling node set. Steps 2-5

is to greedily add node with minimum quotient between 1st

and N th singulars. The output is the sampling node set S
indicating which nodes are selected for sampling in original

graph G(N ,A).

2) Signal Recovery: With the derivation of the sampling

node set S , and its relations to the matrix SΘ in Eqs. (19)-

(21), we denote the samples of [z1, · · · , zτ ] as:

y = SΘ · [z1, · · · , zτ ]
T . (25)

Then, by taking the samples in Eq. (25) into Eq. (18), and

transforming the initial observable z1 into its graph frequency

response, we have:

y = SΘ ·Θ · z1 = SΘ ·Θ ·ψ(x1). (26)

Regarding the difficulty of computing the inverse function

(SΘ ·Θ◦ψ)−1, we recover the signal x1 via the quasi-Newton

methods1, by:

x̂1 = argmin
x1∈RN

{

‖y − SΘ ·Θ ·ψ(x1)‖
2
2

}

, (27)

with gradient:

▽ =
(

ψ(x1)
T ·ΘT · STΘ − yT

)

· SΘ ·Θ ·
∂ψ(x1)

∂x1
, (28)

After the computation of x̂1, we can derive the estimated ẑ1 =
ψ(x̂1), and ẑt = Kt−1ẑ1. Then, given the selected observable

function in Eq. (7), we finally compute x̂t = ψ−1(ẑt). The

process is illustrated in Fig. 1(c).

V. NOVELTY COMPARED WITH OTHER

STATE-OF-THE-ARTS

In this section, we distinguish our proposed Log-Koopman

NL-GFT, with other state-of-the-art schemes.

1We use Davidon–Fletcher–Powell (DFP) to approximate and update the
inverse of Hessian matrix, and Wolfe conditions for step-size selection.
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(a) Log-Koopman NL-GFT(proposed)

(b) Poly-Koopman linear analysis 

(c) Linear GFT

ignore nonlinear relations in 

observable

Using linear evolution and 

nonlinear relations in observable

state-space 𝐱1 ∈ ℝ𝑁 observable set 𝐳1 ∈ ∁𝑑⊆ ℝ𝑀 𝐳1𝑇 , … , 𝐳𝜏𝑇 𝑇 ∈∁𝑑⋈𝜏⊆ ℝ𝜏×𝑀

Koopman𝐆𝐅𝐓𝐍𝐋-

ℝ𝑁 ∁𝑑
ℝ𝑀 ℝ𝜏×𝑀

∁𝑑⋈𝜏

state-space 𝐱1 ∈ ℝ𝑁 treat observable𝐳1 ∈ ℝ𝑀 𝐳1𝑇 , … , 𝐳𝜏𝑇 𝑇 ∈ ℝ𝜏×𝑀

Koopmanℝ𝑁 ∁𝑑
ℝ𝑀

ℝ𝜏×𝑀

Linear 

evolution

Linear 

evolution

signal-dependent sampling set

bandlimited 

state-space 𝐱1 ∈ 𝑈 ⊆ ℝ𝑁 𝐱1𝑇 , … , 𝐱𝜏𝑇 𝑇 ∈ 𝑈 ⋈𝜏

ℝ𝑁 ℝ𝜏×𝑁
Linear 

evolution𝑈 𝑈 ⋈𝜏

Fig. 2. Comparison of proposed Log-Koopman NL-GFT method with Poly-
Koopman graph observability, and linear GFT method. (a) gives the illustration
of proposed Log-Koopman NL-GFT method, whereby the sampling node
set maps from the set of NL-GFT signal-independent bandlimited frequency
response, i.e.,RN . (b) shows the sampling set selection from the Poly-
Koopman based graph observability, whereby the initial observable set is
treated as a linear space R

M for graph observability, and therefore maps to
redundant sampling node set. (c) shows the linear GFT, whereby the samples
are selected for a specific bandlimited initial state-space, suggesting a signal-
dependent sampling node selection that is not suitable for signals that are not
bandlimited.

A. Sampling by Graph Observability Analysis on Poly-

Koopman Operator

After the derivation of Koopman linearized evolution model,

i.e., zt+1 = K · zt, one straightforward idea is to treat the set

of observable as R
M , and use the standard linear theory in

[17]–[21], e.g., selecting sampling nodes (corresponding rows)

to make Θ = [(K0)T , · · · , (Kτ−1)T ]T full column-rank,

or by maximizing the state energy computed by Koopman

observability gramian. Specially, the latter was implemented

by the work in [39], referred to as Poly-Koopman graph

observability analysis. The sampling matrix of Poly-Koopman

graph observability analysis, denoted as Wh of size M ×M ,

is derived as [39]:

Wh = [Ik×k 0] ·V−1, (29)

by k largest eigenvalues of K = Vdiag(λ1, · · · , λM )V−1 to

maximize the energy of the observable reports, i.e.,

max
Wh

τ∑

t=1

zT1 · (Kt)T ·WT
h ·Wh ·K

t · z1

=

τ∑

t=1

zT1 · diag
(
λ2t1 , · · · , λ

2t
L , 0, · · · , 0

)
· z1.

(30)

The differences lie in two aspects.

First, they used the polynomial-based observable function

in Eq. (4) to linearize the networked data, which performs

accurate linearization approximation for small-scale network.

However, when it comes to the large-scale network (e.g., N >

50), they fall into the size explosion by using O(N2) terms

to construct the observable function ψ(·), in order to ensure

the linearization accuracy. We explained this by Eq. (5), and

further illustration will be given in Figs. 3-4 and Table I.

Second, the linear analysis on Koopman linearized evolution

model overlooked the nonlinear dependency between elements

in the vector-valued observable. This is because both the full

column-rank condition of Θ, i.e., rank(Γ(S) ·Θ) =M > N ,

and the eigenvector analysis in Eq. (29) treat the initial observ-

able set as the linear space R
M . This therefore overlooks the

fact z1 ∈ Cr ⊂ R
M with dimCr = N < M , as the observable

z1 is completely determined by the lower-sized x1 ∈ R
N ,

i.e., z1 = ψ(x1). As such, the sampling node set maps from

R
M other than Cd will inevitably result in redundant sampling

node for recovering the signal z1 that belongs to Cd (seen Fig.

2(a)-(b)). We show the comparison performance in Figs. 5-6.

B. Comparison with Linear GFT Sampling

Linear GFT sampling method aims at sampling and re-

covering the networked signal xt that belong to a known

subspace (also referred to as bandlimited) of R
N , i.e., ∀t ∈

N
+,xt ∈ span{u1, · · · ,ur} ⊂ R

N . Here, the orthogonal

r < N vectors u1, · · · ,ur with r < N can be derived

either from the r-leading eigenvectors of the topology-based

Laplacian matrix [17], [24]–[28], or from the simulated data

[11]. As such, the linear GFT operator UT can be assigned

as UT = [u1, · · · ,ur]
T , where the processes of GFT and

inverse GFT are x̃t = UT ·xt and xt = U · x̃t. The sampling

matrix SΦ to ensure the recovery of xt from SΦΦ ·xt can be

determined by [17], [24]–[27]

rank (SΦ ·Φ ·U) = r, (31)

where Φ can be a simple identity matrix, or Φ =
[L0, · · · ,LT−1]T in [17] specifies the linear evolved infor-

mation given xt+1 = L · xt. Then, given SΦ and the samples

y = SΦΦ · xt, the recovered signal x̂t is [17], [24]–[27]:

x̂t = U · pinv(SΦ ·Φ ·U) · y, (32)

where pinv(·) is the pseudo-inverse.

As is compared by Fig. 2(a) and Fig. 2(c), one difference lies

in that the linear GFT sampling method is signal-dependent,

since the selection of sampling set is not suitable for the signals

that are not belongs to the assumed signal space. This leads

to the signal-dependent sensor placement, as SΦ in Eq. (31)

varies with the changes of the assumed signal space. Secondly,

in the absence of any prior knowledge of the signal model or

signal space, their works are unable to generate GFT operator

for further network sampling and signal recovery. By contrast,

our proposed Log-Koopman NL GFT captures the nonlinear

bandlimtedness of the observable zt = ψ(xt), which is signal-

independent to any vector zt ∈ Cd, therefore leading to a fixed

sensor placement scheme for all signals.

VI. RESULTS

In this section, we evaluate our proposed Log-Koopman NL-

GFT sampling method in terms of the sampling rate (i.e., the

ratio of number of sampling nodes to total number of network
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nodes, |S|/N ), and the normalized root mean square error (N-

RMSE) defined as follows:

N-RMSE =

√
√
√
√

∑T

t=1(x̂t − xt)T (x̂t − xt)
∑T

t=1 x
T
t xt

. (33)

The dynamic network is configured by the Erdös–Rényi

model where each edge is included in the graph with probabil-

ity 0.5 that is independent from every other edge. We vary the

number of network nodes N from 10 to 100, in order to test

the applicability of the proposed scheme for various network

scales (from small-scale e.g., N < 30 to large-scale N ≥ 50).

Networked data are configured by two general models with

rate parameters (F , B, and R) according to [2], i.e.,

dxi(t)

dt
= F −B · xi −

N∑

j=1

R · xi · xj , (34)

dxi(t)

dt
= −B · xi +

N∑

j=1

R ·
x2j

1 + x2j
. (35)

Eq. (34) is referred to as Biochemical Dynamics of protein-

protein interactions, in which the rates are configured as F =
10, B = 1 and R = 1, and the initial signal is randomly

assigned as xi(0) ∈ (0, 1) [2], [42]. Eq. (35) is referred to as

gene Regulatory Dynamics, where the rates are set as B = 1
and R = 1, and the initial signal is randomly configured as

xi(0) ∈ (0, 100) [2]. Here, it is noteworthy that we do not

know the expressions of the models in Eqs. (34)-(35), but

only the data generated are used for performance evaluation.

For the setting of proposed logarithm observable, by scanning

C to obtain best linearization performance, we use C = 500
in this simulation.

A. Log-Koopman Linearization Performance

We at first test the linearization performance of our proposed

logarithm-based Koopman operator in Figs. 3-4, where the

former is for the N = 50 biochemical network dynamic,

and the latter is for the N = 100 gene Regulatory network

Dynamic.

The x-coordinate illustrates the number of selected scalar-

valued observable functions (i.e., ψ1, · · · , ψM ) used for gen-

erating the vector-valued observable function ψ(·) in Eq. (3).

The y-coordinate gives the corresponding N-RMSE between

the linerized data and the original data. We can firstly observe

that when the observable size equals to the number of network

nodes (M = N ), the normalized RMSEs of two schemes are

the same. This is because both the proposed Log-Koopman and

the compared Poly-Koopman directly use the original signal

state as observable functions (referred to as DMD). Then,

with the increase of number of observables, the linearization

accuracies of both schemes improve.

It is seen that the proposed Log-based Koopman operator

can reach a small N-RMSE, by using only M = O(N) (e.g.,

M = 3 × N = 150 in Fig. 3) observable functions. Such

number is much lower than that of the Poly-based Koopman

operator which requires O(N2). The reason is attributed to

the conversion of the multiplicative terms of Taylor expansion

Fig. 3. Performance comparison between proposed Log-Koopman operator
and Poly-based one in [38] by N = 50 networked data of Biochemical
Dynamic of protein-protein interactions. The proposed Log-Koopman operator
requires less observable functions (M = O(N) = 250) to approximate the
original data, as opposed to the Poly-Koopman operator requiring O(N2) =
2500.

Fig. 4. Performance comparison between proposed Log-Koopman operator
and Poly-based one in [38] by N = 100 gene Regulatory Dynamic networked
data. The proposed Log-Koopman operator requires less observable functions
(M = O(N) = 103) to approximate the original data, as opposed to the
Poly-Koopman operator (O(N2) > 104).

in Eq. (4), to the form of logarithm summations in Eq. (7).

As such, only definite number of logarithm-based observ-

able functions are required to approximate and replace the

indefinite multiplicative Poly-based observable functions. This

suggests the ability of the proposed scheme to prevent the size

explosion when linearizing large-scale networked data (i.e.,

N > 50), and therefore enables the computational feasibility

of further signal processing steps relying on Koopman operator

(e.g., the sampling node selection in Algo. 1).

One drawback of the proposed Log-Koopman operator lies

in the existence of N-RMSE lower-bound (e.g., 10−3 in Figs.

3-4), due to inaccuracy of the logarithm approximation of the

multiplicative polynomial terms. We address this by refining

the Koopman operator via Eq. (12). Here, the new training data

are generated by the initialization where the values of sampling

points are the corresponding initial samples, and others values

are randomly generated. We will show in the next part that

the refined Koopman operator leads to a promising sampling
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and recovery performances when combined with the nonlinear

GFT.

B. Performance of Log-Koopman NL-GFT Sampling and Re-

covery

We then evaluate the sampling and recovery performance

of the proposed NL-GFT scheme leveraged on the Log-

based Koopman operator. The compared schemes are the

Poly-Koopman based linear state inference in [39], and the

batch recovery method using graph smoothness of signal time-

variation[28].

Figs. 5-6 provide the recovery N-RMSE versus the sampling

rate, i.e., |S|/N , for N = 100 biochemical network dynamic,

and N = 100 gene regulatory network dynamic respectively.

The dotted lines are the N-RMSE of proposed (blue) schemes

for different test data under the same network topology and

parameter configuration, and the solid lines give the averages.

It is seen from Figs. 5-6 that with the increase of sampling

rate, the N-RMSEs of all schemes decreases (e.g., when

|S|/N → 1, all N-RMSEs approach to 10−3). Then, it is

observed that the number of selected nodes from the proposed

NL-GFT scheme is much smaller than that of the competitive

schemes in [39] and [28]. The proposed scheme can approach

an order of 10−2 N-RMSE by using only half of nodes for

sampling, as opposed to the scheme in [39] which requires

nearly all nodes to ensure the recovery performance.

We further provide the average recovery N-RMSEs for net-

works with different scales (from N = 10 to N = 100), under

various sampling rates |S|/N = 25%, 50%, 75%. Table I is for

the biochemical network dynamic, and Table II is for the gene

regulatory network dynamic. For each network topology, 1000

data are tested. It is observed that the proposed Log-Koopman

NL-GFT scheme has lower average N-RMSE under the same

sampling rate, when compared with the Poly-Koopman linear

analysis in [39], and with the graph smoothness batch method

in [28]. This suggests the general applicability of the proposed

scheme for different network scales. Then, it is shown that our

proposed scheme requires only half of nodes for sampling to

achieve a low N-RMSE as an order of 10−2, which is smaller

than that of the competitive schemes in [39] [28] that need

almost all the nodes.

We explain such sampling node reduction by two parts.

First, when compared with the recovery method using graph

smoothness in [28], the proposed Log-Koopman NL-GFT

scheme exploits the combined time-evolution and nonlinear

dependency, therefore capable of using smaller size of sam-

pling nodes to characterize the whole networked signal.

Second, when compared with the Poly-Koopman linear

state analysis method in [39], the sampling node reduction

of the proposed scheme is attributed to the use of non-

linear dependency between observables. After the Koopman

linearzation, the original N networked data xt is expanded

by the selected M > N observable functions as zt =
[ψ1(xt), · · · , ψM (xt)]

T , and the aim is converted to find the

sampling node to recover the initial state z1 from Eq. (18). As

such, the design of the sampling node selection should take

into account the nonlinear dependence between the element of

Fig. 5. Performance comparison between schemes in N = 100 biochemical
network dynamic, where x-coordinate is the sampling rate |S|/N , and y-
coordinate is the N-RMSE.

Fig. 6. Performance comparison between schemes in N = 100 gene
regulatory network dynamic, where x-coordinate is the sampling rate |S|/N ,
and y-coordinate is the N-RMSE.

TABLE I
BIOCHEMICAL NETWORK DYNAMICS, N = 10 TO 100

Methods

N-RMSE Sampling rate
25% 50% 75%

Log-Koopman NL-GFT 0.1408 0.0220 0.0022
Poly-Koopman liner analysis [39] 0.5377 0.2501 0.2341
Graph smoothness batch [28]. 0.8831 0.7090 0.5158

z1. The graph observability analysis in [39] treats the set of

observable z1 as RM , and ignores such nonlinear dependence,

thereby leading to redundant sampling nodes. By contrast,

our proposed nonlinear GFT sampling method transforms the

observable set to its bandlimited set of frequency response,

therefore capable of deriving the smaller number of sampling

nodes mapping from a lower sized frequency response.

VII. CONCLUSION

Networked nonlinear dynamics underpin the complex func-

tionality of many engineering, social, biological, and ecolog-

ical systems. Monitoring the network’s dynamics via subset

of nodes is essential for a variety of operational and scientific
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TABLE II
GENE REGULATORY NETWORK DYNAMICS, N = 10 TO 100

Methods

N-RMSE Sampling rate
25% 50% 75%

Log-Koopman NL-GFT 0.1620 0.0338 0.0075
Poly-Koopman liner analysis [39] 0.6474 0.4610 0.3037
Graph smoothness batch [28]. 0.8206 0.6791 0.4766

purposes. For arbitrarily large graphs with nonlinear dynamics,

current model-driven methods are dependent on the underly-

ing model assumptions, and data-dependent sampling node

selection suffer from either complexity explosion issues or

lack of guarantees in performance. One state-of-the-art scheme

uses a polynomial based Koopman operator to generate a

linear evolution model of observable defined on the original

networked state-space, but the sampling node set are still large

due to (i) the size explosion of poly-based observables, and

(ii) the overlook of nonlinear dependence between observable.

In this work, we propose a novel logarithm based Koop-

man operator coupled with a novel nonlinear Graph Fourier

Transform (GFT) scheme, entitled as Log-Koopman NL-GFT,

for sampling and recovering the networked dynamics. The

Log-Koopman operator is able to prevent the size explo-

sion, as logarithm-form observables are designed to replace

the substantial multi-element multiplicative poly-observables

by logarithm summation. When combined with our novel

nonlinear GFT sampling approach, our sampling node set

can be completely determined by a bandlimited frequency

space in a nonlinear manner. As such, the sampling and

recovering algorithms are designed by exploiting the nonlinear

dependence of observables.

The results shows that the proposed Log-Koopman NL-GFT

scheme is able to (i) linearize unknown nonlinear dynamics

using O(N) observables, and (ii) achieve lower number of

sampling nodes, compared with the state-of-the art polynomial

Koopman scheme using only the graph observability analysis,

which suggests a promising prospect of the proposed Log-

Koopman NL-GFT scheme to a wide range of network mon-

itoring applications.
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