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Abstract—This paper studies hybrid beamforming for active
sensing applications, such as millimeter-wave or ultrasound imag-
ing. Hybrid beamforming can substantially lower the cost and
power consumption of fully digital sensor arrays by reducing the
number of active front ends. Sparse arrays can be used to further
reduce hardware costs. We consider phased arrays and employ
linear beamforming with possibly sparse array configurations at
both the transmitter and receiver. The quality of the acquired
images is improved by adding together several component im-
ages corresponding to different transmissions and receptions. In
order to limit the acquisition time of an image, we formulate an
optimization problem for minimizing the number of component
images subject to achieving a desired point spread function. Since
this problem is not convex, we propose algorithms for finding ap-
proximate solutions in the fully digital beamforming case, as well as
in the more challenging hybrid and analog beamforming cases that
employ quantized phase shifters. We also determine upper bounds
on the number of component images needed for achieving the fully
digital solution using fully analog and hybrid architectures, and
derive closed-form expressions for the beamforming weights in
these cases. Simulations demonstrate that a hybrid sparse array
with very few elements, and even fewer front ends, can achieve the
resolution of a fully digital uniform array at the expense of a longer
image acquisition time.

Index Terms—Active sensing, hybrid beamforming, image
addition, phased array, sparse arrays, sum co-array.

I. INTRODUCTION

S ENSOR arrays are a key technology with several appli-
cations in radar, sonar, microwave imaging, medical ul-

trasound, and wireless communications, to list a few [1]. The
many advantages of arrays include high signal-to-noise ratio
(SNR) gain, spatial diversity, and the capability to cancel inter-
ferences by beamforming. The ability to resolve targets improves
with increasing aperture, which encourages using short carrier
wavelengths. This allows for designing electrically large arrays
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with small form factors by packing a very large number (on
the order of hundreds) of elements into a tiny (on the order
of a cm2) physical area. On the other hand, the cost, power
consumption, and computational load commonly associated
with signal processing for many antenna elements and dedi-
cated transceiver chains may become prohibitively large. These
issues are especially pronounced for fully digital arrays, where
each array element is connected to a separate front end, which
includes radio and intermediate frequency (RF-IF) components
and an analog-to-digital converter (ADC) or a digital-to-analog
converter (DAC). For example, a planar antenna array operating
in the THz frequencies of the radio spectrum may in principle
even fit thousands of elements in an area of only a few square
centimeters. The practical applicability of such fully digital
systems is limited by the number of required RF-IF front ends,
and the typical high sampling rates and bandwidths imposed on
the DACs/ADCs.

Sparse arrays can be used to reduce the cost of large arrays
with a regular geometry. By utilizing a virtual array model
called the co-array, the number of elements can be significantly
reduced compared to a uniform array of equivalent aperture,
without sacrificing the array’s ability to resolve scatterers or
signal sources [2]–[4]. The co-array is a virtual array structure
typically consisting of the pairwise vector sums or differences
of the physical array element positions. For instance, the sum
co-array commonly arises in active sensing applications, where
linear processing (delay-and-sum beamforming and matched
filtering) is used at the transmitter and receiver. Sparse arrays
exploit the fact that the co-array of a uniform array is redundant.
Redundancy implies that the same co-array can be achieved
using fewer physical elements by carefully placing the sensors
in a sparse manner.

The support of the co-array ultimately determines the achiev-
able set of point spread functions (PSFs), which determine the
properties of the imaging system. A particular PSF may be
achieved by weighting the co-array using the so-called image ad-
dition technique [2]. Image addition produces a desired co-array
weighting by adding together several images, which are acquired
using different transmit-receive beamforming weights. Each of
these component weights correspond to a separate transmission,
or pulse, and reception, when transmitters operate coherently as
in a phased array. In this case, it is critical to keep the number
of component images as low as possible to reduce the image
acquisition time, while controlling the distortions to the PSF.
If transmissions are incoherent, as in synthetic aperture radar,
or orthogonal multiple-input-multiple-output (MIMO) radar [5],
the number of component images is less important. In such cases,
image addition may be applied during post-processing after data
acquisition [6].
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Fig. 1. Fully connected hybrid beamforming architecture of transmitter and receiver. Each digital weight (element of vector cx) and array element is connected
via a front end and a phase shifter with discretized phase (element of matrix Fx).

Hybrid beamforming may be used to further lower the cost of
a fully digital array. Hybrid beamforming architectures reduce
the number of front ends by pre-processing the transmitted or
received signals by an analog beamforming network. This net-
work usually consists of inexpensive, low power phase shifters
connecting every array element to all front ends. Fig. 1 de-
picts this fully connected architecture. In a partially connected
architecture, each front end is connected to only a subset of
all the available elements [7]. The total power consumption
and cost of the system may further be reduced by applying
coarser quantization at the ADCs/DACs [8], [9], or by using
sparse arrays. The typical application of hybrid beamforming
is millimeter-wave (mmWave) communications, where linear
processing is used to precode and decode multiple data streams
sent over a MIMO channel, with the goal of maximizing the
spectral efficiency [9] or minimizing the mean squared error of
the received data [10].

The design of the hybrid beamformer is challenging as it
requires solving a non-convex optimization problem. In par-
ticular, non-convexity results from i) decomposing the fully
digital beamformer into analog and digital parts; ii) introducing
phase shifters in the analog beamforming network; and iii) using
quantized phase shifts [11]. Many authors have addressed these
issues using a variety of analytical [12]–[15] and numerical tools
[10], [14]–[19]. Most analytical methods make use of the fact
that any digital beamforming vector may be implemented by
a fully connected hybrid beamformer using continuous phase
shifters and two front ends [12]. Actually, only a single front
end per data stream is sufficient, if the number of phase shifters
per front end is doubled [13]–[15]. However, these results are not
applicable if the number of streams is greater than the number of
front ends, or if the phase shifters are quantized. Consequently,
several numerical approaches to solve the hybrid beamforming
problem have been proposed, including alternating minimiza-
tion [10], [16], majorization-minimization [19], quasi-Newton
methods [18], Wirtinger calculus [20], coordinate descent [17],
and various heuristics [14], [15].

A. Contributions and Organization of Paper

The aforementioned works mainly consider hybrid beam-
forming in a mmWave MIMO communications context. In
contrast, this paper proposes a hybrid beamforming phased
array architecture for active sensing applications. The co-located

transmitting and receiving arrays have a fully connected hybrid
architecture and may be sparse. Furthermore, we utilize image
addition to synthesize PSFs that are usually only achieved by
uniform arrays employing fully digital beamforming. To the
best of our knowledge, the resulting multi-image joint transmit-
receive beampattern matching problem has not been studied
before. In particular, it essentially differs from the typical hybrid
beamformer design problem, where the optimization of the
transmitter and receiver is decoupled, and spectral efficiency
is used as the objective function [21].

The main contributions of the paper are threefold:
1) We formulate an optimization problem to jointly find

the hybrid transmit and receive beamformers achieving a
desired PSF using as few component images as possible.

2) We develop a greedy algorithm for approximately solving
this non-convex hybrid beamformer design problem. In
the special case of the fully digital beamformer, we pro-
pose using an alternating minimization algorithm, which
is also partly utilized in the hybrid case.

3) We derive closed-form beamforming weights yielding up-
per bounds on the number of component images required
by the hybrid and fully analog beamformers to match the
beampattern of the fully digital beamformer.

We address the general case when the analog beamforming
network consists of phase shifters with quantized phases. In a
related work, we study the special case of a single front end
connected to phase shifters with continuous phases [22].

The paper is organized as follows. Section II introduces the
signal model and defines key concepts, such as the point spread
function and the image addition method. Section III formulates
the hybrid beamformer weight optimization problem. Section IV
reviews key prior work that will be utilized in Section V,
where we propose algorithms for approximately solving the
hybrid beamforming problem in both the fully digital and hybrid
cases. Section VI develops closed-form expressions for the
hybrid beamforming weights, which provide upper bounds on
the number of component images in the case of continuous
and discrete phase shifts. Finally, Section VII demonstrates the
performance of the proposed solutions via simulations using
both linear and planar arrays. In particular, we show that sparse
hybrid beamformers with quantized phase shifters can achieve
image quality comparable to uniform fully digital beamformers,
at the expense of an increase in the number of transmissions and
a reduction in array gain.
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TABLE I
FREQUENTLY USED SYMBOLS. SUBSCRIPT “x” DENOTES EITHER THE

RECEIVER (“r”) OR TRANSMITTER (“t”)

B. Notation

Matrices are denoted using bold uppercase, vectors using
bold lowercase, and scalars using unbolded letters. The (n,m)th
element of matrix A is denoted asAnm. If the matrix is indexed
by a subscript, say as Ai, the (n,m)th element is denoted as
[Ai]nm. Furthermore, the nth row and mth column of matrix
A are denoted as An,: and A:,m. Subscripts “t” and “r” denote
transmitter and receiver, respectively. We omit these subscripts,
or use “x” to indicate either of them to avoid unnecessary repe-
tition whenever possible. The N -dimensional vector of ones is
denoted by1N , and theN ×N identity matrix by IN (subscripts
are omitted when the dimensions are clear from the context).
The standard unit vector, consisting of zeros except for the
ith entry, which is unity, is denoted by ei (dimension speci-
fied separately). The �p and Frobenius norms are, respectively,
denoted as ‖ · ‖p and ‖ · ‖F, where p ≥ 1. Operators (·)T, (·)H,
(·)∗, and (·)†, respectively, denote the matrix transpose, complex
conjugate transpose, complex conjugate, and pseudo-inverse.
The Kronecker and Khatri-Rao products are denoted by ⊗
and �. The vec(·) operator stacks the columns of its matrix
argument into a column vector, whereas matN×M (·) reshapes
an NM dimensional vector into a N ×M matrix. The diag(·)
operator constructs a diagonal matrix of its vector argument.
Basic operations, such as rounding to the nearest integer �·�
or the the angle of a complex-valued number �·, are applied
elementwise to matrix arguments. Table I lists the symbols that
are referred most frequently in the text.

II. SIGNAL MODEL AND DEFINITIONS

In this section, we introduce the signal model and key def-
initions. In particular, we consider active narrowband sensing
of coherent far-field point scatterers using linear processing at
both the transmitter and receiver. We first define matrix Fx,
which models the analog beamforming network consisting of
phase shifters. We then briefly recall the key concept of the point
spread function, which characterizes the performance of a linear
imaging system. We also review the image addition method that
extends the set of point spread functions that are achievable by
hybrid or sparse arrays. Finally, we introduce the sum co-array,
which is fundamental in determining the set of achievable point
spread functions.

A. Signal Model

Consider a phased planar array imaging system that sequen-
tially scans a scattering scene by transmitting and receiving fo-
cused beams of narrowband signals. Such systems are typically
used in, e.g., medical ultrasound imaging or radar. LetNt denote
the number of transmitting (Tx) andNr the number of receiving
(Rx) array elements. The number of Tx and Rx front ends are
reduced using analog preprocessing networks comprising of
phase shifters, as shown in Fig. 1. Specifically, we use a bank of

Mt ≤ Nt Tx front ends andMr ≤ Nr Rx front ends. We refer to
the beamforming architecture as
� fully digital, when Mx = Nx
� hybrid, when 2 ≤Mx < Nx
� fully analog, when Mx = 1.
Both the hybrid and analog architectures are assumed to be

fully connected, whereas the digital architecture is partially
connected, since each sensor has a dedicated front end.

We transmit a modulated narrowband pulse using the trans-
mit beamforming weights wt = Ftct ∈ C

Nt , where ct ∈ C
Mt

denotes the digital weight vector, and Ft ∈ C
Nt×Mt the analog

phase shift matrix (see Section II-B for details). The transmitted
radiation is reflected off scatterers in the field-of-view of the
transmit array and observed by the receiver, where it is pro-
cessed by a hybrid beamforming network with the beamforming
weights wr = Frcr ∈ C

Nt . Here cr ∈ C
Mr denotes the digital,

and Fr ∈ C
Nr×Mr the analog beamforming weights of the re-

ceiver. The beamformed signal is then processed using a digital
matched filter yielding

y(u) = wT
r (u)ArΓA

T
t wt(u) +wT

r (u)n, (1)

where u∈R3 is the scan direction taking the form u=
[sinϕ sin θ, cosϕ sin θ, cos θ]T, when the array is focused in
the far-field. Here ϕ∈ [−π/2, π/2] and θ∈ [0, π] are the az-
imuth and elevation angles of the scan direction, respectively.
Matrix Γ = diag(γ) ∈ C

K×K is a diagonal matrix, with γ =
[γ1, . . . , γK ]T ∈ C

K containing the scattering coefficients of the
K reflectors, andn ∈ C

Nr is a vector of spatio-temporally white
complex circular Gaussian noise with zero mean and covariance
matrix σ2I . Furthermore, theNx ×K steering matrix of the Tx
or Rx array is

Ax=[ax(v1), . . . ,ax(vK)], (2)

where the steering vector ax(vk)∈CNx is evaluated in scatterer
direction {vk ∈ R

3}Kk=1. When the scatterers are located in
the far-field of both the transmitting and receiving array, we
have vk = [sinϕk sin θk, cosϕk sin θk, cos θk]

T, where ϕk ∈
[−π/2, π/2] and θk ∈ [0, π] denote the azimuth and elevation
angles of the kth scatterer. Eq. (1), or its magnitude |y(u)|, may
be interpreted as an image of the scattering scene. Typically, this
image is evaluated for a discrete set of steering directions, i.e.,
pixels.

B. Analog Phase Shift Matrix F x

The entries of the analog phase shift matrix F x ∈ Fx(B) are
complex exponentials with discrete phases. Specifically, let

Fx(B) = {F=exp(jΦ) | Φ ∈ R
Nx×Mx ,Φnm∈Φ(B)}, (3)

Φ(B) = {0, 2π/2B , . . . , (2B − 1)2π/2B}, (4)

where the exponential function in (3) is applied elementwise,
and B denotes the number of bits used to uniformly quantize
the phase of each entry of F over the interval [0, 2π). Note
that (4) ensures that Φ(B + 1) ⊃ Φ(B), and thereby Fx(B +
1) ⊃ Fx(B). It also follows from (4) that the phase quantization
operator PB(Ψ), i.e., the projection of the elements of some
matrix Ψ ∈ [0, 2π)N×M to set Φ(B), can be expressed as

PB(Ψ)=
π

2B−1
⌈2B−1

π
Ψ
⌋
mod 2π. (5)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 12,2023 at 09:19:25 UTC from IEEE Xplore.  Restrictions apply. 



RAJAMÄKI et al.: HYBRID BEAMFORMING FOR ACTIVE SENSING USING SPARSE ARRAYS 6405

Fig. 2. The PSF is the spatial response of the array to a point scatterer in
directionv, with the array steered in directionu. The effective PSF is the product
of the Tx and Rx array PSFs.

Letting the number of bits go to infinity yields the special case of
continuous phase shifters: Fx(∞) = limB→∞Fx(B);Φ(∞) =
limB→∞ Φ(B) = [0, 2π); and P∞(Ψ) = Ψ.

C. Point Spread Function

The point spread function (PSF) fully defines the spatial
impulse response of a linear imaging system, and is key in char-
acterizing the achievable resolution and interference suppression
capability. The effective PSF of an active array is the product
of the Tx and Rx PSFs, as illustrated in Fig. 2. Specifically, for
the array focused in the direction u∈R3, and a unit reflectivity
point-scatterer in the direction v∈R3, the PSF is defined as

ψ(u,v) = (at(v)⊗ ar(v))
Tvec(W(u)),

where W(u) = wr(u)w
T
t (u) ∈ C

Nr×Nt is a rank-1 matrix. For
a fixed u and a discrete set of V scatterer directions {vi}Vi=1
determined by the desired imaging region and resolution, the
PSF may be expressed as a vector ψ ∈ C

V satisfying

ψ = ATvec(W). (6)

Here the ith column of the effective steering matrix A ∈
C

NrNt×V is given by the Kronecker product of the Tx and Rx
steering vectors evaluated in direction vi, i.e., at(vi)⊗ ar(vi).
Consequently, A can be expressed as the Khatri-Rao product of
the Tx and Rx steering matrices Ax ∈ C

Nx×V in (2):

A = At �Ar. (7)

Any feasible PSFψ thus lies in the row space ofA. For examples
of typical PSFs, see Section VII-A4.

D. Image Addition

A single Tx-Rx weight pair {wt,wr} may not always suffice
to achieve a desired PSF. In this case, the range of feasible
PSFs may be extended by image addition [2]. Image addition
synthesizes a composite image with improved resolution and
lower side lobe levels, by summing together several component
images that are formed using different Tx-Rx weight pairs.
This corresponds to using a rank-Q co-array weight matrix
W ∈ C

Nr×Nt in (6), defined as [23]:

W =

Q∑
q=1

wr,qw
T
t,q = WrW

T
t , (8)

where Wx = [wx,1, . . . ,wx,Q] ∈ C
Nx×Q. Each rank-1 matrix

wr,qw
T
t,q in (8) corresponds to a transmission and reception with

a different pair of Tx and Rx weight vectorswt,q andwr,q . These
vectors may be found from the singular value decomposition

(SVD) of matrix W in the case of a fully digital beamformer
[23]. The smaller the number of component images Q is, the
shorter the image acquisition time, since fewer transmissions
are required in forming an image. In the case of hybrid beam-
forming, (8) becomes

W=

Q∑
q=1

Fr,qcr,qc
T
t,qF

T
t,q=Fr(I�Cr)(I�Ct)

TFT
t , (9)

where matrices Fx=[Fx,1, . . . ,Fx,Q] ∈ Fx(B)⊂C
Nx×MxQ

and Cx=[cx,1, . . . , cx,Q]∈CMx×Q, respectively, contain the
analog and digital beamforming weights of all theQ component
images. Note that (9) is not necessarily unique, as is shown in
Section VI-B1. Furthermore, although cx,q could also be defined
as a real-valued vector, allowing for complex-valued entries is
more convenient for our purposes.

E. Sum Co-Array

The sum co-array, DΣ, is a virtual array structure defined as
the set of pairwise sums of the transmit and receive element
positions Dx = {dx,1, . . . ,dx,Nx} ⊂ R

3:

DΣ = {dt + dr | dx ∈ Dx}. (10)

The sum co-array ultimately determines the set of PSFs that the
array can achieve [2]. The utility of the sum co-array stems from
the fact that it has at least as many virtual elements NΣ = |DΣ|
as either of the physical arrays, since NΣ ≥ Nt +Nr − 1. If
the transceivers are co-located, that is, Dt = Dr and Nx = N , a
simple counting argument shows that NΣ ≤ N(N + 1)/2. The
array is redundant ifNΣ < N(N + 1)/2. If the transmitting and
receiving elements can be placed independently of each other,
the redundancy condition is NΣ < NtNr.

Steering matrix A in (7) may have fewer than NtNr unique
rows when the array configuration is redundant. In particular,
the number of unique rows equals the number of sum co-array
elementsNΣ, for example, when the array elements are identical
and mutual coupling is negligible. The unique rows of A are
therefore contained in the sum co-array steering matrix AΣ ∈
C

NΣ×V satisfying

A = ΥTAΣ. (11)

Here Υ is an NΣ ×NtNr binary matrix mapping the set of
virtual elements arising from the Kronecker structure in (7) to
the set of sum co-array elements in (10). The sum co-array and
the multiplicities of its element uniquely determine Υ.

Definition 1 (Sum co-array selection matrix): Map Υ :
C

NtNr �→ C
NΣ is a binary matrix Υ ∈ {0, 1}NΣ×NtNr , where

Υn,m =

{
1, if dΣ,n = dt,�m/Nr� + dr,1+(m−1) mod Nr

0, otherwise.

Here dx,i ∈ Dx denote the elements of the physical array and
dΣ,n ∈ DΣ the elements of the sum co-array.

Any feasible PSF may be expressed as ψ=AT
ΣwΣ, where

wΣ = Υ vec(W) (12)

is the NΣ-dimensional sum co-array beamforming weight vec-
tor. Note that if V < NΣ, then (12) is only sufficient for satisfy-
ing (6). If rank(AΣ) = NΣ, which holds only if V ≥ NΣ, then
(12) is also necessary. When the physical array is a uniform array
with N co-located transceivers, then NΣ ∝ N . Conversely, a
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sparse array may have NΣ ∝ N2. Consequently, these arrays
would typically require (at least) V ∝ N , respectively, V ∝ N2

angular samples.

III. PROBLEM FORMULATION

In this section, we formulate the hybrid beamformer weight
optimization problem as a spatial filter design problem. Our
fidelity measure of choice is the �2 approximation error

ε = ‖ψ −ATvec(W)‖22.
Here ψ ∈ C

V is the desired PSF (sampled in V directions),
which is also assumed to be feasible (in the row space ofA). The
realized PSF ATvec(W) is determined by the measurement (or
steering) matrix A given by (7), and the co-array weight matrix
W ∈ C

Nr×Nt , which factorizes as (9).
The objective is to minimize the number of component images

Q, while achieving a desired PSF. This leads to the following
non-convex optimization problem:1

minimize
{Fx,q∈Fx(B),cx,q∈CMx}Q∈N+q=1

Q

subject to

∥∥∥∥∥ψ−ATvec

(
Q∑

q=1

Fr,qcr,qc
T
t,qF

T
t,q

)∥∥∥∥∥
2

2

≤εmax.

(P1)

In (P1), εmax ≥ 0 is an approximation error tolerance parameter,
and Fx denotes the analog weight matrix constraint set in (3).
The fact that Q is unknown further complicates problem (P1).
If we instead fix Q, we obtain the following slightly simpler
optimization problem:

minimize
{Fx,q ∈ Fx(B),

cx,q ∈ C
Mx}Qq=1

∥∥∥∥∥ψ −ATvec

(
Q∑

q=1

Fr,qcr,qc
T
t,qF

T
t,q

)∥∥∥∥∥
2

2

.

(P2)

Note that Q determines the number of optimization variables
in both optimization problems, which implies that the optimal
value of the objective function of (P2) is non-increasing in Q.
We may therefore recover the solution to (P1) from (P2) by
finding the smallest Q for which the objective function of (P2)
does not exceed the approximation error tolerance εmax. This
can easily be accomplished using binary search (bisection) at a
small additional cost, given a search interval of feasible values
ofQ. Consequently, we will henceforth focus on (P2) instead of
(P1). If we know the weight vectors wx,q ∈ C

N , which may be
the case when a fully digital solution is available, we may solve
the even simpler optimization problem

minimize
F∈F(B),c∈CM

‖w − Fc‖22 (P3)

independently for the transmitter, receiver, and each component
image (we omit the subscripts in (P3) for simplicity). Problem
(P3) recovers a hybrid solution to (P1), if a fully digital solution
to (P1) is available, and if this solution can be factorized as in

1We do not constrain the transmit power for simplicity. However, the Rx and
Tx weight vectors are normalized post optimization as wr,q ← wr,q‖wt,q‖∞
and wt,q ← wt,q‖wt,q‖−1∞ to ensure that the transmitters are operated at satu-
ration and SNR is maximized for each of the Q component images.

Fig. 3. Illustration of Lemma 1. Any point within the shaded disk can be ex-
pressed as the sum of two phasors with fixed equal magnitudes and appropriately
chosen phases.

(9) for the same number of component images as in the fully
digital case. However, since this is generally not the case, (P2)
needs to be solved instead.

IV. KEY RESULTS IN PRIOR WORK

In this section, we review two key results (used in Sections V
and VI) related to solving optimization problem (P3) using
hybrid and analog beamformers with continuous phase shifters.
We again omit subscripts x and q for simplicity, since the results
are independently applicable to both the transmitter and receiver,
as well as any component image.

Zhang et al. [12] showed that two front ends with continu-
ous phase shifts are sufficient for factorizing any w ∈ C

N as
w = Fc, thus optimally solving (P3) when M ≥ 2. The hybrid
beamforming weights can also be expressed in closed form, as
shown by the following lemma adapted2 from [12].

Lemma 1 (Solution to (P3) using two front ends and contin-
uous phase shifters [12]): Let M=2 and B→∞. Given any
w ∈ C

N , an optimal solution to (P3) achieving w = Fc, where
c ∈ C

2 and F∈F (∞) following (3), is given by

F = exp

(
j

(
�w1T

2 + cos−1
( |w|
‖w‖∞

)
(12 − 2e2)

T

))

(13)

c =
‖w‖∞

2
12. (14)

Here 12 is a vector of ones, e2 is the standard unit vector, and
cos−1, | · |, and the angle operator � are applied elementwise.

Proof: See Appendix A.
Fig. 3 illustrates Lemma 1, showing how each entry wn ∈ C

of vector w ∈ C
N can be expressed as the sum of two pha-

sors with magnitude ‖w‖∞/2 and phases depending on wn

and ‖w‖∞. Note that (13) and (14) are not unique, since any
c1 = c2 ≥ ‖w‖∞/2 yields a feasible factorization w = Fc. In
general, unequal magnitudes |c1| �= |c2| are also possible if
minn |wn| > 0 holds (see Appendix A). We may also easily
extend Lemma 1 to the caseM > 2 by appending zeros to c and
columns with arbitrary phases to F [12].

2This is a reformulation of [12, Theorem 1, and Appendix A], where we give
a slightly more general expression for the phase of F in Appendix A.
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TABLE II
SUMMARY OF BEAMFORMER WEIGHT OPTIMIZATION ALGORITHMS PROPOSED IN SECTION V

a Assuming Nx ∝ N ;Mx ∝M ; and V ≥ N .

Lemma 1 implies that the number of front endsM required to
implement any fully digital weight vector w ∈ C

N is indepen-
dent of the number of array elements N , provided continuous
phase shifts are used. The number of front ends may actually
be reduced to just one, if the digital weight vector c ∈ C

M can
be selected as the scaled unit vector c = c1M , where c ∈ C

[13]–[15], as in (14). However, a modification to the canonical
fully-connected architecture is required. Namely, allMN phase
shifters need to be connected to a single front end, as explained
in the following remark.

Remark 1 (Analog beamformer with modified architecture
[13]–[15]): Consider a fully connected hybrid beamformer
with M front ends connected to N phase shifters each. If c =
c1M , c ∈ C, we may form an equivalent analog beamformer
with a single front end connected to all NM phase shifters.

Perfect factorization of w is not generally possible, ifM = 1
and the number of phase shifters equals the number of array
elements N . Nevertheless, (P3) actually admits a closed-form
solution when B →∞, as shown by the following lemma.

Lemma 2 (Solution to (P3) using single front end and continu-
ous phase shifters): LetM=1 andB→∞. Given any w∈CN ,
an optimal solution to (P3) that minimizes ‖w−cf‖22, where
c∈C and f ∈F (∞) following (3), is given by

f = exp(j�w) (15)

c = ‖w‖1/N. (16)

Furthermore, the optimal value of (P3) is ‖w‖22 − ‖w‖21/N .
Proof: See Appendix B.
In general, Lemma 2 only yields an approximate factorization

w ≈ cf . Equality w = cf holds if and only if the entries of w
have equal magnitude, i.e., |w1| = |w2| = . . . = |wN |.

V. ALGORITHMS FOR FINDING BEAMFORMER WEIGHTS

In this section, we develop three algorithms for approximately
solving optimization problems (P2) and (P3). In the fully digital
beamforming case, we address (P2) using alternating minimiza-
tion (Algorithm 1). In the hybrid and analog beamforming cases,
we use a greedy approach to approximately solve both (P3)
(Algorithm 2) and (P2) (Algorithm 3). Table II summarizes the
proposed algorithms.

A. Fully Digital Beamformer

The fully digital beamformer serves as a natural baseline for
the hybrid beamformer. This is because the digital beamformer
imposes the fewest constraints on the solutions to the optimiza-
tion problems in Section III. In the following, we develop an
alternating minimization algorithm for solving (P2) in the fully
digital case. We will also utilize this algorithm in the hybrid case
developed in Section V-B.

1) Alternating Minimization: Digital beamformer design is
substantially simplified by the absence of phase shifters, which

reduces (P2) to the following biconvex problem

minimize
Wx∈CNx×Q

‖ψ −ATvec(WrW
T
t )‖22. (P4)

Here the columns of Wx = [wx,1,wx,2, . . . ,wx,Q] ∈ C
Nx×Q

are the unknown weight vectors, each corresponding to a specific
component image. Problem (P4) is non-convex due to the prod-
uct of the unknown matrices Wr and Wt. However, we may
find a local minimum of (P4) in a straightforward fashion by
alternating minimization. The low rank matrix sensing problem
(P4) was actually studied by Jain et. al [24] in a more general
(albeit real-valued) setting. Next, we describe in detail a slightly
modified version of their “AltMinSense” algorithm, adapted
to the beamforming application considered in this paper. The
alternating minimization algorithm, summarized in Algorithm 1,
starts with an initial guess for Wt and proceeds by computing
the least squares solutions:

Wr = matNr×Q((A
T(Wt ⊗ INr))

†ψ) (17)

Wt = matTQ×Nt
((AT(INt ⊗Wr))

†ψ). (18)

Equations (18) and (17) are iteratively solved until a desired
error εmax or maximum number of iterations kmax is achieved.
Although alternating minimization is guaranteed to converge
to a local minimum, which local minimum is found depends
on the initialization. We choose to use the spectral initializa-
tion W=

∑V
v=1 ψvar,va

T
t,v=

∑V
v=1 ψvmatNr×Nt(A:,v) to con-

fine the initialization to the solution subspace [24]. We then ini-
tialize Wt using the right singular vectors corresponding to the
Q largest singular values of W. Alternatively, multiple different
initializations of Wt could be used to increase the chances of
finding a good local, or even global, minimum. Note that when
Q=min(Nr, Nt), we may simply obtain Wt and Wr from the
SVD of the least squares solution W=matNr×Nt((A

T)†ψ).
2) Worst-Case Complexity: The most expensive opera-

tion in Algorithm 1 is on line 6, where the worst-case
time complexity of computing the pseudo-inverse is pro-
portional to that of the SVD. In general, the SVD of a
full m by n matrix has complexity O(m2n), where m ≥
n [25, p. 493]. The worst-case complexity of Algorithm 1
is therefore O(kmaxm

2n), where m = max(V,QNmax), n =
min(V,QNmax), and Nmax = max(Nr, Nt). Assuming that
Nx ∝ N , the complexity of Algorithm 1 simplifies to

O(kmaxV QN max(V,QN)).

As indicated in Section II-E, typically V ∝ N for a uniform
array, and V ∝ N2 for a sparse array. This simplifies the com-
plexity of Algorithm 1 to O(kmaxQ

2N3), or O(kmaxQN
5),

respectively. In either case, the complexity is at most on the order
ofN5 orN6, sinceQ ≤ N . This may become prohibitively large
for an array with hundreds of elements. Note that the number of
iterations k ≤ kmax required by Algorithm 1 also depends on
the properties of matrix A and the desired error tolerance εmax

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 12,2023 at 09:19:25 UTC from IEEE Xplore.  Restrictions apply. 



6408 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Algorithm 1: Digital Beamformer: Alt. Min. for (P4)
1: procedure ALTMIN (A,ψ , Q, kmax, εmax)
2: W←∑V

v=1 ψvmatNr×Nt(A:,v) �init. [24]
3: {U,Σ,V} ← SVD (W, Q) �Q princ. comp.
4: {Wt, k, ε} ← {V∗, 0,∞}
5: while k < kmax ∧ ε > εmax do
6: Update Wr and Wt using (17) and (18)
7: ε← ‖ψ −ATvec(WrW

T
t )‖22

8: k ← k + 1
9: return Wr,Wt

Algorithm 2: Hybrid Beamformer: Greedy Method for (P3)
1: procedure GREEDYSUB (w,M,B).
2: w′ ← w
3: for m ∈ {1, 2, . . . , �M/2�} do �Lemma 1
4: Φ←�w′1T

2+cos−1(|w′|/‖w′‖∞)(12−2e2)T

5: F:,(2m−1):2m ← exp(jPB(Φ)) �quantization

6: c1:2m ← F†:,1:2mw �LS solution
7: w′ ← w − F:,1:2mc1:2m �update residual
8: if M mod 2 = 1 then �Lemma 2
9: F:,M ← exp(jPB(�w′))

10: c← F†w
11: return F, c

[24]. A more detailed complexity analysis is however out of the
scope of this paper.

B. Hybrid Beamformer

We will show in Section VI that it is possible to construct
a hybrid beamformer that solves (P1) using continuous phase
shifts and exactly two front ends, if a fully digital solution to (P1)
is given. In case of discrete phase shifts, it may be sufficient to
quantize this hybrid solution, provided that the number of phase
shift bits is sufficiently large. However, poor results may follow
if too few bits are used [14]. Furthermore, this approach does
not benefit from increasing Mx > 2.

1) Greedy Subroutine: As a first step towards addressing the
issues outlined above, we consider problem (P3), and adopt
a greedy method in Algorithm 2 to approximately solve it.
Starting with a fully digital solution w, we initialize the residual
as w′=w, and apply Lemma 1 to find F∈F (∞)⊂C

N×2
satisfying w′=F12‖w′‖∞/2. Using (5), we quantize the phase
of F, yielding F=exp(jPB(�F))∈F (B)⊂C

N×2. We then
compute the least squares solution of the digital weights c before
updating the residual on line 7. The process is repeated a total
of �M/2� times. In case M is odd, we quantize the analog
least squares solution given by Lemma 2 in the final iteration.
The solution found by Algorithm 2 becomes exact, i.e., w′→0,
when either (i) B≥1,M→∞, or (ii) B→∞, M≥2. We note
that Algorithm 2 is similar to [20, Algorithm 1], although we
consider a different problem with quantized phase shifts, as
well as utilize Lemma 1. Other algorithms addressing (P3), or
modifications thereof, also exist [17]. However, solving (P3)
alone is insufficient for solving the problem of interest (P2),
as we will show next. A detailed comparison of alternatives to
Algorithm 2 is therefore beyond the scope of this paper and left
for future work.

Algorithm 3: Hybrid Beamformer: Greedy Method for (P2)
1: procedure GREEDY (A,ψ,Mr,Mt, B,Q, kmax, εmax)
2: ψ′ ← ψ
3: for q ∈ {1, 2, . . . , Q} do
4: {wr,wt} ← ALTMIN (A,ψ′, 1, kmax, εmax)
5: for x ∈ {t, r}
6: {Fx,q, cx,q} ← GREEDYSUB (wx,Mx, B)
7: Fx ← [Fx,1, . . . ,Fx,q]
8: {Ct, k, ε} ← {[ct,1, . . . , ct,q], 0,∞}
9: while k < kmax ∧ ε > εmax do �alt. min.

10: Update Cr and Ct using (19) and (20)
11: ψ′←ψ−ATvec(Fr(I�Cr)(I�Ct)

TFT
t )

12: {ε, k} ← {‖ψ′‖22, k + 1}
13: return Fr,Ft,Cr,Ct

2) Greedy Main Routine: If the number of component im-
ages of the hybrid beamformer is Q≤ rank(W), we can di-
rectly apply Algorithm 2 to each fully digital weight vector
{wx,q}rank(W)

q=1 and find an approximate solution to (P2). How-
ever, this solution does not improve if Q is increased beyond
rank(W). Consequently, we propose Algorithm 3, which uses
Algorithm 1 and 2 to iteratively compute and quantize the
rank-1 matrixW that minimizes the �2-norm of the residual PSF
vector ψ′ ∈ C

V . The residual is initialized as the desired PSF
ψ′ = ψ, and updated at the end of each iteration by subtracting
the q-component realized PSF from ψ. The hybrid weights
of the qth iteration Fx,q∈CNx×Mx and cx,q∈CMx are found
by applying Algorithm 2 to the fully digital single component
solution obtained by calling Algorithm 1 with Q = 1. Finally,
the digital weights {cx,l}ql=1 are recomputed by solving (P2)
with Fx fixed, i.e., the following problem:

minimize
Cx∈CMx×q

‖ψ−ATvec(Fr(I�Cr)(I�Ct)
TFT

t )‖22. (P5)

Problem (P5) is biconvex, since vec(W) can be rewritten as

vec(W) = ((Ft(I�Ct)⊗ 1T
Mr

)� Fr)vec(Cr)

= (Ft � (Fr(I�Cr)⊗ 1T
Mt

))vec(Ct).

This follows from (9) and the easily verifiable identities
(i) vec(XxyTYT)=(Yy1T�X)x=(Y�Xx1T)y, and (ii)∑q

l=1 Zlzl=[Z1, . . . ,Zq][z
T
1, . . . , z

T
l ]

T after simplifications. A
local minimum of (P5) is found using alternating minimization,
which iterates between the following least squares solutions:

Cr = matMr×q((A
T((Ft(I�Ct)⊗ 1T

Mr
)� Fr))

†ψ) (19)

Ct = matMt×q((A
T(Ft � (Fr(I�Cr)⊗ 1T

Mt
))†ψ). (20)

Algorithm 3 does not necessarily converge to the fully digital
solution found by Algorithm 1, even asB →∞. This is because
Algorithm 1 is called sequentially using a single component
image (instead of Q) on line 4 of Algorithm 3. Consequently,
when B is large, a better solution may be obtained by applying
Algorithm 2 to the fully digital solution found by Algorithm 1
(providedM ≥ 2). However, we will show in Section VII-B that
Algorithm 3 produces better results in the interesting regime of
small to moderate B (say, B ≤ 6).

3) Worst-Case Complexity: The worst-case complexity of
Algorithm 2 is dominated by the pseudo-inverse on line 6. Since
the dimension of matrix F:,1:2m changes at each iteration, the
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total complexity of Algorithm 2 is proportional to

�M/2�∑
m=1

N2m = O(N2M2).

The most expensive operations in Algorithm 3 are (i) calling
Algorithm 1 on line 4; (ii) calling Algorithm 2 on line 4;
(iii) evaluating the pseudo-inverses on line 10; and (iv) com-
puting the matrix-vector product on line 11. Assuming again
that Nx ∝ N and Mx ∝M , the complexity of (i) reduces
to O(kmaxV NQmax(V,N)), or O(kmaxV

2NQ) if V ≥ N .
Furthermore, (ii) has complexity O(QN2M2). Denoting m =
max(V, qM), n = min(V, qM), and � = min(V/M,Q), the
complexity of (iii) is proportional to

kmax

Q∑
q=1

m2n = kmaxVM

⎛
⎝V ���∑

q=1

q +M

Q∑
q=���+1

q2

⎞
⎠

= O(kmaxVM max(V �2,M(Q3 − �3))).
This is upper bounded byO(kmaxVMQ2 max(V,MQ)), since
�∈ [0, Q]. Finally, the cost of (iv) is O(kmaxV N

2Q). Conse-
quently, the worst-case complexity of Algorithm 3 is

O(kmaxV Qmax(V N, VMQ,M2Q2) +N2M2Q).

As V ∝ N for a uniform array and V ∝ N2 for a sparse array,
the complexity of Algorithm 3 is at most on the order of N3

(uniform array) or N5 (sparse array), and Q3 (both).

C. Fully Analog Beamformer

Algorithms 2 and 3 are directly applicable to fully analog
beamformer design by setting Mx=1. We note that prob-
lems (P1) and (P2) also simplify significantly in the analog
case. This was exploited in the companion paper [22] to develop
a more efficient algorithm when B →∞. Investigations into
improved fully analog beamforming algorithms for finite B are
however beyond the scope of this paper.

D. Remarks on the Computational Complexity

We conclude this section with two remarks regarding the
computational complexity of solving the optimization problems
formulated in Section III.

Firstly, we may have to solve (P1) for several steering di-
rections u in practice. For example, if the number of phase shift
bitsB is small, the number of desired steering directions may be
larger than that accommodated by the 2B quantized phase shifts.
Even if B is large, the PSF may not be translation invariant,
as, for instance, when sensors have directive gain patterns or
scatterers are located in the near field of the array.

Secondly, sparsity can be leveraged to speed up computations.
For example, (17)–(20) contain sparse matrices resulting from
the Kronecker and Khatri-Rao products with the identity matrix.
This can be exploited when computing the pseudo-inverse using,
e.g., power or orthogonal iterations [25, pp. 366-368], especially
if there are only a few dominant singular values. Furthermore,
solving (P1) for a desired co-array weight vector in (12), instead
of the PSF in (6) allows us to replace ψ by wΣ, A by ΥT, and
V by NΣ in Algorithms 1 and 3. The computational advantage
follows from the fact that Υ is sparse with only NtNr non-zero
entries, which is a factor of V less than the V NtNr entries of full

matrix A. The solutions obtained using Υ and A are equivalent
when the sum co-array steering matrix AΣ in (11) is a (scaled)
unitary matrix. This is the case, e.g., when the columns of A are
sampled uniformly in V = NΣ unique directions, and the array
elements are ideal and omnidirectional.

VI. BOUNDS ON THE NUMBER OF COMPONENT IMAGES Q

In this section, we derive closed-form solutions for Fx,q, cx,q
assuming zero approximation error (εmax = 0). These solu-
tions then yield upper bounds on Q in problem (P1) for Mx ∈
{1, 2, Nx} andB ∈ {1,∞}. Each beamformer makes a different
trade-off between the number of front ends Mx, phase shift bits
B, and component images Q, as summarized in Table III. We
find that for any number of phase shift bits B, the number of
component images required by a hybrid beamformer satisfies
rank(W) ≤ Q ≤ NrNt, where rank(W) ≤ min(Nr, Nt) is the
number of component images required by the fully digital
beamformer. Similarly, for the fully analog beamformer we have
rank(W) ≤ Q ≤ 4NrNt.

A. Fully Digital Beamformer

In the case of fully digital beamforming, the SVD guarantees
that any co-array weight matrix W ∈ C

Nr×Nt in (8) can be
factorized using Q component images, where

Q = rank(W) ≤ min(Nt, Nr). (21)

We may also obtain a lower bound on Q by considering the
number of degrees of freedom available for realizing a desired
PSF. Specifically, assuming (11) holds, a simple comparison
of the number of equations and unknowns in (12) yields the
following necessary condition on Q.

Proposition 1 (Lower bound on Q): Let W ∈ C
Nr×Nt be a

rank-Q matrix. Then (12) holds for any wΣ ∈ C
NΣ only if

Q ≥ Nt +Nr −
√

(Nt +Nr)2 − 4NΣ

2
. (22)

Proof: In (12), the number of equations is NΣ≤NtNr, and
the number of free variables is Q(Nt +Nr −Q), since W is
a rank-Q matrix. A necessary condition for (12) to hold for
any wΣ∈CNΣ is therefore that Q(Nt +Nr −Q)≥NΣ. This
quadratic inequality directly yields the bound in (22).

Eq. (22) is a necessary lower bound on Q only when (12) is
required to hold for any co-array beamforming weight vector
wΣ ∈ C

NΣ . For a fixed wΣ, a rank-Q matrix W may exist that
satisfies (12) but not (22).

It is instructive to evaluate (22) for some typical array con-
figurations. Firstly, if the array is non-redundant, every Tx-Rx
pair uniquely maps to one sum co-array element, which implies
thatNΣ = NtNr. Consequently, (22) reducesQ ≥ min(Nt, Nr),
which together with (21) yields

Q = min(Nt, Nr).

Secondly, if the transceivers are co-located, we have Nx = N ,
and (22) simplifies to

Q ≥ N −
√
N2 −NΣ. (23)

For example, the uniform linear array hasNΣ = 2N − 1, which
yields Q ≥ 1. Consequently, a single component image may
suffice to achieve any PSF supported on the sum co-array of
this array. Similar results can be shown to hold for higher
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TABLE III
PROPERTIES OF CLOSED-FORM BEAMFORMERS PROPOSED IN SECTION VI

b Note that rank(W) ≤max(Nr,Nt).
c Requires modification to the architecture in Fig. 1 (see Remark 1 in Section IV).

dimensional uniform arrays, such as the uniform rectangular
array. In contrast, (23) scales linearly with N for sparse arrays,
since NΣ ∝ ζN2, with 0 < ζ < 1. This leads to the inequality
Q � N(1−√1− ζ) that holds approximately for large N . In
practice, the linear dependence between N and Q is weak. For
instance, the square boundary array [2] with ζ = 1/4 yields the
bound Q � N(2−√3)/2 > 0.13N . The greatest lower bound
in (23) is given by the array configuration maximizingNΣ given
N . This is the minimum-redundancy array [26]–[29], if the sum
co-array is required to be uniform.

B. Hybrid Beamformer

It is not evident for which values of Q,M and B factor-
ization (9) is feasible, given a general co-array weight matrix
W ∈ C

Nr×Nt . Next, we show that Mx=2 Tx/Rx front ends
are sufficient for feasibility, irrespective of the number of phase
shifter bits B.

1) Continuous Phase Shifters: Lemma 1 implies that (9)
provides a feasible factorization whenQ = rank(W), provided
Mx = 2 and B →∞. In this case, the hybrid beamforming
weights are given by the following theorem:

Theorem 1 (Hybrid beamformer, continuous phase shifters,
two Tx/Rx front ends): Let Mx=2 and B→∞. Any
W=

∑Q
q=1 wr,qw

T
t,q ∈ C

Nr×Nt may be factorized as W=∑Q
q=1 Fr,qcr,qc

T
t,qF

T
t,q , with cx,q∈C2; and Fx,q∈Fx(∞) fol-

lowing (3). For example, a valid factorization is

Fx,q = exp

(
j

(
�wx,q1

T
2+cos−1

( |wx,q|
‖wx,q‖∞

)
(12−2e2)T

))

(24)

cx,q =
‖wx,q‖∞

2
12. (25)

Here 12 is a vector of ones, e2 is the standard unit vector, and
�, cos−1, and | · | are applied elementwise.

Proof: This follows directly from Lemma 1, since each wx,q
can be factorized as wx,q = Fx,qcx,q . �

Note that the factorization in Theorem 1 is not unique, and
more general expressions for Fx,q and cx,q are easily obtained
(see Lemma 1 in Section IV and the proof in Appendix A).

2) One-Bit Phase Shifters: The phases of the phase shifters
may be coarsely quantized in practice [11]. In this case, The-
orem 1 no longer holds even approximately. However, any
co-array weight matrix W ∈ C

Nr×Nt can still be achieved using
only two Tx/Rx front ends and one-bit phase quantization. This
is accomplished at the expense of increasing the number of
component images to Q = NrNt � min(Nr, Nt) ≥ rank(W).

The hybrid weight matrices in (9) are again obtained in closed
form, as shown by the following theorem.

Theorem 2 (Hybrid beamformer, 1-bit phase shifters, two
Tx/Rx front ends): LetMx=2 andB=1. AnyW∈CNr×Nt may
be factorized as W=

∑NrNt
q=1 Fr,qcr,qc

T
t,qF

T
t,q , with cr,q, ct,q∈

C
2, and Fx,q∈Fx(1) following (3). For example, a valid fac-

torization is

Fx,q = [1Nx , 2enx − 1Nx ] (26)

cx,q =

√
Wnrnt

2
12, (27)

where nr=1+(q−1) mod Nr and nt=�q/Nr�.
Proof: Eq. (26) ensures that each of the Q=NrNt terms in

(9) contribute to exactly one entry of matrix W∈CNr×Nt . In
particular, substituting (26) and cx,q12 into (9) yields Fx,qcx,q=
2cx,qenx , where enx ∈{0, 1}Nx is the standard unit vector of
length Nx with a unit entry at index nx ∈ {1, 2, . . . , Nx}. Con-
sequently, the qth term in (9) becomes

Fr,qcr,qc
T
t,qF

T
t,q=4cr,qct,qenre

T
nt
,

where q=nr + (nt − 1)Nr. If 4cr,qct,q=Wnrnt then, as desired,

NrNt∑
q=1

Fr,qcr,qc
T
t,qF

T
t,q=

Nr∑
nr=1

Nt∑
nt=1

enre
T
nt
Wnrnt =W.

Choosing cr,q=ct,q=
√
Wnr,nt/2 then yields (27).

Theorem 2 implies that the hybrid beamformer with at least
two Tx/Rx front ends can achieve the PSF of the fully digital
beamformer, regardless of the number of bits used to quantize the
phase shifters. This is facilitated by image addition, which trades
off an increase in the number of component imagesQ for lower
quantization precision B, and fewer Tx/Rx front ends Mx. As a
corollary of Theorem 2, we see that the number of component
images of the hybrid beamformer is always upper bounded by
Q ≤ NrNt, since a trivial solution with Mx ≥ 2; Q = NrNt;
B ≥ 1 is achieved by appending columns with arbitrary phases
to (26), and zeros to (27).

C. Fully Analog Beamformer

A fully analog beamformer may be constructed directly from
a hybrid architecture by either increasing the number of compo-
nent imagesQ, or by modifying the beamforming architecture as
in Remark 1 of Section IV. In the latter case, the number of phase
shifters is still MxNx, although only a single Tx/Rx front end
is used. Actually, the number of phase shifters can be reduced
to half by doubling Q. More generally, the following lemma
shows that the total number of phase shifters can be reduced

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 12,2023 at 09:19:25 UTC from IEEE Xplore.  Restrictions apply. 



RAJAMÄKI et al.: HYBRID BEAMFORMING FOR ACTIVE SENSING USING SPARSE ARRAYS 6411

from MtNt +MrNr to Nt +Nr by increasing the number of
component images from Q to MtMrQ.

Lemma 3 (Analog beamforming weights from hybrid beam-
forming weights): Any W =

∑Q
q̃=1 Fr,q̃cr,q̃c

T
t,q̃F

T
t,q̃ ∈ C

Nr×Nt ,
where Fx,q̃ ∈ C

Nx×Mx and cx,q̃ ∈ C
Mx , can be factorized as

W =
∑MrMtQ

q=1 cr,qct,qfr,qf
T
t,q . For example, a valid choice is

fx,q = [Fx,�q/(MrMt)�]:,mx (28)

cx,q = [cx,�q/(MrMt)�]mx , (29)

where mr = �(1 + (q − 1) modMrMt)/Mt� and mt = 1 +
(q − 1) modMt.

Proof: See Appendix C.
1) Continuous Phase Shifters: Recall from Theorem 1 that a

hybrid beamformer with continuous phase shifters can achieve
any fully digital beamforming vectors using only two Tx/Rx
front ends. By Lemma 3, the number of front ends may further
be halved by quadrupling the number of component images Q,
as shown by the following theorem (cf. [22, Theorem 1]).

Theorem 3 (Analog beamformer, continuous phase shifters):
LetMx = 1 andB →∞. Any W =

∑Q
q̃=1 wr,q̃w

T
t,q̃ ∈ C

Nr×Nt

may be factorized as W =
∑4Q

q=1 cr,qct,qfr,qf
T
t,q , with cx,q ∈ C;

and fx,q ∈ Fx(∞) following (3). For example, a valid factoriza-
tion is

fx,q=exp

(
j

(
�wx,q̃+(−1)ix+1 cos−1

( |wx,q̃|
‖wx,q̃‖∞

)))

(30)

cx,q = ‖wx,q̃‖∞/2, (31)

where q̃ = �q/4�; ir=�(1 + (q − 1) mod 4)/2�; and it=1 +
(q − 1) mod 2.

Proof: By Theorem 1, we have

W =

Q∑
q̃=1

wr,q̃w
T
t,q̃ =

Q∑
q̃=1

Fr,q̃cr,q̃c
T
t,q̃F

T
t,q̃,

where Fx,q̃∈Fx(∞)⊂C
Nx×2 and cx,q̃∈C2. Factorization into

analog beamforming weights using Lemma 3 then yields

W =

Q∑
q̃=1

2∑
i=1

2∑
l=1

[cr,q̃]i[ct,q̃]l[Fr,q̃]:,i[Ft,q̃]
T
:,l=

4Q∑
q=1

cr,qct,qfr,qf
T
t,q.

Substituting (24) and (25) into this expression, and properly
accounting for the summation indices yields (30) and (31).

2) One-Bit Phase Shifters: According to Remark 1 in Sec-
tion IV, we may reduce the number of Tx/Rx front ends in
Theorem 2 to one, since the digital weight vector in (27) is a
scaled unit vector. Similarly to Theorem 3, the number of phase
shifters may further be reduced to half.

Theorem 4 (Analog beamformer, 1-bit phase shifters): Let
Mx = 1 and B = 1. Any W ∈ C

Nr×Nt may be factorized as
W=

∑4NrNt
q=1 cr,qct,qfr,qf

T
t,q, with cx,q∈C, and fx,q∈Fx(1) fol-

lowing (3). For example, a valid factorization is

fx,q= (enx − 1Nx)(−1)ix + enx (32)

cx,q=
√
Wnrnt/2, (33)

where ir = �(1 + (q − 1) mod 4)/2�; it = 1 + (q − 1) mod 2;
nr = 1 + (�q/4� − 1) mod Nr; and nt = �q/(4Nr)�.

Fig. 4. Linear array configurations (co-located transceivers). The MRA with
N=7 elements is (sum) co-array equivalent to the ULA with N=11 elements.

Proof: By Theorem 2 and Lemma 3, we have

W =

NrNt∑
q̃=1

Fr,q̃cr,q̃c
T
t,q̃F

T
t,q̃ =

4NrNt∑
q=1

cr,qct,qfr,qf
T
t,q,

where Fx,q̃ ∈ Fx(1)⊂C
Nx×2; cx,q̃∈C2; fx,q∈Fx(1)⊂C

Nx ;
and cx,q ∈ C (cf. Theorem 2). Equations (32) and (33) then
follow from (26), (27), and the indexing in Lemma 3.

A direct corollary of Theorem 4 is that the number of com-
ponent images of the analog beamformer is upper bounded
by Q ≤ 4NrNt, since Fx(1) ⊆ Fx(B ≥ 1). The bound is not
necessarily tight, as the gap between the bounds presented in
this section and the solutions found by Algorithm 3 can be
significant, as we will show in the next section. Establishing
tighter bounds is therefore an important topic for future work.

VII. NUMERICAL EXPERIMENTS

This section presents numerical results using the beamform-
ing weight optimization algorithms developed in Section V and
the closed-form beamformer designs derived in Section VI. We
first introduce the necessary preliminaries and describe the sim-
ulation setup. We then evaluate the performance of Algorithm 1
and 3 for randomly drawn target PSFs, and study how trade-offs
among the main parametersM,B, andQ affect the realized PSF.
Lastly, we simulate a planar array imaging far-field scatterers.
We show that a sparse hybrid array with coarsely quantized phase
shifters can achieve comparable image quality to a fully digital
uniform array.

A. Preliminaries and Simulation Setup

1) Linear Array Model: The linear array is a useful model
for illustrating the impact of different design parameters in a
simple and intuitive manner. Consequently, in Sections VII-B
to VII-D, we consider two linear array configurations with co-
located transceivers: the uniform linear array (ULA), and the
minimum-redundancy array (MRA) [26], [27]. The MRA has
the largest uniform sum co-array for a given number of elements.
Since each sensor is used for both transmission and reception, we
denote N=Nx and M=Mx. We assume that the elements are
identical and omnidirectional with a unit inter-element spacing
of half a wavelength (d =λ/2). No mutual coupling between
the elements is considered. We particularly study the N=11
element ULA, and N=7 element MRA in more detail (Fig. 4).
The two arrays span the same aperture 5λ and are sum co-array
equivalent. The Tx and Rx steering vectors of the arrays are
given by a=at=ar, where

a(ϕ) = exp(jπd sinϕ).

Here, d ∈ Z
N denotes the element positions on the x-axis

normalized by λ/2. For the ULA d=[−5,−4, . . . , 5]T, and for
the MRAd=[−5,−4,−2, 0, 2, 4, 5]T. A complete list of MRAs
with N≤42 elements can be found in [28].

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 12,2023 at 09:19:25 UTC from IEEE Xplore.  Restrictions apply. 



6412 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 5. Planar square arrays (co-located transceivers). The two arrays are
co-array equivalent, although the BA in (b) uses almost 78% fewer physical
elements than the URA in (a).

2) Planar Array Model: Planar arrays are often used in active
sensing and imaging applications. Consequently, in Section VII-
E, we consider the square uniform rectangular array (URA) and
boundary array (BA) [2] shown in Fig. 5. Both arrays have a
side length of 16 unit inter-element spacings and an equivalent
uniform sum co-array. The unit distance between elements is set
to d = λ/2, and the number of elements is N = 289 in the case
of the URA, andN = 64 in case of the BA. All elements are used
for both transmission and reception, which means that the fully
digital beamforming architecture requires N ADCs/DACs. The
BA in Fig. 5 (b) also satisfies the minimum-redundancy property,
which implies that it has the fewest elements of all arrays that
are sum co-array equivalent with the URA in Fig. 5 (a) [29].
Note that other sparse array configurations with this property
also exist [30].

We ignore mutual coupling and assume that the array elements
have identical sinusoidal gain patterns g(ϕ, θ) = cosϕ sin θ.
Consequently, the (transmit and receive) steering vectors assume
the form

a(ϕ, θ) = cosϕ sin θ exp(jπ(dx sinϕ sin θ + dz cos θ)),

where dx∈ Z
N and dz∈ Z

N are the x and z coordinates of the
elements normalized by λ/2, as illustrated in Fig. 5.

3) Stochastic PSF Model: For performance evaluation pur-
poses, we generate the desired co-array weight vector wΣ ran-
domly from a uniform distribution (within the complex unit
sphere). Specifically, the ith entry of the vector wΣ becomes

[wΣ]i=
√
rie

jφi ,where ri∼U(0, 1)and φi∼U(0, 2π).
Using this model, we may conveniently sample the parameter
space of feasible PSFs uniformly at random in Section VII-B.

4) Deterministic PSF Model: From the application point of
view, the stochastic model in Section VII-A3 may not generate
interesting PSFs that have a narrow main lobe and low side lobe
levels. We therefore also consider four deterministic PSFs that
are commonly used in beamforming [1] and power spectrum
estimation [31]. Fig. 6 shows the magnitudes of the rectangu-
lar, triangular, Hann, and Dolph-Chebyshev [32] beamforming
weights wΣ and the corresponding PSFs ψ.

5) Algorithm Parameters and Performance Criterion: In or-
der to speed up computations, we solve (P2) for a desired
co-array beamforming weight vector wΣ∈CNΣ instead of the
sampled PSF ψ∈CV (see Section V-D). We set the maximum

Fig. 6. Typical sum co-array beamforming weights (left) and corresponding
PSFs (right) of the arrays in Fig. 4 (steering direction ϕ = −45◦). Each PSF
makes a different trade-off among the main lobe width, array gain, and side-lobe
levels.

Fig. 7. Mean error of fully digital ULA (left) and MRA (right) beamformers
(Algorithm 1). The error shows a phase transition approximately following
the lower bound on Q in (22). This empirically validates the efficiency of
Algorithm 1.

number of iterations in Algorithm 1 tokmax=100, and tokmax=
10 in Algorithm 3. We use an approximation error tolerance of
εmax=10−16‖wΣ‖22, except for Section VII-E, where we use
εmax=10−6‖wΣ‖22. Our performance criterion of choice is the
relative approximation error

ε = ‖wΣ −Υ vec(W)‖2/‖wΣ‖2.
For an ensemble of realizations of ε, we evaluate the sample
mean, or alternatively the median and 90% confidence interval
(5% and 95% percentiles) of the sample.

6) Computation of Pseudo-Inverse: For numerical stability,
we compute the (approximate) pseudo-inverse of a matrix X
using diagonal loading (ridge regression) as

(X)†α = (XHX+ αI)−1XH, (34)

where (X)†α ≈ X† holds for small values of the diagonal loading
parameter α>0. Heuristics, such as regularization or truncated
SVD, are often employed when XHX is ill-conditioned. We
choose the value of α by trial-and-error, since determining a
rigorous selection rule is out of scope of this paper. We generally
set α = 10−9, with the exception of Section VII-E, where we
use α = 10−4.

B. Validation of Beamforming Algorithms

In the following, we evaluate the two main algorithms, Algo-
rithm 1 and 3, for 100 random i.i.d. realizations of the desired
co-array weight vector wΣ following the stochastic model in
Section VII-A3.

1) Algorithm 1 (alternating minimization): Fig. 7 shows the
mean relative approximation error of the fully digital beamform-
ing weights found by Algorithm 1 as a function of the number of
array elements N and component images Q. The lower bound
on Q in (22) is also shown in red (dashed line). For the ULA,
this bound is constant (equal to one), and for the MRA it has
a weak linear dependence on N , since the MRA has larger
sum co-array than the ULA for given N (see Section VI-A).
We observe in both cases that a phase transition, where the
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Fig. 8. Mean error of hybrid ULA (left) and MRA (right) beamformers with
M=2 Tx/Rx front-ends, and B=5 (top) and B=1 (bottom) phase shift bits
(Algorithm 3). The phase transition occurs for Q<NΣ even in the one bit case.

Fig. 9. Median error and 90% confidence intervals of hybrid ULA (left) and
MRA (right) beamformers (two Tx/Rx front-ends). Algorithm 3 experiences
diminishing returns in B, but achieves a lower median error than directly
quantizing Theorem 1, when B ≤ 11 (ULA) or B ≤ 6 (MRA).

error drops rapidly, coincides with the lower bound in (22). This
empirically validates Algorithm 1.

Note that by Theorem 1, Fig. 7 also applies to the hybrid
beamformer with continuous phase shifters (B →∞) and at
least two Tx-Rx front-ends (M = 2). By Theorem 3, a fully
analog beamformer with continous phase shifters (M = 1 and
B →∞) would achieve the same error level as the fully dig-
ital beamformers in Fig. 7 using at most four times as many
component images.

2) Algorithm 3 (greedy method): Fig. 8 shows the mean error
of the hybrid beamforming weights found by Algorithm 3. The
number of Tx/Rx front-ends isM = 2, and the number of phase
shift bits is B = 5 (top row) and B = 1 (bottom row). The
quantization of the phase shifts degrades the quality of the solu-
tion compared to the fully digital beamformer shown in Fig. 7.
However, even in the one bit case, the phase transition boundary
of the error is far below the upper bound Q ≤ N2 suggested
by Theorem 2. In fact, the phase transition obeys a tighter
boundQ < NΣ (dotted line), whereNΣ ≤ N2 is the number of
co-array elements. These findings suggest the possibility of both
algorithmic improvements and tighter bounds in future work.

Fig. 9 shows the median error and 90% confidence intervals
as a function of B and Q for the N = 11 element ULA and
N = 7 element MRA. For the ULA (left), the error decreases
rapidly asB increases up to approximatelyB = 8. After this, we
see diminishing returns in increasing B. For the MRA (right),
increasingB beyondB = 6 leads to little or no improvement in
the error. This point of diminishing returns is lower than for the
ULA, since the MRA has fewer elements.

A better solution may sometimes be obtained by quantizing
the phase shifts of the beamformer provided by Theorem 1.

Fig. 10. PSF of hybrid ULA (left) and MRA (right) beamformers (two Tx/Rx
front ends). The PSF improves when increasing the number of component images
Q, or phase shift bits B.

Unlike Algorithm 3, this solution converges to that of Algo-
rithm 1 (the fully digital beamformer) when B →∞, provided
M ≥ 2. However, the solution does not improve by increasing
Q or M . As shown in Fig. 9, Algorithm 3 (colorful non-solid
lines) achieves a lower median error than directly quantizing
Theorem 1 (black solid line3), for example, when B ≤ 11 and
Q = 2 in case of the ULA (left), or B ≤ 6 and Q = 3 in case
of the MRA (right). Even in the worst case, based on the 90%
confidence intervals (shaded area), Algorithm 3 mostly yields
a better solution when B ≤ 8 (ULA) or B ≤ 4 (MRA). This
cross-over point shifts to higher values of B as the number of
component images Q increases.

C. Point Spread Function of Linear Arrays

We now qualitatively study the point spread function of the
arrays in Fig. 4 as a function of B and Q. For simplicity, we
limit ourselves to the Dolph-Chebyshev beampattern in Fig. 6.

Fig. 10 shows the realized PSF of the hybrid ULA (left
column) and MRA (right column) withM = 2Tx/Rx front ends
for Q = 1 (top row), Q = 2 (bottom row), and B ∈ {1, 5,∞}.
WhenB →∞, the ULA achieves the desired PSF usingQ = 1
component image by application of Theorem 1 to the fully
digital solution found by Algorithm 1. The sparser MRA requires
Q = 2 for the same result. When B is finite, Algorithm 3 needs
to be employed. The elevated sidelobes of the PSFs are reduced
by increasing either B or Q.

Fig. 11 shows the realized PSF of the fully analog (M = 1)
ULA (left column) and MRA (right column) for Q = 4 (top
row), Q = 8 (bottom row), and B ∈ {1, 5,∞}. Increasing Q
decreases the mismatch between the desired and realized PSFs
also in the analog case, although the rate of improvement is
slower, and more component image are required compared to
the hybrid case (cf. Fig. 10). When B →∞, the ULA and
MRA achieve the desired PSF usingQ = 4, respectively,Q = 8
component images by application of Theorem 3.

D. Trade-Offs Among Main Parameters M , Q and B

Next, we study the trade-offs among the three main design
parameters M , Q, and B. We fix the number of quantization
bits B and evaluate the relative approximation error against the

3We use the fully digital solution found by Algorithm 1 (Q = 2) and recom-
pute the digital weight matrices Cx using alternating minimization as on line 10
of Algorithm 3 with kmax = 100 iterations.
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Fig. 11. PSF of fully analog ULA (left) and MRA (right) beamformers (one
Tx/Rx front end). A high-fidelity PSF requires more component images than in
the hybrid case.

Fig. 12. Median error and 90% confidence intervals of hybrid ULA (left) and
MRA (right) beamformers. Generally, the solution improves more by increasing
M or Q, rather than B.

number of component imagesQ for different numbers of Tx/Rx
front ends M . We consider the linear arrays in Fig. 4 and the
deterministic PSFs in Section VII-A4. Each PSF is steered in
100 different scan directions uniformly sampling the interval
[−π/2, π/2].

Fig. 12 shows the median error and 90% confidence intervals
of the ULA (left column) and MRA (right column) as function of
Q forB=1 (top row),B=5 (middle row), andB→∞ (bottom
row). The number of Tx/Rx front endsM has a significant impact
on the approximation error of the solution found by Algorithm 3.
WhenM = 1 (fully analog case), the error decreases at a slower
rate as a function of B and Q. When M ≥ 2 and B →∞,
the error drops abruptly, since Theorem 1 can be applied to
achieve the PSF of the fully digital beamformer using the same
number of component images. By Theorem 3, the fully analog
beamformer requires four times as many component images as
the fully digital beamformer. Consequently, the discontinuities
for M=1, B→∞ occur when Q=4, 8, 12, 16, etc.

Fig. 12 suggests that M and Q have a larger impact on the
realized PSF than B. This is not surprising, since M and Q
control the dimensions of Fx and Cx in (9), whereas B only
adjusts the quantization of Fx. In other words,B does not affect
the number of phase shifters and digital weights, unlike M and

Fig. 13. Point scatterer distribution and normalized reflectivity.

Q. WhenB is finite, it is difficult to establish whether increasing
M or Q will generally have a larger impact on the error of the
realized PSF. However, when B is infinite, Q is practically the
only free parameter, becauseM=2 suffices to achieve any fully
digital factorization of W by Theorem 1.

E. Coherent Imaging With Planar Arrays

Fig. 13 shows the scattering scene imaged by the two sum
co-array equivalent planar array configurations in Section VII-
A2. The continuous rough surfaces of the reflecting objects are
modeled by K = 6424 i.i.d. points scatterers following a com-
plex normal distribution: γk ∼ CN ( 1√

2K
, 1
2K ). The variance

of the measurement noise in (1) is σ2 = 1. The desired (vec-
torized) two-dimensional co-array weighting is wΣ = wDC ⊗
wDC, wherewDC ∈ R

17 is a one-dimensional Dolph-Chebyshev
window with−40 dB sidelobes. We evaluate the PSF and image
at 256× 256 = 65536 pixels where the reduced azimuth and
elevation angles sin(ϕ) and cos(θ) are sampled uniformly at
256 points each in the interval [−1, 1].

Fig. 14 (a) shows the noiseless PSF and the noisy image of the
scattering scene produced by the fully digital URA. Algorithm 1
achieves the desired PSF using a single component image. In
comparison, the fully digital BA in Fig. 14 (b) requires Q = 6
component images to attain the same PSF. By Theorem 1, the
hybrid BA achieves exactly the same PSF as the fully digital BA,
whenM = 2,B →∞, andQ = 6. Remark 1 of Section IV also
allows us to reduce the number of Tx/Rx front ends of the hybrid
BA to M = 1, and still achieve the PSF of the fully digital BA
usingQ = 6 component images. Alternatively, we could reduce
the number of phase shifters from 128 to 64 at the expense of
increasing the number of component images to Q = 4 · 6 = 24
(cf. Theorem 3).

Fig. 14 (c) shows the PSF and image produced by the hybrid
BA using Algorithm 3 withB = 5 bit phase quantization,M =
2 Tx/Rx front ends, and Q = 8 component images. The phase
quantization slightly degrades the PSF compared to Fig. 14 (b).
However, the effect on the final image is not drastic. The main
difference between the images produced by the BA (both fully
digital and hybrid) and the URA is the lower noise level in the
latter. Since the URA has more elements than the BA, it has at
most 20 log(289/64)

3
2 ≈20 dB [33, Eq. (20)] higher array gain.

However, the difference in the final SNR may be smaller than
the difference in array gain, depending on the transmit power
used in each component image.
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Fig. 14. PSF (left) and image of scatterer distribution (right). The hybrid BA
attains a comparable image to the digital URA at the expense of more component
images and lower SNR.

Lastly, we note that the main computational effort in forming
the discussed images stems from the number of times the beam-
forming weights need to be computed (see Section V-D). In the
case of continuous phase shifters, solving (P1) once suffices,
since the array may be steered in an arbitrary direction by ap-
plying appropriate phase shifts to its elements. This was the case
in Fig. 14 (a) and (b), where a MATLAB [34] implementation
of Algorithm 1 yielded a solution in a matter of seconds on a
2.3 GHz Intel Core i5 processor. In the case of Fig. 14 (c), the
beamforming weights were recomputed for each pixel due to
the quantized phase shifters. While a single call of Algorithm 3
was on the order of a second, the complete image took 32 hours
of processor time to compute (elapsed time was 20 hours). It is
important to point out that, although it may be computationally
intense, the beamforming weights can be computed offline and
in parallel.

VIII. CONCLUSION

This paper considered active sensing using phased arrays with
a hybrid beamforming architecture. The hybrid beamformers
consist of a few Tx/Rx front ends, each connected to a network

of inexpensive analog phase shifters with digitally controlled
phase. Such hybrid beamformers have low cost and power
consumption, which may be attractive in applications, such as,
medical radar/ultrasound or automotive radar.

We formulated an optimization problem, where the transmit
and receive hybrid beamforming weights are jointly found, such
that a desired PSF is achieved using as few component images as
possible. We proposed numerical methods for finding solutions
in both the fully digital, as well as the hybrid and fully analog
cases. Furthermore, we derived bounds on the maximum number
of component images required by some of these hybrid and
analog architectures for attaining the same PSF as their fully
digital counterparts. Simulations demonstrated that combining
sparse arrays with hybrid beamforming allows for significant
reductions in the number of elements and front ends. In par-
ticular, we showed a design example, where a hybrid sparse
planar array attained the PSF of a 17× 17 element fully digital
uniform square array using 78% fewer elements and 99% fewer
Tx/Rx front ends. These hardware savings come at the price
of an increase in the number of component images to 8 and a
20 dB reduction in array gain. However, multiple transmissions
may simultaneously increase SNR. We observe that increasing
the number of front ends or component images generally leads
to higher fidelity PSFs than increasing the number of phase shift
bits. Generally, only a few front ends are necessary for achieving
the beamforming capabilities of a fully digital array. Indeed, two
front ends are sufficient in the case of continuous phase shifters.

In future work, the proposed hybrid beamforming framework
could be extended to the more general MIMO case, with several
(possibly correlated) waveforms. It would also be of practical
interest to explore constraints such as quantized ADCs/DACs or
unit-modulus transmit beamforming weights.

APPENDIX A
PROOF OF LEMMA 1

Let wn ∈ C be decomposed as

wn = |c1|ej(�c1+φn) + |c2|ej(�c2+ϑn), (35)

where the phases φn, ϑn∈ [0, 2π) are functions of index n=
1, 2, . . . , N , but the complex amplitudes c1, c2∈C are not. By
the law of cosines, angles φn and ϑn can be written as

φn = �wn − �c1 + cos−1
( |wn|2 + |c1|2 − |c2|2

2|wn||c1|
)

ϑn = �wn − �c2 − cos−1
( |wn|2 + |c2|2 − |c1|2

2|wn||c2|
)
.

Assume without loss of generality that |c1| ≥ |c2|. It then fol-
lows from elementary trigonometry that (35) holds for all n
only if c1, c2 satisfy conditions |c1|+ |c2| ≥ maxn(|wn|), and
|c1| − |c2| ≤ minn(|wn|). For example, a particularly conve-
nient choice is c1 = c2 = maxn |wn|/2, which leads to

φn = �wn + cos−1
( |wn|
maxm |wm|

)

ϑn = �wn − cos−1
( |wn|
maxm |wm|

)
.

Using matrix notation then yields (13) and (14). �
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APPENDIX B
PROOF OF LEMMA 2

We seek arg minc∈C,f∈F(∞)‖w − cf‖22, or equivalently
arg minc∈C,φ∈RNJ(c,φ), where fn=ejφn and

J(c,φ) =

N∑
n=1

∣∣|wn|ej�wn−|c|ej(φn+�c)
∣∣2

=
N∑

n=1

|wn|2+|c|2−2|wn||c| cos(φn+�c−�wn).

The minimizer is φn=�wn − �c, which yields fn=
ej(�wn−�c). The least squares solution of c is then given by

c = (fHf)−1fHw,

where fHf = N and fHw = ‖w‖1ej�c. Consequently, |c|=
‖w‖1/N , and

J

(‖w‖1
N

ej�c,�w−�c
)

=

N∑
n=1

|wn|2+ ‖w‖
2
1

N2
−2 |wn|‖w‖1

N

= ‖w‖22−‖w‖21/N.
Since�c is a free parameter, we may select�c=0 for simplicity,
which yields (15) and (16). �

APPENDIX C
PROOF OF LEMMA 3

Note that any w=Fc can be written as w=
∑M

m=1 cmF:,m,
whereF:,m is themth column of matrixF∈CN×M , and cm∈C
is the mth element of vector c∈CM . It follows that

W=

Q∑
q̃=1

wr,q̃w
T
t,q̃

=

Q∑
q̃=1

(
Mr∑

mr=1

[cr,q̃]mr [Fr,q̃]:,mr

)(
Mt∑

mt=1

[ct,q̃]mt [Ft,q̃]
T
:,mt

)

=

QMrMt∑
q=1

cr,qct,qfr,qf
T
t,q.

A feasible choice relating indices q̃,mr and mt to index q is q̃=
�q/(MrMt)�;mr = �(1 + (q − 1) modMrMt)/Mt�; andmt =
1 + (q − 1) modMt. This then yields (28) and (29). �
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