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Abstract

The aim of this paper is to investigate superresolution in deconvolution driven by sparsity priors. The

observed signal is a convolution of an original signal with a continuous kernel. With the prior knowledge that

the original signal can be considered as a sparse combination of Dirac delta peaks, we seek to estimate the

positions and amplitudes of these peaks by solving a finite dimensional convex problem on a computational

grid. Because, the support of the original signal may or may not be on this grid, by studying the discrete de-

convolution of sparse peaks using ℓ1-norm sparsity prior, we confirm recent observations that canonically

the discrete reconstructions will result in multiple peaks at grid points adjacent to the location of the

true peak. Owning to the complexity of this problem, we analyse carefully the de-convolution of single

peaks on a grid and gain a strong insight about the dependence of the reconstructed magnitudes on the

exact peak location. This in turn allows us to infer further information on recovering the location of the

exact peaks i.e. to perform super-resolution. We analyze in detail the possible cases that can appear and

based on our theoretical findings, we propose an self-driven adaptive grid approach that allows to perform

superresolution in one-dimensional and multi-dimensional spaces. With the view that the current study can

provide a further step in the development of more robust algorithms for the detection of single molecules in

fluorescence microscopy or identification of characteristic frequencies in spectral analysis, we demonstrate

how the proposed approach can recover sparse signals using simulated clusters of point sources (peaks) of

low-resolution in one and two dimensional spaces.
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I. INTRODUCTION

A. Deconvolution of sparse peaks on discrete grids

In a wide range of imaging applications, the signal of interest comprises a sequence of sparse

peaks (or point sources) for instance in fluoresce microscopy [45], [55], [72], astronomy [52],

ultrasound or Doppler technology [78], [79], [4], [6], medical imaging [76], [14] and computational

neuroscience [33]. In these applications, one has frequently to solve the problem that the signal of

interest cannot be observed directly, but has to be inferred from other quantities, often low spatial

resolution observations which mathematically can be described as the convolution of the original

signal with a smooth kernel.

In this article, we study the superresolution problem, known as sparse peak deconvolution [29],

where one seeks to estimate the positions and amplitudes of the underlying sparse peaks from a set

of blurred observations. As idealized data we consider the convolution of a measure µ on Ω ⊆ R
d

with a known symmetric and smooth (with infinite support) kernel G which attains its maximum

at 0, i.e.

f(x) = (G ∗ µ)(x) :=
∫

Ω

G(x− y) dµ(y) . (I.1)

Here we consider the convolution operator from M(Ω) to L2(Ω), which is well-defined by the

Fourier convolution theorem (cf. [19]) and we are interested in the reconstruction of sparse peaks

when the corresponding original signal is of the form

µ(x) =

L
∑

l=1

γlδξl , (I.2)

where L is the total number of peaks and δξl = δ(x−ξl) denotes a concentrated measure (expressed

through the Dirac-delta function δ) at location ξl : Ω → R
d with amplitude γl.

In order to obtain a sparse reconstruction it is nowadays standard to employ the well-established

ℓ1-norm minimization approaches (also known as Basic Pursuit or LASSO) [24], [67], [20] which,

in addition to sparse promoting solutions, allow the linearization of the original problem, the direct

application of fast convex optimization solvers (e.g. [38]) and do not require application of Fourier

transform[16]. So, instead of solving a continuous deconvolution problem [21], [15], [13], [16],

the aim is to reconstruct µ via a discrete set of concentrated measures, i.e to look for a discrete
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solution of the form

µN(x) =

N
∑

k=1

ckδxk
, (I.3)

where c = {ck}k=1,...,N ∈ R
N is a vector that contains the numerically estimated amplitudes

(weights) at a set of grid points {xk}k=1,...,N . With the discretization of the computational domain,

the convolution can be written as an operator acting on the coefficients c = {ck}k=1,...,N , i.e.

G ∗ µN = Ac =
N
∑

k=1

ckG(x− xk) , (I.4)

where A : RN → L2(Ω). The ℓ1-norm minimization problem is

min
c∈RN

J(c) :=
1

2
‖Ac− f‖2 + λ‖c‖1 . (I.5)

Since the support of signal µ (I.2) may or may not be on the computational grid {xk}k=1,...,N , three

chief questions for the ℓ1-norm estimates arise:

• How the error between the original signal µ and discrete signal µN is quantified based on the

discretization?

• What are the expected patterns of the discrete estimation µN on an arbitrary grid?

• Can the locations and amplitudes of the original signal µ be approximated with the help of

the solution µN?

In this article, we investigate and answer these questions with the help of convex optimization theory

and standard numerical analysis. We anticipate that the understanding of the effects of sparsity

promoting solvers when the computational grid and the support of the original sparse signal do

not coincide will allow the development of more robust algorithms required in applications such

as fluorescence microscopy [34], [70], [69], [40], [37], [72], [43], [61].

B. Related works

Sparsity prior driven deconvolution approaches in continuous domains have been studied in

several works including [21], [15], [13], [27], [36]. The signal (sum of Dirac functions) to be

recovered is not a finite-dimensional vector (as in (I.3)) but a Radon measure and the minimization

problem is formulated with the help of the total variation (TV) term and this problem is referred

to as Beurling-Lasso (BLASSO) [21], [27], [65]. An extensive theoretical analysis of BLASSO in

the case of one dimensional Fourier measurements was provided in [16]. Particularly, it was shown
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that if the spikes are separated enough, then the exact recovery is possible (when the fraction

of the measurement noise and regularization parameter tends to zero). Robustness to noise under

this separation condition was studied by [3], [27], while the effect of the positivity constraint was

analyzed in [8], [56], [22], [31], [30]. The observation sampling and the exact support recovery

was theoretically studied in [25]. In [65], the BLASSO problem was analyzed for measures in

higher dimensional spaces revealing that the kernel and arrangement of the original peaks affect

the stability in the estimates.

BLASSO is a convex but infinite dimensional optimization problem. As shown in [16], [9],

[75], [7], [36], solvers exist for ideal lowpass filters (i.e. Dirichlet type of kernels) when the

observations are transformed into the Fourier domain and consider a finite number of frequencies

in one dimensional signal spaces. Particularly, in theses cases, the primal (BLASSO) problem is

expressed via its (Fenchel-Rockafellar) associated finite dimensional dual problem, which for the

numerical computations is encoded as a finite semi-definite program (SDP) [16], [18]. The core of

these approaches rely on the duality between peak locations and the existence of an interpolating

trigonometric polynomial (often referred to as dual certificate) in the measurement (dual) space

(which is bounded by 1 in magnitude at locations indicating the underlying peaks [17]). However,

apart from the one dimensional spaces (line and torus), there is not a canonical extension or exact

SPD formulation in higher dimensional spaces. We refer for instance to [18] (and the references

therein) for relaxed SDP versions in higher dimensions.

In arbitrary spaces and for general kernels, one has to approximate the BLASSO problem by first

introducing discrete grids and then solve a finite dimensional minimization problem (e.g. LASSO

or basic pursuit). Several authors have proposed approximation or non-convex optimization steps

to be included in the standard LASSO to recover the exact locations and amplitudes. In particular,

in [32], [29], the continuous basis-pursuit which involves a first order Taylor approximation of the

kernel in the fidelity term of the minimization problem accompanied by the ℓ1-norm regularization

term have been utilized to improve the accuracy in the peak localization. However, multiple peaks

around the original peak is a common result (as also theoretically justified in [29]). More robust

iterative approaches using the Frank-Wolfe algorithm (also known as conditional gradient method)

has been proposed in [13], [10]. These include an alternation between two steps. In the first step, the

computational support is renewed by generating a new peak location using the conditional gradient

method and then a non-convex step follows where only the locations and amplitudes are computed

July 14, 2020 DRAFT



5

while the number of peak locations stays fixed.

Even though the current paper is focusing on superresolution using convex optimization methods

and especially the ℓ1-norm regularization, we would like to mention that there is also a vast literature

on spectral superresolution algorithms that rely on Prony’s concept (for a general review see [49],

[73]), for example MUSIC [71], ESPRIT [66]) or pencil method [44]. These methods perform well

in noiseless setting and do not require a minimum separation condition to fully recover positive

and negative peaks; however they rely strongly on the signal, noise and measurement modelling

and their extension to higher dimension is not trivial see e.g. [53], [63], [50], [2], [51], [23].

C. Contributions

In this work, the aim is to find new connections between the super-resolution algorithms which

impose sparsity assumptions on the signal to be recovered [72] and theoretical studies (e.g. [56],

[5], [29]) which have been developed rather separately so far. To that end, we first explain how

convex optimization techniques [12], [41], [11] and, more precisely, ℓ1- norm sparsity constraints

affect the solution of such inverse problems as the deconvolution of sparse peaks (or point sources)

on discrete grids (or meshes) when the convolution kernel is smooth (admissible) [8] and then we

propose an adaptive super-resolution scheme. In particular, our contributions are two-fold and are

summarized as follows:

1) Theoretical:

• With the help of the first order optimality condition of the ℓ1-norm minimization problem, we

show that the numerical solution consists of one or multiple peaks at grid points (or nodes)

adjacent to the location of the actual peak. Our conclusions are inline with recent results

presented in [29] for one dimensional spaces; but, the methodology employed, as well as the

form in which the problems in question are expressed, are different. Previous approaches study

the properties of the ℓ1-norm numerical solution by introducing the extended computational

support notion [29] or by deriving dual certificates that fulfils particular properties [64] which

both were used nicely to obtain asymptotic properties of the signal support. Here, we take a step

forward to characterize the values of the numerical solution on its support also in dependence

of the exact peak locations. We use the optimality condition of the finite dimensional ℓ1-norm

minimization problem to investigate the conditions under which a single or multiple peaks are

recovered in one dimensional spaces. Then, we define an optimality curve, directly related to
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the optimality condition of the problem (respectively the dual certificate), whose shape allows

us not only to justify the patterns of the expected numerical solutions on fixed computational

grids both in one and higher dimensional spaces, but also infer further information on the

location of the exact peaks.

• We show that we can explicitly approximate the locations and amplitudes of the exact peaks

based on a set of linear equations derived from the associated normal equations of the ℓ1-norm

problem.

• We derive an a-posterior error between the original signal (I.2) and its discrete version (I.3) by

employing the Bregman distance [42]. We show that the recovery error depends on the relative

distance between the computational grid points and the locations of the original peaks.

2) Practical: The a-posterior error outcome and the numerical reconstructions of multiple peaks

at grid points in the vicinity of the original peaks give us the intuition to introduce the adaptive

grid concept for the recovery of the original peaks. Hence, we propose an adaptive super-resolution

scheme consisting of two main stages. First we determine the intervals which include the support

of the original peaks and we separate multiple original peaks which are close to each other. This

is achieved by adjusting the grid as the computations proceed in a manner dependent upon the

previous sparse solution. Then, the coordinates of the locations and the amplitudes of the peaks are

approximated based on the numerical solution obtained from the first stage and the set of equations

following from the optimality condition of the formed ℓ1-norm minimization problem.

The proposed adaptive algorithm shares some similarities with other superresolution algorithms

e.g. [55], [81]; however, our approach embeds an automatic adaptation scheme [77] since it restricts

and refines the grid in an unsupervised manner only in the neighborhoods where there is indication

that a peak exists. This additionally allows to solve iteratively a small to medium size linear problem

using convex optimization techniques [12], instead of a big size problem as in [55].

Overall, our analysis provides theoretical insights on the effects of gridding (a.k.a discetization

of the parameter space), and it can help the algorithmic development in the direction of avoiding

heuristic post-processing steps by using information about the convolution kernel properties and

the formulation of the minimization problem rather than resorting in unreliable approximations as

often happens in application papers (e.g. in [74]).
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II. DECONVOLUTION OF SPARSE PEAKS BY CONVEX OPTIMIZATION

In the following we discuss the theoretical basis of sparse peak deconvolution using convex

optimization approaches and put it in perspective with classical discretization issues in numerical

analysis.

A. Sparsity over the continuum and its discretization

Let us start by formulating the problem over the continuum, following [13], [27], which is the

underlying ideal sparse peak deconvolution to which we expect minimizers of (I.5) to converge to.

For a Radon measure µ on Ω we denote its total variation by

‖µ‖TV = sup
ϕ∈C0(Ω)

∫

Ω

ϕ(x) dµ(x). (II.1)

The convex variational problem solved for sparse peak deconvolution in a continuum setting is then

given by

J∞(µ) =
1

2
‖G ∗ µ− f‖2 + λ‖µ‖TV . (II.2)

Now (I.5) can be interpreted as a discretization on a given grid, it can indeed be rephrased as

JN(µ) =







1
2
‖G ∗ µ− f‖2 + λ‖µ‖TV if µ ∈ span({δxk

}k=1,...,N)

+∞ else.
(II.3)

It is straight-forward to show that the functionals JN Γ-converge to J∞, but one can also ask for

more quantitative error estimates, which we shall discuss below.

By standard arguments we can verify the following result for the discretized problem (cf. [14],

[13], [27] for analogous results on the continuum problem (II.2)):

Proposition II.1. For λ ≥ 0 there exists a solution of (I.5). If λ > ‖A∗f‖∞ then the unique

minimizer is given by c = 0. If λ < ‖A∗f‖∞, then each solution is different from zero.

Proof. Convexity, coercivity, and nonnegativity immediately imply the existence of a minimizer.
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Now let λ > ‖A∗f‖∞, then

J(c) =
1

2
‖Ac− f‖2 + λ‖c‖1

=
1

2
‖Ac‖2 + 1

2
‖f‖2 + λ‖c‖1 − 〈A∗f, c〉

≥ 1

2
‖Ac‖2 + 1

2
‖f‖2 + (λ− ‖A∗f‖∞)‖c‖1 ≥

1

2
‖f‖2

= J(0),

with inequality only for c = 0. Hence, c = 0 is the unique minimizer. In the case λ < ‖A∗f‖∞ we

choose c = ǫA∗f with ǫ > 0 sufficiently small to verify that there exists a c yielding a functional

value lower than 1
2
‖f‖2.

B. Optimality conditions

As a next step we state the optimality conditions for (II.2) and the discrete version (I.5). Those

are important for error estimates and further analysis in this paper.

Let us start with the sub-differential of the total variation norm, which is given by (cf. [13])

∂‖µ‖TV = {q ∈ L∞(Ω) | ‖q‖∞ ≤ 1, q(x) ≡ ±1 on supp(µ±)}. (II.4)

Here µ = µ+ − µ− denotes the standard Jordan decomposition of the signed measure µ. Since the

quadratic part of the functional J∞ is differentiable and G is continuous, i.e. the convolution maps

into the pre-dual of the space of Radon measures, we obtain the optimality condition

‖G ∗ f −H ∗ µ‖∞ ≤ λ (II.5)

G ∗ f −H ∗ µ = ±λ in supp(µ±). (II.6)

where H = G ∗G. On the other hand, the optimality condition of the discrete problem (I.5) is

λpj = [A∗(f −Ac)]j for j = 1, . . . , N, (II.7)

where p ∈ R
N is contained in the sub-differential of ‖c‖1. The right hand side of the previous

equation1 is [ATf ]j =
∑L

l=1 γlH(xj − ξl) and [ATAc]j =
∑N

k=1 ciH(xj − xk). The optimality

1 The convolution of signal µN with a kernel, e.g. Gaussian G, is G ∗ µN =
∑N

k=1
ckG(x − xk) and in matrix form this can

be expressed as [Ac]j =
∑N

k=1
ckG(xj − xk). Moreover, G ∗ G = H and since function G is symmetric and the convolution is

associative G ∗ (G ∗ µN ) = (G ∗G) ∗ µN = H ∗ µN =
∑N

k=1
ckH(x− xk).
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condition can be written as

λpj =
L
∑

l=1

γiH(xj − ξl)−
N
∑

k=1

ckH(xj − xk), (II.8)

for k = j, pj ∈ sign(cj) when cj 6= 0 and |pj | < 1 when cj = 0.

In order to highlight the connection with the continuum formulation, we rewrite the optimality

solely for the measure µN and deduce that

G ∗ f − |H ∗ µN | ≤ λ in {xk}k=1,...,N (II.9)

G ∗ f −H ∗ µN = ±λ in supp(µN
± ). (II.10)

We see that the main difference to the optimality condition in the continuum is that the first equality

only holds on the grid points xk and not in the whole domain Ω. Note that due to the continuity

of G and H one will expect (at least for sufficiently small grid size) that if
|H∗µN−G∗f |

λ
− 1 is

strictly less than zero in a set of neighbouring grid points, then it remain less than zero in the area

bounded by these points (further details are given in section III-B2). Hence, the main violation

of the continuum optimality condition considered for µN will appear close to grid points where it

equals zero, usually corresponding to non-zero coefficients ck. This yields a first idea for using an

adaptive computational grid. As we shall see below this can be further improved and backed up

by a-posteriori error estimation.

C. A-Posteriori error estimate

In order to derive suitable error estimates for non-smooth convex variational problems such as

problem (I.5), it is now a standard approach to use the Bregman distance as proposed in [60] (we

refer to [42] for an overview). The Bregman distance for the total variation distance is given by

Dq
TV (µ̃, µ) = ‖µ̃‖TV − ‖µ‖TV − 〈q, µ̃− µ〉 (II.11)

for a subgradient q ∈ ∂‖µ‖TV . Given a subgradient q̃ ∈ ∂‖µ̃‖TV , we will denote by

Dq̃,q
TV = Dq̃

TV (µ, µ̃) +Dq
TV (µ̃, µ) = 〈q̃ − q, µ̃− µ〉 (II.12)

the symmetric Bregman distance.

July 14, 2020 DRAFT
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The key idea here is to use the difference in the optimality conditions and take a duality product

with the difference of the measures. For this sake, we use the following notation

qN(x) := min{max{G ∗ f(x)−H ∗ µN(x)

λ
,−1}, 1},

rN(x) :=
G ∗ f(x)−H ∗ µN(x)

λ
− qN(x).

(II.13)

It is straightforward to see that qN ∈ ∂‖µN (x)‖TV and hence from (II.5), (II.9) and (II.13) we

obtain

H ∗ (µ− µN) + λ(q − qN) = λrN . (II.14)

Now the announced duality product with µ− µN implies an a-posterior error estimate of the form

‖G ∗ (µ− µN)‖2 + λDq,qN

TV (µ, µN) = λ〈rN , µ− µN〉. (II.15)

Thus, we observe that only regions with rN 6= 0 contribute to the error between µ and µN .

Moreover, via the optimality condition (II.9) of problem (I.5), we have that rN(xk) = 0 for any

grid point xk and thus 〈rN , µN〉 = 0. So, we can write

‖G ∗ (µ− µN)‖2 + λDq,qN

TV (µ, µN) ≤ λ‖rN‖∞‖µ‖TV . (II.16)

The previous expression shows that by reducing the supremum norm of rN is crucial for reducing

the global error. This can be achieved by introducing finer computational grids. In Figure 1 we

can observe that the value of ‖rN‖∞ decreases with respect to the size of the computational grid.

However, we remark that by introducing fixed fine grids (as proposed for instance in [81], [57],

[55]) the computational performance and stability can be affected. To overcome computational

limitations, we later propose to introduce a progressive grid refinement.

III. NUMERICAL SOLUTIONS IN THE CASES OF SINGLE PEAKS

Here, as started in [39] we analyze in detail the solutions of the form (I.3) in the case of noiseless

data f produced by a single positive peak, i.e.

µ = γδξ, and f(x) = γG(x− ξ) , (III.1)

July 14, 2020 DRAFT
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Fig. 1: Supremum norm of rN (residual) with respect to the size N of the computational grid. Here,

we considered µ = δξ and µN =
∑N

k=1 ckδxk
. Thus, rN(x) =

H(x−ξ)−
∑N

k=1 ckH(x−xk)

λ
− qN(x) based

on (II.13) and H(x) was a Gaussian kernel.

where ξ ∈ R
d and d ≥ 1 2. We can easily interpret Proposition (II.1) in this case as A∗f =

γ[H(xj − ξ)]j=1,...,N and ‖A∗f‖∞ > λ in order to obtain nonzero solutions. Hence, we need

λ < γmax
j

{H(xj − ξ)} and since H attains its maximum at zero, a simple sufficient condition is

given by

λ < γH(0), (III.2)

which is also necessary in the case of ξ coinciding with a grid point. We will thus assume condition

(III.2) throughout the whole section without further notice.

A. Exact recovery

The simplest case to start with, which can directly be treated in arbitrary dimensions, is that

ξ coincides with one of the grid points. In this case we obviously expect perfect reconstruction,

which is confirmed by the following result:

Proposition III.1. Let be ξ = xK for some K ∈ {1, . . . , N}. Then there exists a one-sparse solution

µN of (I.5), which is nonzero at xK , i.e., µN = cKδxK
with cK = γH(0)−λ

H(0)
∈ (0, γ).

2Our analysis is based on a single positive peak which is often the case in image processing applications. We note that the

theorems/conclusions presented in this section are valid also for a negative peak.
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Proof. Without restriction of generality assume that γ > 0. In order to prove the assertion, we have

to check whether the optimality condition of (I.5) holds under the assumptions mentioned above.

From our prior computations (II.8), the optimality condition (II.8) reduces to

λpj = γH(xj − ξ)− cKH(xj − xK) = (γ − cK)H(xj − xK). (III.3)

We have to differentiate between the cases where j = K and j 6= K.

For j = K the optimality condition (III.3) is

pK = (γ − cK)
H(0)

λ
= 1 . (III.4)

For j 6= K we have

pj =
γ − cK

λ
H(xj − xK) < (γ − cK)

H(0)

λ
,

due to the fact that H attains its maximum at zero. Hence in both cases the optimality condition

is fulfilled and we obtain the assertion.

Therefore, the reconstruction of the support of a delta peak is exact if the position of the peak

coincides with a grid point and the regularization parameter is small enough.

B. Recoveries for off-the-grid peaks

Let us consider the more frequent case where µ = γδξ is located among a set of grid points

N = {xk}k=1:N . Here, with the help of the optimality conditions (II.9), we define a so-called

optimality curve p(x) given by

p(x) =
G ∗ f −H ∗ µN

λ
− 1, (III.5)

where f = G ∗ µ, H = G ∗ G (smooth and symmetric) and µN =
∑

xk∈N
ckδxk

is the nontrivial

numerical solution obtained from the minimization problem (I.5). The optimality curve p(x) can

be regarded as analogous to the TV dual certificate [65] for the ℓ1- norm minimization problem

that will allow us to understand the expected patterns of the numerical solutions around ξ.

To ease our analysis, we rewrite p(x) as

p(x) =
1

λ
H(x− ξ)− 1

λ

∑

xk∈N

ckH(x− xk)− 1. (III.6)
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We note that p(xj) < 0 when cj = 0 and p(xj) = 0 when cj > 0.

1) Single spatial dimension: In one dimensional spaces, we consider that signal µ = γδξ is

located between two grid points, i.e. ξ ∈ (xK , xK+1). For the following consideration, the interval

length h will be defined as

h := |xK+1 − xK | .

By employing function p(x) (III.6) in the vicinity of peak ξ, we can prove the following Theorem.

Theorem III.2.

Let H ∈ C3(R) be nonnegative with a unique maximum at zero and let h be sufficiently small.

Assume µ = γδξ, ξ ∈ (xK , xK + h
2
) for K ∈ {1, . . . , N − 1} and λ < γH(xK − ξ) holds.

When we have that ξ ∈ (xK , xK + λh
2γH(0)

), there exists a solution of (I.5), which can be written

as µN = aδxK
with a = γH(xK−ξ)−λ

H(0)
∈ (0, γ).

Moreover, if we have ξ ∈ (xK + λh
2γH(0)

, xK + h
2
), then µN = aδxK

is not a solution of (I.5) for

any a ∈ R
+. Instead the solution is of the form µN = cKδxK

+ cK+1δxK+1
with cK and cK+1 being

nonzero and of the same sign as γ.

The proof of Theorem III.2 is given in Appendix A. Figure 2 illustrates the assertion of Theorem

III.2. Note that due to the symmetry of H , the analogous claim holds for ξ in the other half of the

interval. Figure 3 depicts the optimality curve p(x) for a positive peak when H(x) is a Gaussian

Fig. 2: If ξ is in the blue interval, the reconstructed solution µN consists of only one peak. In the

case that ξ is located in the red interval, then one recovered peak is not sufficient.

kernel. The curve is downward concave in the area around ξ which implies that there are at most

two points on x-axis where p(x) = 0. From these points, at least one is the grid point with the

nonzero coefficient of µN . We can observe that the number of the recovered peaks depends on the

distance between the location of the exact peak (denoted by red x) and the neighboring grid points

(given fixed λ = 0.1λmax).
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Fig. 3: Function p(x) around location ξ for the cases where the reconstructed signal µN has (A) a

single nonzero coefficient and (B) two nonzero coefficients between the location of the exact peak

ξ.

2) Higher spatial dimension: In higher spatial dimensions, the topological structure is more

complicated which makes a rigorous proof by analogous arguments impossible. However, we can

at least make some formal arguments and computational experiments concerning the optimality

curve p(x) (III.6). First of all we expect that for γ > 0, p(x) is concave around ξ and nonzero

entries are only found in the convex hull of ξ on the grid, i.e. the largest convex hull Cξ that can

be formed of a set of grid points surrounding the peak ξ such that no other grid point is contained

in Cξ.

The following observations can be made:

• Given any location x far from ξ, we have that p(x) < 0, since the positive term H(x− ξ) is

smaller than H(x− xk).

• Since the kernel H(x) is smooth, and considering that its width is greater than the resolution

of the selected grid (which is often the case for low resolution images), then p(x) < 0 in the

area bounded by grid points where cj = 0.

• Given {xj | cj > 0} forms a small neighborhood of ξ, consisting of N ≥ 1 points, we can

make a local Taylor expansion similar to the one-dimensional case. First of all we have that

p(xj) = 0 for all such j. By summing those with respect to j we get

∑

j

∑

k

ckH(xj − xk) =
∑

j

H(xj − ξ)− λN .
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Using the lowest order approximation for small arguments we find

NH(0)
∑

k

ck = NH(0)− λN +O(h2) ,

i.e. to first order
∑

k

ck = 1− λ

H(0)
(III.7)

Using this approximation the Hessian can be computed to leading order as

∇∇p(ξ) =
1

λ
H(0)− 1

λ

∑

j

cjH(ξ − xj)− 1 (III.8)

= ∇∇H(0) , (III.9)

which is negative definite due to our assumptions on H . Hence, p is concave in a neighbourhood

of ξ, which implies that its level sets are convex. The points xj with p(xj) = 0 are on the

level set {p = 0}, i.e. a convex set around ξ. Since p(xk) > 0 is impossible, there is no other

grid point inside the convex hull of the {xj}.

Thus, from those arguments we see that the active grid points (cj > 0) are to be expected in

the convex hull of ξ on the grid. This can be made rigorous under the assumption that the local

grid size around ξ is small and there are no active grid points at large distance from ξ, which

is confirmed in all our numerical experiments. Figure 4 illustrates this behaviour by showing the

shape of the function p and its relationship to the nonzero coefficients of the reconstructed signal

µN . In this figure, the small blue dots depict the computational grid, the big blue circles show

the grid points with nonzero entries (i.e. estimated peaks). For the computations, the regularization

parameter was set λ = 0.1λmax and H(x) was Gaussian with standard deviation σ = 1.5
√
2h

(where h was the grid resolution). Based on the previous analysis, we can see in Figure 5 that

the numerical solution depends on λ and the properties of kernel H . As expected, the number of

active grid points increases as λ decreases which is effectively a property of the finite-dimensional

ℓ1-norm regularization in the convex hull on the grid.

IV. RECOVERIES OF SINGLE PEAKS USING THE ℓ1-NORM OPTIMALITY CONDITION

Let the observations f be of the form f(x) = γG(x − ξ) + f̃ , with f̃ supported in some

distance to ξ. Then, we expect that problem (I.5) will yield few nonzero coefficients {ck} only in
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Fig. 4: Function p(x) around location ξ when the reconstructed signal µN has four nonzero

coefficients. (A) 3D plot of p(x) and xy-plane with the computational grid (marked blue dots)

and location of the nonzero coefficients (marked with blue circles) (B) Isocontours of p(x),
computational grid (marked with blue dots) and nonzero locations of µN (marked with blue circles).

The exact location denoted by red x.

Fig. 5: Numerical solution on a grid for decreasing value of the regularization parameter λ. The

blue circles show the locations of the nonzero coefficients of the numerical solution. The blue

dots are the grid points. The red circle is the smallest circle that encloses the largest convex hull

formed by grid points that surround ξ (points that can get nonzero entries). The maximum number

of nonzero entries is depicted in (C).

a neighborhood of grid points, N = {xk}, close to ξ plus additional non-zeros related to f̃ in a

certain distance. Hence, the confined variational problem is

min
(ck)xk∈N

‖
∑

xk∈N

ckG ∗ δxk
− f‖2 + λ

∑

xk∈N

|ck| ,

where all the ck have same sign s ∈ {+1,−1}.
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The associated normal equations are

∑

xk∈N

ckG ∗G(xi − xk)−G ∗ f(xi) + λs = 0 , (IV.1)

for xi ∈ N (note that s is the same for all xi). Given H(x) = G ∗ G(x) =
∫

Ω
G(x − y)G(y) dy,

we can write the associated normal equations as

∑

xk∈N

ckH(xi − xk)− γH(xi − ξ) + λs = (G ∗ f̃)(xi) for xi ∈ N . (IV.2)

For a small neighbourhood around ξ (and h → 0 a bound for the grid size) we can perform a

Taylor-expansion and obtain

(

∑

xk∈N

ck − γ

)

H(0) +
1

2

∑

xk∈N

ck(xi − xk)
T∇2H(0)(xi − xk)−

1

2
γ(xi − ξ)T∇2H(0)(xi − ξ) + λs

= (G ∗ f̃)(ξ) +∇(G ∗ f̃)(ξ)(xi − ξ) +
1

2
(xi − ξ)T∇2(G ∗ f̃)(ξ)(xi − ξ) +O(h3) ,

(IV.3)

where we have used ∇H(0) = 0. We observe that all equations have the same leading order term,

which yields up to order two

γ =
∑

xk∈N

ck +
λs

H(0)
− (G ∗ f̃)(ξ)

H(0)
. (IV.4)

In order to access higher-order terms we can exploit the fact that set N of nonzero coefficients has

more than one grid point and thus we can estimate differences of equation (IV.3) for pairs of grid

points xi, xj ∈ N . This yields

γ(xi − xj)
T∇2H(0)ξ =

γ

2

(

xT
i ∇2H(0)xi − xT

j ∇2H(0)xj

)

− 1

2

∑

xk∈N

ck (Fk(xi)− Fk(xj))

+
1

2
F̃ (ξ) +O(h3)

(IV.5)

where Fk(x) = (x − xk)
T∇2H(0)(x − xk) and F̃ (ξ) = (xi − ξ)T∇2(G ∗ f̃)(ξ)(xi − ξ) − (xj −

ξ)T∇2(G ∗ f̃)(ξ)(xj − ξ) + ∇(G ∗ f̃)(ξ)(xi − xj). Equation (IV.5) can be interpreted as a linear

equation for ξ ∈ Ω. Having at least m > d different grid points in N , we can derive m(m− 1)/2

equations. . If we can choose the xi − xj to be a basis of Rd, the negative definiteness of ∇2H(0)
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and γ 6= 0 imply that the matrix formed out of the vectors γ(xi − xj)
T∇2H(0) has rank d. Thus,

we can uniquely solve for the location ξ and obtain a second order approximation in h (considering

the contribution from f̃ negligible).

A. Examples of peak recoveries

To demonstrate the previous theoretical results, we present some examples in one and two

dimensional spaces.

1) 1D spaces: In the following examples, we consider a signal with three peaks with amplitudes

γ1, γ2 and γ3 at positions ξ1, ξ2 and ξ3 where ξl ∈ (0, 1) for l = 1, 2, 3. The signal is given by

µ = γ1δξ1 + γ2δξ2 + γ3δξ3 .

Moreover, we choose a Gaussian convolution kernel G with standard deviation σ = 0.03. The

continuous convolved data can be expressed analytically as

f(x) = γ1G(x− ξ1) + γ2G(x− ξ2) + γ3G(x− ξ3) .

For the estimation of the numerical solution µN the domain [0, 1] is discretized and the ℓ1-norm

minimization problem (I.5) is solved with λ = 0.01‖A∗f‖∞ on a uniform grid of size N .

We first consider a grid that includes ξ1, ξ2 and ξ3. In Figure 6, we observe that the exact recovery

is feasible (which is in accordance with preposition (III.1)).

Now we can consider the case of Theorem III.2 where the three peaks of µ are located between

the grid points. Figure 7 and 8 depict the results for two different grids of size N = 16 and N = 51

respectively. The numerical solutions yield to either two peaks around the location of an original

peak or a single peak close to the original one as one expects.

To approximate the amplitude and location of the underlying peaks we used equation (IV.4) and

(IV.5) respectively. In particular, for the approximation of a peak located at ξl ∈ (xk, xk+1) with

amplitude γl, if there exist two nonzero coefficients ck and ck+1 at points xk and xk+1 respectively,

then from (IV.4) follows that

γ̂l = ck + ck+1 +
λ s

H(0)
, (IV.6)

If ck > 0 and ck+1 > 0, s = 1.
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Fig. 6: Left image: Original peaks, middle image: observations and right image: solution of

the discrete convex problem (I.5). The solution of the ℓ1-norm minimization problem for a

computational grid which includes points ξ1, ξ2 and ξ3 enables the exact recovery of the peak

positions. The peaks of µ are at locations ξ1 = 0.2, ξ2 = 0.533 and ξ3 = 0.8 and their amplitudes

are γ1 = 0.5, γ2 = 0.9 and γ3 = 0.7 respectively. The number of grid points used here was N = 16
( h = 0.1).

Based on equation (IV.5), the peak location is approximated as

ξ̂l =
1

2
(xk + xk+1) +

ck+1 − ck
2γ̂l

(xk+1 − xk) . (IV.7)

Terms that include (G ∗ f̃) in equation (IV.4) and (IV.5) has been eliminated from (IV.6) and

(IV.7) since we use only the neighboring point contributions to recover the amplitude and position

of the underlying peaks.

We note that in the case where the numerical solution yields to a single nonzero coefficient ck

at xk, then γ̂l = ck and ξ̂l = xk. Table I summarizes the values of the amplitudes and locations of

the original and estimated peaks for the two different computational grids of Figure 7 and 8. Based

on these results, the reconstructions in a fine grid are slightly more accurate than ones obtained

using a coarse grid, which is inline with the a-posteriori error analysis presented in section II-C.

2) 2D spaces: In higher dimensions, the exact signal is µ =
∑L

l=1 γlδξl where ξl ∈ Ω ⊂ R
d

(d > 1) and the estimated µN solution has nonzero values clustered in grid points around the

locations of the actual peaks ξl. If a cluster of grid points with nonzero coefficients around peak

ξl is denoted by Nl = {xk}1:Nl
, we approximate the peak amplitude according to

γ̂l =
∑

xk∈Nl

ck +
λ s

H(0)
. (IV.8)
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Fig. 7: Left image: Original peaks, middle image: observations and right image: solution of the

discrete convex problem (I.5). The solution of the ℓ1-norm minimization problem for a computation

grid which does not include points ξ1, ξ2 and ξ3 gives, as a solution, pairs of peaks adjacent to

location of the original peak.
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Fig. 8: Similar as Figure 7, however finer grid is used in the computation. The solution yields two

pairs of peaks around ξ1 and ξ3 and a single peak close to ξ2

True N=16 N=51

ξ γ ξ̂ γ̂ ξ̂ γ̂

0.23 0.5 0.2312 0.55 0.2301 0.50

0.58 0.9 0.5751 0.92 0.5800 0.91

0.83 0.7 0.8312 0.77 0.8300 0.71

TABLE I: This table summarizes the results of the test cases illustrated in Fig. 7 and Fig 8. The

first and second column show the locations ξ and amplitudes γ of the underlying peaks, then there

are the estimated locations and amplitudes for the cases where a coarse grid (N=16 points) and a

fine grid (N=51 points) were used.

The location is approximated similarly as in (IV.5). Particularly, if there are at least two grid points

xi and xj ∈ Nl, we have

γ̂l(xi − xj)
T∇2H(0)ξ̂l =

γ̂l
2

(

xT
i ∇2H(0)xi − xT

j ∇2H(0)xj

)

−1

2

∑

xk∈Nl

ck (F (xi)− F (xj)) ,
(IV.9)
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Fig. 9: Left image: Observations (convolution with a Gaussian kernel with standard deviation 0.13),

middle image: numerical solution µN estimated solving the finite dimensional ℓ1−norm problem

(with λ = 0.001λmax) on a uniform grid 20 × 20, and right image: approximation of the peak

locations using the clusters of nonzero coefficients obtained from ℓ1−norm minimization.

where F (x) = (x − xk)
T∇2H(0)(x − xk). Having Nl > d different grid points in Nl, we can

approximate the location of ξl solving a set of equations (IV.9) which are constructed by selecting

one xi at a time and taking differences to all other xj ∈ Nl.

As an example here we have a low resolution image produced as the convolution of four peaks

with a Gaussian kernel in a two dimensional space. The domain is Ω = [0, 1]2 (left image of

Figure 9) and the selected computational grid is of size N = 20× 20 (depicted as small blue dots

in the middle and right images of Figure 9). The middle image of Figure 9 shows the numerical

result obtained solving the ℓ1-norm minimization problem. The intense blue circles illustrate the

locations where nonzero entries appeared. We can observe that there are four distinctive clusters

of grid points with nonzero coefficients.

Therefore, four peaks are approximated, one for each cluster using (IV.9). The peak approxima-

tions are shown in the right image of Figure 9. Table II summarizes the results of the numerical

solution µN and the corresponding approximate peaks (γ̂, ξ̂).

Location Amplitude

ξ ξ̂ γ γ̂
(0.22,0.10) (0.2204,0.0950) 1 0.99

(0.66,0.16) (0.6557,0.1620) 1 1.10

(0.53,0.85) (0.5323,0.8525) 1 1.02

(0.25,0.40) (0.2487,0.3977) 1 1.11

TABLE II: Locations, ξ, and ξ̂ and amplitudes, γ and γ̂ of the original and estimated peaks

respectively for the case presented in Figure 9.
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V. RECOVERIES IN THE CASE OF MULTIPLE PEAK SIGNALS

A coarse computational grid, even though reduces the computational cost, imposes some limi-

tations to detect and separate neighbouring peaks. For example, there is always a possibility that

there are more than one positive peak in an interval between two grid points (see one dimensional

example of Figure 10.A), or two or more original peaks may be located in adjacent intervals (e.g.

Figure 10.B). Then the numerical solution µN of the ℓ1-norm minimization problem may not be

accurate enough.

Following similar analysis as in Theorem (III.2), we can easily show that there exists a ℓ1-norm

solution µN = aδxk
with a =

∑L
l=1

γlH(xk−ξl)−λ

H(0)
as depicted in Figure 10.A even though the original

peaks are two. Additionally, when the original peaks are distributed between two intervals then

we can expect up to three reconstructed peaks as in Figure 10.B and Figure 10.C. A natural way

Fig. 10: In this figure, we show the peak recovered when there are more than one original peaks. (A)

A single peak reconstruction (in blue) when the original peaks (in red) are very close to a grid point

xk (B) A single peak reconstruction (in blue) when the original peaks (in red) are symmetrically

located with respect to a grid point. (C) Three peak reconstruction (in blue) when there are two

original peaks (in red) on adjacent intervals.

to improve the estimates is by refining the grid. Figure 11 illustrates how by performing local

refinements on the grid (and fitting the input data with a solution in the updated grid), we can

achieve a separation of the underlying peaks.

A. Adaptive super-resolution for sparse signal

1) Overview: In the following context, to ease our analysis and to proceed with the domain

refinement in higher dimensions instead of using grid/points we use the mesh/nodes notion as in

the finite element methods. Hence, the computational domain can be described by a mesh consisting

of a set of nodes (equivalent to grid points) and elements (e.g. line segments in one dimension or
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Fig. 11: By restricting and refining iteratively the computational grid around the nonzero coefficients

of the numerical solution µN , we can determine small disjoint intervals where the two original

peaks (in red) belong to and thus separate them. Fig.(A) shows the observations, original peaks (in

red) and the locations of the used computational grid (small blue dots). Fig.(B)-(E) illustrate the

reconstructed peaks (in blue) on a grid that is updated based on the previous numerical solution.

triangles in two dimensions). The proposed super-resolution approach consisting of the following

steps:

a) Solve the ℓ1-norm minimization problem (I.5) on a set of given nodes using a non-smooth

convex solver;

b) Define a new (restricted) computational domain using the nodes (locations) corresponding

to the nonzero coefficients of the estimated numerical solution (I.3). To do that:

1) Remove the elements where all their nodes are assigned to zero coefficients;

Cluster all the remaining elements. A cluster is defined by a set of pairwise connected

elements (elements that share an edge or surface);

2) Refine the computational domain at the estimated clusters by including extra nodes

(i.e. centroids of the elements). Include only the extra nodes that satisfy a distance

limit from the existing nodes.

3) For each cluster, use the old and additional nodes to produce a mesh. The new

(fragmented) computational domain consisting of all the disjoint clusters;

c) Repeat step a-b until domain stops updating i.e. the distance between the existing and

additional nodes becomes sufficiently small3;

d) Based on the last numerical solution (step c), for each separate cluster, estimate a single

peak i.e. amplitude (IV.8) and location using the coordinates of the nodes corresponding

3For example, determine a minimum distance for the nodes using limits presented in [64], [65] or prior information about the

size of the compressible signal.
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to the nonzero coefficients of the numerical solution and the set of equations stemming

from equation (IV.9).

A more analytical description of the approach is given in Appendix B. We need to mention that the

proposed scheme is applicable for peaks of similar sign or when the positive and negative peaks

satisfy the separation criteria (which is based on the kernel’s width and noise type/level) as studied

in some cases for example in [29], [64].

VI. RESULTS AND DISCUSSION

To demonstrate how the proposed superresolution approch can be used, we reconstruct super-

resolved images from (low resolution) observations which are the convolution of an original se-

quence of sparse Dirac delta functions with Gaussian kernels. In this section, we present technical

details about the simulated data, the proposed super-resolution approach and the validation metrics

used for the comparison between the original peaks and the estimated ones. Then, we show

examples how the proposed scheme progressively localizes a different number of peaks, which

can be either only positive or positive and negative. Finally, we discuss further extensions and

possible applications.

A. Simulated data

The simulations were carried out in a two dimensional square domain Ω = [0, 1]2. The aim

was to approximate the locations and amplitudes of an original signal µ =
∑L

l=1 γlδξl from low

resolution images W ∈ R
M×M where

wj1j2 =
L
∑

l=1

γlG(ξl − xj1j2) + εj1j2 ,

for j1, j2 = 1, . . . ,M (where ξl 6= xj1j2∀j1, j2).

As a convolution kernel, we use the one from study [55], given by

G(x) ∝ α exp

(

1

2

(

xTΓ−1
1 x
)

)

+ (1− α) exp

(

1

2

(

xTΓ−1
2 x
)

)

,

with α = 0.2, covariance matrices Γ1 = σiI
2×2, Γ2 = σ2I

2×2, σ1 = 2 hM , σ2 = 2.5hM and

hM = 1/M .

Also, we considered a low additive measurement noise ε = sc ε̄ ∈ R
M×M where ε̄ ∈ R

M×M was

sampled from a Gaussian distribution with zero mean and variance one. The scaling parameter sc
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was estimated based on the level of the signal-to-noise ratio (SNR), SNR = 10 log10

∑M
j1,j2=1(

∑L
l=1 γlG(ξl−xj1j2

))2

∑M
j1,j2=1(εj1j2 )

2
.

In the following simulations, we used SNR = 40 dB.

B. Details about the adaptive superresolution approach

We estimated the locations and the amplitudes of the underlying peaks by employing the proposed

scheme of section V. The initial estimation (by solving the ℓ1-norm minimization) was performed

in a uniform mesh of N ×N nodes. Then, the mesh was updated automatically around the nonzero

entries of vector c. In practice, to avoid small numerical inaccuracies, the new domain was defined

by keeping the nodes with absolute values of the estimated peaks greater than a small threshold (i.e.

0.5% of the maximum |c| of vector c). In the current implementations, the ℓ1-norm minimization

problem was solved using the hierarchical adaptive lasso (HAL) [58]. Other algorithms e.g.[10],

[48] could be used as well. Here, we used HAL to reduce the amplitude shrinkage of the estimated

nonzero coefficient given a regularization parameter λ. In the following examples, λ = 0.1λmax.

Moreover, the incorporation of a Bregman iteration [80] could be considered in the future for cases

with relative high measurement noise.

The updates of the computational support terminated when the distance between the existing

nodes and the additional nodes became small. In the following examples, we used as a criterion

for adding a new node, the minimum distance of this candidate node from the existing nodes,

hmin = 0.25hM (approximately 0.125 of the Gaussian kernel’s standard deviation). This choice was

made to enable a computational efficiency (i.e. a reasonable number of iterations) and to allow a

good approximation of the peaks using small clusters of the nonzero coefficients and (IV.9).

C. Comparison metrics

In tests with only few peaks, we used:

• The mean localization error (MLE) between the original and reconstructed peaks which is

defined

MLE =
1

L

L̂
∑

l=1

min
d

(

d(ξl, ξ̂l̂)
)

l̂=1:L̂
, (VI.1)

where d(ξ, ξ̂l̂) = ‖ξ − ξ̂l̂‖2, L̂ is the number of the reconstructed peaks ξ̂l̂ and L the total

number of the original peaks.
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• The mean strength error (MSE) given by

MSE =
1

L

L
∑

l=1

‖γl − γ̂l̄‖ where l̄ := min
d

(

d(ξl, ξ̂l̂)
)

l̂=1:L̂
. (VI.2)

For dense distributions of peaks, we employed the earth mover’s distance (EMD) (Wasserstein

metric) as a measure of dissimilarity between the original and the estimated peaks locations [68],

[62].

D. Examples

Three different examples are presented to demonstrate the different stages of the proposed scheme.

In the first example, we show step by step the estimation of the locations and amplitudes of five

positive peaks (see Figure 12). In the second example, presented in Figure 13, we use the proposed

apprach to recover both positive and negative peaks. In the last example in Figure 14, we illustrate

the potential of the algorithm to deal with denser peak distributions.

In the example of Figure 12 and 13, the low resolution images were of size [M × M ] =

[40 × 40]. The first estimation solving the ℓ1- norm minimization problem was performed in a

uniform computational mesh (with [N × N ] = [15 × 15] number of nodes) as we can observe in

the top row, middle image of Figure 12. In particular, in Figure 12 along the top row, starting

from left to right, we can observe the initial low resolution image, next the numerical solution

of the first iteration (denoted by m = 0) and then, the new computational domain after the first

estimation marked with gray color. The nodes corresponding to the nonzero entries for vector c on

the computational meshes were denoted with small blue circles and the original peaks were marked

with +. The new computational area was defined using the elements where the blue circled nodes

belonged to. The second row of Figure 12 illustrates the nonzero locations estimated by solving the

minimization problem (A.4) and the corresponding updated computational supports for the first,

second, third and forth iteration of the proposed approach. In the last row, we can observe the

ℓ1-norm estimation for the last iteration, the final high resolution image and the approximation of

the peaks using the coordinates of the nonzero coefficients at the last iteration.

The reconstruction results (amplitudes and locations) are summarized in Table III. Based on

them, we have that all the five peaks were recovered and their values are very close to the exact

values.
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Fig. 12: Reconstruction of five positive peaks using the proposed adaptive super-resolution algorithm

in a [0, 1]2 domain. Top row: the left image shows the observations on a [40× 40] grid, the middle

image shows the numerical solution of iteration m = 0 obtained solving the finite dimensional ℓ1-
norm minimization problem on a computational [15×15] domain. The right image depicts the new

computational support in light grey color. Middle row: the left image shows the numerical solution

of iteration m = 1 and the new computational support in light grey. Accordingly, the middle and

right images show the numerical solution and the computational support of iteration m = 2 and

m = 3 respectively. Bottom row: the left image shows the result of the last iteration, the middle

image is the super-resolved results and the right image shows the exact and the estimated peaks

image. Please note the limits of the axes have been updated in the images in order to focus in the

area that the point sources are located.
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Location Amplitude

ξ ξ̂ γ γ̂
(0.195,0.58) (0.198,0.58) 1 0.99

(0.18,0.72) (0.18,0.72) 1.5 1.51

(0.48,0.46) (0.48,0.45) 1 1

(0.72,0.38) (0.71,0.38) 1 0.98

(0.64,0.36) (0.65,0.37) 1.2 1.2

MLE: 0.0049 MSE: 0.013

TABLE III: This table summarizes the results of the test case in Fig. 12. The first and the third

columns show the locations and the amplitudes of the original peaks respectively and the second

and forth column, the corresponding estimated values using the proposed approach. The last row

shows the values of the MLE (equation VI.1) and MSE (equation VI.2)

To show that the proposed scheme can be used to recover both positive and negative peaks,

Figure 13 illustrates the estimation of two positive and two negative peaks. The original peaks are

marked with + for the positive peaks and x for the negative peaks and the estimated ones with

circles and squares respectively in the right-hand side image of Figure 13. Table IV summarizes the

values of the location and the amplitude of the original and the estimated peaks of the example in

Figure 13. The estimated locations and amplitudes are very close to the original ones with small

values for the metrics MLE and MSE for this setup. We further examined the proposed scheme

Fig. 13: Positive and negative peak reconstructions. Starting from left, the original low resolution

image, estimated high resolution image and the locations of the actual and estimated peaks. Please

note the limits of the axes have been updated in the middle and right image in order to focus in

the area that the point sources are located

in the case where 50 peaks of intensity one were simulated. Figure 14 presents in a similar way as

Figure 12 the progressive towards the recovery of the peaks. In this test, the low resolution image

was [M × M ] = [80 × 80] and the first numerical estimation was performed in a uniform mesh
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Location Amplitude

ξ ξ̂ γ γ̂
(0.49,0.56) (0.4857,0.556) -1 -0.9886

(0.486,0.65) (0.4857,0.6533) 0.8 0.7528

(0.4,0.47) (0.3989,0.4694) -1 -0.9739

(0.613,0.5) (0.612,0.5) 1 1.0076

MLE: 0.0025 MSE: 0.0231

TABLE IV: This table summarizes the results of the test case illustrated in Fig. 13. The first and

the third columns show the locations and the amplitudes of the original peaks respectively and the

second and forth column, their estimated values using the proposed approach. The last row shows

the values of the MLE (equation VI.1) and MSE (equation VI.2)

with [15 × 15] nodes. Here, the middle row of Figure 12 shows the estimates in the first, second

and ninth iteration. Also, the small lowermost right image illustrates how the numerical solution

(blue circles) appears in a small area around 2 peaks. The total number of recovered peaks was

49. There is an omission due to the very close proximity of two peaks which appear as a single

(more intense) peak in the lower right side of the image “super-resolution result”. Very few of the

peak intensities were more prominent than others. The EMD as a measure of dissimilarity between

the actual and estimated point sources, in domain [0, 1]2, was EMD = 0.01 (or 1% dissimilarity

between the true source distribution and the estimated one).

Finally by keeping the noise level at 40dB, we performed reconstructions using sets of low

resolution images obtained from the convolution of randomly distributed sources with the same

Gaussian kernel (α = 0.2). The domain and the properties of the kernel were the same as in

the test of Figure 14. Particularly, given the number of point sources, 50 randomly created source

distributions were generated to produce 50 low resolution images. In Figure 15 we have the average

EMD values in % estimated by comparing the true point sources with the estimated ones (left

image) and the average number of reconstructed sources (right image) for increasing number of

point sources.

Moreover, based on the histograms of Figure 16 we can observe when the number of point

sources is low the localization error expressed through the EMD value is also low whereas when

the number of point sources increases we have larger variation in the EMD and source number

estimates. This can be explained by the very close proximity of some (true) point sources that

can occur more likely when their number increases in the confined domain [0, 1]2. This can lead

to difficulties in separating some of the point source from each other. Overall, our demonstrations
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Fig. 14: Reconstruction of multiple peaks. The uppermost left images shows the original low

resolution observations and similarly as it was described in Figure 12, we present the progressive

steps of the approach to separate the underlying peaks. Also, the image on the lowermost left side

shows the grid points corresponding to non-zero coefficients in the clusters (in grey) of the 9th

iteration of the approach

indicate that, in a low noise regime, the proposed superresolution adaptive scheme can recover as

many peaks as the exact number of them in most of the cases when their distance does not violate

an underlying separation condition e.g. minimum distance ∆min ≥ Cσ for Gaussian kernels [64].

Our numerical simulations showed that, when the noise level was SNR=40dB, the correct number

of peaks could be recovered if ∆min/σ > 0.2 given hM . We remark that even though the effect of
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Fig. 15: Left image: Average EMD value in % and Right image: average number of sources

for increasing number of simulated sources. 50 different realization per number of source were

simulated.
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Fig. 16: Histograms of estimated EMD values (left columns) and number of reconstructed sources

(right column) when the number of simulated sources was 21, 33, 41 respectively starting from the

top row.

the measurement noise (either Gaussian or Poisson) and the measurement/observation sampling can

affect the recovery of a multi-dimensional signal, these mathematical questions admit of different
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analysis than the currently addressed questions and will be considered in a follow-up study.

E. Discussion and future prospects

Questions regarding the deconvolution of sparse peaks present great mathematical difficulties with

some of them investigated in studies such as in [26], [27], [28], [22], [65]. However, even though

very important, these studies often do not accommodate easily accessible solutions to software

developers and engineers working on superresolution applications. The current work aimed to shed

light into some of these theoretical findings and put them into perspective with practical solutions

in superresolution algorithms.

In the theoretical part of this study, we explained why clusters of nonzero peaks appear around

the locations of the original peaks when we solve the ℓ1-norm minimization problem on a discrete

grid and in which parts of the grid these nonzero peaks are more likely to appear. Moreover, we

showed how the locations of the underlying peaks are connected with the numerical solution using

the optimality condition of the ℓ1- norm minimization problem. One important remark here is that

the distribution of the nonzero coefficients of the numerical solution depend on the properties of

the convolution kernel H = G ∗ G (III.6) and not on kernel G (I.1). Therefore thinking in more

general terms, for an inverse problem with forward operator R, it is only important that R∗R is a

convolution to anticipate a numerical solution following similar pattern as in the current problem.

This could be true for example in classical tomography e.g. filtered back-projection [59].

In general, we envision that similar superresolution schemes can be performed in a wide variety of

inverse problems in the fields of geophysics, astronomy and spectroscopy [47], [35], [46] because

many of these applications share the same characteristics and properties as this deconvolution

problem. However, some new aspects need to be investigated. For example, in neuroimaging,

the EEG source imaging problem, even though it shares seemingly similarities with the current

deconvolution, problem, is a severely ill-posed problem where the forward operator has a singularity

and its computational version has a matrix with a large null space [54]. Therefore, special design

of the prior model (e.g. weighting) is required whereas the expected pattern of the numerical

reconstructions has to be studied carefully.

In the application part, the main two novelties of the proposed approach were a) the automatic

adaptation of the computational domain (using elements) and b) the approximation of the underlying

peaks using a numerical approximation of the ℓ1 norm optimality condition that stemmed from the

findings of our theoretical analysis. As a natural next step though, within the microscopy field
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we expect to compare the proposed approach with other state-of-the art algorithms [72] which

lie either on the variational or spectral framework, e.g. Alternating Descent Conditional Gradient

Method [10] or MUSICAL [1] respectively.

Moreover, we are considering extension that could improve the algorithmic performance, for

example, the incorporation of a non-convex step as in [10] to possibly speed up the convergence.

In that step possibly, the optimality curve (III.6) could guide the update of the computational domain

simultaneously in multiple locations. Furthermore, the idea of employing the ensemble learning or

committee method [58] (which allows to estimate a weighted solution in each discretization level

by solving multiple deconvolution problems in a parallel fashion), could help to reduce possible

bias introduced due to the regularization or high measurement noise.

VII. CONCLUSIONS

The current work bridges the gap between theoretical studies and implementations of algorithms

that impose sparsity constraints on the signal to be recovered. First, we studied theoretically the

deconvolution of single peaks using the ℓ1- norm and we confirmed recent observations that a

discrete reconstruction yields to multiple peaks at grid points adjacent to the location of the actual

peak. We showed that by using these adjacent peaks and the first order optimality condition of

this convex problem, we can obtain a set of linear equations to approximate the location of the

actual peak. We quantified the errors between the continuous (TV) problem (that allows exact peak

recoveries) and the finite ℓ1- norm minimization problem, which designated that the accuracy of the

numerical estimates depends on the discretization that can be improved by applying finer gridding.

Second, using the previous theoretical finding we proposed an iterative scheme in which auto-

mated local refinement on the computational grid was performed to identify the areas where the true

peaks were located. Then, with the help of the equations from the optimality condition, the peak

locations and amplitudes were estimated. Finally, low resolution images, obtained using simulated

focal sources convoluted with a smooth kernel, were used to show that our approach can increase

the spatial resolution by allowing the separation and localization of these focal sources.

APPENDIX

A. Proof of Theorem III.2

Proof.

Let us first consider that the reconstructed signal is µN = αδxK
with a > 0. When j = K, pK = 1
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in the optimality condition (II.8) since pK ∈ ∂cK and a = cK > 0. Thus, the optimality condition

(II.8) reduces to

λ = γH(xK − ξ)− aH(0)

⇔ a =
γH(xK − ξ)− λ

H(0)
. (A.1)

Now let us consider the case where j = K + 1, then (II.8) becomes

λpK+1 = γH(xK+1 − ξ)− aH(xK+1 − xK) . (A.2)

Since, we assumed only one non-zero coefficient of µN at xK , we need to show that inequality

condition |pK+1| < 1 holds.

Inserting (A.1) into (A.2) yields

λpK+1 = γH(xK+1 − ξ)− γH(xK − ξ)− λ

H(0)
H(h) ,

where h = |xK − xK+1|. For this equation we consider the second order Taylor expansion of H

around zero. Note that H ′(0) = 0 holds, due to the maximum of H at zero. Therefore, we obtain

λpK+1 = γH(0) +
γ

2
H ′′(0)(xK+1 − ξ)2

−
(

γ +
γH ′′(0)

2H(0)
(xK − ξ)2

)(

H(0) +
1

2
H ′′(0)h2

)

+ λ+
λ

2H(0)
H ′′(0)h2 +O(h3) ,

which reduces to

pK+1 = 1− γ

2λ
H ′′(0)T +O(h3) ,

where T = (xK − ξ)2 − (xK+1 − ξ)2 + h2
(

1− λ
γH(0)

)

. Note also that H ′′(0) < 0 as H attains its

maximum at zero and λ < γH(0).

In order to obtain the inequality |pK+1| < 1, which would prove the assertion, T has to be negative.

This is true if and only if we have

x2
K − x2

K+1 + 2ξh < h2

(

λ

γH(0)
− 1

)

.
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This is equivalent to

2ξh < h2

(

λ

γH(0)
− 1

)

+ (xK+1 + xK)h

⇔ ξ <
h

2

(

λ

γH(0)
− 1

)

+
1

2
xK+1 +

1

2
xK

⇔ ξ − xK <
h

2

(

λ

γH(0)
− 1

)

+
h

2
.

Thus, we obtain

ξ − xK <
λh

2γH(0)
<

1

2
h , (A.3)

which is true since we have λ < γH(xK − ξ) and H(xK − ξ) < H(0).

Now assume that h is sufficiently small in the latter case and make the Ansatz µN = cKδxKµN=+

cK+1δxK+1
. Without restriction of generality we consider γ > 0 hence we look for cK > 0 and

cK+1 > 0, the other sign is analogous. We extend the vector c by cj = 0 for j /∈ {K,K + 1}
and verify that it is a minimizer of J in (I.5) by constructing an appropriate subgradient in the

optimality condition (II.7).

In particular, we have

pj =
1

λ
[A∗(f − Ac)]j = p(xj)

where

p(x) =
γ

λ
H(x− ξ)− cK

λ
H(x− xK)−

cK+1

λ
H(x− xK+1) .

The conditions pK = pK+1 = 1 lead to the following 2× 2 system

λ = γH(xK − ξ)− cKH(0)− cK+1H(h)

λ = γH(xK+1 − ξ)− cKH(h)− cK+1H(0) ,
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for cK and cK+1. If h is sufficiently small, Taylor expansion of H around zero yields

H(0)(cK + cK+1) +
h2

2
H ′′(0)cK+1 =

λ− γH(0)− γ
(xK − ξ)2

2
H ′′(0) +O(h3)

H(0)(cK + cK+1) +
h2

2
H ′′(0)cK =

λ− γH(0)− γ
(xK+1 − ξ)2

2
H ′′(0) +O(h3) .

From the leading terms we obtain the solution

cK =
1

2

(

γ − λ

H(0)
+

xK + xK+1 − 2ξ

h

)

+O(h)

cK+1 =
1

2

(

γ − λ

H(0)
− xK + xK+1 − 2ξ

h

)

+O(h) .

Note also that γ − cK − cK+1 =
λ

H(0)
+O(h).

This implies for x /∈ [xK , xK+1]

p(x) =
γ

λ
H(x− ξ)− cK

λ
H(x− xK)−

cK+1

λ
H(x− xK+1)

= (γ − cK − cK+1)
H(x− ξ)

λ
+

cK
λ
H ′(x− ξ)(xK − ξ)

+
cK+1

λ
H ′(x− ξ)(xK+1 − ξ) +O(h2) .

For x− ξ small we can again apply Taylor expansion around zero to show that 0 ≤ p(x) ≤ 1.

For x− ξ large we find

p(x) =
H(x− ξ)

H(0)
+O(h) ,

and since 0 ≤ H(x−ξ)
H(0)

< 1 we find p(x) ∈ (−1, 1) for grid size h sufficiently small. Thus, the

optimality condition is satisfied on all grid points.

B. Adaptive superresolution approach: implementation

In the following description, index m = 0, . . . , denotes the mth-iteration of the adaptive superres-

olution approach. In mth iteration, the computational domain is denoted by Ωm ≡ (Em,Nm) where

Em is the set that includes all the elements and Nm = {xm
k }1:Nm is the set with the corresponding

nodes that describe domain Ωm.
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In mth iteration

1) We solve the minimization problem

JΩm(c) =
1

2

(

M
∑

j=1

Nm
∑

k=1

ckG(xj − xm
k )− wj

)2

+ λ‖c‖1, (A.4)

where the vector c ∈ R
Nm

includes the nonzero coefficients of the recovered signal µN (I.3)

at nodes xk , ‖c‖1 =
∑Nm

k=1 |ck| and w ∈ R
M , i.e. w = {f(zj) + εj}j=1,...,M is a sampled

version of the observations f on a set of measurement nodes {zj}j=1,...,M and ε is the additive

measurement noise.

2) Then, we update the computational domain.

First, we remove the redundant elements (i.e. elements where all their nodes correspond to

zero entries in vector c). We define the new domain Ωm by estimating a set of disjoint clusters

Ωm

l̂
≡ (Em

l̂
,Nm

l̂
) (groups of adjacent elements) which comprises the remaining elements.

Hence, the update domain is Ωm =
⋃L̂m

l̂=1
Ωm

L̂
where Ωm

l̂

⋂L̂m

l̂=1
= ∅ and L̂m is the total number

of formed clusters.

The mesh refinement is performed by including extra points/nodes in each cluster Ωm

l̂
. The

extra points/nodes are at the centroids of the elements that comprise the clusters. The centroids

of very small elements are discarded. The choice of the centroids as extra nodes is based on the

observation that if ck 6= 0 at node xm
k , then the original peak should be in the neighborhood of

xm
k (stemming from the analysis in section III-B). For each cluster Ωm

l̂
, a new set of elements

is estimated using the updated set of nodes Nm

l̂
(old nodes and centroids). Then, we repeat

step 1, i.e. we solve problem (A.4) in the updated sets of nodes Nm =
⋃L̂m

l̂=1Nm

l̂
.

Steps 1-2 are repeated until the computational support is not longer updated (the number of nodes

and elements stays fixed). This happens when the distance between the nodes becomes small. As

a minimum distance (between two nodes) we can use a limit for peak separation presented for

some convolution kernels in [64], [65]). Alternatively, prior information about the expected size

of the underlying peaks (e.g. in microscopy the sizes of the molecules) can be considered. Then,

we recover as many peaks as the number of the disjoint clusters Ωl̂, for l̂ = 1, . . . , L̂ (where

L̂ is the total number of disjoint clusters estimated in the last iteration). The amplitude denoted

by γ̂l̂ in cluster Ωl̂ follows from equation (IV.8) using the coefficients entries of that cluster. For

the approximation of the the peak location in cluster Ωl̂, we first check the number of nonzero

July 14, 2020 DRAFT



38

coefficients denoted by Nl̂. If Nl̂ > d (where d is the dimensionality of the problem), the peak

location, ξ̂l, is estimated by solving a linear system formed using the expression (IV.9). Now, if

2 ≤ Nl̂ ≤ d then the peak location can be approximated with the help of linear basis functions, φk.

If the approximated location is expressed as ξ̂l̂ =
∑N

l̂

k=1 φkxk then by inserting the previous linear

representation for ξ̂l̂ in expression (IV.9), we can obtain an approximation for the peak location. If

Nl̂ = 1, then ξ̂l̂ equals to the value of the nonzero node (following from (IV.3)).
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