
1

Fast Graph Filters for
Decentralized Subspace Projection

Daniel Romero, Member, IEEE, Siavash Mollaebrahim, Student Member, IEEE,
Baltasar Beferull-Lozano, Senior Member, IEEE, and César Asensio-Marco, Member, IEEE.

Abstract—A number of inference problems with sensor net-
works involve projecting a measured signal onto a given subspace.
In existing decentralized approaches, sensors communicate with
their local neighbors to obtain a sequence of iterates that asymp-
totically converges to the desired projection. In contrast, the
present paper develops methods that produce these projections in
a finite and approximately minimal number of iterations. Building
upon tools from graph signal processing, the problem is cast as
the design of a graph filter which, in turn, is reduced to the design
of a suitable graph shift operator. Exploiting the eigenstructure
of the projection and shift matrices leads to an objective whose
minimization yields approximately minimum-order graph filters.
To cope with the fact that this problem is not convex, the present
work introduces a novel convex relaxation of the number of
distinct eigenvalues of a matrix based on the nuclear norm of
a Kronecker difference. To tackle the case where there exists
no graph filter capable of implementing a certain subspace
projection with a given network topology, a second optimization
criterion is presented to approximate the desired projection while
trading the number of iterations for approximation error. Two
algorithms are proposed to optimize the aforementioned criteria
based on the alternating-direction method of multipliers. An
exhaustive simulation study demonstrates that the obtained filters
can effectively obtain subspace projections markedly faster than
existing algorithms.

Keywords—Subspace projection, graph filters, graph signal pro-
cessing, decentralized signal processing, wireless sensor networks.

I. INTRODUCTION

A frequent inference problem in signal processing involves
the estimation of a spatial field using measurements collected
by a (possibly wireless) sensor network [2]–[6]. The field
of interest may quantify magnitudes such as temperature,
electromagnetic radiation, concentration of airborne or liquid
pollutants, flows of gas or liquids in porous soils and rocks
such as oil reservoirs, acoustic pressure, and radioactivity to
name a few. Instead of spatial fields, one may be alternatively
interested in fields defined on the nodes or edges of a network;

Daniel Romero is with the Department of Information and Communication
Technology, University of Agder, Norway. Siavash Mollaebrahim and Baltasar
Beferull-Lozano are with the Intelligent Signal Processing and Wireless
Networks (WISENET) Center, University of Agder, Norway. Cesar Asen-
sio is with the AINIA Technology Center, Spain. e-mail:{daniel.romero,
siavash.mollaebrahim, baltasar.beferull}@uia.no, ceamar@gmail.com

This work was supported in part by the PETROMAKS Smart-Rig grant
244205/E30 and the SFI Offshore Mechatronics grant 237896/O30 from the
Research Council of Norway.

Part of this work was presented in the Int. Conf. on Acoustics, Speech, and
Signal Processing, Calgary, Canada, 2018 [1].

see e.g. [7]. In either case, a number of common inference tasks
such as least squares estimation, denoising, (weighted) consen-
sus, and decentralized detection can be cast as projecting the
observations onto a given signal subspace; see e.g. [8]–[10].
Such a fundamental task can be implemented in a centralized
fashion, where a fusion center gathers and processes the
measurements collected by all sensors. Unfortunately, this
approach gives rise to i) communication bottlenecks, since
those nodes near the fusion center are required to forward
data packets from many sensors, ii) computational challenges,
since the load is concentrated in the fusion center, and iii)
vulnerability to attacks or failure of the fusion center. For
these reasons, the decentralized paradigm, where there is
no central processor and all nodes share the computational
load, is oftentimes preferred [11]. These implementations are
therefore scalable, robust, and balance the communication
and processing requirements across nodes. The present paper
capitalizes on the notion of graph filter [12], [13] to develop
algorithms for computing projections in a decentralized fashion
with an approximately minimal number of iterations.

To tackle problems involving decentralized processing, it is
common to define a communication graph where each node
represents a sensor and there exists an edge between two
nodes if the corresponding sensors can communicate, e.g. via
a radio link. One could therefore feel inclined to address the
problem at hand using standard inference tools for data defined
on graphs; see e.g. [14]–[19]. However, these methods are
based on exploiting a certain relation between the data and
the graph; e.g. smoothness [16]. Therefore, this framework
fundamentally differs from the one at hand since here the graph
only provides information about how the sensors communicate,
i.e., it does not generally provide information about the spatial
field of interest.1 To obtain a decentralized subspace projection
algorithm, one could instead adopt a decentralized optimization
standpoint, e.g. via the distributed least mean squares (DLMS)
method in [20], based on the alternating direction method of
multipliers (ADMM) [21], [22], or the decentralized gradient
descent (DGD) method in [23], which builds upon gradient
descent. Although these algorithms can accommodate general
objective functions, their convergence is only asymptotic and
can be significantly improved by exploiting the structure of
the subspace projection problem; see Sec. V. For this reason,

1If the field is smooth over space and the graph is also smooth over space,
meaning that nodes that are spatially close have a low geodesic distance in the
graph, then both notions may approximately coincide. However, even in this
case, exploiting spatial information would still be more accurate. Fortunately,
as described in this paper, graph signal processing tools can still be applied
to exploit spatial smoothness rather than graph smoothness.

ar
X

iv
:2

01
1.

07
57

9v
1

 [
st

at
.C

O
]

 1
5

N
ov

 2
02

0

2

a method tailored to computing projections in a decentralized
fashion was proposed in [24], later extended in [25] and [26],
where every node obtains each iterate by linearly combining its
previous iterate with the previous iterate of its neighbors. The
combination weights are adjusted to achieve a fast asymptotic
convergence. The main strength of this approach is its simplic-
ity, since each node simply repeats the same operation over and
over. The price to be paid is that convergence is asymptotic,
which means that a large number of data packages need to
be exchanged to attain a prescribed projection accuracy. In
addition, these algorithms can only accommodate a limited set
of topologies [27]. A special case of the subspace projection
problem is average consensus, where the signal subspace
comprises the vectors whose entries are all equal. For this
special case, the algorithms in [28], [29] produce projections
with a finite number of communication rounds. A graph signal
processing [12], [13] perspective to tackle this special case
was adopted in [30]. Unfortunately, these schemes cannot be
applied to the general subspace projection problem. A more
general framework is proposed in [31], which would allow
implementation of a projection with a graph filter if one were
given a shift matrix such that a subset of its eigenvectors spans
the subspace of interest. Unfortunately, this framework does
not include any method to find such a shift matrix in a general
case unless the target subspace is of dimension 1. An even
more general setup is presented in [32], which approximates an
arbitrary linear transformation at the expense of more complex
node computations through the notion of “edge-variant” graph
filters. Unfortunately, the non-convex [33] nature of the opti-
mization problem involved therein yields no guarantees that a
projection filter can be found even if it exists and may lead
to unpredictable behavior if the network topology is modified
and the filter weights need to be updated. Besides, even in the
unlikely event that the optimization algorithm finds a global
optimum, the resulting filter is not necessarily implementable
in a small number of iterations. Further graph-filter design
schemes abound, but they typically seek implementing a given
frequency response [34]–[36] relative to a given shift matrix.

To sum up, there is no decentralized algorithm for com-
puting general subspace projections in a finite number of
iterations. The present paper fills this gap by suitably designing
a shift matrix and the graph filter coefficients. The sought
filter is of approximately minimal order, which implies that
the number of data exchanges among nodes is approximately
minimized. The minimal order is seen to depend on the
multiplicity of the eigenvalues of the shift matrix. Since max-
imizing this multiplicity would lead to a non-convex problem,
a novel convex relaxation technique is developed relying on
a nuclear norm functional of the shift matrix. To solve the
resulting optimization problem, a solver based on ADMM
is also developed. For those scenarios where there exists no
graph filter that can implement the desired projection on the
given topology, a method is proposed to approximate such a
projection while trading approximation error for filter order.
Another ADMM solver is developed for this case.

The conference precursor [1] of this work contains The-
orem 1 and the key steps leading to (P1-R). Most of the
analysis, simulations, the approximate projection method, and

the ADMM solvers are presented here anew. We also published
a related subgradient method in [37] but it is not contained in
the present manuscript.

The paper is structured as follows. Sec. II formulates the
problem, reviews common applications, and lies some back-
ground on graph filters. Secs. III and IV respectively propose
methods for exact and approximate projection implementation.
Finally, Sec. V presents the simulations and Sec. VI sum-
marizes the main conclusions and provides a discussion. One
proof and the derivations of the ADMM methods are provided
in the supplementary material.

Notation: Symbol := denotes equality by definition. For sets
A and B, the cardinality of A is denoted as |A| whereas A (B
indicates that A is a proper subset of B. Boldface lowercase
(uppercase) letters represent column vectors (matrices). The `n
norm of vector v is denoted as ‖v‖n. With A and B matrices
of appropriate dimensions, [A;B] and [A,B] respectively
denote their vertical and horizontal concatenation, A> the
transpose of A, cols(A) the set of the columns of A, diag(A)
a vector comprising the diagonal entries of A, R(A) the span
of the columns of A, A⊗B the Kronecker product of A and
B, evals(A) the set of eigenvalues of A, λi(A) the i-th largest
eigenvalue of A, σi(A) the i-th largest singular value of A,
||A||2 := σ1(A) the 2-norm ofA, and ||A||? :=

∑
i σi(A) the

nuclear norm of A. For a subspace A, notation A⊥ represents
the orthogonal complement. Finally, E denotes expectation and
N the normal distribution.

II. PRELIMINARIES

A. The Subspace Projection Problem
Let G(V, E) denote a graph with vertex set V = {1, . . . , N},

where each vertex corresponds to a sensor or node, and edge
set E ⊂ V2. Let there be an edge (n, n′) in E if and only if
(iff) the nodes n and n′ can communicate directly, e.g. through
their radio interface. Thus, it is natural to assume (i) that E
contains all self loops, i.e., (n, n) ∈ E ∀n ∈ V , and (ii) that
G is undirected, which means that (n, n′) ∈ E implies that
(n′, n) ∈ E . The neighborhood of the n-th node is defined as
Nn = {n′ | (n, n′) ∈ E}.

Given z = [z1, . . . , zN]>, where zn ∈ R denotes the
observation or measurement acquired by the n-th node, the
goal is to estimate the signal vector ξ ∈ RN , which quantifies
the phenomenon of interest (e.g. temperature field). The latter
is related to z via

z = ξ + v, (1)

where v ∈ RN stands for additive noise. Vector ξ is known to
lie in a given subspaceR{U‖} of dimension r < N , where the
columns of U‖ ∈ RN×r are assumed orthonormal without loss
of generality (w.l.o.g.). Hence, ξ can be expressed as ξ = U‖α
for some α ∈ Rr.

The orthogonal projection of z onto R{U‖}, also known
as the least-squares estimate2 of ξ, is given by:

ξ̂ := U‖U
>
‖ z

∆
=Pz , (2)

2Also the best linear unbiased estimator, minimum variance unbiased esti-
mator, and maximum likelihood estimator [8] under appropriate assumptions.

3

where P ∈ RN×N is the projection matrix onto R{U‖}. The
subspace projection problem is to find ξ̂ given z and U‖.
Vector ξ̂ is expected to be a better estimate of ξ than z since
the noise is annihilated along N − r dimensions.

B. The Choice of the Basis
This section discusses specific choices of the basis U :=

{u1, . . . ,ur} formed by the columns of U‖ in different ap-
plication scenarios where a spatial field needs to be monitored.
To this end, let xn ∈ Rd denote the spatial location of the n-
th sensor, where d = 2 or 3. Similarly, let x ∈ Rd denote
an arbitrary location in the area of interest. Suppose that the
goal is to estimate a spatial field ξ : Rd → R given the
measurements in (1), where ξ := [ξ(x1), . . . , ξ(xN)]>.

Oftentimes, the physics of the problem directly provides a
linear parametric expansion for ξ. For example, in the case
of a diffusion field, such as a temperature field, one has

ξ(x) =

r∑
i=1

exp
{
−‖x− xs,i‖22/(2σ2

i)
}

2πσ2
i

α̃i (3)

for some coefficients α̃i, where xs,i is the location of the i-th
source and the parameters {σ2

i }ri=1 are related to the diffusivity
of the medium. In some cases governed by a wave equation,
as occurs in wireless communications (see e.g. [38]), ξ may
admit an expansion in terms of Cauchy bells [24]:

ξ(x) =

r∑
i=1

1

1 + ‖x− xs,i‖22/σ2
i

α̃i. (4)

To obtain U , evaluate (3) or (4) at the sensor locations and
collect the coefficients that multiply each α̃i to form the
vector ũi ∈ RN , i = 1, . . . , r. This yields the expansion
ξ =

∑r
i=1 ũiα̃i. Finally, orthonormalize {ũi}ri=1.

This approach applies when ξ satisfies a parametric expan-
sion as in (3) or (4) and this expansion is known. However,
it is often the case that the form of the expansion is known
but it contains unknown parameters, the form of the expansion
is not even known, or the field does not even admit a linear
expansion but it approximately does. In these situations, one
may still pursue a linear inference approach by capitalizing on
some form of smoothness that the target field exhibits across
space. For instance, ξ can be approximately bandlimited, which
means that ξ can be reasonably approximated by a reduced
number r of Fourier or discrete cosine transform (DCT) basis
functions. In the latter case, upon letting x := [x1, x2]>, one
can write

ξ(x) ≈
r1−1∑
i1=0

r2−1∑
i2=0

αi1,i2 (5)

× cos

(
π

X1
i1

(
x1 +

1

2

))
cos

(
π

X2
i2

(
x2 +

1

2

))
.

Here, X1 and X2 denote the length along the 1st and 2nd
dimensions of the region where ξ is defined. The vector α
defined in Sec. II-A can be recovered by stacking the r1r2

coefficients {αi1,i2}, whereas U can be found as described
earlier in this section.

Besides Fourier or DCT bases, one may pursue approx-
imations based on any other collection of basis functions
such as conventional polynomials, discrete prolate spheroidal
functions, and wavelets. Note that in any approximation of
this kind there is a fundamental variance-bias trade-off; see
e.g. [39, Ch. 3.4]. To see this, note that the signal-to-noise ratio
after projection in the model (1) is given by ‖Pξ‖22/E[‖Pv‖22].
If v has zero mean and covariance matrix E[vv>] = σ2IN ,
then E[‖Pv‖22] = E[‖U‖U>‖ v‖22] = σ2 Tr[P] = σ2r. Thus,
although a basis with a larger r may capture more signal
energy ‖Pξ‖22, the power of the noise component in ξ̂ is also
increased.

C. Graph Filters

This section briefly reviews the notion of graph filters [12],
[13], which constitute a central part of the proposed algorithms.
In this context, vector z := [z1, . . . , zN]> is referred to as a
graph signal, which emphasizes the fact that the entry zn is
stored at the n-th node.

A graph filter involves two steps, as described next. In
the first step, a finite sequence of graph signals {z(l)}Ll=0,
where z(l) := [z

(l)
1 , . . . , z

(l)
N]>, is collaboratively obtained by

the network through a sequence of L local data exchange
rounds, or just local exchanges for short, where z(0) := z
is the graph signal to filter. At the l-th round, each node
sends its z

(l−1)
n to its neighbors and computes a linear

combination of the entries {z(l−1)
n′ }n′∈Nn

that it receives
from them. Specifically, the next graph signal is obtained as
z

(l)
n =

∑
n′∈Nn

sn,n′z
(l−1)
n′ , n = 1, . . . , N, where sn,n′ is the

coefficient corresponding to the linear aggregation that takes
place between nodes n and n′. By letting sn,n′ = 0 whenever
n′ /∈ Nn, one can equivalently write z(l)

n =
∑N
n′=1 sn,n′z

(l−1)
n′

or, in matrix form, z(l) = Sz(l−1), where S ∈ RN×N is
given by (S)n,n′ = sn,n′ , n, n′ = 1, . . . , N . In the graph
signal processing literature, the matrix S is usually referred
to as shift matrix [31]. More generally, an N × N matrix S
is said to be a shift matrix over the graph G := (V, E) if
(S)n,n′ = 0 for all (n, n′) /∈ E . The set of all possible shift
matrices over G will be denoted as SG . Examples of matrices
in SG include the adjacency and Laplacian matrices of G [31].
Associated with the shift matrix is the shift operator, defined as
the function z 7→ Sz. Notice that, upon recursively applying
z(l) = Sz(l−1), one can write3 z(l) = Slz, l = 0, . . . , L.

In the second step of the graph filter, all nodes linearly
combine the iterates in the first step. Specifically, the following
graph signal is computed:

y =

L∑
l=0

clz
(l) =

L∑
l=0

clS
lz (6)

where cl ∈ R, l = 0, . . . , L, are the so-called filter coefficients.

3Throughout the paper, A0 for a square matrix A denotes the identity
matrix of the same size as A, regardless of whether A is invertible.

4

The operation in (6) can be generically expressed as z 7→
Hz, where

H :=

L∑
l=0

clS
l, (7)

and is commonly referred to as an order-L graph filter. An
important implication of the Cayley-Hamilton Theorem [40]
is that for any order-L graph filter H with L ≥ N , there
exists an order-(N − 1) graph filter H ′ with shift matrix
S and coefficients c′l such that H = H ′. This establishes
an upper bound on the order and, therefore, the number of
local exchanges required to apply a graph filter. Thus, one can
assume w.l.o.g. that L ≤ N − 1.

D. Asymptotic Decentralized Projections
A decentralized scheme for subspace projection was pro-

posed in [24]. There, a matrix S is found such that (i) S ∈ SG
and (ii) liml→∞ S

l = P . Then, the nodes compute the se-
quence {z(l), l = 0, 1, . . .}, where z(l) = Slz. This constitutes
the infinite counterpart of the first step in a graph filter; cf.
Sec. II-C. Due to (ii), it follows that liml→∞ z

(l) = Pz, as
desired. The main strength of this method is its simplicity,
since each node just needs to store one coefficient for each
neighbor and the same operation is repeated over and over. A
limitation is that the number of local exchanges required to
attain a target error ||z(l) − Pz|| is generally high since this
approach only provides asymptotic convergence. Furthermore,
the set of graphs for which (i) and (ii) can be simultaneously
satisfied is considerably limited; see Sec. V and [27].

III. EXACT PROJECTION FILTERS

This section proposes an algorithm to find a graph filter
that yields a subspace projection in an approximately minimal
number of iterations. To this end, Secs. III-A and III-B
formalize the problem and characterize the set of feasible shift
matrices for a given E and U‖. Subsequent sections introduce
an optimization methodology to approximately minimize the
order of the filter, i.e. the number of communication steps
needed to obtain the projection via graph filtering.

A. Minimum-order Projection Filters
To solve the subspace projection problem formulated in

Sec. II-A with a graph filter, one could think of finding a shift
matrix S ∈ SG and a set of coefficients {cl}Ll=0 such that
Pz =

∑L
l=0 clS

lz for all z ∈ RN or, equivalently, such that
P =

∑L
l=0 clS

l. Since P is symmetric, it will be assumed
that S is also symmetric. To assist in this quest, consider the
following definition:

Definition 1: Let Q ∈ RN×N be an arbitrary (not necessar-
ily a projection) matrix. A symmetric matrix (not necessarily a
shift matrix) S ∈ RN×N is polynomially feasible to implement
the operator z 7→ Qz if there exist L and c := [c0, . . . , cL]>

such that
∑L
l=0 clS

l = Q.
For a given Q, the set of all polynomially feasible matrices
S ∈ RN×N will be denoted as FQ. Except for the tip, this
set is a cone since S ∈ FQ implies κS ∈ FQ for all κ 6= 0.

Note that given a matrix in FQ, it is straightforward to
obtain c such that

∑L
l=0 clS

l = Q; see e.g. [31] and Sec. III-B.
One may then consider the following feasibility problem:
Given a graph G := (V, E) and a projection matrix P , find
a polynomially feasible shift matrix, i.e., find S ∈ SG ∩ FP .
When this problem admits a solution, we say that there exists
an exact projection filter for implementing P on G. Whether
this is the case depends on P and G. For example, if G is
too sparse, then P will not be computable as a graph filter.
In the extreme case where G is fully disconnected, then the
only computable projection is P = IN . Conversely, when G
is fully connected, then all projections can be computed as a
graph filter. Furthermore, given that SG is a subspace and that
S ∈ FQ implies κS ∈ FQ for all κ 6= 0, it is easy to see
that such a feasibility problem either has no solution or has
infinitely many.

When feasible shifts exist, it is reasonable to seek the S
that minimizes the number of local exchanges L. For arbitrary
matrices S and Q, define OQ(S) as the minimum L such
that Q =

∑L
l=0 clS

l for some {cl}Ll=0. In view of the bound
dictated by the Cayley-Hamilton Theorem (Sec. II-C), OQ(S)
can be viewed as a function OQ : FQ → {0, . . . , N − 1}.
Given a projection matrix P , the problem of finding the shift
matrix associated with the minimum-order filter can therefore
be formulated as:

minimize
S

OP (S)(P1)

s.t. S ∈ SG ∩ FP .

Conversely, when SG ∩ FP = ∅, there exists no graph filter
capable of implementing P . For those cases, Sec. IV describes
how to find a graph filter that approximates P .

B. Polynomially Feasible Matrices
To assist in solving (P1), this section presents an algebraic

characterization of the set FP of polynomially feasible ma-
trices. Recall that the matrices in this set need not be shift
matrices, that is, they need not satisfy the topology constraints
determined by the edge set E .

Lemma 1: Let U‖ ∈ RN×r with orthonormal columns be
given and let P = U‖U

>
‖ . Let also U⊥ ∈ RN×N−r with

orthonormal columns satisfy R(U⊥) = R⊥(U‖). If S ∈ FP ,
then there exist symmetric matrices F ‖ ∈ Rr×r and F⊥ ∈
RN−r×N−r such that:

S =
[
U‖ U⊥

] [F ‖ 0
0 F⊥

] [
U>‖
U>⊥

]
. (8)

Proof: See Appendix A.
Note that matrices F ‖ and F⊥ satisfying (8) exist regard-

less4 of the choice of U‖ and U⊥ as long as the columns of

4Note that the algorithms in this paper produce the same filters for all
matrices U‖ that span a given signal subspace R{U‖}; likewise for U⊥.
Thus, the obtained filters only depend on the signal subspace and not on
the specific choice of the basis. This property is what bypasses the difficulty
encountered in [31, eq. (20)], which will typically be infeasible for graphs
with more than N missing edges.

5

U‖ and U⊥ respectively constitute an orthonormal basis for
the signal subspace R{U‖} and its orthogonal complement
R⊥(U‖). As seen later, the converse of Lemma 1 does not
hold.

To understand the implications of Lemma 1, rewrite (8) as

S = U‖F ‖U
>
‖ +U⊥F⊥U

>
⊥ = S‖ + S⊥, (9)

where S‖ := U‖F ‖U
>
‖ and S⊥ := U⊥F⊥U

>
⊥ are symmetric

matrices whose column spans are respectively contained in the
signal subspace and its orthogonal complement. Thus, they
clearly satisfy S>‖ S⊥ = S>⊥S‖ = 0. Note that even if S
is a shift matrix, i.e. S ∈ SG , matrices S‖ and S⊥ may
not be shift matrices. Consider now the eigendecompositions
F ‖ = Q‖Λ‖Q

>
‖ ,F⊥ = Q⊥Λ⊥Q

>
⊥ for orthogonal Q‖ ∈

Rr×r,Q⊥ ∈ RN−r×N−r and diagonal Λ‖ ∈ Rr×r,Λ⊥ ∈
RN−r×N−r. Then, (8) can be rewritten as:

S =
[
U‖Q‖ U⊥Q⊥

] [Λ‖ 0
0 Λ⊥

] [
Q>‖ U

>
‖

Q>⊥U
>
⊥

]
. (10)

This is clearly an eigenvalue decomposition of S. It further
shows that evals(S) = evals(F ‖) ∪ evals(F⊥). In view of
(10), Lemma 1 establishes that any S ∈ FP has exactly r
orthogonal eigenvectors (the columns of U‖Q‖) in the signal
subspace and N−r (the columns of U⊥Q⊥) in its orthogonal
complement.

The following definition builds upon Lemma 1 to introduce
a necessary condition for feasibility of a shift matrix that will
prove instrumental in subsequent sections.

Definition 2: Let U‖ and U⊥ be given. If S ∈ RN×N is
such that it satisfies (8) for some symmetric F ‖ ∈ Rr×r and
F⊥ ∈ RN−r×N−r, then S is said to be pre-feasible.
Note again that this definition is independent of the choice of
U‖ and U⊥ so long as their columns respectively form a basis
for the signal subspace and its orthogonal complement. Given
P ∈ RN×N , the set of all pre-feasible matrices in RN×N will
be denoted as F̃P .

Observe that all matrices in FP are also in F̃P . However,
not all matrices in F̃P are in FP . Trivial examples include
S = IN (recall that r < N) and S = 0. The rest of this
section will characterize the matrices in F̃P that are in FP . In
particular, it will be seen that any pre-feasible matrix S where
Λ‖ and Λ⊥ share at least an eigenvalue is not polynomially
feasible. To this end, note from Definition 1 and (10) that any
pre-feasible matrix must satisfy

P = U‖Q‖

[L∑
l=0

clΛ
l
‖

]
Q>‖ U

>
‖ +U⊥Q⊥

[L∑
l=0

clΛ
l
⊥

]
Q>⊥U

>
⊥

(11)

for some {cl}Ll=0 to be polynomially feasible. Multiplying both
sides of (11) on the left by U>‖ and on the right by U‖,
it follows that Q‖

[∑L
l=0 cl Λl

‖
]
Q>‖ = Ir or, equivalently,∑L

l=0 cl Λl
‖ = Ir. Likewise, multiplying both sides of (11)

on the left by U>⊥ and on the right by U⊥, it follows that

∑L
l=0 cl Λl

⊥ = 0. Arranging these two conditions in matrix
form yields:

[
1r

0N−r

]
=

1 λ1 . . . λL1
...

...
. . .

...
1 λr . . . λLr
1 λr+1 . . . λLr+1
...

...
. . .

...
1 λN . . . λLN

c0
c1
...
cL

 , (12)

where λ1, . . . , λN are such that Λ‖ , diag{λ1, . . . , λr} and
Λ⊥, diag{λr+1, . . . , λN}. Vandermonde systems such as (12)
frequently arise when designing graph filters; see e.g. [30],
[31]. With the appropriate definitions, it can be expressed in
matrix form as:

λP = Ψc, (13)

which provides a means to obtain the coefficients {cl}Ll=0 when
(13) admits a solution.

To understand when the latter is the case, assume w.l.o.g.
that L = N − 1 since the existence of a solution to (12) for
some L implies its existence for L = N − 1. Since Ψ is a
square Vandermonde matrix, any two rows corresponding to
distinct eigenvalues are linearly independent. Looking at the
left-hand side of (12), it is easy to see that the system (12)
admits a solution iff Λ‖ and Λ⊥ do not share eigenvalues.

This conclusion can be combined with Lemma 1 as follows:
Theorem 1: Let S ∈ RN×N be symmetric. Then, S ∈ FP

iff both the following two conditions hold:

S ∈ F̃P , i.e., it satisfies (8)(C1)
for some symmetric F⊥ and F ‖,

evals(F ‖) ∩ evals(F⊥) = ∅.(C2)

C. Filter Order Minimization

Theorem 1 implies that (P1) can be reformulated as the
minimization of OP (S) subject to S ∈ SG , (C1), and
(C2). This section and the next develop a reformulation more
amenable to application of a numerical solver.

The first step is to express the objective function OP (S)
more explicitly. To that end, consider the following result:

Lemma 2: If S = U‖F ‖U
>
‖ +U⊥F⊥U

>
⊥ ∈ FP , then

OP (S) ≤ L(F ‖) + L(F⊥)− 1, (14)

where L(·) is the number of distinct eigenvalues of its argu-
ment.

Proof: Computing OP (S) for a given S amounts to
determining the minimum L for which (12), or equivalently
its compact version (13), admits a solution. Since S ∈ FP
by hypothesis, one has that (13) is satisfied for at least one
value of L. Let L0 denote the smallest value for which (13)
holds. Since Ψ is Vandermonde, it has at most L(S) linearly
independent rows, which implies that L0 + 1 ≤ L(S). The
proof is completed by noting from Theorem 1 that L(S) =
L(F ‖) + L(F⊥).

6

In practice, the bound in (14) will hold with equality unless
in degenerate cases. For example, when N = 4, r = 2, λ1 =
−λ2 and λ3 = −λ4 6= |λ1|, it can be seen that OP (S) =
2 whereas L(F ‖) + L(F⊥) − 1 = 3. However, in general,
such an S will only be in SG ∩ FP if P and G are jointly
selected to achieve this end, which will not occur in a practical
application. In words, Lemma 2 implies that one may seek the
shift matrix of an approximately minimal-order projection filter
as the matrix with the smallest number of distinct eigenvalues
among all matrices in the feasible set of (P1).

Next, this feasible set is rewritten more explicitly. To this
end, split the constraint S ∈ SG ∩FP into the two constraints
S ∈ SG and S ∈ FP . Regarding S ∈ SG , recall from the
definition of SG in Sec. II-C that S ∈ SG iff (S)n,n′ = 0
for all (n, n′) such that (n, n′) /∈ E . Because any S that is
feasible for (P1) has to be in FP and all the matrices in this
set are symmetric, any feasible S is necessarily symmetric.
Thus, one can just require that (S)n,n′ = 0 only for those
(n, n′) such that (n, n′) /∈ E and n < n′. With en the n-th
column of the identity matrix IN , it follows that (S)n,n′ =
e>nSen′ = (en′ ⊗ en)>vec(S). Thus, the constraint S ∈ SG
can be expressed as W vec(S) = 0, where W is a matrix
whose rows are given by the vectors {(en′ ⊗ en)>,∀(n, n′)
such that (n, n′) /∈ E and n < n′}. As expected, the fewer
edges in the graph, the more rows W has and, consequently,
the smaller the feasible set. In the extreme case of a fully
disconnected graph, only the diagonal matrices satisfy S ∈ SG
(recall that E contains all self-loops; cf. Sec. II-A).

On the other hand, the constraint S ∈ FP can be easily
expressed invoking Theorem 1 and introducing two auxiliary
optimization variables F ‖ and F⊥.

In view of these observations and Lemma 2, problem (P1)
becomes

minimize
S,F ‖,F⊥

L(F ‖) + L(F⊥)

s.t. W vec(S) = 0

S = U‖F ‖U
>
‖ +U⊥F⊥U

>
⊥

F ‖ = F>‖ , F⊥ = F>⊥

λn(F ‖) 6= λn′(F⊥) ∀n, n′

(P1’)

for an arbitrary choice of U⊥ ∈ RN×N−r with orthonormal
columns spanning R⊥(U‖).

Two further modifications are in order. First, note that (P1’)
is invariant to scalings in the sense that if (S,F ‖,F⊥) is
feasible, then (κS, κF ‖, κF⊥) is also feasible and attains the
same objective value ∀κ 6= 0. For this reason, the constraint
Tr(F ‖) = r will be introduced w.l.o.g. to eliminate this
ambiguity.

Second, the feasible set of (P1’) is not a closed set due to
the constraint λn(F ‖) 6= λn′(F⊥) ∀n, n′, implying that the
optimum may not be attained through an iterative algorithm.
In practice, this constraint holds so long as the eigenvalues of
F ‖ differ from those of F⊥, even if there is an eigenvalue
of F ‖ arbitrarily close to an eigenvalue of F⊥. But in the
latter case, the numerical conditioning of (12) would be poor,
implying that the target projection cannot be implemented
as a graph filter using finite-precision arithmetic. Thus, the

aforementioned constraint should be replaced with another one
that ensures that (i) the feasible set is closed, and (ii) the
eigenvalues of F ‖ are sufficiently different from those of F⊥.
One natural possibility is |λn(F ‖) − λn′(F⊥)| ≥ ε ∀n, n′,
where ε > 0 is a user-selected parameter. Unfortunately, this
constraint is not convex, but an effective relaxation will be
presented in the next section.

To sum up, the optimization problem to be solved is:

minimize
S,F ‖,F⊥

L(F ‖) + L(F⊥)

s.t. W vec(S) = 0, Tr(F ‖) = r

S = U‖F ‖U
>
‖ +U⊥F⊥U

>
⊥

F ‖ = F>‖ , F⊥ = F>⊥

|λn(F ‖)− λn′(F⊥)| ≥ ε ∀n, n′.

(P1”)

Remarkably, the set of topologies for which (P1”) is feasible
is strictly larger than the set of topologies for which the method
proposed in [24] (and reviewed in Sec. II-D) can be applied.
It can be easily seen that any feasible matrix for the problem
in [24] must be in SG ∩ FP and, additionally, N − r of
its eigenvalues must be equal to 1 whereas the rest must be
less than 1. It follows that the feasible set therein is strictly
contained in the feasible set of (P1’).

D. Exact Projection Filters via Convex Relaxation
Problem (P1”) is non-convex because (i) the objective func-

tion is not convex and (ii) the last constraint, which does not
define a convex set. This section proposes a convex problem
to approximate the solution to (P1”).

To address (i), recall that L(F ‖) equals the number of
distinct eigenvalues of F ‖ and note that the larger L(F ‖),
the larger the number of non-zero elements of the vector
[λ1 − λ2, λ1 − λ3, . . . , λ1 − λr, λ2 − λ3, . . . , λr−1 − λr]>. A
similar observation applies to L(F⊥). This suggests replacing
the objective in (P1”) with

r∑
n=1

r∑
n′=1

||λn(F ‖)− λn′(F ‖)||0+ (15)

N−r∑
n=1

N−r∑
n′=1

||λn(F⊥)− λn′(F⊥)||0,

where ‖x‖0 is the so-called zero norm or number of non-zero
elements of vector x. A typical convex surrogate of the zero
norm is the l1-norm [41]. However, just replacing || · ||0 in (15)
with an l1-norm would still give rise to a non-convex objective
since it involves the functions λn(·). One of the key ideas in
this paper is to apply the following result:

Lemma 3: Let A be an N × N matrix with eigenvalues
λ1, λ2, . . . , λN . Then,

‖A⊗ IN − IN ⊗A‖∗ =

N∑
n=1

N∑
n′=1

|λn − λn′ |. (16)

Proof: See Appendix B.
Applying Lemma 3 to (15) suggests replacing the objective in
(P1”) with ||F ‖⊗ Ir − Ir ⊗F ‖||? + ||F⊥⊗ IN−r − IN−r ⊗

7

F⊥||?. The implications of this relaxation are further discussed
in Appendix D.

Regarding (ii), note that constraint |λn(F ‖)− λn′(F⊥)| ≥
ε ∀n, n′ renders the feasible set non-convex due to (ii-1) the
functions λn(·) and (ii-2) the absolute value. To deal with (ii-
1), a sensible approach is to relax the constraints |λn(F ‖) −
λn′(F⊥)| ≥ ε ∀n, n′ into a single constraint which requires
only that the average of the eigenvalues of F ‖ must differ
sufficiently from the average of the eigenvalues of F⊥, that is∣∣∣∣∣1r

r∑
n=1

λn(F ‖)−
1

N − r

N−r∑
n=1

λn(F⊥)

∣∣∣∣∣ ≥ ε
for some user-selected ε > 0. Clearly, this constraint is
equivalent to

∣∣Tr(F ‖)/r − Tr(F⊥)/(N − r)
∣∣ ≥ ε and, using

the constraint Tr(F⊥) = r introduced in (P1”), becomes
equivalent to |1− Tr(F⊥)/(N − r)| ≥ ε. To deal with (ii-
2), one can now use the definition of absolute value to
conclude that this constraint is satisfied if either Tr(F⊥) ≤
(1 − ε)(N − r) or Tr(F⊥) ≥ (1 + ε)(N − r). Both of these
inequalities are affine and therefore convex, however the OR
condition renders the feasible set non-convex. However, a
solution can be readily found by first solving the problem
with the constraint Tr(F⊥) ≤ (1 − ε)(N − r), then solving
it with the constraint Tr(F⊥) ≥ (1 + ε)(N − r) instead,
and finally comparing the objective values achieved at the
optimum of both these sub-problems. To simplify the task of
solving the resulting problem, note that the solution in both
subproblems will satisfy the corresponding constraint with
equality. To see this, note that if the inequality constraint is re-
moved, the optimum of the resulting convex problem becomes
(S,F ‖,F⊥) = (IN , Ir, IN−r). Due to convexity and since
this optimum does not satisfy the removed constraint, such a
constraint will become necessarily active when introduced.

In view of these observations, the last constraint in (P1”)
will be replaced with Tr(F⊥) = (1± ε)(N − r), where the ±
sign indicates that both subproblems must be solved separately.
Except for degenerate cases, one expects that these relaxed
constraints will suffice to ensure that F⊥ and F ‖ do not share
eigenvalues. However, although this was indeed observed in
our experiments, sometimes an eigenvalue of F⊥ may become
sufficiently close to an eigenvalue of F ‖ in such a way that
the Vandermonde system (12) becomes poorly conditioned. To
alleviate this situation, a penalty proportional to ||F⊥||2F will
be added to the objective to “push” the eigenvalues of F⊥
towards zero.

With all these considerations, the resulting relaxed problem
becomes:

minimize
S,F ‖,F⊥

η‖||F ‖ ⊗ Ir − Ir ⊗ F ‖||?

+ η⊥||F⊥ ⊗ IN−r − IN−r ⊗ F⊥||? + ||F⊥||2F
s.t. W vec(S) = 0,

S = U‖F ‖U
>
‖ +U⊥F⊥U

>
⊥,(P1-R)

F ‖ = F>‖ , F⊥ = F>⊥,

Tr(F⊥) = (1± ε)(N − r),Tr(F ‖) = r,

where η‖ > 0 and η⊥ > 0 are user-specified parameters
to control the relative weight of each term in the objective.
Having two parameters rather than just one that scales the term
||F⊥||2F empowers the user with more flexibility to alleviate
possible numerical issues, as described earlier. A study of
the ability of (P1-R) to approximate the solution of (P1) is
presented in Appendix D.

An iterative solver for (P1-R) is proposed in Appendix E
in the supplementary material based on ADMM, therefore
inheriting its solid convergence guarantees.

IV. APPROXIMATE PROJECTION FILTERS

When the graph is too sparse for (P1) to admit a solution,
one may instead seek a low-order graph filter that approximates
P reasonably well. Before presenting an optimization criterion
to obtain the corresponding shift matrix, the next section
analyzes in which situations there exists an exact projection
filter.

A. Feasibility of Exact Projection Filters
The following result provides a necessary condition for

the existence of an exact projection shift matrix. Let Ē :=
{(n, n′) ∈ E : n ≤ n′} = {(n1, n

′
1), . . . , (nĒ , n

′
Ē

)} denote
the reduced edge set, where each of the Ē undirected edges
shows up only once. Consider also the symmetric shift matrices
Φi := enie

>
n′
i

+ en′
i
eni , i = 1, . . . , Ē, where only a single

edge is used. Clearly, all feasible shift matrices are linear
combinations of these matrices.

Theorem 2: Let Φ := [vec(Φ1), . . . , vec(ΦĒ)]. It holds
that

dim(SG ∩ F̃P) = Ē − rank((U>‖ ⊗U
>
⊥)Φ). (17)

Proof: See Appendix C.
Due to the presence of the scaled identity matrices in
SG ∩ F̃P (see Sec. III-B), a necessary condition for a fea-
sible projection filter to exist, i.e. SG ∩ FP 6= ∅, is that
dim(SG ∩ F̃P) > 1. From (17), this condition becomes
rank((U>‖ ⊗ U

>
⊥)Φ) ≤ Ē − 2. For future reference, this is

summarized as follows:
Corollary 1: If there exists an exact projection filter, i.e.
SG ∩ FP 6= ∅, then

rank((U>‖ ⊗U
>
⊥)Φ) ≤ Ē − 2. (18)

Note that this provides a condition that can be easily checked
before attempting to solve (P1-R). It also provides a guideline
on the minimum number of edges required to exactly imple-
ment a projection with a given r. Since (U>‖ ⊗ U

>
⊥)Φ ∈

Rr(N−r)×Ē , it follows that rank((U>‖ ⊗U
>
⊥)Φ) ≤ min(r(N−

r), Ē). To obtain a reference for the number of edges required
for the existence of exact projection filters, suppose that
(U>‖ ⊗ U

>
⊥)Φ is full rank, as often is the case. Then, (18)

becomes min(r(N − r), Ē) ≤ Ē − 2, which is equivalent to
r(N − r) ≤ Ē − 2. Thus, the number of edges required for
an exact projection filter to exist is in the order of r(N − r).
This agrees with intuition because the difficulty to implement

8

a projection must depend equally on r and N−r. This follows
by noting that (i) due to the term c0IN in (7), implementing P
with a graph filter is equally difficult as implementing IN−P ;
and (ii) P has rank r whereas IN − P has rank N − r. In
any case, note that this is just a guideline on the number of
edges. The existence of an exact projection filter will not only
depend on the number of edges but also on their locations.

Note that Corollary 1 provides a necessary condition for the
existence of an exact projection filter. Obtaining a sufficient
condition, in turn, is much more challenging. However, one
expects that SG ∩ FP 6= ∅ whenever dim(SG ∩ F̃P) > 1.
In fact we conjecture that, given a topology and generating
U‖ by orthonormalizing r vectors in RN drawn i.i.d. from a
continuous distribution, the event where dim(SG ∩ F̃P) > 1
and SG ∩ FP = ∅ has zero probability. In practice, however,
whether SG ∩FP is empty or not is not as relevant as it may
seem. To see this, remember from Theorem 1 that SG ∩FP 6=
∅ when there exists a pre-feasible shift matrix for which the
eigenvalues of F ‖ differ from those of F⊥. However, even
when this is the case, if one of the eigenvalues of F ‖ lies too
close to an eigenvalue of F⊥, the corresponding filter cannot
be implemented due to poor conditioning of (12). In short, even
when an exact projection filter may exist from a theoretical
perspective, such a filter may not be implementable in practice.
Instead, having a sufficiently large dim(SG∩FP) seems more
important since that would allow the user to choose a shift that
leads to a good conditioning of (12). In this sense, Theorem 2
suggests that the margin Ē − rank((U>‖ ⊗U

>
⊥)Φ) would be

a reasonable indicator of how easy it is to obtain an exact
projection filter.

B. Approximate Projection Criterion
The method proposed in Sec. III-D to obtain an exact

projection filter relies on solving (P1-R). Using this problem as
a starting point, the present section develops an optimization
criterion that yields low-order graph filters that approximate a
given projection operator.

To this end, note from the second constraint in (P1-R) and
the orthogonality of U‖ and U⊥ that F ‖ = U>‖ SU‖ and
F⊥ = U>⊥SU⊥. It is also easy to see that S is symmetric
iff F ‖ and F⊥ are symmetric; cf. Appendix A. Additionally,
one can also easily prove that any S can be expressed as S =
U‖F ‖U

>
‖ +U⊥F⊥U

>
⊥ for some F ‖ and F⊥ iff U>⊥SU‖ =

0. In words, the latter condition states that each eigenvector
of S must be either in the signal subspace or in its orthogonal
complement.

Then, problem (P1-R) can be equivalently expressed in
terms of S as

minimize
S

η‖||U
>
‖ SU‖ ⊗ Ir − Ir ⊗U

>
‖ SU‖||?+

η⊥||U
>
⊥SU⊥ ⊗ IN−r − IN−r ⊗U

>
⊥SU⊥||?+

||U>⊥SU⊥||2F(P1-R’)

s.t. W vec(S) = 0, S = S>, U>⊥SU‖ = 0,

Tr(U>‖ SU‖) = r,

Tr(U>⊥SU⊥) = (1± ε)(N − r).

0 5 10 15 20 25 30

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

P
E

(H
l)

Gossiping, p
miss

=.7

Exact Projection, p
miss

=.7

Rank-one Projection,p
miss

=.7

Gossiping, p
miss

=.8

Exact Projection, p
miss

=.8

Rank-one Projection,p
miss

=.8

Fig. 1: NMPE as a function of the number of communications
performed per node for the Erdős–Rényi networks (N = 30, r = 1,
ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1).

The constraint that renders (P1-R’) infeasible when an exact
projection filter does not exist is precisely U>⊥SU‖ = 0. This
suggests finding a shift for an approximate projection filter by
solving

minimize
S

η‖||U
>
‖ SU‖ ⊗ Ir − Ir ⊗U

>
‖ SU‖||?+

η⊥||U
>
⊥SU⊥ ⊗ IN−r − IN−r ⊗U

>
⊥SU⊥||?+

||U>⊥SU⊥||2F + λ||U>⊥SU‖||2F(P2-R)

s.t. W vec(S) = 0, S = S>,

Tr(U>‖ SU‖) = r,

Tr(U>⊥SU⊥) = (1± ε)(N − r),

where the separation of eigenspaces enforced by the constraint
U>⊥SU‖ = 0 in (P1-R’) is now simply promoted through the
last term in the objective. The parameter λ > 0 is selected by
the user to balance the trade off between approximation error
and filter order. An iterative solver for (P2-R) is proposed in
Appendix F of the supplementary material based on ADMM,
therefore inheriting its solid convergence guarantees.

V. NUMERICAL EXPERIMENTS

This section validates the performance of the proposed
algorithms by means of numerical experiments.5

The data generation process is as follows. Matrix U‖ is
obtained by orthonormalizing an N × r matrix with i.i.d.
standard Gaussian entries. This basis is assumed exactly
known, meaning that the error due to the selection of the
basis is disregarded; see Sec. II-B. To generate the observations
z = ξ + v, the noise is drawn as v ∼ N (0N , IN) and the
signal as ξ = U‖α, where α is obtained as α =

√
βN/r α0

with α0 ∼ N (0r, Ir) and with β := E‖ξ‖22/E‖v‖22 the signal-
to-noise ratio (SNR).

5The code necessary to reproduce the experiments is available at
github.com/uiano/fast_decentralized_projections.

9

0 5 10 15 20

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

P
E

(H
l)

Gossiping, r=2
Exact Projection, r=2
Gossiping, r=3
Exact Projection, r=3
Exact Projection, r=5

Fig. 2: NMPE as a function of the number of communications per-
formed per node for the Erdős–Rényi networks (N = 20, pmiss = 0.6,
ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1).

0 5 10 15 20 25 30

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

P
E

(H
l)

Exact projection, N=15, r=2
Gossiping, N=15, r=2
Exact projection, N=25, r=3
Gossiping, N=25, r=3
Exact projection, N=30, r=4
Gossiping, N=30, r=4

Fig. 3: NMPE as a function of the number of communications
performed per node for WSN (dmax = .6, ρ = 0.1, Imax = 1000,
η⊥ = 0.9, η‖ = 0.1, ε = 0.1).

The following kinds of networks are generated: (i)
Erdős–Rényi graphs, where the presence of each undirected
edge is an i.i.d. Bernoulli(1 − pmiss) random variable with
pmiss the missing edge probability. (ii) wireless sensor network
(WSN) graphs, generated by deploying the nodes uniformly at
random over a square area of unit side length and connecting
them with an edge if the internode distance is smaller than
dmax. If the generated graph in (i) and (ii) is not connected,
then additional edges are introduced to ensure connectivity.
More specifically, if the graph has c components, c−1 eges are
added between nodes chosen at random from each component.

Among the compared methods, those for decentralized op-
timization obtain the projection by solving the least squares
problem arg minα ‖z − U‖α‖2. This includes (ii) the dis-
tributed least mean squares (DLMS) method in [20] with
augmented Lagrangian parameter ρDLMS and step size µDLMS,
which builds upon ADMM, and (ii) the decentralized gradient
descent (DGD) method in [23] with step size µDGD, which is
based on gradient descent. Other methods iteratively apply a

0 5 10 15 20

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

S
E

Exact Projection
Gossiping
DLMS
DGD

500 1000 1500 2000
Number of local exchanges

2

4

6

8

N
M

S
E

10-1

Fig. 4: NMSE as a function of the number of communications
performed per node (N = 20, r = 3, β = 5, Erdős–Rényi graph with
pmiss = 0.6, ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1).

0 5 10 15 20 25 30

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

S
E

Exact Projection
Gossiping
DLMS
DGD

500 1000 1500 2000
Number of local exchanges

2

4

6

8

N
M

S
E

10-1

Fig. 5: NMSE as a function of the number of communications
performed per node (N = 30, r = 5, β = 5, Erdős–Rényi graph with
pmiss = 0.7, ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1).

shift matrix: (iii) The gossiping scheme in [24] obtains the
shift matrix S that provides fastest convergence of Sl to P
as l → ∞ according to a certain criterion. Then, the nodes
collaboratively obtain z(l) = H lz with H l = Sl at the l-th
exchange round; see also Sec. II-C. Signal z(l) asymptotically
converges to the desired projection. (iv) The rank-1 method
in [31] obtains a shift matrix S when P is of rank 1 and then
applies a graph filter. The resulting graph filter is generally of
maximum order N − 1.

Some implementation details follow. To alleviate numerical
issues, the method in [31] and the proposed algorithms use
node-dependent coefficients [31, Sec. II-B]. For comparison
purposes, an order l filter H l is obtained for each number l
of local exchanges by fitting the node-dependent coefficients
to minimize ‖P −H l‖2F. Regarding feasibility (see Sec. IV),
the solver for (P1-R) in Appendix E declares the problem as
infeasible if the convergence criterion is not met after Imax
updates. Both proposed methods use the same parameters
in most experiments. This illustrates that a single set of

10

4 5 6 7

The subspace dimension

0

0.2

0.4

0.6

0.8

1

N
M

S
E

Exact, N=25
DLMS, N=25
DGD, N=25
Gossiping, N=25
Exact, N=40
DLMS, N=40
DGD, N=40
Gossiping, N=40

Fig. 6: NMSE as a function of the subspace dimension (Erdős–Rényi
network with pmiss = .7, β = 5, L = 20, ρ = 0.1, Imax = 1000,
η⊥ = 0.9, η‖ = 0.1, ε = 0.1).

0.4 0.5 0.6 0.7 0.8

p
miss

10

15

20

25

30

35

M
N

D
E

 N=20, r=2
 N=30, r=3
N=40, r=4

Fig. 7: MNDE for the exact projection method as a function of pmiss
(ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1, τ = 0.005,
Erdős–Rényi network).

parameters works reasonably well in a wide range of scenarios,
which facilitates parameter tuning. For fairness, the competing
methods use the same parameters in all experiments: ρDLMS =
0.001, µDLMS = 1, µDGD = 0.1. These values were adjusted to
approximately yield the best performance in these scenarios.

Two main performance metrics will be adopted. To quan-
tify estimation error, some experiments obtain the normal-
ized mean square error (NMSE), defined as NMSE(H l) :=
E
[
||ξ −H lz||22

]
/E
[
||ξ||22

]
, where the expectation is taken

over G, U‖,α, and v. For the methods based on graph shift
operators, the error between the obtained H l and the target
P is measured through the normalized mean projection error
NMPE(H l) , E‖P −H l‖2F/r, where E averages over G, and
U‖. The normalization factor r was chosen so that NMPE(H l)
equals the NMSE when ξ = Pz′ with z′ ∼ N (0N , IN).
Both the NMSE and NMPE will be estimated by averaging
across 500 Monte Carlo realizations. The optimization prob-

0.4 0.45 0.5 0.55 0.6
d

max

5

10

15

20

25

30

A
ve

ra
ge

 N
um

be
r

of
 n

ee
de

d
lo

ca
l e

xc
ha

ng
es Exact Projection, N=25, r=3

Gossiping, N=25, r=3
Exact Projection, N=30, r=4
Gossiping, N=30, r=4
Exact Projection, N=40, r=5
Gossiping, N=40, r=5

Fig. 8: Average number of local exchanges required to satisfy
NMPE < γtarget = .1 vs. the WSN graph parameter dmax (ρ = 0.1,
Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1.)

0.5 0.6 0.7 0.8 0.9

p
miss

0

0.2

0.4

0.6

0.8

1

N
M

P
E

(H
l)

Approximate projection
Gossiping
Exact projection

Fig. 9: NMPE as a function of pmiss for the Erdős–Rényi networks
(L = N −1, N = 20, r = 3, ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ =
0.1, ε = 0.2, λ = 10).

lems solved by some of these methods, namely the exact
projection and the gossiping method, may be infeasible for
certain realizations of G and U‖; see Sec. IV. In that case,
H l is set to 0, which would penalize the tested algorithm by
setting its NMSE or NMPE closer to 1.

A. Exact Projection Filters
Figs. 1-3 depict the NMPE for those algorithms that rely

on shift matrices. Whereas Figs. 1-2 adopt an Erdős–Rényi
random graph, a WSN is used in Fig. 3. The method in [31]
is not displayed in Figs. 2-3 because it cannot be applied
when r > 1. Relative to the competing alternatives, the
proposed exact projection method is seen to generally require
a significantly smaller number of local exchange rounds to
obtain an NMPE close to 0. The aforementioned figures also
reveal that the proposed method provides an exact projection
in a finite number of iterations. As predicted by the Cayley-
Hamilton Theorem, the order is never greater than N − 1.

11

0 5 10 15 20 25

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

P
E

(H
l)

Approximate projection, p
miss

=.85

Exact projection, p
miss

=.85

Gossiping, p
miss

=.85

Approximate projection, p
miss

=.9

Exact projection, p
miss

=.9

Gossiping, p
miss

=.9

Fig. 10: NMPE as a function of the number of communications
performed per node for the Erdős–Rényi networks (N = 25, r = 3,
ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.2, λ = 10).

0 5 10 15 20 25 30 35

Number of local exchanges

0

0.2

0.4

0.6

0.8

1

N
M

P
E

(H
l)

Exact Projection, d
max

=.35

Approximate projection d
max

=.35

Gossiping, d
max

=.35

Approximate projection, d
max

=.25

Exact projection, d
max

=.25

Gossiping, d
max

=.25

Fig. 11: NMPE as a function of the number of communications
performed per node for the WSN networks (N = 35, r = 5, ρ = 0.1,
Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.2, λ = 10).

However, most of the times, the actual order is much smaller
than this upper bound. This phenomenon may not be clear
at first glance from Figs. 1-3 because they reflect average
behavior across a large number of Monte Carlo iterations. For
this reason, NMPE(H l) is generally positive for all l < N−1
when one or more realizations yield a filter with maximum
order l = N − 1. On the other hand, the rank-1 method
generally yields exact projection filters with order N −1 since
it is not designed to minimize the order. The gossiping method,
however, does not necessarily produce an exact projection in
a finite number of iterations. In exchange its implementation
is simpler; cf. Sec. II-D.

To compare with the competing algorithms that are not
based on graph filtering, Figs. 4-5 depict NMSE(H l) vs. the
number l of local exchanges for different scenarios. Observe

0.4 0.5 0.6 0.7 0.8

d
max

0

0.05

0.1

0.15

0.2

0.25

N
M

P
E

(H
l)

No failure, r=2
One node failure, r=2
Two node failures, r=2
No failure, r=3
One node failure, r=3
Two node failures, r=3

Fig. 12: NMPE as a function of dmax for the WSN networks (N =
20, ρ = 0.1, Imax = 1000, η⊥ = 0.9, η‖ = 0.1, ε = 0.1, λ = 10).

that the NMSE of the exact projection method does not
converge to 0 due to the observation noise v. The miniatures
demonstrate the different convergence time scales of DGD,
DLMS, and the exact projection method. The cause for the
slower convergence of DGD and DLMS is twofold: first, DGD
and DLMS are general-purpose methods whereas the proposed
method is tailored to the subspace projection problem. Second,
DGD and DLMS require the selection of step size parameters,
which in the simulations here were set to ensure convergence
in virtually all Monte Carlo realizations. For certain specific
realizations, though, one could find step sizes that yield a faster
convergence. An alternative perspective to the comparison in
Figs. 4-5 is offered by Fig. 6, which depicts the NMSE vs.
the subspace dimension r when the number of local exchange
rounds is fixed to L. This analysis would be necessary e.g.
in real-time applications. It is interesting to observe that
the sensitivity to r is higher for the gossiping algorithm as
compared to the other methods.

To analyze the impact of the graph sparsity in the required
number of local exchanges to implement a projection exactly
with the proposed method, Fig. 7 shows the mean number of
distinct eigenvalues (MNDE) yielded by the exact projection
method vs. pmiss. The NMDE is defined as the mean of the
number of distinct eigenvalues of F ‖ plus the number of
distinct eigenvalues of F⊥, which equals the order of the filter;
cf. Sec. III-C. A threshold τ is used to determine whether two
eigenvalues are different. As expected, the filter order increases
as the graph becomes sparser; see Sec. IV-A. Remarkably, the
increase is more pronounced for larger networks and higher r.

In the case of WSN graphs, the impact of sparsity is studied
in Fig. 8, which displays the number of local exchange rounds
required to reach an NMPE below a target value γtarget. The
gossiping method is also shown for comparison purposes, yet
it is not capable of attaining this target for certain values
of dmax due to the infeasibility of the optimization problem
that it solves in a significant fraction of the Monte Carlo
realizations; see explanation after the definition of NMSE
earlier in Sec. V. As dmax increases, the network becomes more
densely connected and therefore an exact projection can be

12

obtained in a smaller number of local exchanges. This agrees
with intuition and with Fig. 7.

B. Approximate Projection Filters
As explained in Sec. IV, a graph filter capable of exactly im-

plementing a projection may not exist when the graph is highly
sparsely connected. The approximate projection method in that
section provides a graph filter capable of approximating such
a projection. To illustrate how this algorithm complements the
exact projection method from Sec. III, Fig. 9 shows NMPE
after L = N − 1 local exchanges for both methods along with
the gossiping algorithm. The exact projection method is seen to
provide a filter that exactly implements the target projection
when pmiss is below approximately 0.7. For larger pmiss, the
NMPE becomes strictly positive. It is important to emphasize
that the reason is not that this method provides filters that do
not exactly implement the target projection. When the problem
is feasible, the filters yield an exact projection. However, as
pmiss increases, a smaller fraction of Monte Carlo realizations
give rise to a feasible problem and this is penalized in the
NMSE computation; see explanation after the definition of
NMSE earlier in Sec. V. As expected, the exact projection
method performs better than its approximate counterpart when
exact projection filters exist. However, for sufficiently sparse
graphs, the NMPE of the exact projection method explodes,
whereas the approximate projection method remains low.

Figs. 10 and 11 present the evolution of the NMPE vs. the
number of local exchange rounds for Erdős–Rényi and WSN
graphs respectively with several degrees of sparsity. These
figures showcase that the proposed approximate projection
method can reasonably approximate a projection with a small
number of local exchanges even if the graph is highly sparse.
Note that for some of the sparsity levels used in these figures,
the problems solved by the gossiping algorithm and the exact
projection method become infeasible.

To analyze the robustness of the approximate projection
method, Fig. 12 depicts its NMPE for different numbers of
node failures. Note that the exact projection method cannot
be applied since the removal of one or more sensors renders
the exact projection problem infeasible except for trivial cases
where their measurements bear no information about the
estimated signal. Whenever the network detects that a node has
failed, the graph filter is recomputed with the updated topology.
As expected, the degradation is more pronounced when the
network is sparser (smaller dmax). Due to the distribution used
to generate U‖, each measurement contains, on average, a
fraction 1/N of the signal energy. This informally indicates
that n/N lower bounds the error attainable in the presence of
n node failures. Observe that the NMPE is indeed close to such
fundamental limits, thereby establishing that the approximate
projection method is reasonably robust to node failures.

VI. CONCLUSIONS AND DISCUSSION

This paper develops methods to obtain graph filters that can
be used to compute subspace projections in a decentralized
fashion. The approach relies on transforming the filter design
task into a shift-matrix design problem. The first method

addresses the latter by exploiting the eigenstructure of feasible
shift matrices. The second method builds upon the first to
approximate projections when no feasible projection filter
exists. An exhaustive simulation analysis demonstrates the
ability of the designed filters to effectively produce subspace
projections in a small number of iterations. This contrasts with
existing methods, whose convergence is generally asymptotic.

The main strength of graph filters lies in their simplicity.
As described before, the inference operations considered in
this paper can be implemented with LN transmissions. Lower
and higher values can be attained by alternative communica-
tion strategies, including centralized processing. The approach
adopted in practice will depend on factors such as energy and
hardware constraints.

The filters obtained through the proposed methods also
inherit the general numerical limitations of graph filters. In
turn, these limitations stem from the well-known conditioning
issues of Vandermonde systems, e.g. (12). This limits the
application of graph filters to networks whose number of nodes
is comparable to the ones in Sec. V. Further work is required
by the graph signal processing community to enable the
implementation of graph filters in significantly larger networks.

Another direction along which the proposed schemes can be
extended is by lifting the symmetry constraint on S. Since the
target matrix P is symmetric, the gain may not be significant.
Future work will investigate this possibility.

REFERENCES

[1] T. Weerasinghe, D. Romero, C. Asensio-Marco, and B. Beferull-
Lozano, “Fast distributed subspace projection via graph filters,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Calgary, Canada, Apr.
2018, pp. 4639–4643.

[2] C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Wireless Sensor
Networks, Springer, 2006.

[3] C. Chen, J. Yan, N. Lu, Y. Wang, X. Yang, and X. Guan, “Ubiquitous
monitoring for industrial cyber-physical systems over relay-assisted
wireless sensor networks,” IEEE Trans. Emerging Topics in Computing.,
vol. 3, no. 3, pp. 352–362, Sep. 2015.

[4] I. Nevat, G. W. Peters, F. Septier, and T. Matsui, “Estimation of spatially
correlated random fields in heterogeneous wireless sensor networks,”
IEEE Trans. Signal Process., vol. 63, no. 10, pp. 2597–2609, May.
2015.

[5] C. Asensio-Marco and B. Beferull-Lozano, “Energy efficient consensus
over complex networks,” IEEE J. Sel. Topics Signal Process., vol. 9,
no. 2, pp. 292–303, March. 2015.

[6] R. Nowak, U. Mitra, and R. Willett, “Estimating inhomogeneous fields
using wireless sensor networks,” IEEE J. Sel. Areas Commun., vol. 22,
no. 6, pp. 999–1006, Aug. 2004.

[7] P. A. Forero, K. Rajawat, and G. B. Giannakis, “Prediction of partially
observed dynamical processes over networks via dictionary learning,”
IEEE Trans. Signal Process., vol. 62, no. 13, pp. 3305–3320, Jul. 2014.

[8] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. I:
Estimation Theory, Prentice-Hall, 1993.

[9] J. C. Harsanyi and C-I Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geoscience Remote Sensing, vol. 32, no. 4, pp. 779–785,
Jan. 1994.

[10] R. T. Behrens and L. L. Scharf, “Signal processing applications of
oblique projection operators,” IEEE Trans. Signal Process., vol. 42, no.
6, pp. 1413–1424, jun. 1994.

13

[11] A. Nedić, A. Olshevsky, and M.G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. IEEE, vol. 106, no. 5, pp. 953–976, May. 2018.

[12] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May.
2013.

[13] A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no.
5, pp. 80–90, Sep. 2014.

[14] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-
supervised learning on large graphs,” in Proc. Annual Conf. Learning
Theory, Banff, Canada, Jul. 2004, Springer, vol. 3120, pp. 624–638.

[15] D. Romero, V. N. Ioannidis, and G. B. Giannakis, “Kernel-based
reconstruction of space-time functions on dynamic graphs,” IEEE J.
Sel. Topics Signal Process., vol. 11, no. 6, pp. 1–14, Sep. 2017.

[16] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction
of graph signals,” IEEE Trans. Signal Process., vol. 65, no. 3, pp.
764–778, Feb. 2017.

[17] S. L. Lauritzen, Graphical Models, vol. 17, Clarendon Press, 1996.
[18] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time series

with VARMA recursions on graphs,” IEEE Trans. Signal Process., vol.
67, no. 18, pp. 4870–4885, Jul. 2019.

[19] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Networks., vol.
20, no. 1, pp. 61–80, Jan. 2008.

[20] G. Mateos, I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Per-
formance analysis of the consensus-based distributed LMS algorithm,”
EURASIP J. Advances Signal Process., pp. 1–19, Nov. 2009.

[21] G. B. Giannakis, Q. Ling, G. Mateos, I. D. Schizas, and H. Zhu,
“Decentralized learning for wireless communications and networking,”
in Splitting Methods in Communication, Imaging, Science, and Engi-
neering, pp. 461–497. Springer, 2016.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[23] L. Shi, L. Zhao, W. Song, G. Kamath, Y. Wu, and X. Liu, “Distributed
least-squares iterative methods in large-scale networks: A survey,” ZTE
Commun., vol. 3, pp. 37–45, Aug. 2017.

[24] S. Barbarossa, G. Scutari, and T. Battisti, “Distributed signal subspace
projection algorithms with maximum convergence rate for sensor net-
works with topological constraints,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Taipei,Taiwan, Apr. 2009, pp. 2893–2896.

[25] X. Insausti, P. Crespo, and B. Beferull-Lozano, “In-network compu-
tation of the transition matrix for distributed subspace projection,” in
Int. Conf. on Dist. Comp. in Sensor Systems., Hangzhou, China, May.
2012, pp. 124–131.

[26] P. Di Lorenzo, S. Barbarossa, and S. Sardellitti, “Distributed signal
processing and optimization based on in-network subspace projections,”
IEEE Trans. Signal Process., vol. 68, pp. 2061–2076, May. 2020.

[27] F. Camaro-Nogues, D. Alonso-Roman, C. Asensio-Marco, and
B. Beferull-Lozano, “Reducing the observation error in a wsn through
a consensus-based subspace projection,” in Proc. IEEE Int. Wireless
Commun. and Networking Conf., Shanghai,China, Apr. 2013, pp. 3643–
3648.

[28] Y. A. Kibangou, “Graph laplacian based matrix design for finite-
time distributed average consensus,” in American Control Conference,
Montreal,Canada, Jun. 2012, pp. 1901–1906.

[29] S. Safavi and U. A. Khan, “Revisiting finite-time distributed algorithms
via successive nulling of eigenvalues,” IEEE Signal Process. Lett., vol.
22, no. 1, pp. 54–57, Jan. 2015.

[30] A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time distributed
consensus through graph filters,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Florence, Italy, May. 2014, pp. 1080–1084.

[31] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[32] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2320–2333,
May. 2019.

[33] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, Cambridge, UK, 2004.

[34] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2,
pp. 274–288, Jan. 2017.

[35] D. B. Tay and Z. Lin, “Design of near orthogonal graph filter banks,”
IEEE Signal Process. Lett., vol. 22, no. 6, pp. 701–704, Nov. 2014.

[36] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel
wavelet filter banks for graph structured data,” IEEE Trans. Signal
Process., vol. 60, no. 6, pp. 2786–2799, Feb. 2012.

[37] S. Mollaebrahim, C. Asensio-Marco, D. Romero, and B. Beferull-
Lozano, “Decentralized subspace projection in large networks,” in Proc.
IEEE Global Conf. Signal Inf. Process., Anaheim, CA, Nov. 2018, pp.
788–792.

[38] D. Romero, S-J. Kim, G. B. Giannakis, and R. López-Valcarce, “Learn-
ing power spectrum maps from quantized power measurements,” IEEE
Trans. Signal Process., vol. 65, no. 10, pp. 2547–2560, May. 2017.

[39] V. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory,
and Methods, John Wiley & Sons, 2007.

[40] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University
Press, 1990.

[41] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar.
2008.

[42] P. Billingsley, “Probability and measure,” Jown Wiley & Sons, 1995.
[43] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding

algorithm for matrix completion,” SIAM J. Optimization, vol. 20, no.
4, pp. 1956–1982, Mar. 2010.

APPENDIX A
PROOF OF LEMMA 1

Let H(c,S) :=
∑L
l=0 clS

l and note from the definition of
FP that S ∈ FP iff there exists c such that

H(c,S) = U‖U
>
‖ =

[
U‖ U⊥

] [Ir 0
0 0

] [
U>‖
U>⊥

]
. (19)

Since S is symmetric, it admits an eigenvalue decomposition
S = WΛW>. Thus,

H(c,S) =W

(
L∑
l=0

clΛ
l

)
W> (20a)

=W

[
Ir 0
0 0

]
W> (20b)

=W ‖W
>
‖ , (20c)

whereW ‖ comprises the first r columns ofW := [W ‖,W⊥].
The second and third equalities in (20) follow from the fact
that (19) implies that H(c,S) has an eigenvalue 1 with
multiplicity r and an eigenvalue 0 with multiplicity N − r
and, therefore, (20b) and (20c) must hold for some ordering
of the eigenvectors in the eigendecomposition S = WΛW>.

14

From (19) and (20c), it follows thatW ‖W
>
‖ = U‖U

>
‖ and,

therefore, R{W ‖W
>
‖ } = R{U‖U>‖ }, which in turn is equiv-

alent to R{W ‖} = R{U‖}. Consequently, W ‖ = U‖Q‖ for
some Q‖. Moreover, since Ir = W>

‖W ‖ = Q>‖ U
>
‖ U‖Q‖ =

Q>‖ Q‖, one can conclude that Q‖ is orthonormal. Similarly,
R{W⊥} = R⊥{W ‖} = R⊥{U‖} = R{U⊥}, which
implies that W⊥ = U⊥Q⊥ for some orthogonal Q⊥.

Upon letting Λ‖ and Λ⊥ be such that

S = WΛW> :=
[
W ‖ W⊥

] [Λ‖ 0
0 Λ⊥

] [
W>
‖

W>
⊥

]
(21)

and applying the above relations to (21), it follows that

S =
[
U‖Q‖ U⊥Q⊥

] [Λ‖ 0
0 Λ⊥

] [
Q>‖ U

>
‖

Q>⊥U
>
⊥

]
=

[
U‖ U⊥

] [F ‖ 0
0 F⊥

] [
U>‖
UT
⊥

]
, (22)

where F ‖ := Q‖Λ‖Q
>
‖ and F⊥ := Q⊥Λ⊥Q

>
⊥.

APPENDIX B
PROOF OF LEMMA 3

Let A = V ΛV > be an eigenvalue decomposition. Then,

‖A⊗ IN − IN ⊗A‖∗ = ‖V ΛV > ⊗ IN − IN ⊗ V ΛV >‖∗,

Applying the properties of the Kronecker product and the
invariance of the nuclear norm to orthogonal transformations,

‖A⊗ IN − IN ⊗A‖∗ =‖(V ⊗ IN)(Λ⊗ IN)(V ⊗ IN)
>

−(IN ⊗ V)(IN ⊗Λ)(IN ⊗ V)
>‖∗

= ‖(Λ⊗ IN)− (IN ⊗Λ)‖∗.

From the definition of the nuclear and `1 norms,

‖(Λ⊗ IN)−(IN ⊗Λ)‖∗ = ‖diag(Λ⊗ IN − IN ⊗Λ)‖1
=‖λ⊗ 1N − 1N ⊗ λ‖1 (23a)

=

N∑
i=1

| (λ⊗ 1N − 1N ⊗ λ)i | (23b)

=

N∑
i=1

| (λ⊗ 1N − 1N ⊗ λ)>eN2,i |, (23c)

where λ := diag(Λ) and eM,i is the i-th column of IM .
Splitting the summation in (23c) and applying the fact that
eN2,N(j−1)+k = eN,j ⊗ eN,k ∀j, k, it follows that

‖A⊗ IN−IN ⊗A‖∗ (24)

=

N∑
j=1

N∑
k=1

| (λ⊗ 1N − 1N ⊗ λ)>eN2,N(j−1)+k |

=

N∑
j=1

N∑
k=1

| (λ⊗ 1N − 1N ⊗ λ)>(eN,j ⊗ eN,k) |

Finally, from the properties of the Kronecker product,

‖A⊗ IN−IN ⊗A‖∗ (25a)

=

N∑
j=1

N∑
k=1

∣∣∣λ>eN,j ⊗ 1>NeN,k − 1>NeN,j ⊗ λ>eN,k
∣∣∣

=

N∑
j=1

N∑
k=1

|λj ⊗ 1− 1⊗ λk| =
N∑
j=1

N∑
k=1

|λj − λk|.

APPENDIX C
PROOF OF THEOREM 2

Consider first the following auxiliary result:
Lemma 4: S ∈ SG ∩ F̃P iff the following three conditions

simultaneously hold

W vec(S) = 0, (26a)

U>⊥SU‖ = 0, (26b)

S = S>. (26c)

Proof: The first step is proving that S ∈ SG∩F̃P implies
(26). Conditions (26a) and (26c) follow from the definition of
SG and Definition 2. To verify (26b), note from Definition 2
that S ∈ F̃P iff S satisfies (8) for some symmetric F ‖ and
F⊥. Multiplying (8) on the right by U := [U‖,U⊥] and on
the left by U> yields[

U>‖ SU‖ U>‖ SU⊥
U>⊥SU‖ U>⊥SU⊥

]
=

[
F ‖ 0
0 F⊥

]
(27)

Condition (26b) corresponds to the block (2, 1) in this equality.
Conversely, if S satisfies (26), then it follows from (26a)

and6 (26c) that S ∈ SG . To show that SG ∈ F̃P , one needs
to find symmetric F ‖ and F⊥ such that (8) or, equivalently,
(27) holds. This can be easily accomplished just by setting
F ‖ = U>‖ SU‖ and F⊥ = U>⊥SU⊥ since the (1,2) and (2,1)
blocks of equality (27) will automatically hold due to (26b)
and (26c).

Let S := {S ∈ RN×N : S = S>} and note from
Definition 2 that F̃P ⊂ S. Then, SG∩F̃P = SG∩(S∩F̃P) =
(SG ∩ S) ∩ F̃P .

Now, consider the following parameterization of SG ∩ S:

SG ∩ S =

S =

Ē∑
i=1

κi(

Φi︷ ︸︸ ︷
eni
e>n′

i
+ en′

i
e>ni

), κi ∈ R

 , (28)

which can be expressed in vector form as

vec(SG ∩ S) =

vec(S) =

Ē∑
i=1

κivec(Φi)

 (29)

=
{

[vec(Φ1), · · · , vec(ΦĒ)]κ,κ ∈ RĒ
}
.

6Please keep in mind that S ∈ SG does not imply that S is symmetric and
(26a) alone only imposes support constraints on the upper-triangular entries
of S; cf. Sec. III-C.

15

3 4 5 6 7 8 9 10

Number of blocks, B

0

20

40

60

80

100
N

u
m

b
e
r

o
f
d
is

ti
n
c
t
e
n
tr

ie
s Optimal D1

Relaxed D1

Optimal D2, D3

Relaxed D2

Relaxed D3

Maximum D1, D2, D3

Fig. 13: Comparison between the solution of (34) and that of
inf{L(x) : Ax = b} for M = N = 10.

Combining (26) and (29) yields

SG ∩ F̃P =
{

vec−1(Φκ) ∀κ : U>⊥vec−1(Φκ)U‖ = 0
}
.

(30)

Since the columns of Φ are linearly independent,

dim(SG ∩ F̃P) =dim{κ : U>⊥vec−1(Φκ)U‖ = 0}
=dim{κ : (U>‖ ⊗U

>
⊥)Φκ = 0}.

Since (U>‖ ⊗U
>
⊥)Φ ∈ Rr(N−r)×Ē , it follows that dim(SG ∩

F̃P) = Ē − rank((U>‖ ⊗U
>
⊥)Φ).

APPENDIX D
THE TIGHTNESS OF THE RELAXED SOLUTION

This appendix further justifies why the objective of the
relaxed problem (P1-R) is a reasonable surrogate for the
objective of the original problem (P1). To simplify notation,
some of the symbols used earlier will be reused here.

To focus on the fundamental aspects, consider the optimiza-
tion in (P1-R) for a fixed F⊥. The resulting problem is a
special case of

minimize
F ‖

||F ‖ ⊗ Ir − Ir ⊗ F ‖||? (31a)

s.t. A‖vec(F ‖) = b‖ (31b)

for some A‖ and b‖. Ideally, one would like to see how well
the solution to (31) approximates the solution to

minimize
F ‖

L(F ‖) (32a)

s.t. A‖vec(F ‖) = b‖. (32b)

To this end, apply the eigendecomposition F ‖ = Q‖Λ‖Q
>
‖ to

rewrite the solution of (31) as

inf
orthogonal Q‖

[
inf

diagonal Λ‖
||Λ‖ ⊗ Ir − Ir ⊗Λ‖||?

s.t. A‖vec(Q‖Λ‖Q
>
‖) = b‖

]
. (33a)

The inner problem, which captures the essence of the question
to be addressed here, is a special case of

minimize
x

‖x⊗ 1− 1⊗ x‖1 (34a)

s.t. Ax = b (34b)

for some A and b. Thus, the ability of (31) to promote
solutions with a reduced number of distinct eigenvalues can
be understood by analyzing how well (34) promotes solutions
with a reduced number of distinct entries. With x∗ denoting
a minimizer of (34) and with L(x) denoting the number of
distinct entries of x, one is therefore interested in analyzing
how far L(x∗) is from L∗ := inf{L(x) : Ax = b} for
given A and b. Unfortunately, this is a challenging comparison
since obtaining L∗ generally entails combinatorial complexity.
However, L∗ can be obtained exactly for certain families of
(A, b). Specifically, the rest of this section will compare L(x∗)
and L∗ when A is drawn from 3 probability distributions.

Let A comprise B block columns:

A :=

 A1 . . . AB

E1 . . . EB
1> . . . 1>

 . (35)

Let also Ai := [ai,1, . . . ,ai,N] ∈ RM×N and consider the
following distributions:
• Distribution D1: {Ei}Bi=1 are empty and {ai,j}i,j are

drawn independently from a continuous distribution.7
• Distribution D2: {ai,j}i are drawn independently from a

continuous distribution for j = 1, . . . , N −1 and ai,N :=

−
∑N−1
j=1 ai,j . On the other hand, Ei = (−1/i)eie

>
1 ∈

RB−1×N for i = 1, . . . , B−1, where ei is, with an abuse
of notation, the i-th column of the identity matrix with
appropriate dimension. For i = B, EB = (1/i)1e>1 .

• Distribution D3: {ai,j}i,j are as in D2. MatrixEi isEi =
(−1/i)ei1

> ∈ RB−1×N for i = 1, . . . , B− 1 and EB =
(1/i)11> for i = B.

With these distributions, we have the following:
Theorem 3: Let L∗ := inf{L(x) : Ax = b} and let b be a

vector of the appropriate dimensions with all zeros except for
the last entry, which equals N

∑B
i=1 i = NB(B + 1)/2.

(a) If A ∼ D1 with NB > M , then L∗ = M + 1 with
probability 1.

(b) If A ∼ Di, i ∈ 2, 3, with M ≥ B, then L∗ = B with
probability 1.
Proof: See Appendix G in the supplementary material.

Fig. 13 compares L(x∗) and L∗ := inf{L(x) : Ax = b},
where x∗ is found by applying a convex solver to (34). Each
point is obtained for a realization of A. Although we have
not proved it formally, it seems that the relaxed solution
x∗ coincides with the exact one with probability 1 when A
is drawn from D1 or D3. For D2, the number of distinct
entries of x∗ is higher than optimal, but in any case it is
considerably lower than the number NB of entries of x, shown
as “Maximum”.

To sum up, the solution to the relaxed problem (34) is
optimal in some cases and close to the optimal in other tested
cases. This supports the choice of ||F ‖⊗Ir−Ir⊗F ‖||? as a
convex surrogate for the number of distinct eigenvalues of F ‖.

7Formally, a continuous distribution in this context is a distribution that is
absolutely continuous with respect to Lebesgue measure [42].

16

SUPPLEMENTARY MATERIAL

APPENDIX E
ITERATIVE SOLVER FOR (P1-R)

This appendix develops an iterative method to solve (P1-R)
based on ADMM. To this end, the first step is to rewrite the
objective and constraints in a form that is amenable to the
application of this method.

To rewrite the objective, let ei and tj be respectively the
i-th and j-th columns of Ir and IN−r. The first and second
norms in the objective of (P1-R) can be expressed as:∥∥F ‖ ⊗ Ir − Ir ⊗ F ‖∥∥∗ =

∥∥vec−1(Avec(F ‖))
∥∥
∗

‖F⊥ ⊗ IN−r − IN−r ⊗ F⊥‖∗ =
∥∥vec−1(Bvec(F⊥))

∥∥
∗,

whereA := [a11,a21, ...,arr],B := [b11, b21, ..., bN−r,N−r],
aij := vec(eie

>
j ⊗ Ir − Ir ⊗ eie>j), bij :=

vec(tit
>
j ⊗ IN−r − IN−r ⊗ tit>j).

To rewrite the constraints of (P1-R), invoke the properties
of the Kronecker product to combine the first and second con-
straints as W ((U‖⊗U‖)vec(F ‖) + (U⊥⊗U⊥)vec(F⊥)) =
0. The third and fourth constraints can be rewritten as
G‖vec(F ‖) = 0, G⊥vec(F⊥) = 0 where the rows of
G‖ ∈ R(r2−r)/2×r2 and G⊥ ∈ R((N−r)2−(N−r))/2×(N−r)2

are respectively given by (e>j ⊗ e>i − e>i ⊗ e>j) and (t>j ⊗
t>i −t>i ⊗t>j) for i < j. Regarding the trace constraints, rewrite
tr(F ‖) = r as tr(IrF ‖) = r, which in turn can be expressed
as vec>(Ir)vec(F ‖) = r. Similarly, one can rewrite tr(F⊥) =
(1± ε)(N − r) as vec>(IN−r)vec(F⊥) = (1± ε)(N − r).

Therefore, (P1-R) can be written as:

min
Y ⊥,Y ‖,F ‖,F⊥

η‖
∥∥Y ‖∥∥∗ + η⊥‖Y ⊥‖∗ + ‖F⊥‖2F

s. t. T ‖vec(F ‖) + T⊥vec(F⊥) = b (36a)
vec(Y ‖) = Avec(F ‖) (36b)
vec(Y ⊥) = Bvec(F⊥), (36c)

where

T ‖
∆
= [W (U‖ ⊗U‖);G‖; 0; vec>(Ir); 0] (37a)

T⊥
∆
= [W (U⊥ ⊗U⊥); 0;G⊥; 0; vec>(IN−r)] (37b)

b
∆
= [0; 0; 0; r; (1± ε)(N − r)]. (37c)

The ADMM method in scaled form [22, Sec. 3.1.1] applied
to (36) obtains the k-th iterate as follows:

(Y k+1
‖ ,Y k+1

⊥) (38a)

:= argmin
Y ‖,Y ⊥

Lρ(Y ‖,Y ⊥,F
k
‖,F

k
⊥, q

k
1 , q

k
2 , q

k
3)

(F k+1
‖ ,F k+1

⊥) (38b)

:= argmin
F ‖,F⊥

Lρ(Y
k+1
‖ ,Y k+1

⊥ ,F ‖,F⊥, q
k
1 , q

k
2 , q

k
3)

qk+1
1 := qk1 + T ‖vec(F k+1

‖) + T⊥vec(F k+1
⊥)− b (38c)

qk+1
2 := qk2 + vec(Y k+1

‖)−Avec(F k+1
‖) (38d)

qk+1
3 := qk3 + vec(Y k+1

⊥)−Bvec(F k+1
⊥), (38e)

where

Lρ(Y ‖,Y ⊥,F ‖,F⊥, q1, q2, q3)

:=η‖
∥∥Y ‖∥∥∗ + η⊥‖Y ⊥‖∗ + ‖F⊥‖2F

+ (ρ/2)
∥∥T ‖vec(F ‖) + T⊥vec(F⊥)− b+ q1

∥∥2

2

+ (ρ/2)
∥∥vec(Y ‖)−Avec(F ‖) + q2

∥∥2

2

+ (ρ/2)‖vec(Y ⊥)−Bvec(F⊥) + q3‖
2
2

is the so-called augmented Lagrangian with user-defined
penalty parameter ρ > 0. Variables q1, q2 and q3 correspond
to the Lagrange multipliers of (36).

To evaluate (38a), one can leverage the proximal operator
of the nuclear norm [43, Th. 2.1]

proxτ (Z) := arg min
Y

||Y ||∗ +
1

2τ
||Y −Z||2F = Dτ (Z),

where the singular value shrinkage operator Dτ is defined for
Z with SVD Z = VZΣZV

>
Z as Dτ (Z) := VZDτ (ΣZ)V >Z

with Dτ (ΣZ) a diagonal matrix whose (i, i)-th entry equals
max(0, (ΣZ)i,i − τ). With this operator, (38a) becomes

Y k+1
‖ = proxη‖/ρ(vec−1(Avec(F k‖)− qk2)) (39a)

Y k+1
⊥ = proxη⊥/ρ(vec−1(Bvec(F k⊥)− qk3)). (39b)

On the other hand, (38b) can be obtained in closed-form as

vec(F k+1
‖) = [T>‖ T ‖ +A>A]−1 (40a)

[T>‖ (b− qk1 − T⊥vec(F k⊥)) +A>(qk2 + vec(Y k+1
‖))],

vec(F k+1
⊥) = [2I + ρT>⊥T⊥ + ρB>B]−1 (40b)

[ρT>⊥(b− qk1 − T ‖vec(F k‖)) + ρB>(qk3 + vec(Y k+1
⊥))].

The overall ADMM algorithm is summarized as Algorithm 1
and drastically improves the converegence rate of our previ-
ous algorithm, reported in [37], since the latter is based on
subgradient descent.

The computational complexity is dominated either by (39a)
or by (39b), whose SVDs respectively require O(r6) and
O((N−r)6) arithmetic operations, depending on which quan-
tity is larger. This complexity is much lower than the one of
general-purpose convex solvers and does not limit the values
of N and r to be used in practice given the intrinsic limitations
of graph filters; see Sec. VI.

APPENDIX F
ITERATIVE SOLVER FOR (P2-R)

This section presents a method to solve P2-R via ADMM.
To this end, the first step is to express the objective function in
a suitable form. With A and B defined in Appendix E, the first
and second terms of the objective of (P2-R) are respectively
proportional to∥∥∥vec−1(Avec(U>‖ SU‖))

∥∥∥
∗

=∥∥∥vec−1(A(U>‖ ⊗U
>
‖)vec(S))

∥∥∥
∗

=
∥∥vec−1(A‖vec(S))

∥∥
∗

17

Algorithm 1 Iterative solver for (P1-R).

Require: E , U‖, ρ, η‖, η⊥, ε.
1: Obtain U⊥ s.t. U>⊥U⊥ = IN−r and U>‖ U⊥ = 0r×N .
2: Initialize F 0

‖, F
0
⊥, q

0
1, q

0
2, q

0
3, k = 0.

3: while stopping criterion not met() do
4: obtain Y k+1

‖ via (39a).
5: obtain Y k+1

⊥ via (39b).
6: obtain F k+1

‖ via (40a).
7: obtain F k+1

⊥ via (40b).
8: obtain qk+1

1 , qk+1
2 , qk+1

3 via (38).
9: k ← k + 1.

10: end while
11: return S = U‖F

k
‖U
>
‖ +U⊥F

k
⊥U
>
⊥.

and∥∥∥vec−1(Bvec(U>⊥SU⊥))
∥∥∥
∗

=∥∥∥vec−1(B(U>⊥ ⊗U
>
⊥)vec(S))

∥∥∥
∗

=
∥∥vec−1(B⊥vec(S))

∥∥
∗,

whereA‖ := A(U>‖ ⊗U
>
‖) andB⊥ := B(U>⊥⊗U

>
⊥). Noting

that the nuclear norm of a block diagonal matrix equals the sum
of the nuclear norms of each block enables one to compactly
express the first two terms in (P2-R) as

η‖
∥∥vec−1(A‖vec(S))

∥∥
∗ + η⊥

∥∥vec−1(B⊥vec(S))
∥∥
∗ = ‖Y ‖∗

where

Y :=

[
η‖vec−1(A‖vec(S)) 0r2×(N−r)2

0(N−r)2×r2 η⊥vec−1(B⊥vec(S))

]
. (41)

On the other hand, due to the properties of the Kronecker prod-
uct, the third and fourth terms in the objective of (P2-R) can be
written as ‖(U>⊥ ⊗U

>
⊥)vec(S)‖22 +λ‖(U>‖ ⊗U

>
⊥)vec(S)‖2

2
.

Regarding the constraints, note that S = S> can be
expressed as Gvec(S) = 0, where the rows of G ∈
R(N2−N)/2×N2

are given by (e>j ⊗ e>i − e>i ⊗ e>j) for all
i, j = 1, . . . , N such that i < j. Here, ei denotes the i-
th column of IN . From these considerations and using the
definition of W in Sec. III-C, problem (P2-R) can be written
as:

minimize
S,Y

‖Y ‖∗+
∥∥∥(U>⊥ ⊗U

>
⊥)vec(S)

∥∥∥2

2

+ λ
∥∥∥(U>‖ ⊗U

>
⊥)vec(S)

∥∥∥2

2

s.t. (41),
T vec(S) = b′,

(P2-R’)

where T ∆
= [W ;G; vec>(U‖U

>
‖); vec>(U⊥U

>
⊥)] and b′ ∆

=
[0; 0; r; (1± ε)(N −r)]. By considering each block separately,
(41) holds iff

η‖A‖vec(S) = vec(T 1Y T
>
1) = (T 1 ⊗ T 1)vec(Y),

0 = vec(T 2Y T
>
1) = (T 1 ⊗ T 2)vec(Y),

0 = vec(T 1Y T
>
2) = (T 2 ⊗ T 1)vec(Y),

η⊥B⊥vec(S) = vec(T 2Y T
>
2) = (T 2 ⊗ T 2)vec(Y),

where T 1 := [Ir2×r2 ,0r2×(N−r)2] and T 2 :=
[0(N−r)2×r2 , I(N−r)2×(N−r)2]. More compactly, (41)
holds iff

Cvec(Y) = Dvec(S) (42)

where C = [T 1⊗T 1;T 1⊗T 2;T 2⊗T 1;T 2⊗T 2] and D =
[η‖A‖; 0; 0; η⊥B⊥]. Noting that C is orthogonal enables one
to rewrite (P2-R’) as

minimize
S,Y

‖Y ‖∗+
∥∥∥(U>⊥ ⊗U

>
⊥)vec(S)

∥∥∥2

2

+ λ
∥∥∥(U>‖ ⊗U

>
⊥)vec(S)

∥∥∥2

2

s.t. vec(Y) = C>D vec(S),

T vec(S) = b′.

(P2-R”)

The ADMM method in scaled form [22, Sec. 3.1.1] applied
to (P2-R”) reads as:

Sk+1 := argmin
S

L̄ρ(S,Y
k,Qk

1 ,Q
k
2) (43a)

Y k+1 := argmin
Y

L̄ρ(S
k+1,Y ,Qk

1 ,Q
k
2) (43b)

qk+1
1 := qk1 + vec(Y k+1)−C>Dvec(Sk+1) (43c)

qk+1
2 := qk2 + T vec(Sk+1)− b′, (43d)

where

L̄ρ(S,Y , q1, q2) := ‖Y ‖∗ +
∥∥∥(U>⊥ ⊗U

>
⊥)vec(S)

∥∥∥2

2

+ λ
∥∥∥(U>‖ ⊗U

>
⊥)vec(S)

∥∥∥2

2

+ (ρ/2)
∥∥∥vec(Y)−C>Dvec(S) + q1

∥∥∥2

2

+ (ρ/2)‖T vec(S)− b′ + q2‖
2
2,

where is the augmented Lagrangian with Lagrange multipliers
q1 and q2.

To express (43c) in a more convenient form, observe first
from the definitions of C and D that C>D = η‖(T

>
1 ⊗

T>1)A‖ + η⊥(T>2 ⊗ T
>
2)B⊥. Second, note from the prop-

erties of the Kronecker product that A‖vec(S) = A(U>‖ ⊗
U>‖)vec(S) = Avec(U>‖ SU‖) = vec(U>‖ SU‖ ⊗ Ir − Ir ⊗
U>‖ SU‖). Similarly, B⊥vec(S) = vec(U>⊥SU⊥ ⊗ IN−r −
IN−r ⊗U>⊥SU⊥). Consequently,

C>Dvec(S)

=η‖(T
>
1 ⊗ T

>
1)vec(U>‖ SU‖ ⊗ I − I ⊗U

>
‖ SU‖)

+ η⊥(T>2 ⊗ T
>
2)vec(U>⊥SU⊥ ⊗ I − I ⊗U

>
⊥SU⊥)

=η‖vec(T>1 (U>‖ SU‖ ⊗ I − I ⊗U
>
‖ SU‖)T 1)+

η⊥vec(T>2 (U>⊥SU⊥ ⊗ I − I ⊗U
>
⊥SU⊥)T 2)

=vec[η‖(U
>
‖ SU‖ ⊗ I − I ⊗U

>
‖ SU‖),0; (44)

0, η⊥(U>⊥SU⊥ ⊗ I − I ⊗U
>
⊥SU⊥)].

18

Algorithm 2 Iterative solver for (P2-R).

Require: E , U‖, ρ, λ, η‖, η⊥, ε.
1: Obtain U⊥ s.t. U>⊥U⊥ = IN−r and U>‖ U⊥ = 0r×N .
2: Initialize Y 0

1, Y
0
2, Q

0
1,1, Q

0
1,2, q0

2, k = 0
3: while stopping criterion not met() do
4: obtain Sk+1 via (49).
5: obtain Y k+1

1 , Y k+1
2 , Qk+1

1,1 , Qk+1
1,2 via (47).

6: obtain qk+1
2 via (43d).

7: k ← k + 1.
8: end while
9: return Sk

The update (43c) can therefore be expressed upon defining
Qk

1 := vec−1(qk1) as

Qk+1
1 := Qk

1 + Y k+1 (45)

− [η‖(U
>
‖ S

k+1U‖ ⊗ Ir − Ir ⊗U>‖ S
k+1U‖),0;

0, η⊥(U>⊥S
k+1U⊥ ⊗ IN−r − IN−r ⊗U>⊥S

k+1U⊥)].

Furthermore, by using the proximal operator of the nuclear
norm (see Appendix E), the update in (43b) becomes

Y k+1 = prox1/ρ(vec−1(C>Dvec(Sk)− qk1))

= prox1/ρ([η‖(U
>
‖ S

k+1U‖ ⊗ Ir − Ir ⊗U>‖ S
k+1U‖),0;

0, η⊥(U>⊥S
k+1U⊥ ⊗ IN−r − IN−r ⊗U>⊥S

k+1U⊥)]−Qk
1),

(46)

where the second equality follows from (44).
If Q0

1 is initialized as a block diagonal matrix with diagonal
blocks of size r×r and (N−r)×(N−r), then it follows from
(45) and (46) that Y k and Qk

1 will remain block diagonal with
blocks of the same size. These blocks can be updated as

Y k+1
1 =prox1/ρ

(
η‖(U

>
‖ S

k+1U‖ ⊗ Ir (47a)

− Ir ⊗U>‖ S
k+1U‖)−Qk

1,1

)
Y k+1

2 =prox1/ρ

(
η⊥(U>⊥S

k+1U⊥ ⊗ IN−r (47b)

− IN−r ⊗U>⊥S
k+1U⊥)−Qk

1,2

)
Qk+1

1,1 =Qk
1,1 + Y k+1

1 (47c)

− η‖(U
>
‖ S

k+1U‖ ⊗ I − I ⊗U>‖ S
k+1U‖)

Qk+1
1,2 =Qk

1,2 + Y k+1
2 (47d)

− η⊥(U>⊥S
k+1U⊥ ⊗ I − I ⊗U>⊥S

k+1U⊥).

The S-update (43a) can be obtained in closed form as

vec(Sk+1) =
[
D>D + T>T + (2λ/ρ)(U‖U

>
‖ ⊗U⊥U

>
⊥)

+ (2/ρ)(U⊥U
>
⊥ ⊗U⊥U

>
⊥)
]−1

(48)[
D>C(vec(Y k) + qk1) + T>(b′ − qk2)

]
by using the orthogonality of C. To reduce the computational

complexity of (48), note that

D>Cvec(Y k) = η‖A
>
‖ (T 1 ⊗ T 1)vec(Y k)+

η⊥B
>
⊥(T 2 ⊗ T 2)vec(Y k) = η‖A

>
‖ vec(Y k

1)+

η⊥B
>
⊥vec(Y k

2)

and

D>Cqk1 = η‖A
>
‖ vec(Qk

1,1) + η⊥B
>
⊥vec(Qk

1,2)

to obtain

vec(Sk+1) =
[
D>D + T>T + (2λ/ρ)(U‖U

>
‖ ⊗U⊥U

>
⊥)

+ (2/ρ)(U⊥U
>
⊥ ⊗U⊥U

>
⊥)
]−1[

η‖A
>
‖ vec(Y k

1 +Qk
1,1)

+ η⊥B
>
⊥vec(Y k

2 +Qk
1,2) + T>(b′ − qk2)

]
. (49)

The overall procedure is summarized as Algorithm 2. Its
complexity is dominated by the inversion in (49), which in-
volves O(N6) arithmetic operations. This complexity is much
lower than the one of general-purpose convex solvers and does
not limit the values of N to be used in practice given the
intrinsic limitations of graph filters; see Sec. VI.

APPENDIX G
PROOF OF THEOREM 3

Given any vector x := [x1, . . . , xNB]>, one can collect its
L := L(x) distinct entries into the vector z̄ := [z̄1, . . . , z̄L]>

and construct a partition map ` : {1, . . . , NB} → {1, . . . , L}
such that xi = z̄`(i). With this notation and letting ai denote
the i-th column of [A1, . . . ,AB], one can express the first
block row of Ax as

∑L
l=1 ālz̄l, where āl :=

∑
i:`(i)=l ai, l =

1, . . . , L. Thus, the system Ax = b admits a solution iff there
exist x, z̄, and ` satisfying the aforementioned relations such
that Āz̄ = 0,

∑
iEixi = 0 and 1>x = NB(B+1)/2, where

Ā := [ā1, . . . , āL] and xi ∈ RN , i = 1, . . . , B, is such that
x = [x>1 , . . . ,x

>
B]>.

To prove part (a), observe that, regardless of the partition
`, the fact that the columns of Ai are independently drawn
from a continuous distribution implies that {āl}l also adhere
to a continuous distribution and are independent of each other.
Thus rank(Ā) = min(M,L) with probability 1. A vector x
satisfying Ax = b exists iff the homogeneous system Āz̄ = 0
admits at least a non-zero solution. This is because any non-
zero solution z̄ can be normalized to satisfy 1>x = NB(B+
1)/2 and thus Ax = b. Given that rank(Ā) = min(M,L)
with probability 1, the system Āz̄ = 0 admits a non-zero
solution iff L > M . The proof is concluded by noting that the
minimum L satisfying this condition is M+1. The hypothesis
NB > M is necessary because L ≤ NB.

To prove part (b) let Ǎ :=
[a1,1, . . . ,a1,N−1,a2,1, . . . ,aB,N−1] collect the independent
vectors in {ai,j}i,j and note that [A1, . . . ,AB] = ǍT , where

T :=

IN−1 −1 0 0 . . . 0 0

0 0 IN−1 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . IN−1 −1

 .

19

Thus, the system Ax = b admits a solution iff there exists x
such that ǍTx = 0,

∑
iEixi = 0 and 1>x = NB(B+1)/2.

Observe that, by setting xi = i1 ∀i, the resulting x satisfies
these three conditions, which establishes that L∗ ≤ L(x) = B.
Besides, it can be easily seen that this solution is the only that
satisfies Tx = 0,

∑
iEixi = 0, and 1>x = NB(B + 1)/2.

In particular, this implies that ǍTx = 0 holds regardless of
the value of Ǎ. It remains only to show that, with probability
1, there exists no solution x′ with L(x′) < B.

To this end, note that the set of realizations of Ǎ for which
such an x′ exists is the union over partitions ` of the sets of
realizations of Ǎ for which a solution x′ with partition ` exists.
Since there are only finitely many partitions, it suffices to show
that the probability of finding such an x′ is 0 for a single
generic partition. Let ` denote such a partition and observe that
x can be expressed as x = S`z̄ for some NB ×L matrix S`
with ones and zeros. The probability that there exists a solution
is P[∃z̄ ∈ Z` : ǍTS`z̄ = 0] where Z` := {z̄ : x = S`z̄

satisfies
∑
iEixi = 0 and 1>x = NB(B + 1)/2}. If L <

B, the product TS`z̄ is necessarily non-zero for z̄ ∈ Z`, as
described earlier. Thus, the aforementioned probability equals

P[∃z̄ ∈ Z` : ǍTS`z̄ = 0,TS`z̄ 6= 0] (50a)
≤ P[∃t̄ ∈ R{TS`} : Ǎt̄ = 0, t̄ 6= 0] (50b)
= P[∃v ∈ Rr : ǍQ`v = 0,v 6= 0] (50c)
= P[rank[ǍQ`] < r], (50d)

where Q` is a matrix whose r linearly independent columns
constitute a basis for R{TS`}. Noting that r ≤ L < B and,
by hypothesis, M ≥ B, it follows that rank[ǍQ`] < r is
only possible if the M rows of Ǎ lie in a proper subspace of
R{TS`}. Since proper subspaces have zero Lebesgue measure
and Ǎ obeys a continuous probability distribution, it follows
that P[rank[ǍQ`] < r] = 0 and, consequently, P[∃z̄ ∈ Z` :
ǍTS`z̄ = 0] = 0.

	I Introduction
	II Preliminaries
	II-A The Subspace Projection Problem
	II-B The Choice of the Basis
	II-C Graph Filters
	II-D Asymptotic Decentralized Projections

	III Exact Projection Filters
	III-A Minimum-order Projection Filters
	III-B Polynomially Feasible Matrices
	III-C Filter Order Minimization
	III-D Exact Projection Filters via Convex Relaxation

	IV Approximate Projection Filters
	IV-A Feasibility of Exact Projection Filters
	IV-B Approximate Projection Criterion

	V Numerical Experiments
	V-A Exact Projection Filters
	V-B Approximate Projection Filters

	VI Conclusions and Discussion
	References
	Appendix A: Proof of and , Theorem0 ??1 1
	Appendix B: Proof of and , Theorem0 ??1 1
	Appendix C: Proof of and , Theorem0 ??1 1
	Appendix D: The Tightness of the Relaxed Solution
	Appendix E: Iterative Solver for (P1-R)
	Appendix F: Iterative Solver for (P2-R)
	Appendix G: Proof of and , Theorem0 ??1 1

