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Abstract—It is known that circularly symmetric Gaussian
signals are the optimal input signals for the partial decode-and-
forward (PDF) coding scheme in the Gaussian multiple-input
multiple-output (MIMO) relay channel, but there is currently no
method to find the optimal covariance matrices nor to compute
the optimal achievable PDF rate since the optimization is a
non-convex problem in its original formulation. In this paper,
we show that it is possible to find a convex reformulation
of the problem by means of an approximation and a primal
decomposition. We derive an explicit solution for the inner
problems as well as an explicit gradient for the outer problem, so
that the efficient cutting-plane method can be applied for solving
the outer problem. As the accuracy of this provably convergent
algorithm might be impaired by the previous approximation,
we additionally propose a modified algorithm, for which we
cannot give a converge guarantee, but which provides rigorous
upper and lower bounds to the optimum of the original rate
maximization. In numerical simulations, these bounds become
tight in all considered instances of the problem, showing that
the proposed method manages to find the global optimum in all
these instances.

Index Terms—Gaussian relay channel, multiple-input multiple-
output (MIMO), partial decode-and-forward, convex optimiza-
tion, sensitivity analysis, cutting plane method, generalized eigen-
value decomposition.

I. INTRODUCTION

The use of relay stations is a candidate technology for

extending the coverage of base stations and increasing the

achievable data rates of cell-edge users. An information theo-

retical model for such a relaying scenario was first introduced

in [3]. This relay channel model describes a three-node net-

work with only a single source, a single relay, and a single

destination, and can be considered as a simplified building

block for larger relaying networks, or as a means for studying

basic properties of relaying before turning the attention to

more complicated scenarios. However, even for this basic

relaying scenario, the channel capacity is still unknown and

the optimal relaying strategy remains an open problem.
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The general approach of the proposed algorithm was presented at the 20th
International ITG Workshop on Smart Antennas (WSA 2016) [1], and the
(quasi) closed-form solution for the inner problem was presented at the 19th
IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC 2018) [2]. The explicit calculation of the derivative
in Section V and the modified algorithm for verifying global optimality in
Section VI are novel contributions of this journal version.

To obtain lower bounds to the capacity, researchers have

studied the achievable rates of various relaying strategies (see

also [4, Ch. 9], [5, Ch. 16]) such as amplify-and-forward

[6]–[10], compress-and-forward [7], [11]–[13], decode-and-

forward (DF) [7], [11], [12], [14]–[16], and partial decode-

and-forward (PDF) [5, Section 16.6], [4, Section 9.4.1], [7],

[17]–[21]. On the other hand, the so-called cut-set bound

(CSB) can be used to obtain an upper bound to the capacity

[11].

The Gaussian MIMO relay channel, i.e., a relay channel

with Gaussian noise and multiple antennas at all terminals

was considered, e.g., in [9], [10], [12]–[16], [18], [20]–[24].

For such a system, the PDF scheme is a particularly promising

candidate since it was shown in [21] that this coding scheme

achieves within a constant gap (depending only on the number

of antennas at the source and the relay) of the unknown

capacity.

The PDF scheme is an extension of DF and belongs to

a wider class of relaying strategies proposed in [11], where

the relay decodes only a part of the source message and

applies compress-and-forward to the other part. In particular,

the second part is simply ignored (i.e., it is compressed to a

constant value zero) in the PDF scheme [17]. This overcomes

the issue that a weak source-relay link can become the limiting

factor when using DF [7], [4, Section 9.4.1]. However, the

second part of the source signal, which acts as an interfering

signal at the relay, makes the analysis and optimization much

more involved.

Just like for DF, the achievable PDF rate is maximized

by jointly circularly symmetric Gaussian inputs [20], but the

optimal covariance matrices are still unknown. In case of

DF, these covariance matrices can be obtained by solving a

convex program [12], [16], but the additional interference term

makes the rate maximization problem for PDF nonconvex.

Therefore, previous approaches to maximize the PDF rate

based on successive convex approximation [23] or zero-forcing

[22] provide only suboptimal solutions.

In this work, we settle this problem in the following manner.

We adopt the primal decomposition approach from [19], where

an innovation signal is introduced as an auxiliary signal. As in

the previous conference version [1], we then approximate the

positive-semidefiniteness constraint of the innovation covari-

ance matrix by a stricter constraint that all eigenvalues have to

be greater than or equal to a small positive constant ε, i.e., the

matrix becomes strictly positive-definite. We then show that

the outer problem of this approximate formulation is convex

and can be solved by the efficient cutting plane algorithm.

http://arxiv.org/abs/1911.05767v1
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For the inner problem, we use a generalized eigenvalue de-

composition to obtain a (quasi) closed-form solution, whose

derivation is based on results that were obtained in [25] and

[2] for the MIMO wiretap channel and the MIMO broadcast

channel, respectively.

To overcome the issue from [1] that the approximation

using ε does not allow a rigorous statement about the distance

of the obtained solutions from the true global optimum, we

propose a modified version of the cutting plane method.

For this modified algorithm, we cannot prove that it always

converges, but if it converges, it finds the globally optimal

solution up to a desired precision. Despite this lack of a

theoretical convergence guarantee, we observed convergence

in all scenarios we considered as numerical examples. Thus,

at least for these scenarios, we settle the conjecture from [1]

that the obtained solutions are indeed close-to-optimal.

After introducing the system model and the problem for-

mulation in Section II, we give the details of the proposed

reformulation and approximation in Section III. Therein, we

also show that the approximation leads to a convex outer

problem. In Section IV, we derive the (quasi) closed-form

solution to the inner problem. Based on this, an explicit

expression for the gradient of the objective function of the

outer problem is derived in Section V. Using these ingredients,

we summarize the algorithmic solution as well as the modified

cutting plane method in Section VI. The numerical examples

in Section VII include a comparison to an existing suboptimal

approach.

Notation: We use I for the identity matrix of appropriate

size, and 0 for the zero matrix. The order relations � and ≻
have to be understood in the sense of positive-semidefiniteness

and positive-definiteness, respectively. We write E[•] for the

expectation, and Cx is the covariance matrix of a random

vector x. We use (conditional) mutual information expressions

of the form I(x;y) and I(x;y | z). For matrices A and B, we

use the Frobenius inner product 〈A,B〉 = tr[BHA] (e.g., [26,

Sec. 5.2]) and the Frobenius norm ‖A‖F =
√
〈A,A〉, where

tr[•] is the trace of a matrix. The notation [A]i,j is used for

the element in the ith row and jth column of A, and A+ is

the Moore-Penrose pseudoinverse of A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Gaussian MIMO relay channel with NS

antennas at the source S, NR antennas at the relay R, and ND

antennas at the destination D. The transmission is described

by

yR = HRSxS + ηR (1)

yD = HDSxS +HDRxR + ηD (2)

where HBA ∈ CNB×NA is the channel matrix from node

A to node B with A,B ∈ {S,R,D}. The noise vectors ηR

and ηD are assumed to be circularly symmetric Gaussian with

zero mean and, without loss of generality, identity covariance

matrices CηR
= I and CηD

= I. We assume perfect channel

state information and full-duplex transmission with perfect

self-interference cancellation at the relay. An extension to

other less idealized scenarios could be considered in future

research.

In the PDF scheme (e.g., [5, Section 16.6], [4, Section

9.4.1]) that we consider, the transmit signal xS of the source

is created as a superposition of two independent parts u and

v, where u denotes the part that is sent in cooperation with

the relay just like in the case of DF. The second part v, which

is specific to PDF, is directly transmitted without the help of

the relay and causes interference at the relay. We follow the

approach from [19], where xS is further decomposed as

xS = u+ v = AxR +w + v = z +w + v. (3)

where w is independent of the relay transmit signal xR and

z is fully correlated with xR.

The actual transmission is carried out using a block-Markov

coding scheme [4, Section 9.4.1], in which causality has to be

respected. Consequently, xR and z must be fully determined

by data that has previously been received by the relay, i.e.,

z cannot be used to provide any new information. Instead,

z is used to serve the user jointly with the relay in a

coherent manner. On the other hand, the signal parts w and

v contain new information that is provided to the relay (to

allow for further coherent transmissions in the future) and

to the destination. We therefore call w + v the innovation

signal, and we call its covariance matrix C = Cv +Cw the

innovation covariance matrix [19].

Our aim is to maximize the achievable data rate of the PDF

protocol (e.g., [4, Section 9.4.1])

R = min
{
I(xS;yD | (u,xR)) + I(u;yR |xR)︸ ︷︷ ︸

RA

,

I((xS,xR);yD)︸ ︷︷ ︸
RB

}
(4)

under the constraints

E
[
xH
SxS

]
≤ PS, E

[
xH
RxR

]
≤ PR (5)

on the transmit powers of the source and of the relay. We

can use the result that jointly circularly symmetric Gaussian

signals are the optimal input signals for the PDF scheme in

the Gaussian MIMO relay channel [20], and we can plug in

the decomposition (3).

The optimization problem we consider is then given by

max
Cv�0,Cw�0

R�0

min {RA(Cv,Cw), RB(Cv ,Cw,R)}

s. t. tr(Cv +Cw) + tr(DSRDH
S ) ≤ PS

tr(DRRDH
R) ≤ PR (6)

with

RA(Cv,Cw) = log2 det(I+HDSCvH
H
DS)

+ log2
det(I+HRS(Cv +Cw)HH

RS)

det(I+HRSCvH
H
RS)

, (7)

RB(Cv ,Cw,R) =

log2 det(I+HDS(Cv +Cw)HH
DS +HRHH) (8)
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where we have used the joint channel matrix

H =
[
HDS HDR

]
(9)

the joint covariance matrix

R = C[ z
xR

] = E

[[
z

xR

] [
z

xR

]H]
(10)

and the selection matrices

DS =
[
I 0

]
and DR =

[
0 I

]
. (11)

In (6), we have neglected an additional structural constraint

on the joint covariance matrix R of z and xR which would

ensure that z and xR are fully correlated as required by (3).

To see that this constraint is automatically fulfilled in the

optimum, assume that we have

R = E

[[
AxR

xR

] [
AxR

xR

]H]

︸ ︷︷ ︸
R′

+

[
B 0

0 0

]
(12)

with B � 0. Then, we could replace R by R′ and Cw

by C ′
w = Cw + B. This would leave the left side of the

constraints as well as the rate RB unchanged (to see this,

note the definition of H in (9)), and the rate RA would

either increase or remain unchanged. Thus, we do not need

to incorporate this constraint in (6).

III. APPROXIMATION AND PRIMAL DECOMPOSITION

As part of a proof in [19], a primal decomposition of (6) into

outer and inner problems was performed by introducing the

innovation covariance matrix C = Cv +Cw as an auxiliary

variable in the outer problem. In order to exploit this approach

for solving (6) numerically, we approximate the constraint set

in a way that we obtain a convex optimization problem.

For ε ≥ 0, we introduce the convex set

Pε =
{
(C � εI,R � 0)

∣∣ tr(C) + tr(DSRDH
S ) ≤ PS

and tr(DRRDH
R) ≤ PR

}
(13)

which becomes equivalent to the convex constraint set of (6)

if we plug in ε = 0. Otherwise, i.e., if ε > 0, the set Pε ⊂ P0

is a slightly tightened version of the constraint set of (6).

We consider the approximated optimization problem

max
(C,R)∈Pε

max
Cv�0

Cw�0

Cv+Cw�C

min {RA(Cv,Cw), RB(Cv,Cw,R)}

(14)

which is equivalent to (6) if ε = 0. To see why this is true,

note that the shaping constraint in the inner minimization is

active in the optimum [19]. For ε > 0, it provides a feasible

solution to (6), and thus a lower bound to the global optimum

of (6). For all numerical examples considered in Section VII,

we obtain the guarantee that this lower bound is numerically

tight, i.e., that the global optimum of (6) is obtained up to a

small error tolerance.

As RB in (8) depends only on the sum Cv +Cw, it is no

longer a function of Cv and Cw if C is given. Thus, the inner

optimization over Cv and Cw is only needed for RA, and we

can rewrite the problem as

max
(C,R)∈Pε

min {R⋆
A(C), RB(C,R)} (15)

with

R⋆
A(C) = max

Cv�0,Cw�0

RA(Cv,Cw) s. t. Cv +Cw � C

(16)

and

RB(C,R) = log2 det(I+HDSCHH
DS +HRHH). (17)

Below, we show that problem (15) is convex, and in Sec-

tion IV, we show that (16) can be solved in (quasi) closed

form.

Remark 1: If we in addition moved the optimization over

R inside the minimum, noting that only RB needs to be

optimized over R, we would obtain the primal decomposition

proposed in [19]. For the algorithm proposed in Section VI,

we find it more convenient to keep the optimization over R

together with the optimization over C .

Theorem 1: The modified optimization problem (15) with

ε > 0 is a convex program.

Proof: The constraint set Pε is convex, and the objective

function is a pointwise minimum, which is concave if both

terms inside the minimum are concave. Since log det(X) is

concave in X � 0 [27, Section 3.1.5], the rate expression

RB(C,R) is jointly concave in C and R. Thus, it is sufficient

to show that R⋆
A(C) is concave for ε > 0, i.e., for C ≻ 0.

Consider the maximization of the sum rate in a K-user

MIMO broadcast channel with dirty paper coding [28], [29]

under a shaping constraint

max
Q1�0,...,QK�0∑

k
Qk�C

K∑

k=1

log2

det
(
I+

∑K
i=k HkQiH

H
k

)

det
(
I+

∑K
i=k+1 HkQiH

H
k

)

(18)

with channel matrices Hk and noise covariance matrices I.

For given innovation covariance matrix C , the maximization

in (16) is mathematically equivalent to (18) for K = 2 users

(cf. [19]). Since (18) was shown to have zero duality gap for

C ≻ 0 [30], we can consider the Lagrangian dual problem of

the maximization in (16) and express R⋆
A(C) as

R⋆
A(C) =

min
Ω�0

max
Cv�0,Cw�0

RA(Cv,Cw)+tr (Ω(C − (Cv +Cw))) .

(19)

Assuming some C̃ ≻ 0, this can be bounded from above by

R⋆
A(C) ≤ max

Cv�0

Cw�0

RA(Cv ,Cw) + tr
(
Ω̃ (C − (Cv +Cw))

)

(20)

= max
Cv�0

Cw�0

RA(Cv ,Cw) + tr
(
Ω̃
(
C̃ − (Cv +Cw)

))

+ tr
(
Ω̃
(
C − C̃

))
(21)

where (20) is valid for all Ω̃ � 0, and (21) is obtained by

adding and substracting the term tr(Ω̃C̃).



4

Now consider R⋆
A(C̃) and let Ω̃ be the optimal Lagrangian

multiplier in (19) for this case. Clearly, (20) also holds for this

particular choice of Ω̃. Thus, (21) can be expressed as

R⋆
A(C) ≤ R⋆

A(C̃) +
〈
Ω̃,C − C̃

〉

︸ ︷︷ ︸
R̂⋆

A
(C;C̃)

(22)

showing that R⋆
A(C) can be bounded from above by the linear

approximation R̂⋆
A(C; C̃) around any C̃ ≻ 0. Thus, R⋆

A(C)
is concave in C for C ≻ 0, which concludes the proof.

Remark 2: The above proof is based on the concept of a

sensitivity analysis (cf. [27, Section 5.6]).

Remark 3: If ε = 0, the matrix C � εI might have

eigenvalues that are zero. In this case, the zero-duality-gap

property from [30] does not apply, i.e., (18) might have a

duality gap. Thus, we cannot extend Theorem 1 to ε = 0.

For further implications of a rank-deficient C , see Remark 5

below.

IV. SOLUTION TO THE INNER PROBLEM

In this section, we derive a (quasi) closed-form solution to

the maximization in (16) with C ≻ 0. As this problem is

mathematically equivalent to a sum rate maximization (18)

in the two-user MIMO broadcast channel with a shaping

constraint (see the proof of Theorem 1), we can follow the

lines of [2], where we have derived a solution to the broadcast

channel problem. The proof relies on a channel enhancement

argument that was previously used in [25] to derive a (quasi)

closed-form expression of the secrecy capacity of the MIMO

wiretap channel. The concept of channel enhancement for the

MIMO broadcast channel was originally proposed in [29].

We use GDS = HH
DSHDS and GRS = HH

RSHRS, so that

we can rewrite (7) as

RA(Cv,Cw) = log2 det(I+GDSCv)

+ log2
det(I+GRS(Cv +Cw))

det(I+GRSCv)
(23)

where we have used det(I+AB) = det(I+BA).
Theorem 2: Let F and Λ = diag{λi} such that

FH(I+C
1

2GRSC
1

2 )F = I (24)

FH(I+C
1

2GDSC
1

2 )F = Λ (25)

where C
1

2 is the positive-semidefinite square root of C ≻ 0,

and let F1 contain the columns of F that correspond to the

indices {i |λi > 1}. Moreover, let

Λ̄ = diag{λ̄i} with λ̄i = max{λi; 1}. (26)

Then, the optimal solution to (16) is given by

R⋆
A(C) = log2 det(Λ̄) + log2 det(I+GRSC) (27)

and is attained by

C⋆
v = C

1

2F1F
+
1 C

1

2 (28)

C⋆
w = C −C⋆

v. (29)

Proof of Theorem 2: As the shaping constraint is fulfilled

with equality in the optimal solution [19], we directly have

(29). Since F1F
+
1 is a projection matrix, we have 0 �

F1F
+
1 � I. This implies that 0 � C⋆

v � C , so that the

solution in (28)–(29) is a feasible point for (16).

Achievability: In Appendix A, the following identities are

shown:

det(I+GDSC
⋆
v) = det(FH

1 F1)
−1 det(Λ̄), (30)

det(I+GRSC
⋆
v) = det(FH

1 F1)
−1. (31)

The solution in (28)–(29) thus achieves

RA = log2
det(I+GDSC

⋆
v) det(I+GRSC)

det(I+GRSC⋆
v)

(32)

= log2
(
det(Λ̄) det(I+GRSC)

)
(33)

which shows that (27) is achievable.

Converse: Let

ḠDS = C− 1

2 (F−HΛ̄F−1 − I)C− 1

2 . (34)

Since Λ̄ � Λ and GDS = C− 1

2 (F−HΛF−1 − I)C− 1

2 ,

we have ḠDS � GDS. Thus, replacing GDS by ḠDS leads

to an enhanced MIMO relay channel. The solution to (16)

in this enhanced scenario is an upper bound to the solu-

tion in the original scenario since ḠDS � GDS implies

det(I+ ḠDSCv) ≥ det(I+GDSCv) for any Cv � 0.

Moreover, due to Λ̄ � I, we have ḠDS � GRS, so that

the enhanced scenario is a reversely stochastically degraded

MIMO relay channel (e.g., [24]), where it holds that

I(xS;yD | (u,xR)) + I(u;yR |xR) (35)

[24]

≤ I(xS;yD |xR) (36)

= log2 det(I+ ḠDS(Cv +Cw)) (37)

≤ log2 det(I+ ḠDSC) (38)

= log2
(
det(Λ̄) det(I+GRSC)

)
. (39)

The last equality is due to

det(Λ̄) =
det(Λ̄)

det I
=

det(FH(I+C
1

2 ḠDSC
1

2 )F )

det(FH(I+C
1

2GRSC
1

2 )F )
(40)

=
det(I+C

1

2 ḠDSC
1

2 )

det(I+C
1

2GRSC
1

2 )
=

det(I+ ḠDSC)

det(I+GRSC)
. (41)

This shows that the solution to (16) in the original MIMO

relay channel is bounded from above by (27).

Due to Theorem 2, we can compute a solution to (16)

in (quasi) closed form by solving a generalized eigenvalue

problem (cf., e.g., [31]). In particular, the matrix Λ contains

the generalized eigenvalues of the matrix pencil (Φ,Ψ ) with

Φ = I + C
1

2GDSC
1

2 and Ψ = I + C
1

2GRSC
1

2 , while F

contains the corresponding generalized eigenvectors. This can

be seen from

FHΦF
(25)
= Λ

(FHΨF )−1 (24)
= I



⇒ (FHΨF )−1FHΦF = Λ (42)

⇔ F−1Ψ−1F−HFHΦF = Λ (43)

⇔ ΦF = ΨFΛ. (44)

Remark 4: Since the solution to the generalized eigenvalue

problem in (44) is ambiguous with respect to a scaling of
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the columns of F , the implication “⇒” in (42) is not an

equivalence “⇔”. However, choosing this scaling such that

(24)–(25) hold is possible for any solution to (44).

V. CALCULATION OF GRADIENTS

In this section, we derive linear approximations by means of

gradients of R⋆
A(C) and RB(C,R), which can then be used

for an algorithmic solution to the outer problem.

For the rate expression RB(C,R), a linear approximation

around a point (C̃, R̃) can be easily obtained as

RB(C,R) ≤ R̂B(C,R; C̃, R̃) (45)

= RB(C̃, R̃) +
〈

∂RB

∂CT

∣∣
C̃
, C − C̃

〉

+
〈

∂RB

∂RT

∣∣
R̃
, R− R̃

〉
(46)

where the gradient matrices ∂RB

∂CT and ∂RB

∂RT are given by

∂RB

∂CT
=

1

ln 2
HH

DSD
−1HDS (47)

∂RB

∂RT
=

1

ln 2
HHD−1H (48)

with

D = I+HDSCHH
DS +HRHH. (49)

The inequality in (45) holds due to concavity of RB (see proof

of Theorem 1).

For R⋆
A(C), we have already obtained a linear approxi-

mation in (22). Therein, Ω̃ is a (concave) subgradient, and

according to the sensitivity analysis in (20)–(21), it can be

computed numerically by finding the optimal dual variable

(Lagrangian multiplier) Ω̃ in (19). This approach was pursued

in [1], where R⋆
A(C) was evaluated by a numerical solver that

delivers both the optimal primal and dual variables. However,

as we use the (quasi) closed-form solution (27) for the sake

of a small computational complexity, we instead calculate Ω̃

by deriving the gradient Ω̃ =
∂R⋆

A
(C)

∂CT directly based on (27).

When taking the derivative of (27) with respect to C , the

challenging part is the first summand in

Ω̃ =
∂R⋆

A(C)

∂CT
=

∂ log2 det(Λ̄)

∂CT

+
1

ln 2
HH

RS

(
I+HRSCHH

RS

)−1
HRS. (50)

Assuming that the generalized eigenvalues in Theorem 2 are

sorted in descending order, the first summand in (27) can be

written as

log2

(
NS∏

i=1

λ̄i

)
= log2

(
N∏

i=1

λi

)
=

N∑

i=1

log2 λi (51)

where N = |{i |λi > 1}|. The missing derivative is thus given

by

∂ log2 det(Λ̄)

∂CT
=

N∑

i=1

1

λi ln 2

∂λi

∂CT
(52)

which we compute element-wise in the following.

To obtain [ ∂λi

∂CT ]k,ℓ = ∂λi

∂[CT]k,ℓ
, we use the fact that

the derivative of a generalized eigenvalue with respect to a

parameter θ is given by [32]

∂λi

∂θ
= fH

i

(
∂Φ

θ
− λi

∂Ψ

θ

)
fi (53)

where fi is the generalized eigenvector corresponding to λi.

This result holds under the assumption that λi has multiplicity

one. Since matrices with eigenvalues with multiplicities larger

than one are a set of measure zero within the set of Hermitian

matrices (e.g., [33, Sec. A.37]), the assumption is sensible if

the channel matrices are drawn from a continuous distributions

and C has full rank.

In (53), we need the derivatives

∂Φ

∂θ
=

∂C
1

2

∂θ
HH

DSHDSC
1

2 +C
1

2HH
DSHDS

∂C
1

2

∂θ
, (54)

∂Ψ

∂θ
=

∂C
1

2

∂θ
HH

RSHRSC
1

2 +C
1

2HH
RSHRS

∂C
1

2

∂θ
. (55)

Setting θ = [CT]k,ℓ, we can then obtain the derivative of λi

with respect to the entries of C . It thus remains to calculate
∂C

1
2

∂[CT]k,ℓ
.

To this end, we use C = C
1

2C
1

2 to obtain the derivative

∂C

∂[CT]k,ℓ
=

∂C
1

2

∂[CT]k,ℓ
C

1

2 +C
1

2

∂C
1

2

∂[CT]k,ℓ
. (56)

Noting that

[
∂C

∂[CT]k,ℓ

]

m,n

=

{
1 if k = n and ℓ = m,

0 otherwise
(57)

we can calculate the unknown ∂C
1
2

∂[CT]k,ℓ
by solving the linear

system of equations (56). As this system is a Sylvester

equation [26, Sec. 2.4.4], it has a unique solution if C
1

2 and

−C
1

2 have no common eigenvalues [26, Th. 2.4.4.1]. This is

fulfilled under the assumption C ≻ 0 since all eigenvalues of

C
1

2 are strictly positive in this case.

The gradient Ω̃ =
∂R⋆

A
(C)

∂CT can thus be calculated by

combining (50), (52), (53), (54), and (55) with the solution

to (56).

Remark 5: In the calculation of the gradient, we need

C ≻ 0 for arguing that there are no repeated eigenvalues as

well as for solving the above Sylvester equation, i.e., we again

cannot easily extend the result to the case ε = 0. This is in

line with the observation that the sensitivity analysis (20)–(21)

does not extend to this case. If C has eigenvalues equal to zero,

the corresponding eigenvectors can be interpreted as forbidden

directions in which no signal power can be used. This means

that Slater’s constraint qualifications (see, e.g., [34, Ch. 5],

or [35, Ch. 1] for the corresponding concept in semidefinite

programming) are not fulfilled since the constraint set of (16)

has an empty interior in this case. As a consequence, it might

be the case that the KKT conditions (e.g., [34, Sec. 4.2])

are no longer necessary for an optimal solution, i.e., it may

happen that no combination of optimal primal and optimal dual

variables exists, even though we can find an optimal primal

solution via (27). Indeed, we verified numerically in [1] that
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there are cases where the optimum of the original problem can

indeed be attained at a point which does not fulfill the KKT

conditions, i.e., where we cannot find an optimal dual variable

Ω̃ to be used as a subgradient in the linearization (22). Thus,

it is not surprising that the alternative approach of obtaining

Ω̃ via an explicit gradient calculation fails as well if C is

rank-deficient.

VI. SOLUTION TO THE OUTER PROBLEM

We have shown that the optimization problem (15) with

ε > 0 is convex (Theorem 1), and we have calculated

the gradients of both terms inside the minimum operator in

the objective function (Section V). For solving (15) with

ε > 0, we can thus choose from the wide range of derivative-

based methods for convex programming. In the following, we

propose a solution using the cutting plane method [34], [36],

which successively refines linear approximations of a concave

function. Afterwards, we discuss how a solution to the original

PDF rate maximization (6) can be obtained, i.e., for the case

ε = 0.

A. Provably Convergent Algorithm for ε > 0

To apply the cutting plane algorithm, we reformulate (15)

as

max
(C,R)∈Pε

U∈R

U s. t. U ≤ R⋆
A(C), U ≤ RB(C,R). (58)

The optimal value of this problem can be bounded from above

by replacing R⋆
A(C) and RB(C,R) in the constraints of (58)

by their linear approximations (22) and (46) around a finite

number of points. To this end, we consider the problem

max
(C,R)∈Pε

U∈R

U s. t. U ≤ R̂⋆
A(C; C̃)

U ≤ R̂B(C,R; C̃ , R̃)



 ∀(C̃, R̃) ∈ P(n)

(59)

where P(n) ⊂ Pε contains all points at which a linearization

has been performed. This corresponds to an outer approxima-

tion of the constraint set (i.e., a relaxed problem) since the

linear approximations overestimate the concave functions R⋆
A

and RB. Problem (59) is a semidefinite program and can be

solved by standard solvers such as, e.g., SDPT3 [37].

The cutting plane algorithm is initialized with an initial set

P(1) with a small number of strictly feasible elements, i.e.,

points (C,R) from the interior of the constraint set Pε. For

instance, we could use P(1) = {(αI, βI)} with α > ε and

β > 0 chosen in a way that both power constraints in (13) are

fulfilled with strict inequality. In the nth iteration, problem

(59) is solved, which yields an upper bound U (n) to the

optimal value of (15) and a new candidate point (C(n),R(n)).
This point is added to the set of points in P(n) to obtain a new

set P(n+1), and the gradients from Section V are calculated

to obtain the additional linear approximations. Moreover, by

evaluating the objective function of (15) at the new candidate

point, we can get a lower bound

L(n) = min{R⋆
A(C

(n)), RB(C
(n),R(n))} (60)

to the optimal value.

The current best solution in the nth iteration is the candidate

point from iteration number argmaxi∈{1,...,n} L
(i), and we get

the guarantee that this solution lies at most

∆(n) = U (n) − max
i∈{1,...,n}

L(i) (61)

away from the global optimum of (15). This error ∆(n)

converges towards zero due to the convergence proof of the

cutting plane algorithm in [36], and we can terminate the

algorithm if a desired accuracy ǫCP is reached.

The procedure is summarized in Algorithm 1, and the

intuition behind the convergence proof is as follows. If the

optimizer (C(n),R(n)) of (59) lies inside Pε, we have found

an optimal solution to (15) and obtain U(n) = L(n). In any

other case, adding a new linear constraint due to a linearization

at (C(n),R(n)) refines the outer approximation. This can

be interpreted in a graphical manner as adding a tangent

hyperplane at (C(n),R(n)) in order to cut away a halfspace in

which the optimal solution cannot lie. Since the refined outer

approximation leads to a decreased upper bound U (n+1), the

values of the upper bound form a decreasing sequence. It can

be shown (see [36]) that this sequence converges towards the

global optimal of (15).

Algorithm 1 Cutting Plane Method for (15) with ε > 0

Given n = 0, ε > 0, and an initial set P(1):

1) n← n+ 1

2) (C(n),R(n), U (n)) ← optimizer of (59)

3) P(n+1) ← P(n) ∪ {(C(n),R(n))}

4) Repeat 1)–3) until ∆(n) ≤ ǫCP

It remains to discuss the quality of the obtained solution in

terms of the original PDF rate maximization. As increasing

ε tightens the constraint set of (15), the obtained solution is

guaranteed to be feasible for (15), but it might be suboptimal.

Unfortunately, it is not clear how strong this suboptimality

can become. In other words, it is an open question whether

the optimal value of (15) is a continuous function of ε. If this

was not the case, it could in principle happen that an arbitrarily

small ε still leads to a large error in the optimal solution. To

overcome this issue, we propose a modified algorithm below.

B. Algorithm for ε = 0

When using the cutting plane algorithm, the necessity of

having ε > 0 does not arise from the semidefinite program

(59), but from the gradient calculation using (56). We may

thus allow ε = 0 in (59) if we have some other means to

ensure that P(n) ⊂ Pε′ for some ε′ > 0, i.e., to ensure that

we need to evaluate the gradient for full-rank C .

Let (C(n),R(n)) denote a candidate point obtained using

ε = 0. As C(n) might be rank-deficient, we propose to perform

the orthogonal projection

C⋆ = argmin
C�ε′I

‖C −C(n)‖2F (62)
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and to add (C⋆,R(n)) to the set P(n+1) instead of adding

(C(n),R(n)).
The solution to this problem is given in the following

proposition, whose proof is provided in Appendix B.

Proposition 1: The solution to (62) is given by

C⋆ = V diag{max{κi, ε
′}}V H (63)

where V and κi are obtained from the eigenvalue decompo-

sition C(n) = V diag{κi}V
H.

Algorithm 2 Modified Algorithm for (15) with ε = 0

Given n = 0, ε′ > 0 and an initial set P(1):

1) n← n+ 1

2) (C(n),R(n), U (n)) ← optimizer of (59) with ε = 0

3) C⋆ ← projection of C(n) onto Pε′

4) P(n+1) ← P(n) ∪ {(C⋆,R(n))}

5) Repeat 1)–4) until ∆(n) ≤ ǫCP or P(n+1) = P(n)

When using the modified procedure in Algorithm 2, problem

(59) with ε = 0 directly provides an outer approximation of

the original PDF rate maximization (6). This in contrast to

Algorithm 1, where (59) provides an outer approximation of

(15) which in turn is an inner approximation of (6). Therefore,

no rigorous solution about the quality of the obtained solution

is possible in case of Algorithm 1, but the situation changes

when using Algorithm 2.

In this case, U (n) is an upper bound to the solution of

(6) and L(n) is a feasible point for (6). Thus, if ∆(n) → 0,

we have a guarantee that we have found a globally optimal

solution to (6). However, the modification in Algorithm 2

comes at the cost that the convergence proof from [36] no

longer applies. If we have not yet found the optimum of

the original problem, it is clear that an additional linear

constraint due to a linearization at (C(n),R(n)) refines the

outer approximation (see Section VI-A), but it is not clear

whether a new linearization at (C⋆,R(n)) does the same.

In fact, it might happen that the projections leads to a point

(C⋆,R(n)) that had already been contained in P(n) without

being an optimal solution. In this case, P(n+1) = P(n), i.e.,

we would solve (59) for the same outer approximation again

in the next iteration and would not get any further progress

for U (n+1).

For this reason, the additional termination criterion

P(n+1) = P(n) was added to Algorithm 2. If the algorithm

terminates due to this criterion, we have not managed to obtain

a globally optimal solution to (6), but the current ∆(n) gives a

rigorous information about how far the distance to the globally

optimal solution can be at most. On the other hand, if the

algorithm terminates due to the first criterion ∆(n) ≤ ǫCP,

we have a guarantee that the obtained solution is a globally

optimal solution to the original PDF rate maximization (6) up

to the desired error tolerance ǫCP. In particular, the latter will

happen in cases where the optimal solution of (6) lies in Pε′ ,

i.e., in cases where the optimal innovation covariance matrix

has full rank.
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Fig. 1. Histogram of rate gain over IAA [23] for NS = NR = ND = 2,
PS = 100, PR = 10, d = 0.8 and ε = 10

−5
PS.

VII. RESULTS AND CONCLUSION

For the numerical simulations, we adopt the line network ex-

ample from [23], where the relay lies on a line between source

and destination. The distances source-relay, relay-destination,

and source-destination are given by dRS = d, d ∈ (0, 1),
dDR = 1 − d, and dDS = 1, respectively. The channel

matrices are given by HAB = d
−γ/2
AB H̃AB with γ = 4 and

A,B ∈ {S,R,D}. The individual elements of each H̃AB

are independent and circularly symmetric complex Gaussian

distributed with zero mean and unit variance.

The first important observation of the simulations we per-

formed is that Algorithm 2 always terminated with ∆(n) ≤ ǫCP

for ǫCP = 10−3. This means that the proposed method manages

to find the globally optimal PDF rate in the considered sce-

nario, i.e., the lack of a theoretical convergence guarantee does

not hurt in this scenario. Moreover, the difference between

the PDF rates obtained with Algorithm 1 and Algorithm 2

has always been much smaller than ǫCP in the simulations,

i.e., Algorithm 1 manages to find the global optimum as well,

even though it has only been designed for computing a lower

bound to the optimum. As the numerical results do not differ,

we do not present separate plots for the two algorithms below.

We can use the obtained globally optimal solutions to inves-

tigate two questions. First, we can evaluate the performance

of previously proposed suboptimal algorithms, and second, we

can study the gap between the PDF rate and the CSB. As a

suboptimal method, we have chosen the inner approximation

approach (IAA) from [23], which was reported to outperform

other suboptimal heuristics (see the simulations in [23]).

The histogram in Fig. 1 shows the difference Rproposed −
RIAA for 200 i.i.d. channel realizations with two antennas

at each terminal and distance parameter d = 0.8. It can be

seen that the IAA and the proposed algorithm converge to the

same value in many cases. However, there are also cases in

which the proposed algorithm achieves a higher rate, meaning

that the solution found by the IAA method is not the global

optimum in these cases. Fig. 2 shows the results for the same

scenario with various values of d. By using the proposed

method as a benchmark, we can conclude that the IAA has

a close-to-optimal performance on average, which had not

been clear in the first place since the IAA is only a local
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Fig. 2. Average rate compared to IAA [23] and to the CSB for NS = NR =

ND = 2, PS = 100, PR = 10, and ε = 10
−5PS.

method. However, the IAA cannot find the global optimal for

all channel realizations.

Concerning the gap to the CSB, we can observe that this

gaps remains for d larger than approximately 0.5 (see Fig. 2)

even though we have solved the PDF rate maximization in a

globally optimal manner. This shows that this gap is not due

to a potentially suboptimal choice of the covariance matrices,

but it is either inherent to the PDF scheme or inherent to the

fact that the CSB might not be a tight bound to the capacity

of the relay channel in general.

VIII. CONCLUSION

We have proposed a method to compute a solution to the

problem of maximizing the partial decode-and-forward (PDF)

rate in the Gaussian MIMO relay channel. In addition to

the computed covariance matrices, the algorithm outputs an

accuracy ∆(n) and guarantees that the achieved PDF rate is at

most ∆(n) away from the true global optimum. Even though

the algorithm might theoretically terminate with ∆(n) ≫ 0,

we have observed convergence ∆(n) → 0 for all considered

channel realizations of the considered numerical example. This

means, that the method indeed finds the globally optimal PDF

rate in these scenarios.

An open topic for future research is to either find a formal

convergence proof of the proposed method or to derive an

alternative solution approach for which a theoretical conver-

gence guarantee can be given. Another aspect is that it might

be possible to calculate a Hessian matrix in addition to the

gradient and to use this second-order information to accelerate

the numerical solution.

APPENDIX A

DERIVATION OF (30)–(31)

Without loss of generality, assume that Λ in (25) is arranged

such that Λ = blockdiag{Λ1,Λ2}, where Λ1 contains all

diagonal elements that are larger than one. We can then write

F =
[
F1 F2

]
, and we have

F1F
+
1 = FΞFH with Ξ =

[
(FH

1 F1)
−1

0

0 0

]
. (64)

Moreover, we can calculate

ΞFHF =

[
I (FH

1 F1)
−1FH

1 F2

0 0

]
(65)

and we obtain

det(I+GDSC
⋆
v) (66)

= det(I+C
1

2F1F
+
1 C

1

2C− 1

2 (F−HΛF−1 − I)C− 1

2 ) (67)

= det(I+ FΞFH(F−HΛF−1 − I)) (68)

= det(I+ΞFH(F−HΛF−1 − I)F ) (69)

= det(I+ΞΛ−ΞFHF ) (70)

= det

([
(FH

1 F1)
−1Λ1 −(FH

1 F1)
−1FH

1 F2

0 I

])
(71)

= det((FH
1 F1)

−1) det(Λ1) =
det(Λ̄)

det(FH
1 F1)

. (72)

To obtain the identity involving GRS, we only need to replace

Λ in (67)–(70) by I, yielding I instead of Λ1 in (71)–(72).

APPENDIX B

PROOF OF PROPOSITION 1

We solve the convex program (62) via its KKT conditions

(e.g., [34, Sec. 4.2]). Introducing a Lagrangian multiplier

matrix Θ � 0, the Lagrangian function of problem (62) read

as

Φ = tr[(C −C(n))H(C −C(n))]−Θ(C − ε′I). (73)

The complementary slackness condition Θ(C − ε′I) = 0

implies that Θ has the same eigenbasis as (C− ε′I) and thus

the same eigenbasis as C (e.g., [38, Proof of Th. 1]). We thus

can write C = W diag{ζi}W
H and Θ = W diag{θi}W

H.

Setting ∂Φ
∂CT = 0, we have

C −Θ = C(n)

⇔ W (diag{ζi − θi})W
H = V diag{κi}V

H (74)

which implies that W = V and ζi = κi+ θi with θi ≥ 0. For

all i with κi < ε′, primal feasibility ζi ≥ ε′ requires θi > 0,

and complementary slackness θi(ζi− ε′) = 0 then yields ζi =
ε′. For all i with κi ≥ ε′, we have ζi − ε′ = κi + θi − ε′, so

that complementary slackness yields θi = 0 and ζi = κi.
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