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Abstract—Set functions are functions (or signals) indexed
by the powerset (set of all subsets) of a finite set IN.
They are fundamental and ubiquitous in many application
domains and have been used, for example, to formally
describe or quantify loss functions for semantic image
segmentation, the informativeness of sensors in sensor
networks the utility of sets of items in recommender
systems, cooperative games in game theory, or bidders
in combinatorial auctions. In particular, the subclass of
submodular functions occurs in many optimization and
machine learning problems.

In this paper, we derive discrete-set signal processing
(SP), a novel shift-invariant linear signal processing frame-
work for set functions. Discrete-set SP considers different
notions of shift obtained from set union and difference
operations. For each shift it provides associated notions of
shift-invariant filters, convolution, Fourier transform, and
frequency response. We provide intuition for our frame-
work using the concept of generalized coverage function
that we define, identify multivariate mutual information
as a special case of a discrete-set spectrum, and motivate
frequency ordering. Our work brings a new set of tools for
analyzing and processing set functions, and, in particular,
for dealing with their exponential nature. We show two
prototypical applications and experiments: compression
in submodular function optimization and sampling for
preference elicitation in combinatorial auctions.

I. INTRODUCTION

T the core of signal processing (SP) is a well-

developed and powerful theory built on the con-
cepts of time-invariant linear systems, convolution,
Fourier transform, frequency response, sampling, and
others [1]. Many of the SP techniques and systems
invented over time build on these to solve tasks including
coding, estimation, detection, compression, filtering, and
others, on a diverse set of signals including audio, image,
radar, geophysical, and many others [2f], [3].

In recent years, the advent of big data has dramatically
increased not only the size but also the variety of
available data for digital processing. In particular, many
types of data are inherently not indexed by time, or
its separable extensions to 2D or 3D, but have index
domains encoding other forms of relationships between
data values. Thus, it is of great interest to port the core
SP theory and concepts to these domains in a meaningful
way to enable the power of SP.
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Graph signal processing. A prominent example is
the emerging field of signal processing on graphs (graph
SP) [4], [S]. It is designed for signal values associated
with the nodes of a directed or undirected graph, which
is a common way to model data from social networks,
infrastructure networks, molecular networks, and oth-
ers. Leveraging spectral graph theory [6f], graph SP
presents meaningful interpretations of the shift operator
(adjacency matrix), shift-invariant systems, convolution,
Fourier transform, sampling, and others [4]], [7], [8]. In
[5]], the same is done based on the Laplacian [9] instead
of the adjacency matrix. The large number of follow-up
works demonstrates the benefit of porting core SP theory
to new domains. One prominent example are neural
networks using graph convolution [[10]. In this overview,
the authors show the benefits and motivate the need for,
as they call it, other ”"Non-Euclidean convolutions.”

Set functions. In this paper we develop a novel SP
theory and associated tools for discrete set functions.
A set function is a signal indexed with the powerset
(set of all subsets) of a finite set /N, which means it
is of the form (s4)acn, sa € R. One can think of
N as a ground set of objects; the set function assigns
a value or cost to each of its subsets. The concept is
fundamental and naturally appears in many applications
across disciplines. The graph cut function associates with
every subset of nodes in a weighted graph the sum of the
edge weights that need to be cut to separate them [11].
In recommender systems a set function can model the
utility of every subset of items [12]. In sensor networks,
a set function can describe the informativeness of every
subset of sensors [13]]. In auction design every bidder is
modeled by a set function that assigns to every subset
of goods to be auctioned the value for this bidder [14].
In game theory a cooperative game is modeled as a
set function that assigns to every coalition (subset of
a considered set of players) that can be formed the
collective payoff gained [15]]. Data on hypergraphs can
also be viewed as (sparse) set functions that, for example,
assign to every occurring hyperedge (subset of nodes) a
value [|16].

As a consequence, the applications of set functions
have been manifold. Examples include document sum-
marization [[17], marketing analysis [[18], combinatorial
auction design [14], and recommender system design
[12]. Examples in signal and image processing include
image segmentation [|19]], compressive subsampling [20],



precoder design [21], sparse sensing [22], action/gesture
recognition [23], motion segmentation [24], attribute
selection [25]], and clustering [26].

In many of these applications, the goal is the mini-
mization, maximization, or estimation of a set function.
The main challenge across applications is its exponential
size 2/V!, which means the set function is usually not
available in its entirety but only chosen samples/queries
s4 obtained through an oracle, which itself can be
costly. Thus, to make things tractable it is crucial to
exploit any available structure of the set function. One
common example that naturally occurs in most of the
above applications is submodularity, a discrete form of
concavity, which has given rise to a number of efficient
algorithms [18], [27].

Another line of work uses Fourier analysis. The pow-
erset can be modeled as an undirected, | N|-dimensional
hypercube with edges between sets that differ by one
element. This model has made the Walsh-Hadamard
transform (WHT) the classical choice of Fourier trans-
form for set functions [28]]. A recent line of work aims to
make set functions tractable by assuming and exploiting
sparsity in the WHT (Fourier) domain [29], [30].

Contribution: Discrete-set SP. In this paper we
develop a novel core SP theory and associated Fourier
transforms for signal processing with discrete set func-
tions, called discrete-set SP, extending our preliminary
work in [31]]. The derivation follows the algebraic signal
processing theory (ASP) [32], [33]], a general framework
for porting core SP theory to new index domains. In
particular, ASP identifies the shift as the central, ax-
iomatic concept from which all others can be derived.
For example, [4] applies ASP to derive graph SP from
the adjacency matrix as shift.

We consider four variants of shifts, obtained from set
union and difference operations. For each, we derive
the associated signal models (in the sense defined by
ASP) including shift-invariant filters, convolution, filter-
ing, Fourier transform, frequency response, and others.
Discrete-set SP is fundamentally different from graph SP
by being separable: it inherently distinguishes between
the neighbors of an index A C N, which have one
element more or less, by providing n = |N| shifts for
each model. The technical details will become clear later.
Our work complements the classical Fourier analysis
based on the WHT that we include as fifth model, but is
different in that it is built from directed shifts. We will
discuss more closely related work in Section

We provide intuition on the meaning of spectrum and
Fourier transform using the notion of generalized cover-
age function that we define. This shows that our notions
of spectrum capture the concepts of complementarity and
substitutability of the elements in N. In particular, we
show that multivariate mutual information is a special

2
case of spectrum.

Finally, we show two prototypical applications that
demonstrate how discrete-set SP may help in approxi-
mating, estimating, or learning set functions: compres-
sion in submodular function optimization and sampling
for preference elicitation in auctions.

II. SET FUNCTIONS AND THEIR ~’2-TRANSFORM”

We will derive discrete-set SP using the general
ideas and procedure provided by the algebraic signal
processing theory (ASP) [32]]. ASP identifies the shift
(or shifts) as the axiomatic core concept of any linear
SP framework. Once a shift (or shifts) is chosen, the
rest follows: convolutions (or filters) are associated shift-
invariant linear mappingsp_] and the Fourier transform is
obtained via their joint eigendecomposition. In our work
the considered shifts will capture the particular structure
of the powerset domain by using set difference and union
operations.

One way of defining a shift is directly as linear
operator on the signal vector as done, e.g., in [34] (space
shift) or [4] (graph adjacency shift). We will take a
different, though mathematically equivalent, approach by
defining the shift via an equivalent of the z-transform for
set functions. To do so, we first introduce the concept of
formal sums.

Formal sums and vector spaces. Assume we are
given n symbols A;, 0 < i < n. The real vector space
generated by the A; is the set of linear combinations
V = {20§i<n $iA; | S; € R} with Ag,..., A,_1 as
its basis. The elements of V' are formal sums, i.e., they
cannot be evaluated. Addition and scalar multiplication
are defined as expected, and satisfy all the vector space
axioms:

Z 5;A; + Z t;A; = Z (si +1t5)A;

0<i<n 0<i<n 0<i<n

and, for o € R,

o Z SzAz: Z (0481)141

0<i<n 0<i<n

There is no obvious definition of shift on the set of the
A; since it carries no additional structure.

Time signals and =z-transform. Recall that for a
finite-duration discrete signal s = (s;)o<i<n, the z-
transform is given by

D: s> s=s(x)= Z st
0<i<n

where we write * = 2z~ !. In other words s is a

polynomial, which is a special case of a formal sum with

"More precisely, the shift(s) generate the algebra of filters. An
algebra is a vector space that is also a ring, i.e., it supports a
multiplication operation.
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Fig. 1: Visualization of the (cyclic) time shift by z.

A; = x'P| The structure of the 2% naturally supports the
time shift (or translation) corresponding to multiplying
by x: - 2' = 2'*!, and thus the z° have been called
time marks [35]. The extension to shifting by z* (k-
fold shift) is obvious. In the finite case, =™ = 1, i.e.,
" —1 =0, is assumed (see Fig. E]), which makes the
shift cyclic and gives structure to the set of the z%: it is
a monoid and even a grou;ﬂ Linear extensiorﬂ of the
shift from the basis of the 2’ to arbitrary signals in the
z-domain yields:

rs(z) = Z sz mod (2™ — 1)
0<i<n
= sn_leJr Z si_lxi. (1)

1<i<n

Note that = advances the x* which delays the signal.
We will see later that the corresponding concepts for set
functions will not coincide since our set shifts are not
invertible.

The associated notion of convolution extends (I to
linear combinations h(z) = > o p.,, hia® of k-fold
shifts, i.e., is given by h(z)s(z) mod 2™ — 1, which
is equivalent to the circular convolution of h and s as
expected.

Next we formally introduce set functions and their
equivalent of z-transform.

Set functions and S-transform. Given is a finite set
N ={z1,...,x,} of size n. A set function is a mapping
on the powerset (set of all subsets, usually denoted with
2NY of N. In other words, it is a signal s whose index
domain is not time but the powerset 2V. We consider this
powerset signal as a vector of length 2", which thus has
the form

S = (SA)AgN~

In discrete-time SP, signals are naturally ordered by
ascending time. For powerset signals we choose the lexi-
cographic ordering on the Cartesian product ({}, {z,}) X
-+ x ({},{x1}). For example, for n = 3 this yields the
following ordering of subsets:

{}’ {xl}v {xZ}v {xlva}v
{‘T3}7 {xlvx?)}v {IQ,Ig}, {Il,l’g,irg}. (2)

2Polynomials are of course also functions that can be evaluated for
any x. This property is not needed in our derivations.

3 A monoid is a set supporting an associative operation (here -) with
a neutral element (here 20 = 1). Invertibility makes it a group.

4A linear mapping on a finite-dimensional vector space is uniquely
determined by its images on the basis.

The order is recursive: the first half contains all subsetg
not containing xs (again ordered lexicographically), the
second half is the first half, each set augmented with x3.
The powerset 2V can be viewed as an n-dimensional
hypercube (see Fig. [2| for n = 3). A powerset signal
associates values with its vertices.

S-transform. We define the equivalent of the z-
transform for set functions, called S-transform (S for
set):

O:srs= Y saA (3)

ACN

We will also refer to s in the S-domain in (3) as signal.
s is a formal sum, the set of which form a vector
space as explained before. As the time marks z’, the
“set marks” A offer structure. For example, the union
operation makes 2"V a monoid, and will provide one shift
definition in the following. Following this idea we will
consider four “natural” choices of shifts and thus derive
four variants of discrete-set SP.

III. DISCRETE-SET SP: NATURAL SHIFT

The time shift advanced the time marks by 1: z- 2% =
2*1. On subsets, we choose as analogue to increase the
sets by one element. Since there are n ways of doing
this, we define n shift operators x; for each x; € N. We
write this shift as multiplication:

2+ A=AU{z;}, ACN. (4)
By linear extension of (@) to arbitrary s in () we obtain

> sa(Au{x}) (5)

ACN

- ¥

ACN,z;€A

Xr;s =

(54 + 84\ {a;})A.

The last sum is obtained by recognizing that the first
sum only has summands for sets that contain x; and
substitute A for A U {x;}. So the effect on the signal
values is not the “clean delay” s 4\ {,,} as one might have
expected, and which would parallel @, but s4+s A\{z:}
for x; € A and O else. The reason is that the shift is
not invertible: (3) lies in the 2"~ !-dimensional subspace
spanned by the sets that contain x;. Also note that the
shift satisfies 22 = ;.

An example shift by x; is visualized in Fig. [2| for
n = 3, the shifts by x5, x3 operate analogously.

To obtain the matrix, denoted with ¢(x;), associated
with the shift x;, we let it operate on the basis in our
chosen order (see (Z)). As an example we consider n = 3
and the shift xq:

P(z1) = =L®[77].

[=NeloloNeNel o]
[oleoNoloNeNol o)
OO0 OoOr,ROOO
QOO0 OOO
ool oNeNeNoNe)
OO OOOOO
HOOoOOOoOOoOOoOOo
HOOOOoOOOoOOo



@

{1, 22,23}

{z2, 23}

{za} | {z1, 22}

Has} O {z1,23}

0 {a1}
Fig. 2: Visualization of shift by z; in @).

Here, I, is the m X m identity matrix and ® de-
notes the Kronecker product of matrices defined by
UV = [ugV], for U = [ug.e], i.e., every entry of U
is multiplied by the entire matrix V. Again we see that
x7 is not invertible since ¢(x1) has rank 4.

In general,

¢($Z) = Ipn-i ® [? ?] ® Igi-1. (6)

If matrices U, U’ have the same size and V, V"’ have
the same size, then (U@ V)(U' @ V') = (UU' @ VV).
Equation (6) shows that all shift matrices commute, as
expected from (@). We will diagonalize them simultane-
ously by the Fourier transform defined later.

X -fold shift for X C N. We just defined a shift by
an element of N. To work towards filtering we first need
a consistent “X-fold” shift for any subset X C N. This
is done by shifting with all elements of X in sequence.
Since the union in () is commutative, the order does
not matter. Formally, if X = {y1,...,y:} C N, then

X A=y g1y - A)...)=AUX. (T)

In particular, ) - A = A. By linear extension to signals
S, we compute

X-s = Z sa(AUX)

ACN

3 ( > sB>A. (8)

XCACN A\XCBCA

The last sum is obtained by observing that only sum-
mands for sets containing X occur in the first sum,
setting A U X = A, and collecting for each such A
all associated coefficients.

(7) implies that the matrix representation of the shift
by X is given by the product

H(X) = d(y1)p(y2) - - P(ye)- )

Filters. To make the filter space a vector space, a
general filter is a linear combination of X-fold shifts
and thus (in the S-domain) given by

h= Z hx X

XCN

(10)

and filtering (in the S-domain) becomes
hs = ( 3 hXX)( 3 sAA>,
XCN ACN

which is again a signal. To compute it, we apply the
distributivity law to reduce it to X-fold shifts and then

use (8] to obtain
hs = Z ( Z hBSC)A.

ACN  BUC=A

Y

Thus the expression in the parentheses is the associated
notion of convolution on the coefficient vectors (some-
times called the covering product [36])

(h *(1) S)A = Z hBSC.
BUC=A

(12)

We refer to the superscript as “type 17 since we will
derive other types of convolutions based on different
notions of shift later.

The matrix representation of a filter » in (I0) is given
by

¢(h) = > hxo(X).
XCN

As an example, we consider n = 3 and the filter h =
ad + b{xs} + c{z1, 23} + d{x1, T2, 73}, a,b,c,d € R.

Using (6) and (9),

o(h)
=alsg +b(L @[99 @ L) +c(L @[N] @ L)
+d([?9]@[R9]@[99])
=als+b(L®[?]@ L)+ Le[?9])
+dL [ L)) L)
b ¢ a+b
_ b a+b
¢ e e ato
b a+b

d d c+d c+d d b+d c+d a+b+c+d

Shift invariance. Since U is commutative, any shift
by x; will commute with any filter, i.e., filters are shift-
invariant. Formally, for all shifts x; € N, signals s, and
filters h,

x;(hs) = h(x;s).

Fourier transform. The proper notion of Fourier
transform should jointly diagonalize all filter matrices
for which it is sufficient to diagonalize all shift matrices
¢(z;) in (6). This is possible since they commute. In
fact, their special structure shows that this is achieved
by a matrix of the form T®" =T ® ... ® T, where T

diagonalizes [ ¢]. Since

[ 1) =

|
—
O = ==



the discrete set Fourier transform (of type 1, since
associated with (T2)) is given by the matrix
DSFTY) = [1}]@...® [+ 1]. (14)
Note that there is a degree of freedom in choosing 7.
We enforce the eigenvalue 1 in (I3) to be first. Also,
rows of the DSFT could be multiplied by —1.
We denote the spectrum of s with

s = DSFTY s

and (T4) shows that it can be computed with n2"~!
additions.

The DSFT™ in (T4) can equivalently be represented
in a closed form with a formula that computes every
entry. The columns of DSFT" are naturally indexed
with A C N, as s is. Assume the same indexing
for the rows, i.e., for the spectrum ’sﬂ), in the same
lexicographic order. Then

DSFT(QIQ = [LAQB:(])(A, B)]B,AQN; (15)
where ¢ is the indicator function of the assertion in the
subscript, i.e., in this case

LAﬂB:(Z)(AaB): {1’ AnB m’

0, else.
By abuse of notation, we will often drop the arguments
of a characteristic function. (I3) implies that the Bth
spectral component (or Fourier coefficient) of a signal s
is computed as

(16)

Wo Y .

ACN,ANB=0

In other words, the spectrum is also a set function.

The closed forms for (I5)) and for matrices occurring
later in this paper are obtained using the following lem-
mas. Each assertion can be easily proven by induction
over n = |N|.

Lemma 1. The following holds:

_ - ®n
0 1

1 1 = [LAUB:N]A,B = [LN\AQB}A,B
1 0]®"

1 1 = [tBcalas

1o1]®"

1 0 = [LAmB:VﬂA,B = [LBQN\A]A,B
o1

0 1 = [LAQB]A,B

Lemma 2. The following holds:

T ey,
LTy,
EREY R T
I

Note that in the lemmas A is always the row index
and B the column index.

The lemmas can be combined to identify the closed
form also in cases in which the 2 x 2 matrix has one 0,
one —1, and two 1s. For example, this yields a closed
form for the inverse DSFT:

o 1]®"
(DSFTS)) ! = [1 1] = (=D Plsup_n]a, B,
where Lemma [I] yields the nonzero pattern and the
Lemma [2] the minus-one pattern. Thus we also obtain
a closed form for the Fourier basis, which consists of
the columns of (DSFTY))~!. Namely, the Bth Fourier
basis vector £ is the Bth column:

% = ((—=1)A"Bl 4 p_n) acn.

Frequency response. We first compute the frequency
response of a shift by z; € N at frequency B using the
S-domain. Let B be fixed:

fEifB = Z

ACN,AUB=N

(—)MEIAU {as}).

If x; ¢ B, then x; is contained in every occurring A
(since AUB = N implies N\ B C A) and thus z; f? =
fB.If z; € B, then every set AU{x;} occurs twice: once
for an A without z; that satisfies AU B = N and once
for the same A joined with ;. The intersection of these
with B differs in size by one and thus the associated
summands cancel, yielding z; fZ = 0. So the frequency
response of the shift z; at the Bth frequency is either 1
or 0, as expected from the last matrix in (13).
Extending to a shift by X C N, using (7)), yields

B _
XfP = e, if XnB=1{,
0, else,

and thus, by linear extension, we can compute the
frequency response of an arbitrary filter h at frequency

B through
e ()= (Y
XCN XCN,XNB=0

This shows that the frequency response is also computed
with the DSFT".

hX)fB~
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Fig. 3: Visualization of shift by x; in (17).

Convolution theorem. The above yields the convolu-
tion theorem

— (1)

h«Ds =h"osh,

where © denotes pointwise multiplication.

IV. DISCRETE-SET SP: NATURAL DELAY

The shift chosen in the previous section advanced the
set marks in the S-domain but did not yield, what one
could call the delay s\, of the signal, but instead
sA+ SA\{z} for ; € A and 0O else. In this section we
define, and build on, a shift that produces this delay.

We define a shift by x; € N as

xi'A_{AJrAU{xZ—}? 2 € A,

= 17
0, else. a7

As before, we extend linearly to signals s and compute

r-§ = Z SA(A+AU{$1})
ACN,z:¢A
= Z SAA+ Z sA\{ml}A
ACN,z;éA ACN,z;€A
= D saeyd
ACN

which is the desired set delay. For the second equality
we split the sum and set A = A U {z;} in the second
sum. For the third equality we used that for z; ¢ A,
A\{z;} = A

Fig. 3] visualizes a shift by ; for n = 3. The sum in
(17) yields two arrows that emanate from every set not
containing x;. Comparing to Fig. [2] reveals that these
two shifts are, in a sense, dual to each other.

The associated matrix representation of the shift, by
letting it operate on the subsets in the lexicographic
order, now takes the form

P(a;) = Ipn—i @[] §] @ Lyi-r. (18)

As before, this also shows that the shifts commute.
X-fold shift for X C N. As before, shifting by a
set X means shifting in sequence by all its elements,

6
i.e., identifying X with the product of its elements. This

yields
X-s=> saxA
ACN

Filters. Linearly extending the X-fold shifts to arbi-
trary h = > vy hx X yields the associated notion of

filtering:
Z hX ( Z SA\XA)

XCN ACN

Z (Z hXSA\X)Aa

ACN XCN

hs

19)

which defines the convolution

(h *(3) S)A = Z hXSA\X-
XCN

We refer to this convolution, and associated concepts
later, as “type 3.”

Shift invariance. Since the shifts by z; commute and
thus commute with shifts by any X, they also commute
with any filter h, i.e., shift invariance holds.

Fourier transform. We need to diagonalize all shift
matrices in (I8), i.e, diagonalize first [} §]:

20 8IS = o0 el
= [o ol

Thus the discrete set Fourier transform (of type 3) now

takes the form

DSFTS) = [} f]®..® [ 9]
The complexity of computing the DSFT® (of a power-
set signal) is the same as for the DSFT®, namely n2" 1
additions.
Using Lemmas [I] and 2} the closed form is obtained
as
DSFTS) = [(—=1)*lvacs]B,acn.

Again, note that here the row index is B and the column
index A, accordingly the formulas from Lemmas [I] and
[2 have to be adapted by swapping the indices.

The DSFT® is self-inverse. Thus, the Bth Fourier
basis vector is given by

17 = (<) Pupca)acw.

Frequency response. Following the same steps as
before, we compute first the frequency response of a
single shift ;. Shifting £ by z; yields

(20)

(=D)"Plepeavpany) acn-

If x; ¢ B,then B C A < B C A\ {a;}, ie., the
shift does not change 2. 1f x; € B, then there is no
A satisfying B C A\ {z;} and the result is 0. In other
words, the frequency response for shifts is the same as in
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Fig. 4: Visualization of shift by z; in (21).

Section |[1If and thus this also holds for arbitrary filters h.
So the frequency response is computed with the DSFT"
(and not with the Fourier transform DSFT® as one
may have expected). This is not entirely surprising as it
happens also with the discrete-space SP associated with
the discrete cosine and sine transforms [34f]. A deeper
reason is the fundamental difference between Fourier
transform and frequency response as explained in [32].
Convolution theorem. The above derivations yield

— 3

hx®s = ﬁ(l) ®§(3)-

V. DISCRETE-SET SP: INVERTIBLE SHIFT

Both shifts defined in Sections [[II] and [V] lead to
arguably natural translations of discrete-time SP to
discrete-set SP but were both not invertible. While this
does not prevent a meaningful notion of convolution and
Fourier analysis it is still worth asking how to define
an invertible shift. Doing so includes the prior work
of Fourier analysis of set functions (e.g., [28], [37])
using the well-known and well-studied Walsh-Hadamard
transform in our framework. Since the mechanics of the
derivation are the same as before and the results are
known, we will be brief.

Shift. An invertible shift can be defined as

o . . . AU{.”L'Z‘}7 i & A
. AA\{Z}u{z}\A{A\{m}’ o
(2D

The shift is visualized in Fig. [] It is undirected and the
associated matrix representation becomes

3(5) = Ipns @ [0 4] @ Lyis.

Note that the defining 2 x 2 matrix is now invertible, as
expected. Namely, 2?7 = 1, i.e., 2; ' = ;.

X -fold shift for X C INV. Executing the above shifts
for all elements in a set X C N yields the so-called

symmetric set difference

X A=A\XUX\A.

(22)

Filters. Extending to linear combinations of X-fold
shifts yields the associated convolution

(h+®) s)4 = Z hxsa\xux\As
XCN

which we include as “type 5” in this paper. Again, shift?
invariance holds by construction.

Fourier transform. All shifts are now diagonalized
by the Walsh-Hadamard transform [38]], [39]:

DSFTS) = WHTsn
= [{_1]®...9[1_1]
(=174 pew.

Equivalently, the above is a Kronecker product of n

DFT,. The inverse is thus computed as WHT,,! =

(1/2) WHT3n, which yields the Fourier basis, for
B CN:

= (1/2)n((_1)|AmB|)AgN-

The WHTs» requires n2™ additions.

Frequency response and convolution theorem. The
frequency response of a filter is also computed with the
WHT, which yields the convolution theorem

(23)

— ()
h«x®s = h(5) @?5).

VI. DISCRETE-SET SP: ALL MODELS

We presented three variants of discrete-set SP obtained
from three different definitions of shift. We termed them
type 1,3,5, respectively, where type 5 included the prior
work on Fourier analysis of set functions using the WHT.
We refer to the variants as signal models since it is
up to a user to decide which one is appropriate for a
given application. Also, each provides a signal model
(A, M, ®) in the sense of ASP, namely an algebra A
of filters, an associated module of signals M, and a
generalized z-transform @ [32].

We collect all concepts associated with these models
in Tables [ and [l The tables include two additional
models 2 and 4 that we define next, followed by a
discussion of the results and closely related work.

A. Shift by Subtracting Elements: Models 2 and 4

We complete discrete-set SP with two additional shift
definitions that yield the models 2 and 4 in the tables.
As analogue to (@) (model 1 in Section [[Il) we define a
shift that decreases a set

and, as an analogue of model 3 (Section we define
a shift that yields a perfect advance of a signal, i.e., that
has the effect

SA > SAu{z;}-

The derivations of all concepts are analogous to before
and we refer to the obtained models as type 2 and
4, respectively. The results are shown in the tables.
Note that for all models 1-4 the frequency response



TABLE I: Signal models for discrete-set SP: shift and convolution concepts. g is any of the z; € N and Q C N8

model qA on signal QA on signal (h*s) g matrix for g
i A sg,RC A
1 AU{a) sAtA(a) 1€ auQ A\QTBCA > hgen [ 9
! ) 0, else QUB=A
‘ La g A > sauBQCN\A
2 A\{a} sAT T AULay 1 E Aane 5Cq > rgrave 5 o)
’ 0, else QCN\ABCQ
AUB,QC N\ A
A+ AU{q}l,qg A > 1 0
3 0, dse SA\{q} BCQ sa\Q > hQeavQ .
0, else QCN
A4 A , A 2. A\B,QCcA 0 1
a gt ANMehas 2AU{q} 5CQ sAuQ > hgsauq o 1]
o, else QCN
AN{g}u{a\ A= “A\{q}u{a\A — 0 1
° AVl g SAu{q}r 1EA ANQuUan4 TA\QUQR\A > h@oavQue\a .
q} else SA\{q} else QCN

TABLE II: Signal models for discrete-set SP: Frequency concepts. The Fourier transform (FT), its inverse, and the
frequency response (FR) in matrix form are the n-fold Kronecker product of the 2 x 2-matrix shown.

model

matrix for g

FT (matrix)

FT— L (matrix)

FT (sum): 8 =

FT™L um): sy =

FR (matrix)

1

b

4
4

sA
ACN,ANB=0

>

ACN,BCA

(—plAnBl,

> o(-nlhlsy
ACB

ANB| .
(-l lsp
BCN,AUB=N

>

BCN,ACB

(-nlAnBlgp

> (-n!Blsy
BCA

« o L bod plAnBls, 55 -
ACN,AUB=N BCN,ANB=0

N A B | | o o T LI
is computed the same way, namely with the DSFT, (w2, 23) o e -
which thus plays a special role. ol (ol

The last column in Table [I| contains the 2 x 2 matrices  {=2} {z1, 22} {2} (@1, 22}
that define the shift matrices (as, for example, in @ and
(T8)). We observe that the five variants are all possible
matrices with two 1s and two Os, except for the identity el vzl fral vl
0 {z1} 0 {z1}

matrix which would yield a trivial model. So, in a sense,
models 1-5 constitute one complete class.

B. Discussion and Related Work

We discuss some of the salient aspects and properties
of the discrete-set SP framework we derived and put it
into the context of closely related prior work.

Non-invertible shifts. The shifts for models 1-4 are
not invertible, which is the main reason for having
four variants. While this may seem to be a problem,
our derivations show that all main SP concepts take
meaningful forms. Also note that filters can still be
invertible. In graph SP the Laplacian shift [5]] is also
not invertible and the adjacency shift [4] not always.

Difference to graph SP. We briefly explain the
difference to graph SP based on adjacency [40] or Lapla-
cian matrix [5]. The powerset domain can be naturally
modeled as undirected or directed hypercube graph. In

(a) undirected (b) directed

Fig. 5: The powerset domain as hypercube.

the undirected case (Fig.[5(@)), both the adjacency matrix
M and the Laplacian nls» — M are diagonalized by the
WHT, which is the classical choice of Fourier transform
for set functions. Namely, using our model 5, this follows
from M = ¢(x1)+- - -+¢(x,) being the sum of all shift
matrices. However, model 5 considers the n shifts by
x; separately, so they can be applied independently, i.e.,
model 5 is separable. This is akin to images. Modeled as
graphs, a shift (or translation) in one dimension would
be equally applied in the other. But it is common to
consider them separately and the z-transform has now
two variables (shifts) zq, zo [41, pp. 174]. The result is
a larger filter space.



However, our contribution is in the directed models.
The directed hypercube graph in Fig. [5(b) is acyclic
and thus the adjacency matrix M has O as the only
eigenvalue and is not diagonalizable, a known problem
in digraph SP [42, Sec. III-A]. Here our models 1-4
not only provide separable SP frameworks as explained
above, but also a proper (filter-diagonalizing) Fourier
eigenbasis in each case. Interestingly, summing all shift
matrices in the directed case yields the Laplacian-type
matrices Dj, + M for model 1 and Dy, + M for
model 3, where Dy, and Dy, are diagonal matrices with
in- respectively outdegrees of the nodes. For models
2 and 4 the edges are reversed. Note that using these
Laplacian-type matrices as starting point (i.e., shift) for
graph SP, would pose another problem, besides the lack
of separable filters. They have only |N| + 1 different
eigenvalues (already computed in Section : |N/Bj,
B C N, and thus large eigenspaces with no clear choice
of basis. Our framework, based on |N| shifts, yields a
unique (up to scaling) basis.

Finally, we note that any finite, discrete, linear SP
framework based on one shift is a form of graph SP (on
a suitable graph) and vice-versa [33} p. 56].

Haar wavelet structure. The discrete set Fourier
transforms have structure similar to a Haar wavelet that
recursively applies basic low- or high-pass filters at
different scales. However, other types of wavelets do not
have an obvious interpretation on set functions and we
could not get deeper insights from this observation. In
Section we will provide a different form of intuition
on the meaning of spectrum.

Meet/join lattices. The powerset 2V is a special
case of a meet/join lattice, i.e., a set that is partially
ordered (by C) with A N B as the meet operation that
computes the largest lower bound and A U B as the
join operation that computes the smallest upper bound
of A,B C N. Our DSFTs are closely related to the
Zeta- and Moebius transforms in lattice theory [43]. [36]]
shows a convolution theorem for (called covering
product there) based on this connection. We have made
first steps in generalizing this paper to signals indexed
by arbitrary such lattices in [44].

Hypergraphs. A hypergraph (e.g., [16]]) is a gener-
alization of a graph that allows edges containing more
than two vertices. It is given by (V, E), where V is the
set of vertices and F C 2" are the hyperedges (usually,
() is excluded as hyperedge). Thus, the concepts of edge-
weighted hypergraph and set function are equivalent. The
role of vertices and edges can be exchanged to obtain
a dual hypergraph, which means also the concepts of
vertex-weighted hypergraph and set function are equiva-
lent. In both cases the set function is usually very sparse
as only few of the possible hyperedges are present.
An attempt to generalize SP methods from graphs to

hypergraphs different from our work can be found ir?
[45]. [46] developed an SP framework for simplicial
complexes (a special class of hypergraphs that also
supports a meet operation) using tools from topology.

Other convolution and transforms. We note that
other shifts and associated models are possible. For
example, [36] studies and derives fast algorithms for
a so-called subset convolution (and some of its varia-
tions): (h*s)a = > 5c 4 hgsa\q- In our framework it
would be associated with the (non-diagonalizable) shift
gA = AU {q} if ¢ € A and = 0 else. The application
in [36] are tighter complexity bounds for problems in
theoretical computer science. For us, [36] provided the
initial motivation for developing the work in this paper.

Submodular functions. These constitute the subclass
of set functions satisfying for all A C N, x,y € N:

SAU{z} T SAU{y} = SAU{z,y} T SA-

Note that this definition connects nicely to our frame-
work as it involves shifted versions of the set function.

Examples of submodular functions include the entropy
of subsets of random variables shown before in (28)),
graph cut functions, matroid rank functions, value func-
tions in sensor placement, and many others. An overview
of examples and applications in image segmentation,
document summarization, marketing analysis, and others
is given in [[18]]. In many of these applications, the goal
is the minimization or maximization of a submodular ob-
jective function, which is accessed through an evaluation
oracle.

Reference [47] introduces the W-transform as a tool
for testing coverage functions, a subclass of submodular
functions. The W-transform is equal to minus one times
our DSFT for model 4. In Section [VIII| we will generalize
the concept of coverage function to provide intuition for
the DSFT spectra.

References [29], [30] use the WHT to learn sub-
modular functions under the assumptions that the WHT
spectrum is sparse. Both lines of work may benefit from
the more general SP framework introduced in this paper.

Game theory. In game theory [15]], cooperative games
are equivalent to set functions that assign to every
possible coalition (subset) from a set of a players the
collective payoff gained. In this area, we find some of the
mathematical concepts and transforms that we derive and
define (e.g., [48], [49]). Specifically, the Fourier basis
vectors of our model 3 are (up to a scaling factor) called
unanimity games, and those of the WHT parity games.

Polynomial algebra view. In discrete-time SP, cir-
cular convolution corresponds to the multiplication
h(z)s(x) mod 2™ — 1, i.e., in the polynomial algebra
Clz]/(z™ — 1) (see Section [H). Similarly, our powerset
convolutions can be expressed using polynomial algebras
in n variables. For example, in model 1 corresponds



to multiplication in R[z1,...2,]/(z? —21,...,22 —2,)
with chosen basis polynomials Hze 4%, A C N. This
means that a subset A is identified with the product of its
elements. The other models are obtained with different
choices of basis. We omit the details due to lack of space.

VII. FREQUENCY ORDERING AND FILTERING

One question is how to order the spectrum of a power-
set signal to obtain a notion of low and high frequencies.
Since the spectrum is indexed by B C N, and the
subsets are partially ordered by inclusion, it suggests to
call frequencies with small |B| low and high otherwise.
For example, for models 3 and 4, using Table [} (first
column of inverse Fourier transform matrix), the Fourier
basis vector £ is constant 1 as for discrete-time SP.

Analogous to a moving average filter (h = 1 + z in
the z-domain) one would assume that

h=0-+ zn:{mz}
i=1

is a low pass filter. Its frequency response is the same
for models 1-4, computed by DSFT', and yields

> ha=1+|N\B
ANB=0

Indeed this shows that “high” frequencies (large |B|) are
attenuated compared to low ones.

We provide a deeper understanding on the meaning of
spectrum, its ordering, and the Fourier transform next.

VIII. INTERPRETATION OF DSFT SPECTRUM

In this section we will give an intuitive interpretation
of the DSFTs and the spectrum of a set function (or
powerset signal), focusing on models 3 and 4. The key
for doing so is in developing an alternative viewpoint
towards set functions as generalized coverage functions
that we define.

A. Generalized Coverage Functions

For simplicity, we denote in the following the ground
setas N = {1,...,n}. We start with defining a class of
set functions.

Definition 1. Ler {S1, ..., S, } be a collection of subsets
from some global set U: S; CU, 1 <i<nandletce€
R be a constant. Further, we assume a weight function
w: U — R and its additive extension w to subsets: for

SCU, w(S)=>_,csw(u). Then

S: 2N—>R,A»—>c+w<USi) (24)
i€EA
is a set function on N called generalized coverage func-
tion. If ¢ = sy = 0, we call the function homogeneous.

10

S Sa
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Fig. 6: Situation for a generalized coverage function for
N ={1,2,3}.
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Fig. 7: (a) Generalized coverage function for N =
{1,2,3} and ¢ = sy = 0. The shaded area represents the
weight of the set and can be negative. (b) 3® contains
the weights of intersections of all subsets of the set of
S;. (¢) /s“) contains the weights of all fragments.

The setup is visualized in Fig. [] and the definition of
generalized coverage function in Fig. [T(a)|for ¢ = 0. The
shaded area signifies the weight of the respective set and
can be negative or zero. The constant ¢ = sy (the weight
of the union of no sets .S;) can be viewed as the weight
of U\ U;en Si- If this set is empty, then ¢ = 0.

The definition generalizes the well-known concept of
coverage functions (a class of submodular functions [[18§]],
[47]) in two ways: it allows negative weights and an
offset ¢ # 0.

Clearly, every generalized coverage function is a set
function on N. Interestingly, the converse is also true and
thus offers a different viewpoint towards set functions.
Using this viewpoint we will derive intuitive explana-
tions of the DSFTs and the notion of spectrum for
set functions. We postpone the proof as it will be a
consequence of the following investigations.

Theorem 1. Every set function is a generalized coverage
function with a suitable chosen U of size |U| < 2V,



To interpret Definition [T and give intuition, consider
such a generalized coverage function s with ¢ = 0 for
simplicity. We can think of s assigning a value (or cost)
to every subset A C N of items in N. The value of
one item i is s = W(S;) and the value of a set of
two items i, j is sg; ;) = W(S; U S;) (see Fig. .
In the simplest case, the items are independent, i.e.,
S{i,j} = S{i} T S{;j}, meaning the weight of the in-
tersection w(S; N .S;) = 0. Alternatively, it could be
larger than the sum (called complementarity) or smaller
than the sum (called substitutability), if the weight of the
intersection is positive or negative, respectively. In other
words, in a sense, the Venn diagram and weight function
capture these interactions in value between two items
and among larger sets of items. Because of Theorem
this interpretation can be applied to every set function.
Further, as visualized in Fig. we show next that the
weights of these interactions correspond exactly to our
notions of spectrum for models 3 and 4.

B. DSFT, type 3

We will show that for a generalized coverage function
s in (24), the DSFT® computes the weights of the
intersections of any subset of the sets S; as visualized in
Fig. There is one such intersection for any B C N,

namely
M S
JEB

To show this, we apply the inclusion-exclusion principle
for the union of sets [50, p. 158] similarly to [47]:

C+W<U Sz>
€A
so+ Y. (DPw ) S

BCA,B#0 jeB

SA 25)

Comparing to the inverse DSFT in Table [[I| yields the
result.

Theorem 2. If's is a generalized coverage function, then

® _ ] (NieSi), B#0,
B Sp, B=1.

C. DSFT, type 4

Similarly, but different, the DSFT® computes the
weights of all 2" — 1 disjoint fragments from which the
Venn diagram in Fig. [6] is composed. There is one such
fragment for every B C N, B # (), namely

Tp =[S\ S

ieB i¢B

(26)

11

@m=1 by m=2

Fig. 8: Band-limited set functions w.r.t. models 3 and
4 for n = 3 when viewed as generalized coverage
functions. The change of shape for m = 2 is done to
better visualize the intersections.

The fragments {Tz : B C N, B # (0} partition |, v Si.
ie., UieN S; = UBQN,B#(D Tp and T, NTp, = 1]
for By # Bs,. Consequently, we can also write each

Uica Si» A # 0, as the disjoint union UBCN‘AHB?&@ Tg.
Using the additivity of w, we get for all A # ()

sA:c+W<U S)

i€EA

BCN,ANB#0

=c+ Y w(Tp)-—

BCN,B#0

=c+ w(Tg)

w(Tp)

>

BCN,ANB=0,B0

:sN:§é4)
27)
Comparing to Table [[I] shows that this equation is, up to

the sign, the inverse DSFT(4), which yields the result.

Theorem 3. Let s be a generalized coverage function
with prior notation. Then

§(4) _ {W (ﬂieB Si\ Uigg Si) , B#0,
B =
SN, B:Q)

D. Low and High Frequencies: Intuition

As just shown, the Fourier coefficients sg of a signal
in models 3 and 4 capture the interactions between the
values of single items sy;, i € A when composed to the
value s 4. Higher-order interactions (interactions of more
items) correspond to larger B, lower-order interactions
(interactions of few items) to smaller B. This motivates
again the frequency ordering by the size of B suggested
in Section and the following definition.

Definition 2. We call a set function m-band-limited,
m < n, with respect to model k, k € {1,...,5}, if

§(BI,€) =0 for |B| > m.

Fig. [§] shows the special case of Fig. [6] for band-
limited set functions for n = 3 w.r.t. models 3 and



4. In this case the notions coincide for m = 1,2.
That is, the vector spaces of 1- and 2-band-limited set
functions w.r.t. models 3 and 4 coincide. For general n,
the notion of m-band-limited coincides for m =n — 1
(only the intersection of all S; has weight 0), m = 1 (no
interaction between the S;), and m = 0 (set function is
constant).
For m = 1, (24) specializes to

sa=c+ Z w(7),
icA
i.e., it is (c plus) the sum of the weights of its elements.
Such a function is called modular because it then satisfies
forall AC N, z,y € N, 5au{z} +54a0{y} = SAU{z,y} T
s 4, the simplest case of a submodular function [27]].

E. Proof of Theorem

The proof of Theorem [I] is constructive and follows
directly from Theorem (3| Namely, consider a given set
function s and its spectrum s *)'in model 4. Construct
a Venn diagram of n sets .S; such that each fragment
corresponding to a subset B C N contains one
element with weight —/sg). One element x is outside
all S; with weight sy and completes the universe U =
{x} U U;cn Si- The generalized coverage function s’

~(4
defined this way satisfies by construction s’ @ _ ?4),

ie., 8’ =s as desired.

F. Example: Multivariate Entropy

We consider a random vector Xy = (X1,...,X,)
with a joint probability distribution. X; are random
variables and N = {1,...,n}. We consider the set
function [18]]

s: 2V SR, A H(X4), (28)

where H is the Shannon entropy and X4 is the random
vector collecting all X;,i € A. We will show that the
DSFTs type 3 and 4 compute the mutual information
structure of the X;. This follows directly from the
measure-theoretic Venn diagram interpretation of these
concepts shown, e.g., in [51, pp. 108], which exactly
matches Fig. [

Bivariate mutual information is computed as
I(X;Y)=H(X)+ H(Y)— H(X,Y). Its multivariate
generalization [52, pp. 57] is defined recursively as

I(Xys. 5 X)) = I( X505 Xgo1)

—I(Xy;.. 5 Xe—1 | Xe)- (29)

We will write I(X’,) to denote the mutual information
of the random variables in X 4. A formula for computing
it directly from the joint entropies is given, e.g., in [S3]
and shows that

39— _1(xi,).

12
Similarly, from [54], we obtain

g(g) =—I(X% | Xn\B), B#0,

and §((,)4) = HXy).

Thus, in a sense, the DSFT of type 3 and 4 generalize
the concept of mutual information from the special case
of joint entropy (a subclass of the class of submodular
set functions [|18]]) to all set functions.

IX. APPLICATIONS

With the basic SP tool set in place many standard SP
algorithms and applications can be ported to the domain
of set functions including compression, subsampling,
denoising, convolutional neural nets, and others. As
mentioned in the introduction, one main challenge with
set functions is their large dimensionality, which means
that often only few values are available, obtained through
an oracle or model that may itself be expensive. In this
section we provide two prototypical examples to show
how SP techniques may help.

A. Compression

Compression in its most basic form approximates
a signal with its low frequency components as done,
e.g., with the DCT in JPEG image compression [55].
Translated to discrete-set SP, we can approximate a given
set function s by an m-band-limited set function (Def-
inition [2) s’ by dropping the high frequencies. Namely,
if £2 are the Fourier basis vectors

S/A = Z §B ff
BCN,|B|<m
The chosen DSFT could be for any of the five models.
Each sy can be computed in O(k) operations, where
k=H{B||Bl <m} =3, (7). Next we instantiate
this idea for a concrete application scenario.

Submodular function evaluation. Efficient set func-
tion representations are of particular importance in the
context of submodular optimization, where submodular
set functions are minimized or maximized by adaptively
querying (i.e., evaluating) set functions [56], [57]]. For
many practical problems these queries can become a
computational bottleneck, e.g., because they involve
physical simulations [18|] or require the solution of a
linear system of n equations [[13]].

Example: Sensor placement. As an example we
consider a set function from a sensor placement task
[S57], in which 46 temperature sensors were placed at
Intel Research Berkeley and the goal is to determine
the most informative subset of sensors. Formally, let
N = {1,...,46} and let Xy,..., X4 be random
variables modeling the sensors. The informativeness of
a subset of sensors A C N can be quantified by their

(30)



joint entropy H (X 4) (equation (2.3) in [57])), where
X4 = (X;)ica (see Section [VIII-F). In our concrete
example, the most informative subset is determined by
fitting a multivariate Gaussian model (one variable per
sensor) to the sensor measurement data and maximizing
the corresponding multivariate entropy H (X ).

Because X 4 is a multivariate Gaussian random vari-
able we have

1 Al
sa=H(Xx) = 3 log det [Ki’j]i’je,q-‘v-?(1+10g(27‘1‘)),
€29
where K is the n X n covariance matrix and [K; ;]; jea
the submatrix corresponding to the sensors in A. The
evaluation cost of each s4 is in O(n3) (due to the
determinant).

We reduce the set function evaluation cost to O(n?),
by compressing s with (30) to a 2-band-limited func-
tion using only the lowest 1 + n + (%) frequencies in
B = {B | |B| < 2}. For model 4, the needed Fourier
coefficients can be computed directly in O(n?), namely
(see Table [[I):

W =

SN, B=0,

SN\{z} — SN, B = {z},

SN\{wy} — SN\{z} — SN\{y} TSN, B={zy}.
(32)

Using Section we can interpret this compression:
it ignores high level interactions between sensors, as-
suming that most of the information is in the entropy of
single sensors, and the mutual information of pairs of
sensors (Section [VIII-F).

For comparison we consider model 5 (i.e., the WHT).
Note that here each §(B5 ) would require O(2™) operations
and thus cannot be computed exactly. Since the WHT is
orthogonal, we can approximate the WHT coefficients
using linear regression

5©

~ argmin [|s4 — WHT ;T3] (33)

rs

Here, the set A = {A;,..., Ay} consists of p uniformly
at random chosen signal indices (subsets), s4 is the
corresponding subsampled version of s and WHT;GB
is the submatrix of WHT ! obtained by selecting row
indices in A and column indices in 5. We consider
different values of p in the experiment. now finds the
best approximating Fourier coefficients in our frequency
band B.

Results. Using for model 4 and for model 5,
we can now compute approximate set function values s,
with for any C C N.

TABLE III: Approximation error for a submodular funé?
tion associated with sensor data. For the random regres-
sions (WHT) we report mean and standard deviations
over the randomness of A = {A;,...,A4,} in 20 runs.

Method

DSFT, type 4

WHT random regression p = 10°
WHT random regression p = 10*
WHT random regression p = 10°

Elps(s,s’)

0.00523

0.43107 £ 0.06489
0.29293 £ 0.00016
0.29288 £ 0.00006

In Table we compare the compression quality of
models 4 and 5 in terms of the approximate relative
reconstruction error

E.(s,s') = [Isc — sell2/lIscl2, (34)

where the set C C 2N consists of m = 108 randomly
chosen signal indices (subsets). E! (s,s’) converges to
the actual error as m — oo.

The table shows that model 4 approximates well in
this case, far superior to model 5.

B. Sampling

We derive a novel sampling strategy for set functions
that are k-sparse in the Fourier domain and present a
potential application in the domain of auction design.

Sampling theorem. Consider a Fourier sparse set
function s with known Fourier support supp(s) =
{Bi,...,Br} = B. Sampling theorems address the
question of computing the associated Fourier coefficients
Si from few (typically also k) queries, i.e., set function
evaluations. Following the sampling theory from [5§]],

the basic task is to select k subsets A = {A1,..., A}
such that the linear system of equations
sa= Y Spfffor Ac A (35)

BeB
has a unique solution. Equivalently, this is the case if
and only if the submatrix (DSFT ') is invertible.
The choice of the sampling indices .4 thus depends on
the type (1-5) of DSFT. Here we consider type 4.

Theorem 4. (Model 4 Sampling) Let s be a Fourier
sparse set function with Fourier support supp(s) =
{B1,...,Br} = B. Let A = {N\ By,...,N\ B}
Then

T = ((DSFTY) ™) a5

is invertible, i.e., s can be perfectly reconstructed from
its queries at A:

s = (((DSFT“))*)QNBT*)SA.

Proof. The matrix (DSFT®)~! has an upper left trian-
gular shape (Table [I), i.e., its diagonal elements have



indices (B, N \ B). Thus, ((DSFT®)=1) 45 is also
upper left triangular and thus invertible, as desired. [

If a set function is only approximately Fourier-sparse,
i.e., most Fourier coefficients are very small, one can use
Theorem [ for an approximate reconstruction. We now
present a possible application: preference elicitation in
combinatorial auctions.

Example: Auction design. In combinatorial auctions
a set of goods N = {1,...,n} is sold to a set
of bidders M = {1,...,m}. Every bidder i € M is
modeled as a set function (called value function) v® :
2N 5 R20, which assigns to every bundle (subset) of
goods their value for bidder . The goal of an auction is
to find an efficient allocation of the goods to the bidders.
In order to do so, the so-called social welfare function

m
V(A .. Ap) =Y vy, (36)

i=1
is maximized over all possible allocations of items to
the bidders, i.e., all (A;,...,A4,,) with A; C N and
A;NAj =0 for i # j. One major difficulty arises from
the fact that the true value functions v* are unknown to
the auctioneer and can only be accessed through a lim-
ited number of queries called preference elicitation [59].
As querying bidders in a real world auction amounts to
asking them to report their values for certain subsets of
goods, the maximum number of queries per bidder is
typically capped by 500.

Machine learning based preference elicitation ap-
proaches overcome this issue by approximating the value
functions by parametric functions, e.g., polynomials of
degree two [59] or Gaussian processes [[60]. The esti-
mated parameters of these approximations are adaptively
refined using a suitable querying strategy. We propose to
apply our sampling theorem to determine the queries and
approximations of the v°.

To assess the viability of our approach we consider
spectrum auctions and the single region valuation model
(SRVM) (one of several models commonly used
in the research of spectrum auctions) to generate goods
and bidders. Concretely, we generate a country with
3 frequency bands and 20 associated goods (licenses
for the frequency bands) to be auctioned. There are 3
bidder types in the model. Each bidder’s value function is
defined in terms of some bidder type specific parameters,
which are randomly sampled to obtain example bidders.
In Figure 9| we plot the value functions and their Fourier
transforms for example bidders of the three different
types. Observe that most Fourier coefficients (second
column) are zero.

For each type t € {1,2,3} we generate 50 random
bidders v{, ..., v§,. For convenience we write v = v’.
We use 25 for training: we compute their type 4 spectra
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Fig. 9: Example value functions (first column) and re-
spective Fourier transforms (second column) of different
SRVM bidder types (rows). The subsets on the x-axis
are ordered by size.

¥ to determine the 500 (out of 22°) most important
frequency locations B and then use Theorem [ to deter-
mine the associated 500 signal indices A for sampling.
Then, we query v 4 for the other 25 bidders (the test
set) and use Theorem ] to compute a Fourier sparse
approximation v’ in each case. If the support of a bidder
v in the test set was contained in the determined B, its
v’ would be equal to v.

Results. Table [[V]shows mean and standard deviations
of the relative reconstruction errorsﬂ [lv—2"||2/]|v||2 for
all 3 types (ie., t € {1,2,3}) in comparison to the
second-degree polynomial approximation in based
on 500 queries and based on the entire value function.
Our sampling strategy based on discrete-set SP yields
higher accuracy in the experiment and offers a novel
method for preference elicitation in real-world auctions.

Recently, we extended these ideas to approximate set
functions under the assumption of sparse but unknown
Fourier support [62]. Building on this work, we then
proposed an iterative combinatorial auction mechanism
that achieves state-of-the-art results in various auction
domains [63]].

SNotice that in this example the small ground set allows for the
exact computation of the relative reconstruction error, which we had
to approximate in our previous experiment in (34).



TABLE IV: Relative reconstruction error for 3 different
SRVM bidder types (1-3) by querying 500 valuations
using Theorem [] and by polynomial approximation
based on 500 or all valuations.

DSFT4 500 poly2 500 poly2 all
1 0.00037 +0.00019 0.07 +0.003 0.05 = 0.002
2 0.00042 £ 0.00016  0.04 £ 0.002  0.03 % 0.001
3 0.00064 £ 0.00016 0.05+0.003 0.04 % 0.001

X. CONCLUSION

Signal processing theory and tools have much to offer
in modern data science but sometimes require adaptation
to be applicable to new types of data that are structurally
very different from traditional audio and image signals.
In this paper we considered signals on powersets, i.e., set
functions, and used algebraic signal processing (ASP)
to derive novel forms of discrete-set SP from different
definitions of set shifts. Our work brings the basic SP
tool set of convolution and Fourier transforms and an
SP point of view to the domain of set functions. Using
the concept of general coverage function we showed
that our notion of spectrum is intuitive: it captures
the complementarity and substitutability of items in
the ground set, with multivariate mutual information as
a special case. Possible applications include the wide
area of submodular function optimization in image seg-
mentation, recommender systems, or sensor selection,
but also signals on hypergraphs and auction design. In
particular, discrete-set SP provides new tools to reduce
the dimensionality of set functions through SP-based
compression or sampling techniques. We showed two
prototypical examples in sensor selection and preference
elicitation in auctions.
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