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Abstract—Existing Orthogonal Frequency-Division Multiplex-
ing (OFDM) variants based on cyclic prefix (CP) allow for
efficient time synchronization, but suffer from lower power
efficiency compared to zero-padded (ZP)-OFDM. Because of
its power efficiency, ZP-OFDM is considered as an appealing
solution for the emerging low-power wireless systems. However,
in the absence of CP, time synchronization in ZP-OFDM is a
very challenging task. In this paper, the non-data-aided (NDA)
maximum-likelihood (ML) time synchronization for ZP-OFDM
is analytically derived. We show that the optimal NDA-ML
synchronization algorithm offers a high lock-in probability and
can be efficiently implemented using Monte Carlo sampling
(MCS) technique in combination with golden-section search. To
obtain the optimal NDA-ML time synchronization algorithm, we
first derive a closed-form expression for the joint probability
density function (PDF) of the received ZP-OFDM samples in
frequency-selective fading channels. The derived expression is
valid for doubly-selective fading channels with mobile users as
well. The performance of the proposed synchronization algorithm
is evaluated under various practical settings through simulation
experiments. It is shown that the proposed optimal NDA-ML syn-
chronization algorithm and its MCS implementation substantially
outperforms existing algorithms in terms of lock-in probability.

Keywords—Time-synchronization, ZP-OFDM, timing offset (TO),
non-data-aided, maximum-likelihood (ML), Monte Carlo sampling.

I. INTRODUCTION

O rthogonal frequency-division multiplexing (OFDM) mod-
ulation is a widely used technique for transmission over

mobile wireless channels since it offers high spectral effi-
ciency whilst providing resilience to frequency-selective fading
[1]. One of the key requirements for optimum demodulation
of OFDM signals is accurate time synchronization because
a small synchronization error can dramatically degrade the
system performance. Hence, a variety of time synchroniza-
tion methods have been developed for OFDM systems [2]–
[7]. These methods typically consist of two tasks: 1) offset
estimation, and 2) offset correction. The former task relies on
statistical signal processing algorithms to obtain an estimation
of timing offset (TO) incurred due to lack of common time
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reference between the transmitter and receiver [8]–[10]. The
latter task is a simple compensation of TO by shifting [6].

Time synchronization for OFDM can be performed using ei-
ther synchronization-assisting signals, such as pilot signals and
synchronization symbols [11], or exploiting some redundant
information in the transmitted signal, such as the guard interval
redundancy employed to combat the inter symbol interference
(ISI) in frequency-selective fading channels. The former ap-
proach is data-aided (DA), and the latter is non-data-aided
(NDA) time synchronization [12]. DA time synchronization
comes at the cost of reduced spectral efficiency, especially for
short burst transmission, which is widely employed in Internet
of Things (IoT) use case of the fifth generation (5G) wireless
systems [13].

Guard intervals are useful for time synchronization in
OFDM systems [14]. The guard interval can be in the form
of cyclic prefix (CP) [15]–[17], zero-padded (ZP) [18]–[20],
and known symbol padding (KSP) [21]. The choice of ZP
versus CP and KSP depends on several parameters, such as
the operating signal-to-noise ratio (SNR), delay spread of the
fading channel, and coherent versus differential demodulation.
ZP-OFDM provides great benefits over CP-OFDM and KSP-
OFDM in the sense that [22] 1) it guarantees symbol recovery
regardless of the channel zero locations; hence, it can improve
the BER, 2) it enables finite impulse response equalization of
channels regardless of the channel nulls, 3) it makes channel
estimation and channel tracking easier compared to that of
CP-OFDM, and 4) it offers higher power efficiency.

While DA time synchronization for ZP-OFDM has been
well explored in the literature [12], NDA approach has not
been extensively investigated. Hence, the focus of this work is
on NDA time synchronization for ZP-OFDM.

A. Related Work
For ZP-OFDM, most existing DA approaches rely on peri-

odic autocorrelation properties of the received signal induced
by the employed training sequences with good autocorrela-
tion properties [23]. Moreover, most of the DA approaches
developed for CP-OFDM can be applied to ZP-OFDM [24]–
[27]. On the other hand, to the best of the authors’ knowledge,
the few existing NDA synchronization approaches for ZP-
OFDM have been developed based on change point detection
methods [28] or cyclostationarity properties in OFDM signal
[29]. Synchronization algorithms based on change point de-
tection usually employ a transition metric, tracing the ratio
of power in two slicing windows corresponding to each TO
hypothesis in the OFDM packet. These NDA solutions do
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not always offer a good performance in terms of lock-in
probability, i.e. correct synchronization. Moreover, we show
that their performance further drops in doubly-selective (time-
and frequency-selective) fading channels.

B. Motivation
In the presence of perfect time synchronization, ZP-OFDM

offers higher reliability and power efficiency compared to
CP-OFDM [22]. Hence, ZP-OFDM can be considered an
appealing solution for low-power IoT networks. One of the
main reasons that ZP-OFDM has not been extensively used
in practice is attributed to the lack of an efficient time syn-
chronization method. While sub-optimal CP-based synchro-
nization algorithms in CP-OFDM offer high lock-in probabil-
ities, there is no synchronization algorithm with comparable
performance for ZP-OFDM [12]. In addition, derivation of the
optimal maximum likelihood (ML) time synchronization for
ZP-OFDM, which results in a high lock-in probability, has
remained intact. This is mainly because there currently exist
no compact expression for the joint probability density func-
tion (PDF) of the received samples. Moreover, most existing
synchronization methods ignore time-selectivity of the fading
channel, i.e., the devastating effect of mobility and Doppler
spread on time synchronization.

Motivated by the advantages of ZP-OFDM for the emerging
low-power wireless networks, we study the problem of NDA-
ML time synchronization for ZP-OFDM. In the first step,
and for the first time, we derive a closed-form expression
for the PDF of the received ZP-OFDM samples in frequency-
selective fading channel. We then use the PDF of the samples
to approximate their joint PDF. The joint PDF is given to
a hypothesis testing algorithm to find the TO. Simulation
results show that the proposed NDA-ML time synchronization
algorithm significantly outperforms other existing NDA time
synchronization methods. For example, at 5 dB Eb/N0 for
WiMAX SUI-4 channels [28], the proposed NDA-ML time
synchronization algorithm achieves a lock-in probability of
0.85 while the state of the art [28] achieves 0.55.

C. Contributions
The main contributions of this paper are as follows:
• A closed-form approximate expression for the joint

PDF of the received ZP-OFDM samples in frequency-
selective fading channels is derived.

• The NDA-ML time synchronization for ZP-OFDM in
frequency-selective fading channels is analytically de-
rived. The proposed method exhibits the following ad-
vantages: (i) unlike existing sub-optimal NDA time syn-
chronization methods, it is applicable to highly selective
fading channels, such as the ones in underwater com-
munications and ultra wideband (UWB) communication,
(ii) it is valid for doubly-selective fading channels,
and (iii) it can be used for both frame and symbol
synchronization.

• A low-complexity implementation of the developed the-
oretical NDA-ML time synchronization algorithm by us-
ing Monte Carlo sampling (MCS) technique and golden-
section search is proposed.

• Complexity analysis of the proposed time synchroniza-
tion methods is provided.

The remaining of the paper is organized as follows: Sec-
tion II introduces the system model. Section III describes
the derivation of the NDA-ML time synchronization. In Sec-
tion IV, a practical implementation of the proposed time
synchronization algorithm by employing MCS technique and
golden-section search is presented. Simulation results are pro-
vided in Section V, and conclusions are drawn in Section VI.

Notations: Throughout this paper, we use bold lowercase and
bold uppercase letters to show column vectors and matrices,
respectively. The symbols (·)∗, (·){rmT , | · |, and b·c denote
conjugate, transpose, absolute value, and floor function, respec-
tively. E{·} denotes the statistical expectation, and <{·} and
={·} represent the the real and imaginary parts, respectively,
The subscripts I and Q show the in-phase and quadrature
components of a variable. The symbols

⋂
and

⋃
denote the

set intersection and union operands, respectively.

II. SYSTEM MODEL

We consider a ZP-OFDM system in frequency-selective
fading channel. Let {xn,k}nx−1

k=0 , E{|xn,k|2} = σ2
x, be the nx

complex data to be transmitted in the n-th OFDM symbol. The
OFDM modulated baseband signal is given by [30], [31]

xn(t) =

nx−1∑
k=0

xn,ke
j2πkt
Tx , 0 ≤ t ≤ Tx, (1)

where Tx and W , nx/Tx is the OFDM symbol duration and
channel bandwidth, respectively. To avoid ISI, zero-padding
guard interval of length Tz is added to each OFDM symbol.
Hence, xn(t) is extended into sn(t) as

sn(t) =

{
xn(t) 0 ≤ t < Tx

0 Tx ≤ t < Tx + Tz.
(2)

The OFDM signal in (2) propagates through a multi-path
fading channel with the equivalent baseband impulse response
as follows

h(τ) =
∑
i

αiδ(τ − τi), (3)

where αi ∈ C. The delay spread of the channel in the ensemble
sense is τd where E{|αi|2} = 0 for τi > τd.

When the transmitter and receiver are synchronized and
there is no ISI, i.e. Tz ≥ τd, the complex baseband received
signal sampled at multiples of Tsa , 1/W is given by

yn[k] =

nh−1∑
l=0

h[nns + k; l]sn[k − l] + wn[k], (4)

m = 0, 1, . . . , ns − 1, where ns = b(Tx + Tz)/Tsac, sn[m] ,
sn(mTsa),

h[l] =
∑
i

αig[l − τiW ], (5)
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l = 0, 1, . . . , nh − 1, nh , bτd/Tsac, g[l] , g(lTsa), g(t) ,
gTx(t)~gRx(r) with gTx(t) and gRx(t) as transmit and receive
filters, respectively. Also, wn[m] ∼ CN (0, σ2

w) is the additive
white Gaussian noise (AWGN).

We consider the wide-sense stationary uncorrelated scatter-
ing (WSSUS) assumption so that the channel coefficients from
different delay taps are independent. The channel taps h[l],
l = 0, 1, . . . , nh − 1, are modeled as statistically independent
zero-mean complex Gaussian random variables (Rayleigh fad-
ing) with the delay profile

E{h[l]h∗[l −m]} = σ2
hl
δ[m], (6)

l = 0, 1, . . . , nh − 1, where

σ2
hl

= E{|h[l]|2} =
∑
i

E{|αi|2}|g[l − τiW ]|2. (7)

It is assumed that the delay profile of the fading channel is
known to the receiver.

Remark 1: The PDP of an environment is obtained through
field measurements by transmitting a short pulse (wide-band)
and measuring the received power as a function of delay at
various locations in a small area during channel sounding.
These measurements are then averaged over spatial locations
to generate a profile of the average received signal power as
a function of delay. [32]. Theoretically, the PDP is defined as
the expectation of the squared impulse response of the channel
as

p̆(τ) = E{|h(τ)|2}. (8)

Assuming WSSUS scattering, the PDP is given as

p̆(τ) =

N∑
k=0

αkδ(τ − τk). (9)

To determine the number of paths N , different criteria for
model order selection are available in the existing literature.
Estimating the path delays using frequency domain pilots is
equivalent to estimating the arrival angle using an antenna
array [33]. Hence, well-known signal processing techniques,
e.g., estimation of signal parameters via rotational in-variance
techniques (ESPRIT) [34], can be adopted for this purpose.
With the estimates of path delays, the path gains αk, k =
0, 1, . . . , N , can be obtained using typical linear estimators
[35].

We define nz , bTz/Tsac as the number of padded zeros.
Hence, the number of samples per ZP-OFDM symbol is ns ,
nx+nz. Equation (4) can be written in a vector form as follows

yn =

{
Hsn + wn , vn + wn, n ≥ 0

wn, n < 0,
(10)

where

sn ,


sn[0]
sn[1]
...

sn[ns − 1]

 =



xn(0)
...

xn((nx − 1)Tsa)
0
...
0



nxnz

, (11)

yn ,
[
yn[0] yn[1] . . . yn[ns − 1]

]T
, (12a)

wn ,
[
wn[0] wn[1] . . . wn[ns − 1]

]T
, (12b)

vn ,
[
vn[0] vn([1] . . . vn[ns − 1]

]T
, (12c)

H is an ns × ns matrix, where its i-th (0 ≤ i ≤ ns − 1)
column is [0i−1 h[nns+i−1; 0] h[nns+i−1; 1] . . . h[nns+
i−1;nh−1] 0ns−nh−i+1]T, vn , Hsn, and wn is the AWGN
vector.

Based on the Central Limit Theorem (CLT), the Tsa-
spaced baseband OFDM samples can be accurately modeled
by independent and identically distributed (i.i.d) zero-mean
complex Gaussian random variables as follows [36]

xn(mTsa) ∼ CN (0, σ2
x), (13)

where

E
{
xn(mTsa)x∗n(kTsa)

}
= σ2

xδ[m− k]. (14)

We consider that the transmitter and receiver are not syn-
chronized in time domain, and there is a TO between them
defined as τ , dTsa + ε, where d and ε represent the integer
and fractional part of the TO. The fractional part of the delay
appears as phase offset at each sub-carrier. Hence, its effect
is compensated when carrier frequency offset is estimated [6].
However, estimation of the integer part d is required in order
to detect the starting point of the fast Fourier transform (FFT)
at the receiver. Estimating the integer part of the TO is the
subject of this paper. We consider that the transmitter does
not use pilot or preamble for TO estimation; thus, the receiver
relies on the received samples, noise samples in the zero-guard
interval, and the second-order statistics of the fading channel
to estimate the TO.

III. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we analytically derive the NDA-ML TO
estimator for ZP-OFDM. For the ease of discussions and pre-
sentation, we consider d ∈ {−ns+1, . . . ,−1, 0, 1, . . . , ns−1}.
However, the range of d can be considered arbitrary large.

We first formulate TO estimation as a multiple hypothesis
testing problem as Hp : d = p where −ns + 1 ≤ p ≤ ns − 1.
Since both positive and negative values of TO are considered,
the ML estimator can address frame and OFDM symbol syn-
chronization. Considering negative TO enables us to find the
onset of the packet and incorporating positive TO enables us to
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Fig. 1: Scatter plot of y10I [100] and y10I [101] given hypothesis H0

at 25 dB Eb/N0 (nx = 128, nz = 15, nh = 10, n = 10).

find the starting point of the ZP-OFDM symbols to efficiently
apply FFT for channel equalization and data detection.

We consider that the OFDM receiver gathers N observation
vectors of length ns, y0,y1, . . . ,yN−1, to estimate the TO, d.
The initial step for ML derivation is to obtain the joint PDF
of the observation vectors under the 2ns + 1 TO hypotheses.
We denote this joint PDF given Hd by fY(y|Hd), where

y =
î
y[0] y[1] . . . y[Nns − 1]

óT
(15)

, [yT
0 yT

1 . . . yTN−1]
T

with

y[nns +m] , yn[m]. (16)

as the m-th sample in the n-th block. By using the chain rule
in probability theory [37], we can write

fY(y|Hd) (17)

=

N−1∏
n=0

ns−1∏
m=0

f

(
yn[m]

∣∣∣∣ m−1⋂
u=0

yn[u],

n−1⋂
k=0

yk,Hd

)
.

To obtain the joint PDF in (17), we rely on Theorem 1.

Theorem 1. The elements of the observation vector y in
(15) irrespective to the value of TO are uncorrelated random
variables, i.e., E{yn[u]y∗ñ[v]} = 0, u 6= v.

Proof: See Appendix I.
Fig. 1 illustrates the scatter plot of the in-phase components

of y10[100] (i.e., y10I [100] = <{y10[100]}) and y10[101] (i.e.,
y10I [101] = <{y10[101]}) given hypothesis H0. As seen, there
is no correlation between the two successive samples.

According to Theorem 1, the observation samples in (15)
are uncorrelated random variables. Also, we can show that
the in-phase ynI [m] and quadrature ynQ [m] components of the

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

Fig. 2: The empirical and analytical PDFs of ynI [1] given hypothesis
H0 at 15 dB Eb/N0 (nx = 128, nz = 15, nh = 10, n = 10). The
empirical PDF was obtained for 106 samples.

m-th received sample from the n-th observation vector, i.e.,
yn[m] = ynI

[m]+iynQ
[m], are uncorrelated random variables.

Although uncorrelated random variables are not necessar-
ily independent, the independency assumption becomes more
valid for the received samples in the case of very fast-varying
channels where the maximum Doppler spread of the chan-
nel approaches infinity. When the maximum Doppler spread
reaches infinity, the channel taps contributing to one received
sample become independent from other samples. Moreover,
most practical algorithms are particularly sensitive to the
distribution and less to correlation. Thus, we can consider that
the observation samples are independent random variables to
simplify the signal model [38]. Accordingly, we approximate
the joint PDF in (17) by the multiplication of the first-order
PDFs as

fY(y|Hd) ≈
N−1∏
n=0

ns−1∏
m=0

fYn[m](yn[m]|Hd) (18)

≈
N−1∏
n=0

ns−1∏
m=0

fYnI[m]
(ynI

[m]|Hd)fYnQ
[m](ynQ

[m]|Hd),

where fYnI
[m](·|Hd) and fYnQ

[m](·|Hd) are the PDF of the
in-phase and quadrature components of the m-th received
sample from the n-th observation vector. The accuracy of this
assumption is verified in the simulation results.

A. PDF Derivation for Delay Hypothesis H0

Theorem (2) provides closed-form expressions for the PDF
of the in-phase and quadrature components of the m-th re-
ceived sample from the n-th observation vector given the
hypothesis H0 (d = 0). We later show that the conditional
PDFs given hypothesis Hd, d 6= 0, can be easily extracted
from these PDFs due to the periodicity incurred by the zero-
padded guard interval.
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Theorem 2. The PDF of the in-phase (quadrature) component
of the received samples ynI

[m] (ynQ
[m]), m ∈ {m | 0 ≤ m ≤

ns−1 when n < 0}∪{m | nx+nh−1 ≤ m ≤ ns−1 when n ≥
0} for d = 0 is given by 1

fYnI
[m](y|H0) =

1√
πσ2

w

exp
(
− y2

σ2
w

)
. (19)

Also, for d = 0 and m ∈ {m | 0 ≤ m ≤ nx+nh−2 when n ≥
0}, we have

fYnI
[m](y|H0) = fYnI

[m](−y|H0) (20)

=
( b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

e

Ä
λjσw

2

ä2
∏b
k=a,k 6=j(λk − λj)

× 1∏b
u=a,u 6=j(λu − λn)

1

(λj + λn)

× 1/2

[
e−λjy

(
1− Φ

(λjσw
2
− y

σw

))
+

eλjy

(
1− Φ

(λjσw
2

+
y

σw

))]
,

(21)

where λk , 2/(σhkσx), Φ(x) = erf(x) = 2√
π

∫ x
0
e−t

2

dt
denotes the Gaussian error function, and a and b depend on
m, and are given as follows

(a, b) =


(0,m) 0 ≤ m ≤ nh − 2

(0, nh − 1) nh − 1 ≤ m ≤ nx − 1

(m− nx + 1, nh − 1) nx ≤ m ≤ nx + nh − 2.

(22)
Similar expressions hold for fYnQ

[m](y|H0).

Proof: See Appendix II.
Fig. 2 illustrates the derived PDF in (20) for ynI

[1] given
hypothesis H0 at 15 dB Eb/N0 . For comparison, we also show
the empirical PDF obtained by histogram density estimator and
theoretical Gaussian PDF. As seen, the derived PDF accurately
matches the empirical PDF. However, it exhibits a larger
tail compared to the Gaussian distribution. In Table I, we
compare the variance, kurtosis, and skewness of the derived
PDF in (20), the empirical histogram density estimation of
the PDF, and the Gaussian distribution. The kurtosis measures
the fourth-order central moment of the random variable YnI

[1]
with mean µ , E{YnI [1]|H0}, and the skewness is a measure
of the symmetry in the distribution. Large deviation from the
mean yields large values of kurtosis. For fair comparison, we
consider the normalized kurtosis κ and skewness ξ defined as

κ ,
E{(YnI [1]− µ)4}
E2{(YnI

[1]− µ)2}
, (23)

1In Theorem 2, by n < 0, we mean as if the receiver starts to receive
samples before any data is transmitted from the transmitter.

and

ξ ,
E{(YnI

[1]− µ)3}
E 3

2 {(YnI
[1]− µ)2}

. (24)

To estimate the normalized kurtosis and skewness for the
emirical PDF, we use

κ̂ ,
1
M

∑M−1
n=0 (ynI

[1]− µ̂)4Ä
1
M

∑M−1
n=0 (ynI

[1]− µ̂)2
ä2 , (25)

and

ξ̂ ,
1
M

∑M−1
n=0 (ynI

[1]− µ̂)3Ä
1
M

∑M−1
n=0 (ynI [1]− µ̂)2

ä 3
2

, (26)

where

µ̂ =
1

M

M−1∑
n=0

ynI
[1]. (27)

To estimate the kurtosis and skewness in (25) and (26), we set
M = 106. As seen in Table I, the theoretical kurtosis obtained
by (23) equals the empirical kurtosis in (25) with precision of
0.01. Further, these values are larger than 3; hence, it indicates
a non-Gaussian PDF, which in particular, has a larger tail. In
Table I, we also observe that for the theoretical and empirical
PDFs, the skewness is zero, which implies that the PDF is
symmetric around its mean.

B. PDF Derivation for Delay Hypothesis Hd, d 6= 0

In order to obtain the ML estimator, we need to derive the
joint PDF of the received samples given all delay hypotheses
Hd, d ∈ {−ns+1, . . . ,−1, 0, 1, . . . , ns−1}. In Theorem 2, we
derived the PDF of the received samples given hypothesis H0,
i.e., fY(y|H0). In Appendix III, we prove that fY(y|Hd) can
be expressed based on the joint PDF of the received samples
given H0 as it is shown in (28) and (29) at the top of this
page, where

f̃Y [m](y|H0) , fY [nns+m](y|H0) = fYn[m](y|H0) (30)

≈ fYnI
[m]

Ä
yI|H0

ä
fYnQ

[m]

Ä
yQ|H0

ä
, fYI[m]

Ä
yI|H0

ä
fYQ[m]

Ä
yQ|H0

ä
, n ≥ 0

for 0 ≤ m ≤ ns − 1, and

f̃Y [−](y|H0) , fY [nns+m](y|H0) = fYn[m](y|H0), (31)
≈ fYnI

[m](yI|H0)fYnQ
[m](yQ|H0)

, fYI[−]
Ä
yI|H0

ä
fYQ[−]

Ä
yQ|H0

ä
, n < 0,

where y , yI + iyQ, fY [nns+m](·|H0) is the PDF of the
received sample y[nns +m] , yn[m] given H0, and the PDF
of <{y[nns +m]} = ynI

[m], i.e., fYnI
[m](·|H0) and the PDF

of ={y[nns + m]} = ynQ
[m], i.e., fYnQ

[m](·|H0) are given
in Theorem 2. The relation between the PDF of the received
samples given Hd and H0 is attributed to the periodicity of the
zero-padded guard interval.
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fY(y|Hd) =

ns−d−1∏
k=0

f̃Y [k+d]

Ä
y[k]|H0

äN−1∏
m=1

(
ns−1∏
u=0

f̃Y [u]

Ä
y[mns + u− d]|H0

ä) Nns−1∏
v=Nns−d

f̃Y [v−Nns+d]

Ä
y[v]|H0

ä
, d ≥ 0 (28)

fY(y|Hd) =

|d|−1∏
k=0

f̃Y [−]
Ä
y[k]|H0

äN−2∏
m=0

(
ns−1∏
u=0

f̃Y [u]

Ä
y[mns + u− d]|H0

ä) Nns−1∏
u=(N−1)ns−d

f̃Y [u−(N−1)ns+d]

Ä
y[u]|H0

ä
, d < 0

(29)

To visualize (28) and (29) of the revised manuscript, let us
consider the vector of PDF in (60) in the revised manuscript.
We consider the first shown dashed line from the top in
the PDF vector as reference line. The elements below this
reference line in PDF vector are periodic with period ns (see
the pattern in Fig. 11 in the revised manuscript). The elements
above this reference line represent the PDF of the noise
samples. For d ≥ 0, the elements of the observation vector
y are respectively substituted in the PDF vector starting from
the (d + 1)-th element below the reference line. This results
in (28). Similarly, for d < 0, the elements of the observation
vector y are respectively substituted in the PDF vector starting
|d| elements above the reference line. This results in (29).

C. ML TO Estimator
The ML estimation for TO is defined to be the value of d that

maximizes fY(y|Hd) for y fixed, i.e., the value that maximizes
the likelihood function. The maximization is performed over
the allowable range of d. Corollary 1 summarizes the proposed
NDA-ML TO estimation for ZP-OFDM.

Corollary 1. For a ZP-OFDM system in a doubly-selective
fading channel with the received vector y in (15), the NDA-
ML TO estimator is given by

d̂opt = argmax
d∈{−ns+1,...,ns−1}

fY(y|Hd), (32)

where fY(y|Hd) is given in (28) and (29).

The proposed time synchronization method can be extended
to ZP-OFDM with non-rectangular pulse shaping, but it re-
quires the modification of the PDF in equation (20). In this
case, the Tsa-spaced baseband OFDM samples are modeled as
independent random variables with different variances, which
makes the derivation of the PDF challenging.

Since a closed-form expression cannot be found for the ML
estimator in (32), a numerical approach can be used. Numerical
methods employ either an exhaustive search or an iterative
maximization of the likelihood function.

IV. LOW-COMPLEXITY IMPLEMENTATION

The derived PDF in (20) is complex due to the integral terms
including the Gaussian error function Φ(·). Hence, practical
implementation of the proposed ML can be challenging. An
alternative approach with feasible implementation and lower
complexity is to employ MCS techniques to approximate the

TABLE I: Statistical Analysis

Metric Empirical Analytical Gaussian

Mean 4.6250 ×10−4 0 0
Variance 0.3206 0.3205 0.3206
Skewness 0.0031 0 0
Kurtosis 4.5315 4.5653 3

joint PDF of the received samples. MCS methods benefit
from the availability of computer generated random variables
to approximate univariate and multidimensional integrals in
Bayesian estimation, inference, and optimization problems.
The key idea behind MCS method is to generate independent
random samples from a PDF usually known up to a normal-
izing constant. In the following discussion, we use MCS in-
tegration method in order to make efficient implementation of
the proposed theoretical NDA-ML estimator in (32) possible.

A. MCS Method

In Appendix II, we proved that fYI[m](yI|H0) in (20) is
expressed in an integral form as follows

fYnI
[m](yI|H0) =

∫ ∞
−∞

fWnI
[m](yI − v)fVnI

[m](v|H0)dv

=

∫ ∞
−∞

1√
πσ2

w

exp

®
− 1

σ2
w

Ä
yI − v

ä2´
fVnI

[m](v)dv,

(33)

where

fVnI
[m](v|H0) =

(
b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

1∏b
k=a,k 6=j(λk − λj)

× 1∏b
p=a,p 6=j(λp − λn)

e−λj |v|

λj + λn
, (34)

and fWnI
[m](w) is the PDF of the white Gaussian noise

with variance σ2
w/2. Generating samples from random variable

VnI
[m] with PDF in (34) is straightforward since it is expressed

as a linear function of independent exponentially distributed
random variables with rate parameter λk = (σhkσx/2)−1 as
shown in (49) of Appendix II.
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Fig. 3: MCS implementation of the proposed theoretical NDA-ML TO estimator in (32) using (36). The solid and dashed lines represent the
in-phase and quadrature components of the received samples, respectively.

By using Monte Carlo integration method, we can write

fYnI
[m](yI|H0) ' 1

L

L−1∑
`=0

1√
πσ2

w

exp

®
− 1

σ2
w

Ä
yI − v`

ä2´
,

(35)

where L is the number of Monte Carlo samples, and
{v0, v1, . . . , vL−1} are i.i.d samples drawn from VnI

[m]. By
applying Monte Carlo integration to the marginal PDFs of the
in-phase and quadrature components of y, the joint PDF is
given by

fY(y|H0)≈
N−1∏
n=0

ns−1∏
m=0

fYnI
[m](ynI

[m]|H0)fYnQ
[m](ynQ

[m]|H0)

' 1

(πσ2
w)Nns

N−1∏
n=0

ns−1∏
m=0

(
L∑
`=1

exp

{
−1

σ2
w

Ä
ynI

[m]− vmnI
[`]
ä2´

×
L∑
`=1

exp

{
−1

σ2
w

Ä
ynQ

[m]− vmnQ
[`]
ä2´)

, (36)

where vmnI
[`] and vmnQ

[`] are i.i.d values drawn from random
variables with PDFs fVnI

[m](v) and fVnQ
[m](v), respectively.

By using (36), we can design the MCS implementation of the
theoretical NDA-ML TO estimator in (32) as in Fig. 3.

B. Iterative Likelihood Maximization
Efficient one dimensional iterative search algorithms can

be used to avoid exhaustive search, and thus, reduce the

computational complexity of (32). In iterative search method,
an interval [dL, dU] containing the true TO d∗ is established
and is then repeatedly reduced on the basis of function
evaluations until a reduced bracket [dL, dU] is achieved which
is sufficiently small. The minimizer/maximizer can be assumed
to be at the center of interval [dL, dU]. These methods can be
applied to any function and differentiability of the function is
not essential.

An iterative search method in which iterations can be
performed until the desired accuracy in either the maximizer
or the maximum value of the objective function is achieved is
the golden-section search method [39]. For a strictly unimodal
function with an extremum inside the interval, Golden-section
search method finds that extremum, while for an interval
containing multiple extrema (possibly including the interval
boundaries), it converges to one of them. Implementation of the
proposed NDA-ML TO estimation with golden-section search
is summarized in Algorithm 1. For Algorithm 1, we define

L(d) , Prod
(
f
(d:d+Nns−1)
Y (y; H0)

)
, (37)

where Prod
Ä
[z0, z1, . . . , zu−1]

ä
,
∏u−1
i=0 zi, and

f
(d:q)
Y (·; H0) , (38)î
fY [d](·|H0) fY [d+1](·|H0) . . . fY [q](·|H0)

óT
with q ≥ d and fY [nns+d](·|H0) as the PDF of the received
sample y[nns + d] , yn[d] given H0.
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Algorithm 1 Golden-section search

Initialization: D ← {−ns, . . . , ns − 2}, init← −ns + 1,
last← ns − 1, ratio← 0.381966

1: c← init+ +bratio ∗ (last− init)c
2: while L(c) < L(init) or L(c) < L(last) do
3: if |D|=2 then
4: if L(init) > L((last) then
5: return d̂opt ← init
6: else
7: return d̂opt ← last
8: D ← D \ {c}
9: c← Choose a random index from the set D

10: while last− init ≥ 4 do
11: if last− c ≥ c− init then
12: d← c+ bratio ∗ (last− init)c
13: if L(d) < L(c) then
14: last← d
15: else
16: init← c
17: c← d
18: else
19: d← c− bratio ∗ (last− init)c
20: if L(d) < L(c) then
21: init← d
22: else
23: last← c
24: c← d
25: d̂opt ← argmaxi∈{init,...,last} L(i)

26: return d̂opt

C. Complexity Analysis
Here, we compare the complexity of the proposed theoretical

and the MCS time synchronization algorithms. In our com-
plexity analysis, a real addition, multiplication, or division is
counted as one floating point operation (FLOP). Considering
the fact that the number of FLOPs for Hd, d ≥ 0, is higher than
that for d < 0, the number of FLOPs per TO hypothesis for the
theoretical and the MCS time synchronization algorithms are
upper bounded by 2N(nx+nz)+(2N−1)nxnh(8+2u1+2u2)
and ((6 + 2u1)(L−1) + 1)(nx +nz−1)(N −1), respectively,
where u1 and u2 denote the number of FLOPs for the compu-
tation of exp(·) and error function Φ(·), respectively. Here, L
is a trade-off parameter between the accuracy and complexity
for the MCS algorithm. That is, increasing L increases both
accuracy and complexity of the MCS algorithm.

The ratio of the average estimation time (RAET) versus nx
for the proposed theoretical NDA-ML and the MCS algorithms
are shown in Table II. Here, RAET is defined as:

RAET =
Average estimation time for MCS

Average estimation time for the theoretical
. (39)

The number of Monte Carlo samples is set to L = 104

for the MCS implementation, and exhaustive search method is
used for both algorithms. As seen, MCS implementation offers
a lower computational complexity compared to the theoretical
ML estimator using Theorem 2. This complexity reduction

TABLE II: Complexity Analysis

nx 64 128 256 512 1024

RAET 0.841 0.779 0.704 0.668 0.629

is obtained at the expense of an insignificant performance
degradation in terms of lock-in probability as it will be shown
in the next section.

V. SIMULATIONS

In this section, we evaluate the performance of the proposed
NDA-ML time synchronization algorithm through several sim-
ulation experiments.

A. Simulation Setup
We consider a ZP-OFDM system with 128-QAM modula-

tion in a frequency-selective Rayleigh fading channel. Unless
otherwise mentioned, the number of sub-carriers is nx = 128,
the number of zero-padded samples is nz = 15, and the
number of observed OFDM symbols at the receiver is N = 10.
The sampling time of the ZP-OFDM system at the receiver is
Tsa = 10−6s. An uncorrelated multipath fading channel with
nh = 10 taps and maximum delay spread of τmax = 10µs is
considered. The delay profile of the Rayleigh fading channel
in (6) is modeled as an exponential-decay function, i.e., σ2

hl
=

α exp(−βl), l = 0, 1, . . . , nh−1, where ph =
∑nh−1
l=0 σ2

hl
= 1,

α = 1/2.5244, and β = 0.5. The maximum Doppler spread
of the fading channel is set to fD = 5 Hz. Without loss of
generality, the transmit power is assumed to be σ2

x = 1, and the
AWGN is modeled as a zero-mean complex Gaussian random
variable with variance σ2

w, which varies according to the value
of SNR γ , σ2

xph/σ
2
w. The TO introduced to the system is

modeled as a uniformly distributed integer random variable
in the range of d ∈ [−30, 30]. Simulations are evaluated
under 104 Monte Carlo realizations, and the number of samples
for MCS implementation of the proposed theoretical NDA-
ML algorithm is L = 104. The performance of the proposed
algorithms are evaluated in terms of mean squared error (MSE)
and lock-in probability. Here, the lock-in probability is defined
as the probability that the estimated TO (given in sampling
time) equals to the actual TO. That is, any non-zero error is
counted as a missed estimation.

B. Simulation Results
The performance of the proposed theoretical NDA-ML

algorithm, its MCS implementation, and the current state-
of-the-art NDA TO estimator for ZP-OFDM, i.e. transition
metric (TM) [28], for different values of Eb/N0 are shown
in Fig. 4. As can be seen, the proposed theoretical algorithm
and its MCS implementation outperform the TM algorithm
since they maximize the likelihood function while TM is a
heuristic algorithm. Moreover, as seen, there is a negligible
performance gap between the proposed theoretical NDA-ML
algorithm and its MCS implementation. This performance gap
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can be further reduced by increasing the number of Monte
Carlo samples L used for averaging in (36) at the expense of
higher complexity. In Fig. 4. we also illustrate the performance
of the the sub-optimal time synchronization algorithm in [40],
which relies on Gaussian PDF approximation of the received
samples. As can be seen, there is a large gap between the
proposed algorithms and the sub-optimal algorithm in [40] at
low SNR values.

Fig. 5 illustrates the effect of the maximum Doppler spread
(mobility) on the performance of the proposed theoretical
NDA-ML algorithm and its MCS implementation. As seen, the
lock-in probability increases as the maximum Doppler spread
increases. The reason is that the time dynamics of the channel
taps contributing (through convolution) to the received samples
become less correlated as the maximum Doppler spread in-
creases. However, for zero maximum Doppler spread, identical
channel taps contribute to the received samples. Thus, our
independency assumption on the received samples becomes
more valid for higher values of maximum Doppler spread.
These results reveal that the proposed NDA-ML algorithm can
be considered as a promising candidate for vehicle-to-vehicle
(V2V) communications.

The effect of the number of OFDM symbols N , used for
time synchronization, on the performance of the proposed
theoretical NDA-ML algorithm, its MCS implementation, and
the TM algorithm [28] are represented in Fig. 6. As ex-
pected, the higher N , the higher the lock-in probability. Major
improvements in performance occurs when the number of
OFDM symbols increases from 1 to 10, and then the rate
of performance improvement decreases. This is due to the
fact that innovation introduced by each new sample to an ML
estimator deacreases as the total number of samples (used for
estimation) increases.

In Fig. 7, the performance of the proposed theoretical NDA-
ML TO estimator, its MCS implementation, and the TM
estimator [28] versus the number of channel taps nh for
nz = 20 at 15 dB Eb/N0 are shown. As seen, the lock-
in probability of the theoretical NDA-ML TO estimator and
its MCS implementation degrades as nh increases. This is
because the sharpness of the likelihood function decreases; the
sharpness of likelihood function determines how accurately we
can estimate an unknown parameter.

In Fig. 8, we illustrate the empirical probability mass
function (PMF) of the synchronization error for the proposed
theoretical and the MCS algorithms at 10 dB Eb/N0. As can
be seen, the empirical PMF of the error is not symmetric
around zero and is slightly biased towards positive TOs.
Based on asymptotic properties of the MLEs, the biased
term approaches zero as N → ∞. Moreover, we observe
that the synchronization error falls in small interval, i.e.,
{−2,−1, 1, 2}. This means that the proposed algorithms offer
low MSE as shown in Fig. 9. Because of low MSE, the
proposed time-synchronization algorithms can take advantage
of low complexity channel coding to further improve synchro-
nization performance.

The effect of PDP estimation error on the performance of
the proposed theoretical and the MCS time synchronization
algorithms is shown in Fig. 10. We model the estimated PDP
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Fig. 4: Lock-in probability versus Eb/N0.
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Fig. 5: Lock-in probability versus maximum Doppler spread of the
fading channel at 15 dB Eb/N0.

as

σ̂2
hk
∈ U

[
σ2
hk
− ασ2

hk
, σ2

hk
+ ασ2

hk

]
, (40)

where σ2
hk

, k = 0, 1, . . . , nh − 1, is the true PDP, and
U [a, b] denotes the uniform distribution in the interval [a, b].
In Fig. 10, we show the lock-in probability versus α ∈ [0, 1]
at 10 dB Eb/N0. As can be seen, the theoretical and the
MCS algorithms are robust to the the delay profile estimation
error for α ∈ [0, 1] and α ∈ [0, 0.5], respectively. While the
performance of the theoretical algorithm slightly degrades for
α ∈ [0.5, 1], the lock-in probability is still larger than 0.75.

VI. CONCLUSIONS

In this paper, for the first time in the literature, the NDA-ML
time synchronization for ZP-OFDM was analytically derived
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Fig. 6: Lock-in probability versus the number of observation vectors
N at 10 dB Eb/N0.

2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7: Lock-in probability versus the number of channel taps nh at
10 dB Eb/N0.

and a feasible solution for its implementation based on MCS
technique was proposed. The obtained time synchronization
method can be employed for both frame and symbol synchro-
nization. Moreover, to achieve the optimal time synchroniza-
tion method, we obtained a closed-form approximate expres-
sion for the distribution of convolution, i.e. received convolved
signal. Simulation results verify that the proposed theoretical
NDA-ML time synchronization and its MCS implementation
can offer high lock-in probabilities even at low SNR values.
Also, they are effective in highly time-selective channels with
large maximum Doppler spread. These properties make ZP-
OFDM a promising candidate for low-power IoT networks and
V2V communications.
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Fig. 8: PMF of the synchronization error for the theoretical and the
MCS algorithms at 10 dB Eb/N0.
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Fig. 9: Mean Squared Error (MSE) versus SNR for Theoretical and
MCS method.
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APPENDIX I
PROOF OF THEOREM 1

Let us define sequences S and Y as follows

S ,
¶
. . . , s̃[−1], s̃[0], s̃[1], . . .

©
(41)

=
¶
. . . , 0, 0, sT0 , s

T
1 , . . .

©
,

and

Y ,
¶
. . . , ỹ[−1], ỹ[0], ỹ[1], . . .

©
, (42)

where sn is defined in (11), s̃[nns +m] , sn[m], and

ỹ[u] =

nh−1∑
l=0

h[l]s̃[u− l] + w[u]. (43)

with w[u] ∼ CN (0, σ2
w) as AWGN

Since S is composed of OFDM samples xn(mTsa), which
are modeled as zero-mean i.i.d complex Gaussian random
variables, and zero-padded elements, we have

E{ỹ[u]} = 0, (44)

and

E{s̃[v]s̃∗[u]} = 0, v 6= u. (45)

For u = v, we either have E{s̃[v]s̃∗[u]} = 0 or E{s̃[v]s̃∗[u]} =
σ2
x, where the former is valid for the zero-padded samples, and

the latter is obtained from (13) for OFDM samples. Since the
noise component w[n] in (43) is zero-mean AWGN, we can
write2

E
¶
ỹ[u]ỹ∗[v]

©
= σ2

x

nh−1∑
l=0

E
¶
h[l]h∗[v − u+ l]

©
, (46)

2It is obvious that for the observation samples containing noise only
samples, E

¶
ỹ[u]ỹ∗[v]

©
= 0, v 6= u.

where u 6= v. Because the channel taps in (6) are uncorrelated
random variables, we can write

E
¶
ỹ[u]ỹ∗[v]

©
= 0, u 6= v, (47)

which implies that ỹ[u] and ỹ[v] are also uncorrelated random
variables.

Finally, we can easily conclude that the elements of y given
hypothesis Hd share the same property with Y in the context
of correlation since y is obtained by windowing Y .

APPENDIX II
PROOF OF THEOREM 2

Let us write the in-phase component of the received sample
in (4) as follows

ynI
[m] = vnI

[m] + wnI
[m], (48)

where ynI
[m] , <{yn[m]}, wnI

[m] , <{wn[m]}, and

vnI [m] , <{vn[m]} = <

{
nh−1∑
l=0

h[l]sn[m− l]

}
.

We consider that vnI
[m] and wnI

[m] are the realizations of the
random variables VnI

[m] and WnI
[m], respectively. We also

denote the PDF of VnI
[m] and WnI

[m] with fVnI
[m](v|H0)

and fWnI
[m](w|H0).

Case 1: m ∈ {m | 0 ≤ m ≤ ns − 1 when n < 0} ∪
{m | nx + nh − 1 ≤ m ≤ ns − 1 when n ≥ 0}

Let us write vnI
[m] as equation (44), at the top of the next

page, where hI[l] , <{h[l]}, hQ[l] , ={h[l]}, xnI
[m] ,

<{xn[m]}, and xnQ [m] , ={xn[m]}. By replacing (44) into
(48), we can write (see Fig. 11)

ynI
[m] = wnI

[m], nx + nh − 1 ≤ m ≤ ns − 1. (45)

Also, given H0, we have

ynI
[m] = wnI

[m], n < 0. (46)

By using WnI [m] ∼ fWnI
[m](w|H0) = CN (0, σ2

w/2), (45),
and (46), we obtain (19).

Case 2: m ∈ {m | 0 ≤ m ≤ nx + nh − 2 when n ≥ 0}
Since WnI [m] and VnI [m] are independent random vari-

ables, we can write the PDF of ynI [m] in (48) given hypothesis
H0 as the convolution of their PDFs. Prior to convolution
derivation, we first need to derive the PDF of VnI

[m] for
0 ≤ m ≤ nx + nh − 2. To obtain the PDF of VnI

[m], we
can employ the characteristic function (CHF) method.

By using (6.1) in [41] and (44), we can write the CHF of
VnI [m] given H0 as follows

φVnI
[m]|H0

(t) ,
1∏b
k=a

(
1 +

σ2
hk
σ2
xt

2

4

)
(47)

=

b∏
k=a

1(
1 + j

σhkσx

2 t
) 1(

1− j σhkσx

2 t
)

for 0 ≤ m ≤ nx + nh − 2, where (a, b) is given in (22).
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vnI
[m]=



∑m
l=0 hI[l]xnI

[m− l]− hQ[l]xnQ
[m− l] 0 ≤ m ≤ nh − 2,∑nh−1

l=0 hI[l]xnI [m− l]− hQ[l]xnQ [m− l] nh − 1 ≤ m ≤ nx − 1,∑nh−1
l=m−nx+1 hI[l]xnI

[m− l]− hQ[l]xnQ
[m− l] nx ≤ m ≤ nx + nh − 2,

0 nx + nh − 1 ≤ m ≤ ns − 1

(44)

The CHF of the random variable X , X1 +X2 + · · ·+XL,
where Xi and Xj are independent random variables, is given
as follows

φX(t) = φX1
(t)φX2

(t) . . . φXL(t). (48)

By employing (48), we can write the random variable VnI
[m]

with the CHF in (47) as the summation of independent random
variables as follows

VnI
[m] =

b∑
k=a

(Ek − E′k) = V1 − V2, (49)

where V1 ,
∑b
k=aEk, V2 ,

∑b
k=aE

′
k, and (a, b) is

given in (22). In (49), Ek and E′k are independent and
exponentially distributed random variables with rate parameter
λk = (σhkσx/2)−1. Using equation (7) in [42], we can write
the PDF of V1 as follows

fV1
(v1) =

b∏
i=a

λi

b∑
j=a

e−λjv1∏b
k=a,k 6=j(λk − λj)

. (50)

Similar expression holds for the PDF of V2. Since VnI
[m] =

V1 − V2, and V1, V2 ∈ [0,∞), then, VnI
[m] ∈ (−∞,∞).

The PDF of the sum of two independent random variables is
the convolution of their PDFs. Since V1 and V2 are independent
random variables, for v ≥ 0, we can write

fVnI
[m](v|H0) =

∫ ∞
0

fV1
(v + v2)fV2

(v2)dv2 (51)

=

∫ ∞
0

b∏
i=a

λi

b∑
j=a

e−λj(v+v2)∏b
k=a,k 6=j(λk − λj)

×
b∏

r=a

λr

b∑
n=a

e−λnv2∏b
p=a,p 6=j(λp − λn)

dv2

=

(
b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

1∏b
k=a,k 6=j(λk − λj)

× 1∏b
p=a,p6=j(λp − λn)

e−λjv

λj + λn
.

Similarly, for v ≤ 0, we obtain

fVnI
[m](v|H0) =

(
b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

1∏b
k=a,k 6=j(λk − λj)

× 1∏b
p=a,p6=j(λp − λn)

eλjv

λj + λn
. (52)

Now, we can write the PDF of the received sample ynI [m]
as the convolution of fVnI

[m](v|H0) and fWnI
[m](w|H0) as

follows

fYnI
[m](y|H0) =

∫ ∞
−∞

fWnI
[m](y − v)fVnI

[m](v|H0)dv

=

∫ ∞
0

fWnI
[m](y − v)fVnI

[m](v|H0)dv︸ ︷︷ ︸
C1

+

∫ 0

−∞
fWnI

[m](y − v)fVnI
[m](v|H0)dv︸ ︷︷ ︸

C2

.

(53)

By using (51) and fWnI
[m](w|H0) = CN (0, σ2

w/2), the first
integral in (53) can be obtained as follows

C1 =

(
b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

1∏b
k=a,k 6=j(λk − λj)

1

(λj + λn)πσ2
w

× 1∏b
p=a,p 6=j(λp − λn)

e
− y2

σ2w

∫ ∞
0

e
− v2

σ2w
−(λj− 2y

σ2w
)v
dv

(g)
=

(
b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

e(
λjσw

2 )2∏b
k=a,k 6=j(λk − λj)

1

2(λj + λn)

× 1∏b
p=a,p 6=j(λp − λn)

e−λjy

(
1− Φ

(λjσw
2
− y

σw

))
,

(54)

where (g) comes from [43] (page 336, 3.322, formula 2), and
Φ(x) = erf(x) = 2√

π

∫ x
0
e−t

2

dt denotes the Gaussian error
function. Analogous to (54), by using (52) and after some
mathematical simplifications, we obtain

C2 =

(
b∏
i=a

λi

)2 b∑
j=a

b∑
n=a

1∏b
k=a,k 6=j(λk − λj)

× 1∏b
p=a,p 6=j(λp − λn)

1

2(λj + λn)

× e

(
λjσw

2

)2

eλjy

(
1− Φ

(λjσw
2

+
y

σw

))
.

(55)

Finally, by substituting (54) and (55) into (53), (20) is derived.
One can derive an identical expression for the quadrature
component of the received samples by following the same
procedure.
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First transmitted OFDM symbol Third transmitted OFDM symbolChannel taps

First received OFDM symbol Third received OFDM symbol

i

i
Fig. 11: Convolution of OFDM symbols with a multi-tap channel results in four region given in (44).

APPENDIX III

In order to perceive the relation between fYn[m](y|H0) and
fYn[m](y|Hd), we rely on the following observations resulting
from Theorem 2.

1) For n ≥ 0, there is a repeating pattern in the PDF of
the received samples due to the zero-padded guard interval
and Gaussianity of the OFDM samples, i.e., xn(mTsa) ∼
CN (0, σ2

x). Hence, we have

fY(n+q)I
[m](yI|H0) = fYnI

[m](yI|H0), q ≥ 0, (56)

The same equality holds for fYnQ
[m](yQ|H0). This repetition

pattern is shown in Fig. 11. For simplicity of presentation, we
remove the index of the OFDM symbol due to this periodicity
and write

fYnI
[m](yI|H0) , fYI[m](yI|H0), n ≥ 0. (57)

The same definition holds for fYnQ
[m](yQ|H0). Following the

notation in (57), we can write

fYn[m](y|H0) ≈ fYnI
[m])(yI|H0)fYnQ

[m](yQ|H0) (58)

, fYI[m](yI|H0)fYQ[m](yQ|H0) , f̃Y [m](y|H0).

2) For n < 0, fYn[m](y|H0) is the PDF of the complex
Gaussian noise. For simplicity of presentation, we define

fYn[m](y|H0) ≈ fYnI
[m](yI|H0)fYnQ

[m](yQ|H0)

, fYI[−]
Ä
yI|H0

ä
fYQ[−]

Ä
yQ|H0

ä
(59)

, f̃Y [−](y|H0), n < 0.

By using (58) and (59), we can define the vector of PDF
for the observations vectors {. . . ,yT

−2,y
T
−1,y

T
0 ,y

T
1 ,y

T
2 , . . . }

given hypothesis H0 as follows

fY(·; H0) ,

...

fY−1[ns−2]
Ä
· |H0

ä
fY−1[ns−1]

Ä
· |H0

ä
fY0[0]

Ä
· |H0

ä
fY0[1]

Ä
· |H0

ä
...

fY0[ns−1]
Ä
· |H0

ä
fY1[0]

Ä
· |H0

ä
fY1[1]

Ä
· |H0

ä
...

fY1[ns−1]
Ä
· |H0

ä
...



=



...

f̃Y [−]
Ä
· |H0

ä
f̃Y [−]

Ä
· |H0

ä
f̃Y [0]

Ä
· |H0

ä
f̃Y [1]

Ä
· |H0

ä
...

f̃Y [ns−1]
Ä
· |H0

ä
f̃Y [0]

Ä
· |H0

ä
f̃Y [1]

Ä
· |H0

ä
...

f̃Y [ns−1]
Ä
· |H0

ä
...



. (60)

As seen in (60), the right-hand side vector simply represents
the repetition pattern of the PDF.

The vector of PDF for the observation vector y in (15) given
hypothesis Hd is expressed as follows

fY(y|Hd) = f
(d:d+Nns−1)
Y (y; H0), (61)

where f
(d:d+Nns−1)
Y (·; H0) is defined in (38). By using (30)

and (31), we can write fY(y|Hd) in (61) based on f̃Y [−](·|H0)

and f̃Y [m](·|H0), m = 0, 1, . . . , ns − 1, as shown in (28) and
(29). It is worth mentioning that due to the repetition pattern in
fY (·; H0), the truncated PDF vector in (61) contains N−1 full
blocks of

î
f̃Y [0](·|H0), f̃Y [1](·|H0), . . . , f̃Y [ns−1](·|H0)

óT
.
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