
1

Solving High-Order Portfolios via Successive
Convex Approximation Algorithms

Rui Zhou and Daniel P. Palomar, Fellow, IEEE

Abstract—The first moment and second central moments
of the portfolio return, a.k.a. mean and variance, have been
widely employed to assess the expected profit and risk of the
portfolio. Investors pursue higher mean and lower variance when
designing the portfolios. The two moments can well describe the
distribution of the portfolio return when it follows the Gaussian
distribution. However, the real world distribution of assets return
is usually asymmetric and heavy-tailed, which is far from being a
Gaussian distribution. The asymmetry and the heavy-tailedness
are characterized by the third and fourth central moments, i.e.,
skewness and kurtosis, respectively. Higher skewness and lower
kurtosis are preferred to reduce the probability of extreme losses.
However, incorporating high-order moments in the portfolio
design is very difficult due to their non-convexity and rapidly
increasing computational cost with the dimension. In this paper,
we propose a very efficient and convergence-provable algorithm
framework based on the successive convex approximation (SCA)
algorithm to solve high-order portfolios. The efficiency of the
proposed algorithm framework is demonstrated by the numerical
experiments.

Index Terms—High-order portfolios, skewness, kurtosis, effi-
cient algorithm, successive convex approximation.

I. INTRODUCTION

Modern portfolio theory has developed rapidly since Harry
Markowitz’s seminal paper in 1952, which proposed the mean-
variance framework to pursue the trade-off between maximiz-
ing the portfolio’s profit and minimizing the risk [1]. The profit
and risk of a portfolio are measured by the mean and variance,
i.e., the first moment and the second central moments, of the
portfolio return. The mean-variance framework assumes that
the investors prefer a quadratic utility or that the returns of
assets follow a Gaussian distribution [2].

However, the mean-variance framework is not widely used
in the real market investment. One of the main reasons is
that returns of assets in real markets are seldom Gaussian
distributed. They are usually asymmetric and more likely to
contain outliers or exhibit a heavier tail, making the portfolio
return also asymmetric and heavy-tailed [3], [4]. Meanwhile,
most investors would be willing to accept lower expected
profit and higher volatility in exchange for more positively
skewed and less heavy-tailed portfolio return [5], [6], [7]. This
aspiration has been beyond the characterization of the mean-
variance framework. Apart from that, the investors might have
different tastes in utility functions. Sometimes the shapes of
these utility functions can be significantly different from the
quadratic one.

This work was supported by the Hong Kong RGC 16208917 research grant.
The authors are with the Hong Kong University of Science and

Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (e-mail:
rui.zhou@connect.ust.hk; palomar@ust.hk).

To make up the drawbacks of the mean-variance framework,
we need to take high-order moments of the portfolio return
into consideration. The asymmetry and heavy-tailedness of
portfolio return are well captured by its third and fourth central
moments, i.e., skewness and kurtosis. A higher skewness
usually means that the portfolio return admits a more positively
skewed shape, while the lower kurtosis usually corresponds to
thinner tail. We can extend the mean-variance framework by
directly incorporating the high-order moments to obtain the
mean-variance-skewness-kurtosis (MVSK) framework, where
we shall try to strike a balance between maximizing the mean
and skewness (odd moments) while minimizing the variance
and kurtosis (even moments) [8], [9], [10]. Besides, such
extension can be seen as approximating a general expected
utility function with its Taylor series expansion truncated to
the four most important order terms [11]. There also exist some
other high-order portfolios within the MVSK framework. For
example, the MVSK tilting portfolios [12] are obtained by
“tilting” a given portfolio to the MVSK efficient frontier.

Although there are many advantages of the MVSK frame-
work, solving such high-order portfolio optimization problems
is quite challenging. First, the third and fourth central moments
are both nonconvex functions, making the problems in general
NP-hard [13]. These problems are traditionally solved by some
metaheuristic optimization tools, e.g., differential evolution
[14] and genetic algorithms [10]. However, they are essentially
performing a time-consuming random search [15], [16]. A
method based on the Difference of Convex (DC) algorithm was
proposed to solve the MVSK portfolio problem to a stationary
point [8], but it converges too slowly and that it is only
applicable to small-size problems. Second, the complexity of
computing the value or the gradients of high-order moments
grows rapidly with the problem dimension. The classical
general gradient descent method and backtracking line search
also become inapplicable when the problem dimension grows
large. Therefore, it is meaningful and necessary to design
efficient algorithms for solving high-order portfolios.

To this end, the major goal of this paper is to develop
an efficient algorithm framework based on the successive
convex approximation (SCA) to solve high-order portfolios.
The SCA algorithm solves the original intractable problem
by constructing and solving a sequence of strongly convex
approximating problems [17], [18], [19]. In this paper, we
propose an easy approach to construct the approximation for
the nonconvex functions. This allows to construct a sequence
of convex problems compatible with existing efficient solvers
that can obtain the solutions to the original high-order portfo-
lio optimization problems. The convergence of the proposed
algorithm framework to a stationary point is established. In

ar
X

iv
:2

00
8.

00
86

3v
1

 [
q-

fi
n.

PM
]

 3
 A

ug
 2

02
0

mailto:rui.zhou@connect.ust.hk
mailto:palomar@ust.hk

2

addition, owing to their low computational complexity, the
algorithms are amenable for high-dimensional applications.
Extensive numerical experiments are performed to corroborate
our claims.

The paper is organized as follows. We first give the prelimi-
nary knowledge on the high-order moments of portfolio return
in Section II and then pose the problem formulations in Section
III. The SCA algorithm and its special cases are introduced
in Section IV. In Section V and Section VI, we derive our
algorithms based on the SCA algorithm to solve the high-
order portfolios. The complexity and convergence analysis
of the proposed algorithms are discussed in Section VII. In
Section VIII, we present some other formulations of high-
order portfolio problems and indicate the applicability of our
proposed algorithm framework. The numerical experiments are
given in Section IX. Finally, the conclusion of this paper is
summarized in Section X.

II. PRELIMINARIES: THE MOMENTS OF PORTFOLIO
RETURN

Denote by r ∈ RN the returns of N assets and w ∈ RN
the portfolio weights. The return of this portfolio is wT r with
expected value, i.e., the first moment

φ1 (w) = E
[
wT r

]
= wTµ, (1)

where µ = E (r) is the mean vector of the assets’ returns. De-
note by r̃ = r−µ the centered returns, the q-th central moment
of the portfolio return is E

[(
wT r−wTµ

)q]
= E

[(
wT r̃

)q]
,

which gives us the following:
• The second central moment, a.k.a. variance, of the port-

folio return is

φ2 (w) = E
[(

wT r̃
)2]

= E
[
wT r̃r̃Tw

]

= wTΣw,

(2)

where Σ = E
[
r̃r̃T
]

is the covariance matrix.
• The third central moment, a.k.a. skewness, of the portfo-

lio return is

φ3 (w) = E
[(

wT r̃
)3]

= E
[
wT r̃r̃Twr̃Tw

]

= E
[
wT r̃

(
r̃T ⊗ r̃T

)
(w ⊗w)

]

= wTΦ (w ⊗w) ,

(3)

where Φ = E
[
r̃
(
r̃T ⊗ r̃T

)]
is the co-skewness matrix.

• The fourth central moment, a.k.a. kurtosis, of the portfo-
lio return is

φ4 (w) = E
[(

wT r̃
)4]

= E
[
wT r̃r̃Twr̃Twr̃Tw

]

= E
[
wT r̃

(
r̃T ⊗ r̃T

)
(w ⊗w) r̃Tw

]

= E
[
wT r̃

(
r̃T ⊗ r̃T ⊗ r̃T

)
(w ⊗w ⊗w)

]

= wTΨ (w ⊗w ⊗w) ,

(4)

where Ψ = E
[
r̃
(
r̃T ⊗ r̃T ⊗ r̃T

)]
is the co-kurtosis

matrix.

Portfolio Return

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

skewness = 1

skewness = 0 (Gaussian)

skewness = −1

Figure 1: The implication of skewness.

The gradients of φ1 (w) and φ2 (w) w.r.t. w are µ and
2Σw, while their Hessians are 0 and 2Σ, respectively. But
the gradient and the Hessian of φ3 (w) and φ4 (w) are more
complicated to derive and we give the next some useful results.

Lemma 1. The gradient and Hessian of the skewness and
kurtosis are given by:

Oφ3 (w) = 3Φ (w ⊗w) ,

Oφ4 (w) = 4Ψ (w ⊗w ⊗w) ,

O2φ3 (w) = 6Φ (I⊗w) ,

O2φ4 (w) = 12Ψ (I⊗w ⊗w) .

(5)

Proof: See Appendix A.

Corollary 2. The gradient and Hessian of the skewness and
kurtosis admit the following relations:

Oφ3 (w) =
1

2
O2φ3 (w) w, (6)

Oφ4 (w) =
1

3
O2φ4 (w) w. (7)

Proof: Using Lemma 1, we have 3φ3 (w) = wTOφ3 (w).
Then taking the derivative of both sides w.r.t. w, we get
3Oφ3 (w) = Oφ3 (w) + O2φ3 (w) w, which further derives
equation (6). Equation (7) can be derived similarly.

Note that O2φ3 (w) = 6
∑N
k=1 Φ

(k)
ij wk and O2φ4 (w) =

12
∑N
k,l=1 Ψ

(k,l)
ij wkwl can be easily obtained from Lemma 1,

where Φ
(k)
ij = E [r̃ir̃j r̃k] and Ψ

(k,l)
ij = E [r̃ir̃j r̃kr̃l] are the

corresponding elements of matrices Φ and Ψ.
A high expected value and low variance of the portfolio

return are naturally chased by investors to increase the profit
and decrease the risk. Besides, in the non-Gaussian case, a
high skewness and low kurtosis are also desirable as they can
reduce the probability of extreme losses. As shown in Figure 1,
a positively skewed portfolio return is significantly less likely
to suffer extreme losses than a negatively skewed one. Besides,
we can see from Figure 2 that a lower kurtosis shows also a
thinner tail, which alleviates the appearance of extreme returns.
In general, investors have a preference for odd moments while
dislike even moments.

3

Portfolio Return

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

kurtosis = 10

kurtosis = 3 (Gaussian)

kurtosis = 2

Figure 2: The implication of kurtosis.

III. PROBLEM FORMULATION

A. MVSK Portfolio

The classical Markowitz’s mean-variance (MV) portfolio [1]
is obtained by solving the following problem:

minimize
w

−wTµ + λwTΣw

subject to w ∈ W,
(8)

where λ ≥ 0 is a parameter striking a balance between the
expected return (wTµ) and the portfolio risk (defined by the
variance wTΣw), W is the feasible set of portfolio weights,
which we set as

W =
{
w|1Tw = 1, ‖w‖1 ≤ L

}
, (9)

where L ≥ 1 is the leverage constraint of the portfolio [20].
Specifically, when L = 1, W reduces to the no shorting
constraint:

{
w|1Tw = 1,w ≥ 0

}
. The expected mean and

the expected variance are actually the first moment and the
second central moment of the portfolio return. However, the
real world assets return usually appears to be asymmetric
and of extreme values, which is beyond the characterization
of first two moments. It is reasonable to consider the third
and fourth central moments in the portfolio design. A natural
way to incorporate the two higher-order moments is revising
the objective of problem (8) to achieve the mean-variance-
skewness-kurtosis portfolio design problem [8], [9], [10]:

minimize
w

f (w) = −λ1φ1 (w) + λ2φ2 (w)

− λ3φ3 (w) + λ4φ4 (w)

subject to w ∈ W,

(10)

where λ1, λ2, λ3, λ4 ≥ 0 are the parameters for combining the
four moments of the portfolio return.

B. MVSK Tilting Portfolio

Directly solving the problem (10) leads us to the MVSK
efficient frontier, where we cannot improve any moment with-
out impairing other moments. However, the investors might
want to modify another existing portfolio w0 toward a MVSK
efficient portfolio. This can be done by tilting these portfolios
in a direction that increases their first moment and third

central moment and decreases their second and fourth central
moments [12], i.e.,

maximize
w,δ

δ

subject to φ1 (w) ≥ φ1 (w0) + d1δ,

φ2 (w) ≤ φ2 (w0)− d2δ,

φ3 (w) ≥ φ3 (w0) + d3δ,

φ4 (w) ≤ φ4 (w0)− d4δ,

(w −w0)
T

Σ (w −w0) ≤ κ2,

w ∈ W, δ ≥ 0,

(11)

where d = [d1, d2, d3, d4] ≥ 0 is the tilting direction,
φi (w0) , i = 1, 2, 3, 4 are the moments of w0 (starting point)
for tilting, κ2 determines the maximum tracking error volatility
of w with respect to the reference portfolio w0.

C. Difficulty of Solving High-Order Portfolios

The MVSK portfolio optimization problem (10) and MVSK
tilting portfolio optimization problems (11) are very difficult
to solve for two reasons:

1) Non-convexity: the third and fourth central moments,
i.e., φ3 (w) and φ4 (w), are non-convex on w, making
the problem (10) and the problem (11) both non-convex
problems.

2) Computational complexity: Ψ is of dimension N×N3,
which means the memory complexity is O

(
N4
)

and
the computational complexity of one single evaluation
of the fourth moment is O

(
N4
)
. Lemma 1 shows that

the computational complexity for computing the gradient
of the fourth central moment is also O

(
N4
)
. Then

the general gradient descent method and backtracking
line search are inappropriate to the high-order portfolio
problem.

Due to the non-convexity, the classical convex optimization
methods are not applicable, while the general gradient method
is also not applicable due to the expensive cost of gradient
computation. It is necessary to design a specific algorithm
to efficiently solve high-order portfolios. Such an algorithm
should converge fast and avoid evaluating the gradients or
value of high-order moments frequently. This paper proposes
a very efficient algorithm framework to solve the high-order
portfolio optimization problem based on the SCA algorithm.
But before that, some background on the SCA algorithm is
due in the next section.

IV. THE SUCCESSIVE CONVEX APPROXIMATION
ALGORITHM

The successive convex approximation (SCA) algorithm is a
general framework especially designed for solving non-convex
optimization problems. Instead of solving the original in-
tractable optimization problem, it resorts to successively solv-
ing a sequence of strongly convex approximating problems.
The convergence of the SCA algorithm can be guaranteed
under mild assumptions.

4

Specifically, consider a nonconvex constrained optimization
problem,

minimize
x

f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m,

x ∈ K,
(12)

where f (x) and gi (x) are nonconvex functions and K is a
convex set. In order to solve the problem (12), which is directly
intractable, we may turn to successively solving a sequence
of strongly convex approximating problems. Denote by xk

the current iterate at k-th iteration, then the SCA algorithm
constructs a strongly convex approximating problem for (12)
as [19]:

minimize
x

f̃
(
x; xk

)

subject to g̃i
(
x; xk

)
≤ η

(
xk
)
, i = 1, . . . ,m,

‖x− xk‖∞ ≤ β,
x ∈ K,

(13)

where f̃
(
x; xk

)
and g̃i

(
x; xk

)
are the approximating func-

tions for f (x) and gi (x) at xk, the quantity η
(
xk
)

in the
surrogate constraints serves to suitably enlarge the feasible set
of the subproblem to ensure it is always nonempty, and β is a
user-chosen positive constant. The term η

(
xk
)

is defined as

η
(
xk
)
, (1− θ) max

i

{
gi(x

k)+

}

+ θmin
x

{
max
i

{
g̃i(x; xk)+

}∣∣x ∈ K
}
,

(14)

with θ ∈ (0, 1). The general SCA algorithm generates the
sequence

{
xk
}

as
{

x̂k+1 ← solve the problem (13),
xk+1 = xk + γk

(
x̂k+1 − xk

)
,

(15)

where at each iteration, the first stage is generating the descent
direction x̂k+1 − xk, and the second stage is updating the
variable along the solved descent direction with a step-size γk

satisfying

lim
k→∞

γk = 0 and
∞∑

k=0

γk =∞. (16)

The generated sequence
{
xk
}

is proven to converge to a
generalized stationary point of the original problem (12) under
the following mild assumptions [19]:

Assumption 1. Let Oβ and OK be open neighborhoods of{
x|‖x− xk‖∞ ≤ β

}
and K and such that:

On original problem (12):
A1) K is an nonempty, closed, and convex set.
A2) f (x) and gi (x) are continuously differentiable with

locally Lipschitz gradients on an open set containing K.
On surrogate function f̃ :
B1) f̃ (x; y) is a strongly convex function on Oβ for every

y ∈ K with modulus of strong convexity c > 0 independent of
y;

B2) f̃ (x; y) is continuous on Oβ ×OK;
B3) O1f̃ (x; y) is continuous on Oβ ×OK;

B4) O1f̃ (y; y) = Of (y) for every y ∈ K;
On surrogate constraint g̃i:
C1) g̃i (x; y) is a convex function on Oβ for every y ∈ K;
C2) g̃i (x; y) is continuous on RN ×OK;
C3) g̃i (x; y) = gi (y) for every y ∈ K;
C4) O1g̃i (x; y) is continuous on Oβ ×OK;
C5) O1g̃i (y; y) = Of (y) for every y ∈ K;
where O1f̃ (u; y) and O1g̃i (u; y) denote the partial gradi-

ent of f̃ (u; y) and g̃i (u; y) evaluated at u.

We can simplify the surrogate problem (13) accordingly
when the following assumptions are additionally satisfied:

1) if K is bounded, then the constraint ‖x − xk‖∞ ≤ β
can be ignored;

2) if Of (x) is Lipschitz continuous on K and g̃i
(
x; xk

)
≥

gi (x) is satisfied for every x ∈ K, then the constraint
‖x− xk‖∞ ≤ β can be ignored and η

(
xk
)
≡ 0 [21];

3) if Of (x) is Lipschitz continuous on K and g̃i
(
x; xk

)
=

gi (x) is satisfied for every x ∈ K, then the algorithm
reduces to the vanilla SCA algorithm. The constraint
‖x− xk‖∞ ≤ β can be ignored and η

(
xk
)
≡ 0 [22];

4) if K is bounded, f̃
(
x; xk

)
≥ f (x) and g̃i

(
x; xk

)
=

gi (x) are satisfied for every x ∈ K, then the algorithm
reduces to the classical majorization-minimization (MM)
method with convex majorization functions. The con-
straint ‖x−xk‖∞ ≤ β can be ignored, η

(
xk
)
≡ 0, and

γk can be simply fixed to 1 [17], [23].

V. SOLVING THE MVSK PORTFOLIO PROBLEM VIA SCA

In this section, we discuss how to solve the problem (10)
via the SCA algorithm. We first investigate the Difference of
Convex (DC) programming approach for solving the problem
(10) [8], which is actually a special case of the MM algo-
rithm. Inspired by this, we herein propose another MM based
algorithm by constructing a sequence of tighter upper bound
functions. Thus fewer iterations can be expected. However,
we further recognize that the MM algorithm might still be too
conservative as it requires constructing a global upper for the
objective function. Therefore, we further propose a general
SCA based algorithm for solving the problem (10), where a
strongly convex approximating function is constructed for the
objective function.

A. Preliminary Approach: DC Algorithm

A DC approach method was proposed in [8] to solve
problem (10) by recognizing that O2f (w) has a bounded
spectral radius under the bounded feasible set W .

Lemma 3. [8] Given w ≥ 0, 1Tw = 1, we have

ρ
(
O2f (w)

)
≤ 2λ2‖Σ‖∞ + 6λ3 max

1≤i≤N

N∑

j,k=1

|Φ(k)
ij |

+ 12λ4 max
1≤i≤N

N∑

j,k,l=1

|Ψ(k,l)
ij |,

(17)

where ρ (X) is the spectral radius of X.

5

Algorithm 1 DC method for problem (10).

1: Initialize w0 ∈ W and compute τDC ≥ ρ
(
O2f (w)

)
as in

Lemma 3.
2: for k = 0, 1, 2, . . . do
3: Calculate Of

(
wk
)
.

4: Solve the problem (19) to obtain ŵk+1.
5: wk+1 = ŵk+1.
6: Terminate loop if converges.
7: end for

The bound for ρ
(
O2f (w)

)
provided in Lemma 3 can be

easily extended under the constraints in (9) (where instead
of no-shorting w ≥ 0 we allow some leverage of L with
‖w‖1 ≤ L) to

ρ
(
O2f (w)

)
≤ 2λ2‖Σ‖∞ + 6λ3L max

1≤i≤N

N∑

j,k=1

|Φ(k)
ij |

+ 12λ4L
2 max

1≤i≤N

N∑

j,k,l=1

|Ψ(k,l)
ij |,

Then we can represent f (w) as

f (w) =
τDC

2
wTw −

(τDC

2
wTw − f (w)

)
, (18)

where both τDC
2 wTw and τDC

2 wTw − f (w) are convex func-
tions in w if τDC ≥ ρ

(
O2f (w)

)
. Then the classical concave-

convex procedure (CCCP) can be employed here by iteratively
linearizing the second (concave) term, i.e.,

minimize
w

τDC

2
wTw −wT

(
τDCwk − Of

(
wk
))

subject to w ∈ W,
(19)

where Of
(
wk
)

= −λ1Oφ1

(
wk
)

+ λ2Oφ2

(
wk
)
−

λ3Oφ3

(
wk
)

+ λ4Oφ4

(
wk
)
. It is already a convex problem

and can be easily solved. Furthermore, we can rewrite it as a
convex quadratic programing (QP) problem by introducing a
variable u ∈ RN :

minimize
w,u

τDC

2
wTw −wT

(
τDCwk − Of

(
wk
))

subject to 1Tw = 1,−u ≤ w ≤ u,1Tu ≤ L,
(20)

which can be very efficiently solved with a QP solver. In the
rest of the paper, we will always use this trick to transform
the `1-norm constraint to linear inequality constraints. The
complete DC algorithm for solving the problem (10) is given
in Algorithm 1.

B. Preliminary Approach: MM Algorithm
The DC algorithm is a special case of the more general MM

algorithm, which works by solving a sequence of global upper
bound problems of the original problem [24], [17]. Inspired by
the DC approach discussed in the above section, we propose a
tighter upper bound function for f (w). Note that the objective
in the surrogate problem (19) can be rewritten as

τDC

2
wTw − τDC

(
wk
)T

w + Of
(
wk
)T

w + const.

= f
(
wk
)

+ Of
(
wk
)T (

w −wk
)

+
τDC

2
‖w −wk‖22,

(21)

Algorithm 2 MM method for problem (10).

1: Initialize w0 ∈ W and compute τMM ≥ ρ
(
O2fncvx (w)

)

as in Lemma 4.
2: for k = 0, 1, 2, . . . do
3: Calculate Ofncvx

(
wk
)
.

4: Solve the problem (24) to obtain ŵk+1.
5: wk+1 = ŵk+1.
6: Terminate loop if converges.
7: end for

It is actually a global upper bound function of f (w) [17]
at wk. However, denoting f (w) = fcvx (w) + fncvx (w)
with fcvx (w) = −λ1φ1 (w) + λ2φ (w) and fncvx (w) =
−λ3φ3 (w) + λ4φ4 (w), we find fcvx (w) is already a convex
function. Then we can merely construct the an upper bound
function for fncvx (w). Inspired by Lemma 3, we propose a
smaller bound for ρ

(
O2fncvx (w)

)
as follows.

Lemma 4. Under the constraints in (9), we have

ρ
(
O2fncvx (w)

)
≤ 6λ3L max

1≤i≤N

N∑

j=1

max
1≤k≤N

|Φ(k)
ij |

+ 12λ4L
2 max

1≤i≤N

N∑

j=1

max
1≤k,l≤N

|Ψ(k,l)
ij |.

(22)

Proof: See Appendix B.
Then we can construct, compared with the upper bound

function actually used in DC method, a much tighter upper
bound function f̌ncvx (w) for fncvx (w) at wk as [17]:

f̌ncvx
(
w,wk

)
= fncvx

(
wk
)

+ Ofncvx
(
wk
)T (

w −wk
)

+
τMM

2
‖w −wk‖22,

(23)
where Ofncvx

(
wk
)

= −λ3Oφ3

(
wk
)

+ λ4Oφ4

(
wk
)

and
τMM ≥ ρ

(
O2fncvx (w)

)
can be calculated via Lemma 4. Then

a tighter global upper bound function can be constructed for
f (w) as f̌

(
w,wk

)
= fcvx (w) + f̌ncvx

(
w,wk

)
. At each

iteration of the MM algorithm, we need solve the following
surrogate problem:

minimize
w

wT Q̌kw + wT q̌k

subject to w ∈ W,
(24)

where Q̌k = λ2Σ + τMM
2 I and q̌k = −λ1µ + Ofncvx

(
wk
)
−

τMMwk. It is a strongly convex QP problem and can be
very efficiently solved by a QP solver. The complete MM
algorithm for solving the problem (10) is given in Algorithm 2.
Compared with the original DC algorithm, the MM algorithm
does not introduce any additional computation, while we can
expect faster convergence.

C. Q-MVSK Algorithm

The MM-type methods require constructing a global upper
bound approximation, which is sometimes criticized to be too
conservative to capture the global landscape for the objective

6

0.00

0.02

0.04

0.06

0.08

ï1.0 ï0.5 0.0 0.5 1.0
Step

O
bj

ec
tiv

e

DC app.
MM app. (prop.)
QïMVSK app. (prop.)
orig. func.

7

Algorithm 5 QCQO-MVSKT method for problem (9).

1: Initialize w(0) 2 W and pick ⌧� , ⌧w and a sequence
�
�k

.
2: for k = 0, 1, 2, . . . do
3: Calculate O�

�
wk

�
, O

�
wk

�
, Hk

3 , Hk
4 .

4: Solve problem (40) and compute ⌘
�
wk, �k

�
as in (38).

5: Solve problem (36) to obtain ŵk+1.
6: wk+1 = wk + �k

�
ŵk+1 �wk

�
.

7: Terminate loop if converges.
8: end for

approximation for nonconvex constraints in problem 9 while
convex quadratic constraints, i.e.,

minimize
w,�

� � +
⌧�
2

(� � �k) +
⌧w
2
kw �wkk22

subject to gi (w, �)  0, i = 1, 2, 5,

g̃j

�
w, �;wk, �k

�
 ⌘

�
wk, �k

�
, j = 3, 4,

w 2 W, � � 0,

(36)

where g̃j

�
w, �;wk, �k

�
is the quadratic approximation func-

tion of gj (w, �) at
�
wk, �k

�
:

g̃3(w, �;wk, �k)

= �3 (w0) + ��� � �(wk)� O�(wk)T (w �wk)

+
1

2
(w �wk)T Hk

�(w �wk),

g̃4(w, �;wk, �k)

= ��4 (w0) + � � � (wk)� O (wk)T (w �wk)

+
1

2
(w �wk)T Hk

 (w �wk),

(37)

with Hk
� and Hk

 being the PSD approximation matrixes for
�O2�

�
wk

�
and O2

�
wk

�
. ⌘

�
wk, �k

�
can be computed from

⌘
�
wk, �k

�

, (1� ✓) max
j=3,4

n
gj

�
wk, �k

�
+

o

+ ✓min
w,�

⇢
max
j=3,4

�
g̃j

�
w, �;wk, �k

�
+

 �� (w, �) 2 W̃
�

,

(38)
where W̃ is a convex set defined as

W̃ =
n

(w, �)
��w 2 W, � � 0, gi (w, �)  0, i = 1, 2, 5

o

(39)
Note that the second term in equation (38) can be decided by
t+ with t obtained from solving the following problem:

minimize
w,�,t

t

subject to g̃3

�
w, �;wk, �k

�
 t

g̃4

�
w, �;wk, �k

�
 t

(w, �) 2 W̃.

(40)

As this algorithm is actually using the successive quadrati-
cally approximated constraints and quadratically approximated
objective (QCQO) to solve the MVSK tilting problem, we
call it the QCQO-MVSKT algorithm and give the complete
algorithm in the Algorithm 5.

VII. COMPLEXITY AND CONVERGENCE ANALYSIS

A. Complexity Analysis

First of all, it should be noted that the memory complexity
for solving the high-order portfolio optimization problem is
O
�
N4

�
as the kurtosis matrix is of dimension N ⇥ N3.

For example, when N = 200, storing a complete takes
almost 12GB memory size. Thus it is impractical to solve a
large-scale high-order portfolio optimization problem for now.

The per-iteration computation complexity of constructing
the surrogate problems in any proposed algorithm is O

�
N4

�
.

The complexity of solving the surrogate problems varies
with the type of the problem and depends on the solver
implementation.

B. Convergence Analysis

The convergence properties for the proposed algorithms are
given in the following.

Proposition 6. Every limit point of the solution sequence�
wk

generated by the Algorithm 2 is a stationary point of

problem (8).

Proof: Note that: 1) W is a compact and convex set;
2) f (w) is continuous and bounded on W; 3) f̌

�
w,wk

�
is

continuous in both w and wk; 4) f̌
�
w,wk

�
is a global upper

bound function for f (w) and is tangent to it at wk. Thus, [13,
Assumption 2.12] and [13, Assumption 2.13] are satisfied, and
the proof of Proposition 6 follows directly from [13, Theorem
2.14].

Proposition 7. Suppose �k 2 (0, 1], �k ! 0 and
P

k �
k =

+1, and let
�
wk

be the sequence generated by Algorithm

3. Then either Algorithm 3 converges in a finite number of
iterations to a stationary point of (8) or every limit of

�
wk

(at least one such point exists) is a stationary point of (8).

Proof: Note that the surrogate problem in Algorithm 3
only approximates the objective of problem (8) but leave the
constraints untouched, and: 1) W is a compact and convex set;
2) f (w) is continuously differentiable and coercive on W;
3) Ofw is Lipschitz continuous on W (provided by Lemma
2); 4) f̃

�
w,wk

�
is strongly convex on w; 5) Owf

�
wk

�
=

f̃
�
wk,wk

�
; 6) f̃

�
w,wk

�
is continuous in both w and wk.

Thus, [8, Assumption 1-3 and 5] are satisfied, and the proof
of Proposition 7 follows directly from [8, condition (b) in
Theorem 2].

Proposition 8. Suppose �k 2 (0, 1], �k ! 0 and
P

k �
k =

+1, and let
�
wk

be the sequence generated by Algorithm

5 or 4. Then
�
wk

is a generalized stationary point of the

problem (27).

Proof: The only difference between Algorithm 4 and
Algorithm 5 is that Algorithm 5 constructs the quadratic
approximation for the nonconvex constraints while the Al-
gorithm 4 simply linearize all the constraints. However, it
does not affect the convergence checking as they are both
convex approximation for the constraints. Besides, it is easy
to check that all the conditions in Lemma ?? are satisfied

Figure 3: Illustration of approximating functions.

function [18]. Therefore, in this section, we propose the Q-
MVSK algorithm to solve the problem (10) via a strongly
convex approximation (need not be a global upper bound) for
the objective. More specifically, we still leave the convex part
fcvx (w) untouched but construct a second-order approxima-
tion for fncvx (w) as

f̃ncvx
(
w,wk

)

= fncvx
(
wk
)

+ Ofncvx
(
wk
)T (

w −wk
)

+
1

2

(
w −wk

)T
Hk

ncvx

(
w −wk

)
+
τw
2
‖w −wk‖22,

(25)
where Hk

ncvx is an approximation of O2fncvx
(
wk
)

with
O2fncvx

(
wk
)

= −λ3O2φ3

(
wk
)
+λ4O2φ4

(
wk
)

from Lemma
1, and τw ≥ 0 is to preserve the strong convexity of
f̃ncvx

(
w,wk

)
. Note that τw can be set 0 to when λ2 > 0.

Hk
ncvx is a positive semidefinite matrix close to O2fncvx

(
wk
)

obtained as follows.

Lemma 5. [25] The nearest symmetric positive semidefinite
matrix in the Frobenius norm to a real symmetric real matrix
X is UDiag (d+) UT , where UDiag (d) UT is the eigenvalue
decomposition of X.

Then we have an approximating function for f (w) as
f̃
(
w,wk

)
= fcvx (w) + f̃ncvx

(
w,wk

)
. In Figure 3, the three

approximating functions are illustrated by being restricted to
a line on W . We can see that f̃

(
w,wk

)
can best describe

the global behaviour of f (w). At each iteration of the MM
algorithm, we need solve the following surrogate problem:

minimize
w

wT Q̃kw + wT q̃k

subject to w ∈ W,
(26)

where Q̃k = λ2Σ + 1
2Hk

ncvx + τw
2 I and q̃k = −λ1µ +

Ofncvx
(
wk
)
−Hk

ncvxw
k − τwwk. It is a strongly convex QP

problem and can be very efficiently solved by a QP solver. The
complete Q-MVSK algorithm for solving the problem (10) is
given in Algorithm 3.

Algorithm 3 Q-MVSK algorithm for problem (10).

1: Initialize w0 ∈ W and pick a sequence
{
γk
}

.
2: for k = 0, 1, 2, . . . do
3: Calculate Ofncvx

(
wk
)
, Hk

ncvx.
4: Solve the problem (26) to obtain ŵk+1.
5: wk+1 = wk + γk

(
ŵk+1 −wk

)
.

6: Terminate loop if converges.
7: end for

VI. SOLVING THE MVSK TILTING PORTFOLIO PROBLEM
VIA SCA

In this section, we discuss how to solve the MVSK tilting
problem (11), which we rewrite as

minimize
w,δ

− δ

subject to gi (w, δ) ≤ 0, i = 1, . . . , 5

w ∈ W, δ ≥ 0,

(27)

where

g1 (w, δ) = φ1 (w0)− φ1 (w) + d1δ,

g2 (w, δ) = φ2 (w)− φ2 (w0) + d2δ,

g3 (w, δ) = φ3 (w0)− φ3 (w) + d3δ,

g4 (w, δ) = φ4 (w)− φ4 (w0) + d4δ,

g5 (w, δ) = (w −wref)
T

Σ (w −wref)− κ2.

(28)

Note that gi (w, δ) , i = 1, 2, 5 are all convex functions, while
gi (w, δ) , i = 3, 4 are both nonconvex functions. We will
next explore several options to deal with problem (27), which
contains nonconvex constraints.

The classical way for solving such constrained problem is
the interior-point (a.k.a. barrier) method (IPM), which adds
the indicator functions for the inequality constraints to the
objective and approximates them with logarithmic barrier
functions [26]. The IPM method can be employed to the
problem (11) and transform it to

minimize
w,δ

− tδ −
5∑

i=1

log (−gi (w, δ))

subject to w ∈ W, δ ≥ 0,

(29)

where t > 0 is a parameter that sets the accuracy of the barrier
approximation. Then we could solve the problem (29) via a
general gradient descend method or SCA algorithm. However,
due to the implicit constraint gi (w, δ) ≤ 0, a line search is
compulsory at each iteration to guarantee a feasible update
of (w, δ). As we have discussed before, the computational
complexity of a single evaluation of g4 (w, δ) is O

(
N4
)
. Then

the line search is too computationally expensive to be practical
in this problem.

Another way to solve problem (27) could be by constructing
a global upper bound approximation for all the nonconvex
constraints and solve a sequence of inner convex approximat-
ing problems. Using the upper bound construction procedure

7

in Section V-B, we can easily construct an inner convex
approximating problem for problem (27) at wk as:

minimize
w,δ

− δ +
τδ
2

(δ − δk)2 +
τw
2
‖w −wk‖22

subject to gi (w, δ) ≤ 0, i = 1, 2, 5,

ǧj
(
w, δ; wk, δk

)
≤ 0, j = 3, 4,

w ∈ W, δ ≥ 0,

(30)

where ǧj
(
w, δ; wk, δk

)
is the global upper bound of gj (w, δ)

at
(
wk, δk

)
, which can be constructed as in Section V-B. The

problem (30) is a convex quadratically constrained quadratic
programing (QCQP) problem and can be solved via several
solvers. However, we can know from Figure 3 and the nu-
merical experiments in Section IX-A that such upper bound is
very loose and the convergence is slow.

Instead, we proposed constructing convex approximations
(although not upper bounds) for the nonconvex constraints in
the following.

A. Preliminary Approach: L-MVSKT Algorithm

The most classical choice, as mentioned in [19], is approx-
imating the objective function by a quadratic function while
linearizing all constraints. Therefore, we herein propose the L-
MVSKT algorithm by linearizing all the non-linear constraints
in problem (11), i.e., the surrogate problem is

minimize
w,δ

− δ +
τδ
2

(δ − δk)2 +
τw
2
‖w −wk‖22

subject to g1 (w, δ) ≤ 0

ḡj(w, δ; w
k, δk) ≤ η(wk, δk), j = 2, 3, 4, 5

w ∈ W, δ ≥ 0,
(31)

where ḡj(w, δ; wk, δk) is the linear approximation of gj (w, δ)
at
(
wk, δk

)
with

ḡj(w, δ; w
k, δk)

= g1

(
wk, δk

)
+ Owgj

(
wk, δk

)T (
w −wk

)

+ Oδgj
(
wk, δk

)T
(δ − δk), j = 2, 3, 4,

(32)

Besides, η
(
wk, δk

)
here can be computed as

η
(
wk, δk

)

, (1− θ) max
j=2,3,4,5

{
gj
(
wk, δk

)
+

}

+ θmin
w,δ

{
max

j=2,3,4,5

{
ḡj
(
w, δ; wk, δk

)
+

}∣∣ (w, δ) ∈ W̄
}
,

(33)
where W̄ is a convex set defined as

W̄ =
{

(w, δ)
∣∣w ∈ W, g1 (w, δ) ≤ 0, δ ≥ 0

}
. (34)

The second term in equation (33) is obtained as t from solving
the following problem:

minimize
w,δ,t

t

subject to ḡj
(
w, δ; wk, δk

)
≤ t, j = 2, 3, 4, 5,

(w, δ) ∈ W̄, t ≥ 0.

(35)

Algorithm 4 L-MVSKT algorithm for problem (11).

1: Initialize w0 ∈ W and pick τδ , τw and a sequence
{
γk
}

.
2: for k = 0, 1, 2, . . . do
3: Calculate Oφ3

(
wk
)
, Oφ4

(
wk
)
.

4: Solve problem (35) and compute η
(
wk, δk

)
as in (33).

5: Solve problem (31) to obtain ŵk+1.
6: wk+1 = wk + γk

(
ŵk+1 −wk

)
.

7: Terminate loop if converges.
8: end for

Problem (31) is a convex QP problem and problem (35)
is a linear programing (LP) problem. Both of them can be
very efficiently solved by a QP solver and an LP solver,
respectively. The complete L-MVSKT algorithm is given in
the Algorithm 4.

B. Q-MVSKT Algorithm

In the above section, we have proposed the L-MVSKT
algorithm for solving the MVSK tilting problem (11). How-
ever, it requires us to linearize the tractable convex quadratic
constraints and the simple linearization is rarely regarded as a
proper approximation for nonconvex constraints. In Section
V-C, we have proposed a quadratic approximation for the
third and fourth central moments. It shows great advantages
from the numerical experiments presented in Section IX-A.
Therefore, similar to Section V-C, we can construct a quadratic
approximation for the nonconvex constraints in problem (11)
while not approximating the already convex constraints, i.e.,

minimize
w,δ

− δ +
τδ
2

(δ − δk)2 +
τw
2
‖w −wk‖22

subject to gi (w, δ) ≤ 0, i = 1, 2, 5,

g̃j
(
w, δ; wk, δk

)
≤ η

(
wk, δk

)
, j = 3, 4,

w ∈ W, δ ≥ 0,

(36)

where g̃j
(
w, δ; wk, δk

)
is the quadratic approximating func-

tion of gj (w, δ) at
(
wk, δk

)
:

g̃3(w, δ; wk, δk)

= φ3 (w0)− φ3(wk) + d3δ − Oφ3(wk)T (w −wk)

+
1

2
(w −wk)THk

Φ(w −wk),

g̃4(w, δ; wk, δk)

= φ4

(
wk
)
− φ4 (w0) + d4δ + Oφ4(wk)T (w −wk)

+
1

2
(w −wk)THk

Ψ(w −wk),

(37)

with Hk
Φ and Hk

Ψ being the PSD approximating matrixes for
−O2φ3

(
wk
)

and O2φ4

(
wk
)
. η
(
wk, δk

)
can be computed

from

η
(
wk, δk

)

, (1− θ) max
j=3,4

{
gj
(
wk, δk

)
+

}

+ θmin
w,δ

{
max
j=3,4

{
g̃j
(
w, δ; wk, δk

)
+

}∣∣ (w, δ) ∈ W̃
}
,

(38)

8

Algorithm 5 Q-MVSKT algorithm for problem (11).

1: Initialize w0 ∈ W and pick τδ , τw and a sequence
{
γk
}

.
2: for k = 0, 1, 2, . . . do
3: Calculate Oφ3

(
wk
)
, Oφ4

(
wk
)
, Hk

Φ, and Hk
Ψ.

4: Solve problem (40) and compute η
(
wk, δk

)
as in (38).

5: Solve problem (36) to obtain ŵk+1.
6: wk+1 = wk + γk

(
ŵk+1 −wk

)
.

7: Terminate loop if converges.
8: end for

where W̃ is a convex set defined as

W̃ =
{

(w, δ)
∣∣w ∈ W, δ ≥ 0, gi (w, δ) ≤ 0, i = 1, 2, 5

}

(39)
The second term in equation (38) is obtained as t from solving
the following problem:

minimize
w,δ,t

t

subject to g̃3

(
w, δ; wk, δk

)
≤ t,

g̃4

(
w, δ; wk, δk

)
≤ t,

(w, δ) ∈ W̃, t ≥ 0.

(40)

Problems (36) and (40) are both convex QCQP problems and
can be efficiently solved by the corresponding solvers. We call
it the Q-MVSKT algorithm and give the complete description
in Algorithm 5.

VII. COMPLEXITY AND CONVERGENCE ANALYSIS

A. Complexity Analysis

First of all, it should be noted that the memory complexity
for solving the high-order portfolio optimization problem is
O
(
N4
)

as the kurtosis matrix Ψ is of dimension N × N3.
For example, when N = 200, storing a complete Ψ takes
almost 12GB memory size. Thus it is impractical to solve
a very large-scale high-order portfolio optimization problem
due to the memory restriction. All the algorithms investigated
or proposed in this paper are iterative methods. Therefore,
we discuss the computational complexity of constructing the
surrogate problems in each iteration, while the computational
complexity of solving them depends on the specific solvers.

1) On Solving The MVSK Portfolio Problem (10): For
Algorithm 1 and 2, the per-iteration computational cost of
constructing the surrogate problems comes mainly from com-
puting the gradients, which is O

(
N4
)
. For Algorithm 3, it is

mainly from computing the gradient Ofncvx
(
wk
)

and Hessian
O2fncvx

(
wk
)
, which in principle are O

(
N4
)

and O
(
N5
)
, re-

spectively. However, we can simplify the computation by first
computing O2fncvx

(
wk
)

= −λ3O2φ3

(
wk
)

+ λ4O2φ4

(
wk
)

as

O2φ3 (w) = 6Φ (I⊗w) = 6
[
Φ(1)w · · · Φ(N)w

]
, (41)

O2φ4 (w) = 12Ψ (I⊗w ⊗w)

= 12
[
Ψ(1) (w ⊗w) · · · Ψ(N) (w ⊗w)

]
,

(42)

where Φ(i) is the i-th block matrix of dimension N × N in
Φ and Ψ(i) is the i-th block matrix of dimension N × N2

in Ψ. Then the computational complexity of computing
O2fncvx

(
wk
)

is reduced to O
(
N4
)
. With the usage of Corol-

lary 2, Ofncvx
(
wk
)

can be easily computed as

Ofncvx
(
wk
)

= −λ3

2
O2φ3

(
wk
)
wk +

λ4

3
O2φ4

(
wk
)
wk.

(43)
Then the overall computational complexity of Ofncvx

(
wk
)

and O2fncvx
(
wk
)

is still O
(
N4
)
. Therefore, the per-iteration

computational cost of constructing the surrogate problems for
Algorithms 1, 2, and 3 are O

(
N4
)
.

2) On Solving The MVSK Tilting Portfolio Problem (11):
The per-iteration computational cost of constructing the surro-
gate problems in Algorithm 4 comes mainly from computing
the gradients, while that in Algorithm 5 from computing both
the gradients and Hessian. Similar to the above analysis, the
latter can be simplified so that both algorithms admit the
O
(
N4
)

complexity on constructing the surrogate problems
at each iteration.

B. Convergence Analysis
The convergence properties for the proposed algorithms are

given in the following.

Proposition 6. Every limit point of the solution sequence{
wk
}

generated by the Algorithm 2 is a stationary point of
problem (10).

Proof: Note that: 1) f̌
(
w,wk

)
is continuous in both w

and wk; 2) f̌
(
w,wk

)
is a global upper bound function for

f (w) and is tangent to it at wk. Thus, [23, Assumption 1] is
satisfied, and the proof of Proposition 6 follows directly from
[23, Theorem 1].

Proposition 7. Suppose γk ∈ (0, 1], γk → 0 and
∑
k γ

k =
+∞, and let

{
wk
}

be the sequence generated by Algorithm
3. Then either Algorithm 3 converges in a finite number of
iterations to a stationary point of (10) or every limit of

{
wk
}

(at least one such point exists) is a stationary point of (10).

Proof: Note that the surrogate problem in Algorithm
3 only approximates the objective of problem (10) with a
quadratic one but leave the constraints untouched, and: 1) W
is a compact and convex set; 2) f (w) is continuously differen-
tiable and coercive on W; 3) Ofw is Lipschitz continuous on
W (provided by Lemma 4). Thus, [22, Assumptions A1-A4]
are satisfied, and the proof of Proposition 7 follows directly
from [22, Theorem 3].

Proposition 8. Suppose γk ∈ (0, 1], γk → 0 and
∑
k γ

k =
+∞, and let

{
wk
}

be the sequence generated by Algorithm 4
or Algorithm 5. Then

{
wk
}

is a generalized stationary point
of the problem (27).

Proof: The only difference between Algorithm 4 and
Algorithm 5 is that Algorithm 5 constructs the quadratic
approximation for the nonconvex constraints while the Algo-
rithm 4 simply linearize all the constraints. However, it does

9

not affect the convergence checking as they are both convex
approximation for the constraints. Besides, it is easy to check
that all the conditions in Assumption 1 are satisfied in both
algorithms. Then the proof of Proposition 8 follows directly
from [19].

VIII. SOLVING OTHER HIGH-ORDER PORTFOLIO
PROBLEMS

The algorithm framework proposed in this paper can be
easily employed to solve other high-order portfolio problems.

A. MVSK Tilting Portfolio with General Deterioration Mea-
sures

As in [12], the MVSK tilting portfolio problem with general
difference constraint to the reference portfolio is given as
follows:

minimize
w,δ

− δ

subject to gref (w) ≤ κ,
gi (w, δ) ≤ 0, i = 1, . . . , 4,

w ∈ W, δ ≥ 0,

(44)

where gref (w) is a measure of how distant the current portfolio
is from the reference one and κ determines the maximum
distance. For examples, gref (w) may be chosen as the risk
concentration [27]:

gref (w) =

N∑

i=1

(
wi (Σw)i
wTΣw

− 1

N

)2

. (45)

The regularized MVSK tilting portfolio problem is obtained by
transforming the general distance constraint of problem (44)
to a regularization term in the objective:

minimize
w,δ

− δ + λgref (w)

subject to gi (w, δ) ≤ 0, i = 1, . . . , 4,

w ∈ W, δ ≥ 0.

(46)

Obviously, problems 44 and 46 are both solvable via the pro-
posed algorithm framework in Section VI. The only difference
is that here we also need to construct the convex approximating
function for gref (w) if it is nonconvex. The procedure is trivial
and hence omitted.

B. General Minkovski Distance MVST Portfolio
The general Minkovski distance MVST portfolio [28] ad-

mits the formulation

minimize
w,d

z (d) =

(
4∑

k=1

∣∣∣∣
dk
zk

∣∣∣∣
p
)1/p

subject to yi (w,d) ≤ 0, i = 1, . . . , 4,

w ∈ W,d ≥ 0.

(47)

where zk is the aspired levels for k-th moments and

y1 (w,d) = −φ1 (w)− d1 + z1,

y2 (w,d) = φ2 (w)− d2 − z2,

y3 (w,d) = −φ3 (w)− d3 + z3,

y4 (w,d) = φ4 (w)− d4 − z4.

(48)

It is easy to write a sequence of convex approximating
surrogate problem as

minimize
w,d

Oz(dk)T (d− dk) +
τd
2
‖d− dk‖22

+
τw
2
‖w −wk‖22

subject to ỹi
(
w,d; wk,dk

)
≤ η(wk,dk), i = 1, . . . , 4,

w ∈ W,d ≥ 0.

where ỹi
(
w,d; wk,dk

)
is the convex approximation of

yj (w,d) at
(
wk,dk

)
, which can be easily constructed fol-

lowing the similar procedures in Section VI.

C. Polynomial Goal Programming MVST Portfolio

The polynomial goal programming (PGP) model for solving
the high-order portfolio [29], [30] is a variation of the general
Minkovski distance MVST portfolio taking investors’ relative
preference into consideration. It is formulated as

minimize
w,d

z (d) =

∣∣∣∣
d1

z1

∣∣∣∣
λ1

+

∣∣∣∣
d2

z2

∣∣∣∣
λ2

+

∣∣∣∣
d3

z3

∣∣∣∣
λ3

+

∣∣∣∣
d4

z4

∣∣∣∣
λ4

subject to yi (w,d) ≤ 0, i = 1, . . . , 4,

w ∈ W,d ≥ 0.
(49)

This problem can still be easily handled via the similar
procedure in solving the general Minkovski distance MVST
portfolio.

IX. NUMERICAL EXPERIMENTS

In this section, we perform the numerical experiments on
our proposed algorithms 1. The data is generated according to
the following steps:

1) randomly select N stocks from a dataset of 500 stocks,
each of them listed in the S&P 500 Index components;

2) randomly pick 5N continuous trading days from 2004-
01-01 to 2018-12-31;

3) compute four sample moments of the selected N stocks
during the picked trading period.

The starting point are selected as w0 = 1
N 1 for all methods.

Without loss of generality, we simply set L = 1, θ = 1
2 , and

choose the diminishing step size sequence as:

γ0 = 1, γk = γk−1
(
1− 10−2γk

)
. (50)

The inner solvers for QP, LP, and QCQP are selected as
quadprog [31], lpSolveAPI [32], and ECOS [33], [34], respec-
tively. The algorithm is regarded as converged when any of the
following condition is satisfied:

|xk+1 − xk| ≤ 10−6
(
|xk+1|+ |xk|

)
,

|f(xk+1)− f(xk)| ≤ 10−6
(
|f(xk+1)|+ |f(xk)|

)
.

(51)

1We have released an R package highOrderPortfolios implementing our
proposed algorithms at https://github.com/dppalomar/highOrderPortfolios.

https://github.com/dppalomar/highOrderPortfolios

10

A. On the MVSK Portfolio Problem (10)

We first set N = 100 and then solve the problem (10)
using the DC-based Algorithm 1, our proposed MM-based
Algorithm 2, and the Q-MVSK Algorithm 3. The weights
for four moments are decided according to the fourth order
expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

λ1 = 1, λ2 =
ξ

2
,

λ3 =
ξ (ξ + 1)

6
, λ4 =

ξ (ξ + 1) (ξ + 2)

24
,

(52)

where ξ ≥ 0 is the risk aversion parameter [9] and set to
be 10 in our experiments. For comparison, we also solve the
problem using the general optimization tool nloptr [35] with
gradients passed. In Figure 4, we compare the convergence
of these algorithms. Significantly, the Q-MVSK algorithm can
converge to the best result in very few iterations, which is
much more efficient than the solver nloptr. The DC-based and
MM-based algorithms are both slower than the general solver
nloptr. It implies that they may use very loose upper bounds.
The MM-based algorithm, though much faster than the DC-
based algorithm, is far from being comparable with the Q-
MVSK algorithm.

In Figure 5, we show the comparison of time consumption
of the proposed Q-MVSK algorithm and nloptr while chang-
ing the problem dimension N . The DC-based and the MM-
based algorithms are not included as they are too slow to be
compared with the proposed Q-MVSK algorithm and nloptr.
For fair comparison, we force nloptr to run until it reaches
the objective obtained from Q-MVSK algorithm. The result is
obtained by performing the experiments on 100 realizations
of randomly generated data. We can see that our proposed
Q-MVSK algorithm is consistently more than one order of
magnitude faster than the nloptr.

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then
solve the problem (11) via the proposed Algorithms 4 and
5, respectively. The reference portfolio is simply chosen as
the equally weighted portfolio, i.e.,

w0 =
1

N
1. (53)

The tilting direction d is decided as di = |φi(w0)|. We
choose κ in (11) as κ = c ×

√
φ2(w0) with c ≥ 0. The

general solver nloptr is also included for comparison 2. We
find that, although the final convergence is guaranteed, the fast
convergence of the proposed L-MVSKT algorithm really relies
on the proper choice of τw and τδ , while that of our proposed
Q-MVSKT is much robust. For example, in Figure 6, we set
κ = 0.3

√
φ2(w0) and show the convergence of the proposed

algorithms. It is significant that the Q-MVSKT algorithm
converges in few iterations simply with τw = τδ = 10−5.
The L-MVSKT algorithm can also converge with comparable

2We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.

DC MM Q−MVSK nloptr

−0.00150

−0.00125

−0.00100

−0.00075

O
b
je

c
ti
ve

10
−10

10
−8

10
−6

10
−4

0 2 4 6 8
CPU time (seconds)

O
p
ti
m

a
lit

y
 G

a
p

Figure 4: The convergence of algorithms on solving MVSK
problem (10) with N = 100.

10ï2

10ï1

100

101

102

40 60 80 100 120 140 160 180 200
N

C
PU

 ti
m

e
(s

ec
on

ds
)

nloptr
QïMVSK (prop.)

11

0.0

0.1

0.2

0.3

0 1 2 3 4
CPU time (seconds)

O
bj

ec
tiv

e

LïMVSKT (prop.) ï tw = 40, td = 6
LïMVSKT (prop.) ï tw = 20, td = 6
LïMVSKT (prop.) ï tw = 10, td = 6
QïMVSKT (prop.) ï tw = td = 106 aaaaa
nloptr

10

DC MM Q−MVSK nloptr

−0.00150

−0.00125

−0.00100

−0.00075

O
b
je

ct
iv

e

10−10

10−8

10−6

10−4

0 2 4 6 8
CPU time (seconds)

O
p
tim

a
lit

y
G

a
p

Figure 4: The convergence of algorithms on solving problem
(10) with N = 100.

expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

�1 = 1, �2 =
⇠

2
,

�3 =
⇠ (⇠ + 1)

6
, �4 =

⇠ (⇠ + 1) (⇠ + 2)

24
,

(52)

where ⇠ � 0 is the risk aversion parameter [9] and set to
be 10 in our experiments. For comparison, we also solve the
problem using the general optimization tool nloptr [28] with
gradients passed. In Figure 4, we compare the convergence
of these algorithms. Significantly, the Q-MVSK algorithm can
converge to the best result in very few iterations, which is
much more efficient than the solver nloptr. The DC-based and
MM-based algorithms are both slower than the general solver
nloptr. It implies that they may use very loose upper bounds.
The MM-based algorithm, though much faster than the DC-
based algorithm, is far from being comparable with the Q-
MVSK algorithm.

In Figure 5, we show the comparison of time consump-
tion of the proposed Q-MVSK algorithm and nloptr while
changing the problem dimension N . For fair comparison, we
force nloptr to run until it reaches the objective obtained from
Q-MVSK algorithm. The result is obtained by performing
the experiments on 100 realizations of randomly generated
data. We can see that our proposed Q-MVSK algorithm is
consistently more than one order of magnitude faster than the
nloptr.

10−2

10−1

100

101

40 60 80 100 120 140

N

C
P

U
 t
im

e
 (

se
co

n
d
s)

nloptr

Q−MVSK (prop.)

Figure 5: Time usage of algorithms on solving problem (10).

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then
solve the problem (11) via the proposed Algorithms 4 and
5, respectively. The reference portfolio is simply chosen as
the equally weighted portfolio, i.e.,

w0 =
1

N
1. (53)

The tilting direction is decided as:

(d1, d2, d3, d4)

= (|�1 (w0) |, |�2 (w0) |, |�3 (w0) |, |�4 (w0) |) .
(54)

We choose  in the form of  = c ⇥
p

�2(w0) with c � 0.
The general solver nloptr is also included for comparison
1. During the experiments, we find that the choice of ⌧w
and ⌧� may affect the convergence speed of our proposed
algorithms, especially the L-MVSKT algorithm. In Figure 6,
we set  = 0.3

p
�2(w0) and show the convergence of the

proposed algorithms. For the Q-MVSKT algorithm, we
⌧w = 40, ⌧� = 6
⌧w = 20, ⌧� = 6
⌧w = 10, ⌧� = 6
⌧w = ⌧� = 10�5

We simply set ⌧w = ⌧� = 10�5 for the Q-MVSKT
algorithm and it can converge very well. But for the L-MVSKT
algorithm, we need to properly tune the parameters or it may
converge slowly. For example, we set  = 0.3

p
�2(w0) and

show the convergence of the proposed algorithms in Figure
6. The two of our proposed algorithms, i.e., Q-MVSKT and
L-MVSKT, are both very efficient when compared with the
nloptr. In Figure 7, we show the final results of these algo-
rithms when changing the maximum tracking error volatility
constraints. It is clear that all algorithms can give the same
results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consumption
of the proposed Q-MVSKT algorithm, L-MVSKT algorithm,
and nloptr while changing the problem dimension N . The
result is obtained by performing the experiments on 100 real-
izations of randomly generated data. It is significant that the

1We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.

Figure 6: Convergence of proposed algorithms with N = 100
and  = 0.3

p
�2(w0).

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6

c

O
b
je

ct
iv

e

nloptr

L−MVSKT (prop.)

Q−MVSKT (prop.)

Figure 7: Comparison of the results with different  ( =
c⇥

p
�2(w0)).

approximates all constraints by linear functions, making the
solution to approximating problems easily violates the original
constraints. However, the Q-MVSKT algorithm reserves the
convex constraints and approximate the nonconvex constraints
by convex quadratic functions, which turns out to work very
well. Besides, we notice that solving the QCQP problem is
significantly slower than solving the QP problem of the same
size. It might be because we are using the R interface to a
more general second-order cone programming (SOCP) solver,
i.e., ECOS [34]. In Figure 7, we show the final results of
these algorithms when changing the maximum tracking error
volatility constraints. It is clear that all algorithms can give
the same results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consump-
tion of the proposed Q-MVSKT algorithm and nloptr while
changing the problem dimension N . The result is obtained by
performing the experiments on 100 realizations of randomly
generated data. It is significant that the proposed Q-MVSKT
consistently outperform the L-MVSKT algorithm and is about

10−1

100

101

102

40 60 80 100 120 140 160 180 200

N

C
P

U
 t
im

e
 (

se
co

n
d
s)

nloptr

Q−MVSKT (prop.)

Figure 8: Time usage of algorithms on solving problem (11).

one order of magnitude faster than the nloptr.

X. CONCLUSION

In this paper, we have considered the high-order moments of
the portfolio return for high-order portfolio optimization. We
have proposed an efficient algorithm framework for solving
the high-order portfolio optimization problems based on the
successive convex approximation framework. In particular,
we have proposed efficient algorithms for solving the mean-
variance-skewness-kurtosis portfolio optimization problem and
the mean-variance-skewness-kurtosis tilting portfolio opti-
mization problem. Theoretically, all the proposed algorithms
enjoy global convergence to a stationary point. Extensive
numerical experiments show that our proposed framework is
much more efficient than the existing method and the general
solver.

APPENDIX

A. Proof for Lemma 1

According to the Leibniz integral rule [36], we have

O�3 (w) =
@E
⇥
wT r̃r̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃wT r̃r̃T w

�

@w

#

= E
⇥
3r̃
�
r̃T ⌦ r̃T

�
(w ⌦w)

⇤

= 3E
⇥
r̃
�
r̃T ⌦ r̃T

�⇤
(w ⌦w)

= 3� (w ⌦w) ,

(54)

O�4 (w) =
@E
⇥
wT r̃r̃T wr̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃r̃T wr̃T wr̃T w

�

@w

#

= E
⇥
4r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�
(w ⌦w ⌦w)

⇤

= 4E
⇥
r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�⇤
(w ⌦w ⌦w)

= 4 (w ⌦w ⌦w) ,

(55)

11

0.0

0.1

0.2

0.3

0 1 2 3 4
CPU time (seconds)

O
bj

ec
tiv

e

LïMVSKT (prop.) ï tw = 40, td = 6
LïMVSKT (prop.) ï tw = 20, td = 6
LïMVSKT (prop.) ï tw = 10, td = 6
QïMVSKT (prop.) ï tw = td = 106 aaaaa
nloptr

10

DC MM Q−MVSK nloptr

−0.00150

−0.00125

−0.00100

−0.00075

O
b

je
ct

iv
e

10−10

10−8

10−6

10−4

0 2 4 6 8
CPU time (seconds)

O
p

tim
a

lit
y

G
a

p

Figure 4: The convergence of algorithms on solving problem
(10) with N = 100.

expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

�1 = 1, �2 =
⇠

2
,

�3 =
⇠ (⇠ + 1)

6
, �4 =

⇠ (⇠ + 1) (⇠ + 2)

24
,

(52)

where ⇠ � 0 is the risk aversion parameter [9] and set to
be 10 in our experiments. For comparison, we also solve the
problem using the general optimization tool nloptr [28] with
gradients passed. In Figure 4, we compare the convergence
of these algorithms. Significantly, the Q-MVSK algorithm can
converge to the best result in very few iterations, which is
much more efficient than the solver nloptr. The DC-based and
MM-based algorithms are both slower than the general solver
nloptr. It implies that they may use very loose upper bounds.
The MM-based algorithm, though much faster than the DC-
based algorithm, is far from being comparable with the Q-
MVSK algorithm.

In Figure 5, we show the comparison of time consump-
tion of the proposed Q-MVSK algorithm and nloptr while
changing the problem dimension N . For fair comparison, we
force nloptr to run until it reaches the objective obtained from
Q-MVSK algorithm. The result is obtained by performing
the experiments on 100 realizations of randomly generated
data. We can see that our proposed Q-MVSK algorithm is
consistently more than one order of magnitude faster than the
nloptr.

10−2

10−1

100

101

40 60 80 100 120 140

N

C
P

U
 t

im
e

 (
se

co
n

d
s)

nloptr

Q−MVSK (prop.)

Figure 5: Time usage of algorithms on solving problem (10).

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then
solve the problem (11) via the proposed Algorithms 4 and
5, respectively. The reference portfolio is simply chosen as
the equally weighted portfolio, i.e.,

w0 =
1

N
1. (53)

The tilting direction is decided as:

(d1, d2, d3, d4)

= (|�1 (w0) |, |�2 (w0) |, |�3 (w0) |, |�4 (w0) |) .
(54)

We choose  in the form of  = c ⇥
p
�2(w0) with c � 0.

The general solver nloptr is also included for comparison
1. During the experiments, we find that the choice of ⌧w
and ⌧� may affect the convergence speed of our proposed
algorithms, especially the L-MVSKT algorithm. In Figure 6,
we set  = 0.3

p
�2(w0) and show the convergence of the

proposed algorithms. For the Q-MVSKT algorithm, we
⌧w = 40, ⌧� = 6
⌧w = 20, ⌧� = 6
⌧w = 10, ⌧� = 6
⌧w = ⌧� = 10�5

We simply set ⌧w = ⌧� = 10�5 for the Q-MVSKT
algorithm and it can converge very well. But for the L-MVSKT
algorithm, we need to properly tune the parameters or it may
converge slowly. For example, we set  = 0.3

p
�2(w0) and

show the convergence of the proposed algorithms in Figure
6. The two of our proposed algorithms, i.e., Q-MVSKT and
L-MVSKT, are both very efficient when compared with the
nloptr. In Figure 7, we show the final results of these algo-
rithms when changing the maximum tracking error volatility
constraints. It is clear that all algorithms can give the same
results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consumption
of the proposed Q-MVSKT algorithm, L-MVSKT algorithm,
and nloptr while changing the problem dimension N . The
result is obtained by performing the experiments on 100 real-
izations of randomly generated data. It is significant that the

1We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.

Figure 6: Convergence of proposed algorithms with N = 100
and  = 0.3

p
�2(w0).

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6

c

O
b

je
ct

iv
e

nloptr

L−MVSKT (prop.)

Q−MVSKT (prop.)

Figure 7: Comparison of the results with different  ( =
c⇥

p
�2(w0)).

approximates all constraints by linear functions, making the
solution to approximating problems easily violates the original
constraints. However, the Q-MVSKT algorithm reserves the
convex constraints and approximate the nonconvex constraints
by convex quadratic functions, which turns out to work very
well. Besides, we notice that solving the QCQP problem is
significantly slower than solving the QP problem of the same
size. It might be because we are using the R interface to a
more general second-order cone programming (SOCP) solver,
i.e., ECOS [34]. In Figure 7, we show the final results of
these algorithms when changing the maximum tracking error
volatility constraints. It is clear that all algorithms can give
the same results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consump-
tion of the proposed Q-MVSKT algorithm and nloptr while
changing the problem dimension N . The result is obtained by
performing the experiments on 100 realizations of randomly
generated data. It is significant that the proposed Q-MVSKT
consistently outperform the L-MVSKT algorithm and is about

10−1

100

101

102

40 60 80 100 120 140 160 180 200

N

C
P

U
 t
im

e
 (

se
co

n
d
s)

nloptr

Q−MVSKT (prop.)

Figure 8: Time usage of algorithms on solving problem (11).

one order of magnitude faster than the nloptr.

X. CONCLUSION

In this paper, we have considered the high-order moments of
the portfolio return for high-order portfolio optimization. We
have proposed an efficient algorithm framework for solving
the high-order portfolio optimization problems based on the
successive convex approximation framework. In particular,
we have proposed efficient algorithms for solving the mean-
variance-skewness-kurtosis portfolio optimization problem and
the mean-variance-skewness-kurtosis tilting portfolio opti-
mization problem. Theoretically, all the proposed algorithms
enjoy global convergence to a stationary point. Extensive
numerical experiments show that our proposed framework is
much more efficient than the existing method and the general
solver.

APPENDIX

A. Proof for Lemma 1

According to the Leibniz integral rule [36], we have

O�3 (w) =
@E
⇥
wT r̃r̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃wT r̃r̃T w

�

@w

#

= E
⇥
3r̃
�
r̃T ⌦ r̃T

�
(w ⌦w)

⇤

= 3E
⇥
r̃
�
r̃T ⌦ r̃T

�⇤
(w ⌦w)

= 3� (w ⌦w) ,

(54)

O�4 (w) =
@E
⇥
wT r̃r̃T wr̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃r̃T wr̃T wr̃T w

�

@w

#

= E
⇥
4r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�
(w ⌦w ⌦w)

⇤

= 4E
⇥
r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�⇤
(w ⌦w ⌦w)

= 4 (w ⌦w ⌦w) ,

(55)

Figure 5: Time usage of algorithms on solving MVSK problem
(10).

https://github.com/cdries/mvskPortfolios

11

0.0

0.1

0.2

0.3

0 1 2 3 4
CPU time (seconds)

O
bj

ec
tiv

e

LïMVSKT (prop.) ï tw = 40, td = 6
LïMVSKT (prop.) ï tw = 20, td = 6
LïMVSKT (prop.) ï tw = 10, td = 6
QïMVSKT (prop.) ï tw = td = 106 aaaaa
nloptr

10

DC MM Q−MVSK nloptr

−0.00150

−0.00125

−0.00100

−0.00075

O
b

je
ct

iv
e

10−10

10−8

10−6

10−4

0 2 4 6 8
CPU time (seconds)

O
p

tim
a

lit
y

G
a

p

Figure 4: The convergence of algorithms on solving problem
(10) with N = 100.

expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

�1 = 1, �2 =
⇠

2
,

�3 =
⇠ (⇠ + 1)

6
, �4 =

⇠ (⇠ + 1) (⇠ + 2)

24
,

(52)

where ⇠ � 0 is the risk aversion parameter [9] and set to
be 10 in our experiments. For comparison, we also solve the
problem using the general optimization tool nloptr [28] with
gradients passed. In Figure 4, we compare the convergence
of these algorithms. Significantly, the Q-MVSK algorithm can
converge to the best result in very few iterations, which is
much more efficient than the solver nloptr. The DC-based and
MM-based algorithms are both slower than the general solver
nloptr. It implies that they may use very loose upper bounds.
The MM-based algorithm, though much faster than the DC-
based algorithm, is far from being comparable with the Q-
MVSK algorithm.

In Figure 5, we show the comparison of time consump-
tion of the proposed Q-MVSK algorithm and nloptr while
changing the problem dimension N . For fair comparison, we
force nloptr to run until it reaches the objective obtained from
Q-MVSK algorithm. The result is obtained by performing
the experiments on 100 realizations of randomly generated
data. We can see that our proposed Q-MVSK algorithm is
consistently more than one order of magnitude faster than the
nloptr.

10−2

10−1

100

101

40 60 80 100 120 140

N

C
P

U
 t

im
e

 (
se

co
n

d
s)

nloptr

Q−MVSK (prop.)

Figure 5: Time usage of algorithms on solving problem (10).

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then
solve the problem (11) via the proposed Algorithms 4 and
5, respectively. The reference portfolio is simply chosen as
the equally weighted portfolio, i.e.,

w0 =
1

N
1. (53)

The tilting direction is decided as:

(d1, d2, d3, d4)

= (|�1 (w0) |, |�2 (w0) |, |�3 (w0) |, |�4 (w0) |) .
(54)

We choose  in the form of  = c ⇥
p
�2(w0) with c � 0.

The general solver nloptr is also included for comparison
1. During the experiments, we find that the choice of ⌧w
and ⌧� may affect the convergence speed of our proposed
algorithms, especially the L-MVSKT algorithm. In Figure 6,
we set  = 0.3

p
�2(w0) and show the convergence of the

proposed algorithms. For the Q-MVSKT algorithm, we
⌧w = 40, ⌧� = 6
⌧w = 20, ⌧� = 6
⌧w = 10, ⌧� = 6
⌧w = ⌧� = 10�5

We simply set ⌧w = ⌧� = 10�5 for the Q-MVSKT
algorithm and it can converge very well. But for the L-MVSKT
algorithm, we need to properly tune the parameters or it may
converge slowly. For example, we set  = 0.3

p
�2(w0) and

show the convergence of the proposed algorithms in Figure
6. The two of our proposed algorithms, i.e., Q-MVSKT and
L-MVSKT, are both very efficient when compared with the
nloptr. In Figure 7, we show the final results of these algo-
rithms when changing the maximum tracking error volatility
constraints. It is clear that all algorithms can give the same
results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consumption
of the proposed Q-MVSKT algorithm, L-MVSKT algorithm,
and nloptr while changing the problem dimension N . The
result is obtained by performing the experiments on 100 real-
izations of randomly generated data. It is significant that the

1We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.

Figure 6: Convergence of proposed algorithms for MVSK
tilting problem (11) with N = 100 and κ = 0.3

√
φ2(w0).

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6

c

O
b

je
c
ti
ve

nloptr

L−MVSKT (prop.)

Q−MVSKT (prop.)

Figure 7: Comparison of the results with different κ (κ =
c×

√
φ2(w0)).

speed when parameters are properly tuned. It may be explained
as that the L-MVSKT algorithm poorly approximates all con-
straints by linear functions, making the solution to approximat-
ing problems easily violates the original constraints. However,
the Q-MVSKT algorithm preserves the convex constraints and
approximates the nonconvex constraints by convex quadratic
functions, which turns out to work very well. Besides, we
notice that solving the QCQP problem is significantly slower
than solving the QP problem of the same size. It might be
because we are using the R interface to a more general second-
order cone programming (SOCP) solver, i.e., ECOS [34].
In Figure 7, we show the final results of these algorithms
when changing the maximum tracking error constraint. It is
clear that all algorithms can give the same results, which are
nondecreasing when κ increases.

In Figure 8, we show the comparison of time consump-
tion of the proposed Q-MVSKT algorithm and nloptr while
changing the problem dimension N . The proposed L-MVSKT
algorithm is not included as its convergence speed relies heav-

10ï1

100

101

102

40 60 80 100 120 140 160 180 200
N

C
PU

 ti
m

e
(s

ec
on

ds
)

nloptr
QïMVSKT (prop.)

11

0.0

0.1

0.2

0.3

0 1 2 3 4
CPU time (seconds)

O
bj

ec
tiv

e

LïMVSKT (prop.) ï tw = 40, td = 6
LïMVSKT (prop.) ï tw = 20, td = 6
LïMVSKT (prop.) ï tw = 10, td = 6
QïMVSKT (prop.) ï tw = td = 106 aaaaa
nloptr

10

DC MM Q−MVSK nloptr

−0.00150

−0.00125

−0.00100

−0.00075

O
b
je

ct
iv

e

10−10

10−8

10−6

10−4

0 2 4 6 8
CPU time (seconds)

O
p
tim

a
lit

y
G

a
p

Figure 4: The convergence of algorithms on solving problem
(10) with N = 100.

expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

�1 = 1, �2 =
⇠

2
,

�3 =
⇠ (⇠ + 1)

6
, �4 =

⇠ (⇠ + 1) (⇠ + 2)

24
,

(52)

where ⇠ � 0 is the risk aversion parameter [9] and set to
be 10 in our experiments. For comparison, we also solve the
problem using the general optimization tool nloptr [28] with
gradients passed. In Figure 4, we compare the convergence
of these algorithms. Significantly, the Q-MVSK algorithm can
converge to the best result in very few iterations, which is
much more efficient than the solver nloptr. The DC-based and
MM-based algorithms are both slower than the general solver
nloptr. It implies that they may use very loose upper bounds.
The MM-based algorithm, though much faster than the DC-
based algorithm, is far from being comparable with the Q-
MVSK algorithm.

In Figure 5, we show the comparison of time consump-
tion of the proposed Q-MVSK algorithm and nloptr while
changing the problem dimension N . For fair comparison, we
force nloptr to run until it reaches the objective obtained from
Q-MVSK algorithm. The result is obtained by performing
the experiments on 100 realizations of randomly generated
data. We can see that our proposed Q-MVSK algorithm is
consistently more than one order of magnitude faster than the
nloptr.

10−2

10−1

100

101

40 60 80 100 120 140

N

C
P

U
 t
im

e
 (

se
co

n
d
s)

nloptr

Q−MVSK (prop.)

Figure 5: Time usage of algorithms on solving problem (10).

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then
solve the problem (11) via the proposed Algorithms 4 and
5, respectively. The reference portfolio is simply chosen as
the equally weighted portfolio, i.e.,

w0 =
1

N
1. (53)

The tilting direction is decided as:

(d1, d2, d3, d4)

= (|�1 (w0) |, |�2 (w0) |, |�3 (w0) |, |�4 (w0) |) .
(54)

We choose  in the form of  = c ⇥
p

�2(w0) with c � 0.
The general solver nloptr is also included for comparison
1. During the experiments, we find that the choice of ⌧w
and ⌧� may affect the convergence speed of our proposed
algorithms, especially the L-MVSKT algorithm. In Figure 6,
we set  = 0.3

p
�2(w0) and show the convergence of the

proposed algorithms. For the Q-MVSKT algorithm, we
⌧w = 40, ⌧� = 6
⌧w = 20, ⌧� = 6
⌧w = 10, ⌧� = 6
⌧w = ⌧� = 10�5

We simply set ⌧w = ⌧� = 10�5 for the Q-MVSKT
algorithm and it can converge very well. But for the L-MVSKT
algorithm, we need to properly tune the parameters or it may
converge slowly. For example, we set  = 0.3

p
�2(w0) and

show the convergence of the proposed algorithms in Figure
6. The two of our proposed algorithms, i.e., Q-MVSKT and
L-MVSKT, are both very efficient when compared with the
nloptr. In Figure 7, we show the final results of these algo-
rithms when changing the maximum tracking error volatility
constraints. It is clear that all algorithms can give the same
results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consumption
of the proposed Q-MVSKT algorithm, L-MVSKT algorithm,
and nloptr while changing the problem dimension N . The
result is obtained by performing the experiments on 100 real-
izations of randomly generated data. It is significant that the

1We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.

Figure 6: Convergence of proposed algorithms with N = 100
and  = 0.3

p
�2(w0).

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6

c

O
b
je

ct
iv

e

nloptr

L−MVSKT (prop.)

Q−MVSKT (prop.)

Figure 7: Comparison of the results with different  ( =
c⇥

p
�2(w0)).

approximates all constraints by linear functions, making the
solution to approximating problems easily violates the original
constraints. However, the Q-MVSKT algorithm reserves the
convex constraints and approximate the nonconvex constraints
by convex quadratic functions, which turns out to work very
well. Besides, we notice that solving the QCQP problem is
significantly slower than solving the QP problem of the same
size. It might be because we are using the R interface to a
more general second-order cone programming (SOCP) solver,
i.e., ECOS [34]. In Figure 7, we show the final results of
these algorithms when changing the maximum tracking error
volatility constraints. It is clear that all algorithms can give
the same results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consump-
tion of the proposed Q-MVSKT algorithm and nloptr while
changing the problem dimension N . The result is obtained by
performing the experiments on 100 realizations of randomly
generated data. It is significant that the proposed Q-MVSKT
consistently outperform the L-MVSKT algorithm and is about

10−1

100

101

102

40 60 80 100 120 140 160 180 200

N

C
P

U
 t
im

e
 (

se
co

n
d
s)

nloptr

Q−MVSKT (prop.)

Figure 8: Time usage of algorithms on solving problem (11).

one order of magnitude faster than the nloptr.

X. CONCLUSION

In this paper, we have considered the high-order moments of
the portfolio return for high-order portfolio optimization. We
have proposed an efficient algorithm framework for solving
the high-order portfolio optimization problems based on the
successive convex approximation framework. In particular,
we have proposed efficient algorithms for solving the mean-
variance-skewness-kurtosis portfolio optimization problem and
the mean-variance-skewness-kurtosis tilting portfolio opti-
mization problem. Theoretically, all the proposed algorithms
enjoy global convergence to a stationary point. Extensive
numerical experiments show that our proposed framework is
much more efficient than the existing method and the general
solver.

APPENDIX

A. Proof for Lemma 1

According to the Leibniz integral rule [36], we have

O�3 (w) =
@E
⇥
wT r̃r̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃wT r̃r̃T w

�

@w

#

= E
⇥
3r̃
�
r̃T ⌦ r̃T

�
(w ⌦w)

⇤

= 3E
⇥
r̃
�
r̃T ⌦ r̃T

�⇤
(w ⌦w)

= 3� (w ⌦w) ,

(54)

O�4 (w) =
@E
⇥
wT r̃r̃T wr̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃r̃T wr̃T wr̃T w

�

@w

#

= E
⇥
4r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�
(w ⌦w ⌦w)

⇤

= 4E
⇥
r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�⇤
(w ⌦w ⌦w)

= 4 (w ⌦w ⌦w) ,

(55)

11

0.0

0.1

0.2

0.3

0 1 2 3 4
CPU time (seconds)

O
bj

ec
tiv

e

LïMVSKT (prop.) ï tw = 40, td = 6
LïMVSKT (prop.) ï tw = 20, td = 6
LïMVSKT (prop.) ï tw = 10, td = 6
QïMVSKT (prop.) ï tw = td = 106 aaaaa
nloptr

10

DC MM Q−MVSK nloptr

−0.00150

−0.00125

−0.00100

−0.00075

O
b

je
ct

iv
e

10−10

10−8

10−6

10−4

0 2 4 6 8
CPU time (seconds)

O
p

tim
a

lit
y

G
a

p

Figure 4: The convergence of algorithms on solving problem
(10) with N = 100.

expansion of the Constant Relative Risk Aversion (CRRA)
utility function:

�1 = 1, �2 =
⇠

2
,

�3 =
⇠ (⇠ + 1)

6
, �4 =

⇠ (⇠ + 1) (⇠ + 2)

24
,

(52)

where ⇠ � 0 is the risk aversion parameter [9] and set to
be 10 in our experiments. For comparison, we also solve the
problem using the general optimization tool nloptr [28] with
gradients passed. In Figure 4, we compare the convergence
of these algorithms. Significantly, the Q-MVSK algorithm can
converge to the best result in very few iterations, which is
much more efficient than the solver nloptr. The DC-based and
MM-based algorithms are both slower than the general solver
nloptr. It implies that they may use very loose upper bounds.
The MM-based algorithm, though much faster than the DC-
based algorithm, is far from being comparable with the Q-
MVSK algorithm.

In Figure 5, we show the comparison of time consump-
tion of the proposed Q-MVSK algorithm and nloptr while
changing the problem dimension N . For fair comparison, we
force nloptr to run until it reaches the objective obtained from
Q-MVSK algorithm. The result is obtained by performing
the experiments on 100 realizations of randomly generated
data. We can see that our proposed Q-MVSK algorithm is
consistently more than one order of magnitude faster than the
nloptr.

10−2

10−1

100

101

40 60 80 100 120 140

N

C
P

U
 t

im
e

 (
se

co
n

d
s)

nloptr

Q−MVSK (prop.)

Figure 5: Time usage of algorithms on solving problem (10).

B. On the MVSK Tilting Portfolio Problem (11)

Similar to the above, we first set N = 100 and then
solve the problem (11) via the proposed Algorithms 4 and
5, respectively. The reference portfolio is simply chosen as
the equally weighted portfolio, i.e.,

w0 =
1

N
1. (53)

The tilting direction is decided as:

(d1, d2, d3, d4)

= (|�1 (w0) |, |�2 (w0) |, |�3 (w0) |, |�4 (w0) |) .
(54)

We choose  in the form of  = c ⇥
p
�2(w0) with c � 0.

The general solver nloptr is also included for comparison
1. During the experiments, we find that the choice of ⌧w
and ⌧� may affect the convergence speed of our proposed
algorithms, especially the L-MVSKT algorithm. In Figure 6,
we set  = 0.3

p
�2(w0) and show the convergence of the

proposed algorithms. For the Q-MVSKT algorithm, we
⌧w = 40, ⌧� = 6
⌧w = 20, ⌧� = 6
⌧w = 10, ⌧� = 6
⌧w = ⌧� = 10�5

We simply set ⌧w = ⌧� = 10�5 for the Q-MVSKT
algorithm and it can converge very well. But for the L-MVSKT
algorithm, we need to properly tune the parameters or it may
converge slowly. For example, we set  = 0.3

p
�2(w0) and

show the convergence of the proposed algorithms in Figure
6. The two of our proposed algorithms, i.e., Q-MVSKT and
L-MVSKT, are both very efficient when compared with the
nloptr. In Figure 7, we show the final results of these algo-
rithms when changing the maximum tracking error volatility
constraints. It is clear that all algorithms can give the same
results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consumption
of the proposed Q-MVSKT algorithm, L-MVSKT algorithm,
and nloptr while changing the problem dimension N . The
result is obtained by performing the experiments on 100 real-
izations of randomly generated data. It is significant that the

1We use directly the implementation from authors of [12], which is available
at https://github.com/cdries/mvskPortfolios.

Figure 6: Convergence of proposed algorithms with N = 100
and  = 0.3

p
�2(w0).

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6

c

O
b

je
ct

iv
e

nloptr

L−MVSKT (prop.)

Q−MVSKT (prop.)

Figure 7: Comparison of the results with different  ( =
c⇥

p
�2(w0)).

approximates all constraints by linear functions, making the
solution to approximating problems easily violates the original
constraints. However, the Q-MVSKT algorithm reserves the
convex constraints and approximate the nonconvex constraints
by convex quadratic functions, which turns out to work very
well. Besides, we notice that solving the QCQP problem is
significantly slower than solving the QP problem of the same
size. It might be because we are using the R interface to a
more general second-order cone programming (SOCP) solver,
i.e., ECOS [34]. In Figure 7, we show the final results of
these algorithms when changing the maximum tracking error
volatility constraints. It is clear that all algorithms can give
the same results, which are nondecreasing when  increases.

In Figure 8, we show the comparison of time consump-
tion of the proposed Q-MVSKT algorithm and nloptr while
changing the problem dimension N . The result is obtained by
performing the experiments on 100 realizations of randomly
generated data. It is significant that the proposed Q-MVSKT
consistently outperform the L-MVSKT algorithm and is about

10−1

100

101

102

40 60 80 100 120 140 160 180 200

N

C
P

U
 t
im

e
 (

se
co

n
d
s)

nloptr

Q−MVSKT (prop.)

Figure 8: Time usage of algorithms on solving problem (11).

one order of magnitude faster than the nloptr.

X. CONCLUSION

In this paper, we have considered the high-order moments of
the portfolio return for high-order portfolio optimization. We
have proposed an efficient algorithm framework for solving
the high-order portfolio optimization problems based on the
successive convex approximation framework. In particular,
we have proposed efficient algorithms for solving the mean-
variance-skewness-kurtosis portfolio optimization problem and
the mean-variance-skewness-kurtosis tilting portfolio opti-
mization problem. Theoretically, all the proposed algorithms
enjoy global convergence to a stationary point. Extensive
numerical experiments show that our proposed framework is
much more efficient than the existing method and the general
solver.

APPENDIX

A. Proof for Lemma 1

According to the Leibniz integral rule [36], we have

O�3 (w) =
@E
⇥
wT r̃r̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃wT r̃r̃T w

�

@w

#

= E
⇥
3r̃
�
r̃T ⌦ r̃T

�
(w ⌦w)

⇤

= 3E
⇥
r̃
�
r̃T ⌦ r̃T

�⇤
(w ⌦w)

= 3� (w ⌦w) ,

(54)

O�4 (w) =
@E
⇥
wT r̃r̃T wr̃T wr̃T w

⇤

@w

= E

"
@
�
wT r̃r̃T wr̃T wr̃T w

�

@w

#

= E
⇥
4r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�
(w ⌦w ⌦w)

⇤

= 4E
⇥
r̃
�
r̃T ⌦ r̃T ⌦ r̃T

�⇤
(w ⌦w ⌦w)

= 4 (w ⌦w ⌦w) ,

(55)

Figure 8: Time usage of algorithms on solving problem (11).

ily on parameter tuning. The result is obtained by performing
the experiments on 100 realizations of randomly generated
data. It is significant that the proposed Q-MVSKT consistently
outperform the L-MVSKT algorithm and is about one order
of magnitude faster than nloptr.

X. CONCLUSION

In this paper, we have considered the high-order moments of
the portfolio return for high-order portfolio optimization. We
have proposed an efficient algorithm framework for solving
the high-order portfolio optimization problems based on the
successive convex approximation framework. In particular,
we have proposed efficient algorithms for solving the mean-
variance-skewness-kurtosis portfolio optimization problem and
the mean-variance-skewness-kurtosis tilting portfolio opti-
mization problem. Theoretically, all the proposed algorithms
enjoy global convergence to a stationary point. Extensive
numerical experiments show that our proposed algorithms,
specifically the Q-MVSK and Q-MVSKT algorithms, are
much more efficient than the existing method and the general
solver.

APPENDIX

A. Proof for Lemma 1

According to the Leibniz integral rule [36], we have

Oφ3 (w) =
∂E
[
wT r̃r̃Twr̃Tw

]

∂w

= E

[
∂
(
wT r̃wT r̃r̃Tw

)

∂w

]

= E
[
3r̃
(
r̃T ⊗ r̃T

)
(w ⊗w)

]

= 3E
[
r̃
(
r̃T ⊗ r̃T

)]
(w ⊗w)

= 3Φ (w ⊗w) ,

(54)

12

Oφ4 (w) =
∂E
[
wT r̃r̃Twr̃Twr̃Tw

]

∂w

= E

[
∂
(
wT r̃r̃Twr̃Twr̃Tw

)

∂w

]

= E
[
4r̃
(
r̃T ⊗ r̃T ⊗ r̃T

)
(w ⊗w ⊗w)

]

= 4E
[
r̃
(
r̃T ⊗ r̃T ⊗ r̃T

)]
(w ⊗w ⊗w)

= 4Ψ (w ⊗w ⊗w) ,

(55)

O2φ3 (w) =
∂2E

[
wT r̃r̃Twr̃Tw

]

∂w∂wT

= E

[
∂2
(
wT r̃wT r̃r̃Tw

)

∂w∂wT

]

= E
[
6r̃
(
r̃T ⊗ r̃T

)
(I⊗w)

]

= 6E
[
r̃
(
r̃T ⊗ r̃T

)]
(I⊗w)

= 6Φ (I⊗w) ,

(56)

O2φ4 (w) =
∂2E

[
wT r̃r̃Twr̃Twr̃Tw

]

∂w∂wT

= E

[
∂2
(
wT r̃r̃Twr̃Twr̃Tw

)

∂w∂wT

]

= E
[
12r̃

(
r̃T ⊗ r̃T ⊗ r̃T

)
(I⊗w ⊗w)

]

= 12E
[
r̃
(
r̃T ⊗ r̃T ⊗ r̃T

)]
(I⊗w ⊗w)

= 12Ψ (I⊗w ⊗w) .

(57)

B. Proof for Lemma 4

According to the Gershgorin circle theorem [37], we have

ρ
(
O2fncvx (w)

)

≤ ‖O2fncvx (w) ‖∞
≤ λ3‖O2φ3 (w) ‖∞ + λ4‖O2φ4 (w) ‖∞.

(58)

Under the constraints in (9), we can get

‖O2φ3 (w) ‖∞

= 6 max
1≤i≤N

N∑

j=1

|
N∑

k=1

Φ
(k)
ij wk|

≤ 6 max
1≤i≤N

N∑

j=1

N∑

k=1

|Φ(k)
ij ||wk|

≤ 6 max
1≤i≤N

N∑

j=1

max
1≤k≤N

L|Φ(k)
ij |

= 6L max
1≤i≤N

N∑

j=1

max
1≤k≤N

|Φ(k)
ij |,

(59)

‖O2φ4 (w) ‖∞

= 12 max
1≤i≤N

N∑

j=1

|
N∑

k=1

wk

N∑

l=1

Ψ
(k,l)
ij wl|

≤ 12 max
1≤i≤N

N∑

j=1

N∑

k=1

|wk|
N∑

l=1

|Ψ(k,l)
ij ||wl|

≤ 12 max
1≤i≤N

N∑

j=1

N∑

k=1

|wk| max
1≤l≤N

L|Ψ(k,l)
ij |,

≤ 12 max
1≤i≤N

N∑

j=1

max
1≤k≤N

L max
1≤l≤N

L|Ψ(k,l)
ij |

= 12L2 max
1≤i≤N

N∑

j=1

max
1≤k,l≤N

|Ψ(k,l)
ij |.

(60)

Therefore, we have

ρ
(
O2fncvx (w)

)
≤ 6λ3L max

1≤i≤N

N∑

j=1

max
1≤k≤N

|Φ(k)
ij |

+ 12λ4L
2 max

1≤i≤N

N∑

j=1

max
1≤k,l≤N

|Ψ(k,l)
ij |.

(61)

REFERENCES

[1] H. Markowitz, “Portfolio selection,” Journal of Finance, vol. 7, no. 1,
pp. 77–91, 1952.

[2] P. N. Kolm, R. Tütüncü, and F. J. Fabozzi, “60 years of portfolio
optimization: Practical challenges and current trends,” European Journal
of Operational Research, vol. 234, no. 2, pp. 356–371, 2014.

[3] C. Adcock, M. Eling, and N. Loperfido, “Skewed distributions in finance
and actuarial science: a review,” The European Journal of Finance,
vol. 21, no. 13-14, pp. 1253–1281, 2015.

[4] S. I. Resnick, Heavy-tail phenomena: probabilistic and statistical mod-
eling. Springer Science & Business Media, 2007.

[5] C. R. Harvey and A. Siddique, “Conditional skewness in asset pricing
tests,” The Journal of Finance, vol. 55, no. 3, pp. 1263–1295, 2000.

[6] N. J. Jobst and S. A. Zenios, “The tail that wags the dog: Integrating
credit risk in asset portfolios,” Journal of Risk Finance, pp. 31–43, 2001.

[7] A. Ang, J. Chen, and Y. Xing, “Downside risk,” The Review of Financial
Studies, vol. 19, no. 4, pp. 1191–1239, 2006.

[8] T. P. Dinh and Y.-S. Niu, “An efficient DC programming approach for
portfolio decision with higher moments,” Computational Optimization
and Applications, vol. 50, no. 3, pp. 525–554, 2011.

[9] K. Boudt, W. Lu, and B. Peeters, “Higher order comoments of multi-
factor models and asset allocation,” Finance Research Letters, vol. 13,
pp. 225–233, 2015.

[10] S. Kshatriya and P. K. Prasanna, “Genetic algorithm-based portfolio
optimization with higher moments in global stock markets,” Journal of
Risk, vol. 20, no. 4, 2018.

[11] W. H. Jean, “The extension of portfolio analysis to three or more
parameters,” Journal of financial and Quantitative Analysis, vol. 6, no. 1,
pp. 505–515, 1971.

[12] K. Boudt, D. Cornilly, F. V. Holle, and J. Willems, “Algorithmic portfolio
tilting to harvest higher moment gains,” Heliyon, vol. 6, no. 3, p. e03516,
2020.

[13] K. G. Murty and S. N. Kabadi, “Some NP-complete problems in
quadratic and nonlinear programming,” Tech. Rep., 1985.

[14] D. Maringer and P. Parpas, “Global optimization of higher order
moments in portfolio selection,” Journal of Global Optimization, vol. 43,
no. 2-3, pp. 219–230, 2009.

[15] C. Blum and A. Roli, “Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison,” ACM Computing Surveys
(CSUR), vol. 35, no. 3, pp. 268–308, 2003.

[16] A. Savine, Modern Computational Finance: AAD and Parallel Simula-
tions. John Wiley & Sons, 2018.

13

[17] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794–816,
2016.

[18] G. Scutari and Y. Sun, “Parallel and Distributed Successive Convex
Approximation Methods for Big-Data Optimization,” in Multi-agent
Optimization: Cetraro, Italy 2014, F. Facchinei and J.-S. Pang, Eds.
Springer, 2018, ch. 3, pp. 141–308.

[19] F. Facchinei, V. Kungurtsev, L. Lampariello, and G. Scutari, “Ghost
penalties in nonconvex constrained optimization: Diminishing stepsizes
and iteration complexity,” Mathematics of Operations Research to ap-
pear, 2020.

[20] Z. Zhao, R. Zhou, and D. P. Palomar, “Optimal mean-reverting port-
folio with leverage constraint for statistical arbitrage in finance,” IEEE
Transactions on Signal Processing, vol. 67, no. 7, pp. 1681–1695, 2019.

[21] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed
methods for constrained nonconvex optimization—Part I: Theory,” IEEE
Transactions on Signal Processing, vol. 65, no. 8, pp. 1929–1944, 2016.

[22] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by partial linearization: Parallel optimization of multi-
agent systems,” IEEE Transactions on Signal Processing, vol. 62, no. 3,
pp. 641–656, 2013.

[23] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–
1153, 2013.

[24] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[25] N. J. Higham, “Computing a nearest symmetric positive semidefinite
matrix,” Linear Algebra and its Applications, vol. 103, pp. 103–118,
1988.

[26] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[27] Y. Feng and D. P. Palomar, “SCRIP: Successive convex optimization
methods for risk parity portfolio design,” IEEE Transactions on Signal
Processing, vol. 63, no. 19, pp. 5285–5300, 2015.

[28] P. Nijkamp and J. Spronk, “Interactive multiple goal programming: an
evaluation and some results,” in Multiple Criteria Decision Making
Theory and Application. Springer, 1980, pp. 278–293.

[29] K. K. Lai, L. Yu, and S. Wang, “Mean-variance-skewness-kurtosis-
based portfolio optimization,” in First International Multi-Symposiums
on Computer and Computational Sciences (IMSCCS’06), vol. 2. IEEE,
2006, pp. 292–297.

[30] M. Aksaraylı and O. Pala, “A polynomial goal programming model for
portfolio optimization based on entropy and higher moments,” Expert
Systems with Applications, vol. 94, pp. 185–192, 2018.

[31] B. A. Turlach and A. Weingessel, quadprog: Functions to Solve
Quadratic Programming Problems, 2019, R package version 1.5-7.
[Online]. Available: https://CRAN.R-project.org/package=quadprog

[32] K. Konis and F. Schwendinger, lpSolveAPI: R Interface to ‘lp_solve’
Version 5.5.2.0, 2020, R package version 5.5.2.0-17.6. [Online].
Available: https://CRAN.R-project.org/package=lpSolveAPI

[33] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in 2013 European Control Conference (ECC).
IEEE, 2013, pp. 3071–3076.

[34] A. Fu and B. Narasimhan, ECOSolveR: Embedded Conic Solver
in R, 2019, R package version 0.5.3. [Online]. Available: https:
//CRAN.R-project.org/package=ECOSolveR

[35] J. Ypma and S. G. Johnson, Introduction to nloptr: an R interface
to NLopt, 2020, R package version 1.2.2.1. [Online]. Available:
https://CRAN.R-project.org/package=nloptr

[36] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions
with formulas, graphs, and mathematical tables. US Government
printing office, 1948, vol. 55.

[37] R. S. Varga, Geršgorin and his circles. Springer Science & Business
Media, 2010, vol. 36.

https://CRAN.R-project.org/package=quadprog
https://CRAN.R-project.org/package=lpSolveAPI
https://CRAN.R-project.org/package=ECOSolveR
https://CRAN.R-project.org/package=ECOSolveR
https://CRAN.R-project.org/package=nloptr

	I Introduction
	II Preliminaries: the Moments of Portfolio Return
	III Problem Formulation
	III-A MVSK Portfolio
	III-B MVSK Tilting Portfolio
	III-C Difficulty of Solving High-Order Portfolios

	IV The Successive Convex Approximation Algorithm
	V Solving the MVSK Portfolio Problem via SCA
	V-A Preliminary Approach: DC Algorithm
	V-B Preliminary Approach: MM Algorithm
	V-C Q-MVSK Algorithm

	VI Solving The MVSK Tilting Portfolio Problem via SCA
	VI-A Preliminary Approach: L-MVSKT Algorithm
	VI-B Q-MVSKT Algorithm

	VII Complexity and Convergence Analysis
	VII-A Complexity Analysis
	VII-A1 On Solving The MVSK Portfolio Problem (10)
	VII-A2 On Solving The MVSK Tilting Portfolio Problem (11)

	VII-B Convergence Analysis

	VIII Solving Other High-order Portfolio Problems
	VIII-A MVSK Tilting Portfolio with General Deterioration Measures
	VIII-B General Minkovski Distance MVST Portfolio
	VIII-C Polynomial Goal Programming MVST Portfolio

	IX Numerical Experiments
	IX-A On the MVSK Portfolio Problem (10)
	IX-B On the MVSK Tilting Portfolio Problem (11)

	X Conclusion
	Appendix
	A Proof for Lemma 1
	B Proof for Lemma 4

	References

