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ABSTRACT
The Non-homogeneous Poisson process is a point process
with time-varying intensity across its domain, the use of
which arises in numerous areas in signal processing and ma-
chine learning. However, applications are largely limited by
the intractable likelihood function and the high computational
cost of existing inference schemes. We present a sequential
inference framework that utilises generative Poisson data and
sequential Markov Chain Monte Carlo (SMCMC) algorithm
to enable online inference in various applications. The pro-
posed model is compared to competing methods on synthetic
datasets and tested with real-world financial data.

Index Terms— Bayesian inference, non-homogeneous
Poisson process, state-space model, sequential-MCMC.

1. INTRODUCTION

Since the original development of the Poisson process, the
model has been widely applied to various applications with
point data in both temporal and spatial settings, such as neu-
ronal spike trains [1], emissions from radioactive sources
and traders’ operations in an open limit order book market
[2]. Poisson processes have provided the possibility for de-
scribing the intensity of occurrences, which is useful in both
the study of behaviour of the stochastic process itself and in
the prediction of future occurrences. The non-homogeneous
Poisson process (NHPP), an important variant of the standard
Poisson process, allows the intensity of the process to vary
with time, giving more general and realistic modelling of the
data.

Intensity inference for the NHPP has become an impor-
tant research topic. The classic approach developed in early
years [3] uses kernel densities to construct a non-parametric
estimator with empirical choice of bandwidth. The authors
of [4] presents the first tractable approach for performing
Bayesian inference on the Gaussian Cox process with a sig-
moid transformation function. Based on these ideas, the
model was extended in [5] to include variational sampling
of some hyperparameters and parallel inference for multiple

correlated processes. Both [4] and [6] scale poorly with the
number of data due to the high computational complexity
of the Gaussian process prior. Inspired by sparse Gaussian
process models, [5] uses inducing points to perform tractable
variational inference with the standard likelihood function,
which achieves reduced complexity.

In this paper, we propose a new variant of the Cox pro-
cess, in which the intensity function is a transformation of the
state-space model (SSM). We then explore the SMCMC al-
gorithm [7][8] as the inference method under our formulated
sequential framework. Furthermore, we extend the standard
SMCMC algorithm with a mixture sampling scheme and
sequential batch scheme to improve both accuracy and com-
putational efficiency. Results obtained from both synthetic
datasets and a real dataset are shown and discussed in Section
4 with an analysis on hyperparameter settings.

2. THE MODEL

In this section, we briefly describe the NHPP before review-
ing the model in [4] as the Sigmoidal Gaussian Cox Pro-
cess (SGCP), which achieves tractable Bayesian inference via
thinning from a generative prior. Later we present our model
that allows for the first time sequential online inference of the
intensity function, by integrating the SSM and SMCMC algo-
rithm into the generative framework of the SGCP model.

2.1. The Non-homogeneous Poisson Process

For a domain S = RD of arbitrary dimension D, we can
define a non-homogeneous Poisson process with an intensity
function λ(s), s ∈ S, for which the counting measure N(T )
evaluated over a subregion T ⊂ S follows a Poisson distribu-
tion with parameter λT =

∫
T λ(s) ds. Moreover, the number

of events in any disjoint subsets {Ti}i ⊂ S are independent
random variables. With this definition, we can obtain the like-
lihood function [9] of such a model given a set of K input



events denoted as {sk}Kk=1 in a region T as:

p({sk}Kk=1 |λ(s), T ) = exp
{
−
∫
T

ds λ(s)
} K∏
k=1

λ(sk) (1)

2.2. Thinning & Tractable Joint Distribution

Inference for the posterior intensity is clearly intractable us-
ing the likelihood in (1). However, a thinning procedure pro-
vides a tractable approach for simulating a NHPP from a par-
ticular intensity function λ(s) [10], and this idea forms the
basis of the SGCP inference method presented by [4]. A se-
quence of events {sn}Nn=1 is generated from a homogeneous
Poisson process (HPP) with intensity λ∗ ≥ λ(s), s ∈ T ,
which is an upper bound on the desired NHPP intensity func-
tion λ(s). Points from the desired NHPP can then be gener-
ated unbiasedly by thinning the homogeneous Poisson points
independently with probability λ(sn)/λ∗. This constructive
generation process leads to a tractable augmented likelihood
function. If we now include a mapping from a real-valued
stochastic process {g(t), t ∈ T } to the intensity function,
for example the scaled sigmoidal function λ(s) = λ∗σ(g(s)),
then a prior may be included over the latent values of {g(t)}.
Define in ∈ {0, 1} as an indicator associated with each Pois-
son event, taking value 0 for a event selected by the thinning
process, and 1 for a ‘latent’ event rejected by the thinning
process. A tractable joint likelihood is now obtained as:

p({sn}Nn=1,g1:N , {in}Nn=1 |λ∗, T )

=(λ∗)N e−λ
∗|T | p(g1:N |{sn}Nn=1)

N∏
n=1

σ{(−1)ing(sn)}

(2)
where {sn}Nn=1 is the time-ordered list of homogeneous
Poisson points and g1:N is the vector of corresponding g(sn)
stochastic process values, with p(g1:N ...) its prior probability.
In [4] a Gaussian process prior [11] is adopted for p(g1:N ...)
and batch-based MCMC methods are applied for inference.
In our new model however a continuous-time SSM is adopted
and sequential Monte Carlo inference methods are provided,
which allow for on-line inference as new data points arrive.

2.3. New Model

Despite the tractability achieved in the SGCP method [4],
its application is limited by its computational load, which
demands O(N3) for the Gaussian process [11], and scales
poorly with the value of λ∗ (choice of λ∗ has also been
demonstrated to impact heavily the accuracy of the method).
In order to alleviate these limitations, we propose a new
model under the tractable framework which allows efficient
sequential Bayesian inference for the intensity function. We
replace the fully correlated Gaussian process prior with a
continuous-time SSM. This structure has the benefit that
the prior is readily computed for arbitrary sets of Poisson

points {sn} and also has a sequential Markovian property
that avoids the O(N3) computational complexity and aids
sequential inference formulations. We employ a SSM of
the form dg(t) = Ag(t)dt + hdW (t) where {W (t)} is
the Wiener process. Under this framework transition den-
sities are readily computed to be Gaussian and Markovian,
p(g(Q)|g(P )) = N (µ(Q,P ), C(Q,P )) for Q > P , see e.g.
[12], and hence the joint prior p(g1:N ) is readily computed
by the probability chain rule.

While any Gaussian SSM could be applied in our frame-
work, we adopt a Langevin dynamics model similar to that
in [12] in which gt = [g1,t g2,t]

T contains a stochastic trend
term g2,t that is integrated to give the value g1,t which is in-
put to the sigmoidal function of the SGCP framework. In

this model A =

[
0 1
0 θ

]
and h = [0 σ]T , where θ ≥ 0 is

a mean-reverting term on the trend and σ is a scale param-
eter for the noise W (t). The joint prior under this model is
then computed as in [12] and denoted p(g1:N |{sn}Nn=1) =
LD(g1:N |{sn}Nn=1).

3. SEQUENTIAL INFERENCE

Inference can be made sequential by inputting short batches
of data, delineated by times tk, i = 0, 1, .... The kth time
interval is Ek = (tk−1, tk] ⊂ T , and for example we can use
regularly spaced intervals tk = kδT , or we can space accord-
ing to the arrival times of observed points {sn; in = 0}. We
further define the notation {s,g, i}Ek = {sn,gn, in; sn ∈
Ek} as the locations, the state vectors and the indicators cor-
responding to all events in the interval Ek. We can hence write
the joint distribution recursion as:

p({s,g, i}E1:k |λ∗, E1:k) = p({s,g, i}E1:k−1
|λ∗, E1:k−1)

× p({s,g, i}Ek |λ∗, {s,g, i}Ek−1
, Ek)

(3)

where the conditional propagation can be factorised based on
(2) as:

p({s,g, i}Ek |λ∗, {s,g, i}Ek−1
, Ek) = (λ∗)Nke−λ

∗|Ek|

× LD({g}Ek |{g}Ek−1
)×

∏
n:sn∈Ek

σ{(−1)ing1,n} (4)

where Nk = |{n; sn ∈ Ek}| is the total number of events
in Ek. A standard (variable rate) particle filter can be used
for inference but is not efficient as the proposal in (4) in-
volves multiple latent variables in a single propagation. We
address this high-dimensional proposal with the SMCMC
algorithm where samples are obtained with local or global
MCMC moves followed by a Metropolis-Hastings (MH)
accept-reject step as bias correction [13][14]. Furthermore,
a mixture sampling procedure is adopted: at each MCMC
iteration, a decision is made on performing either a joint MH
proposal step with probability PJ or a sequence of individual



refinement Metropolis-within-Gibbs transitions with proba-
bility 1−PJ . This scheme provides trade-offs between the
efficiency and the accuracy of the inference.

3.1. Joint Proposal

A joint MH kernel consists of a discrete uniform draw of
{g, s}(p)Ek−1

from the particle collection of Ek−1 followed by
the proposals of {g, s}Ek conditioned on the drawn particle
p. More specifically, the latter is achieved by three samplers
in combination: 1) the total number of thinned events M̃ in Ek
from a Poisson distribution; 2) the locations of thinned events
{s̃m}M̃m=1 uniformly from Ek; and 3) state vectors {g}Ek of
all events in Ek from the LD prior conditioned on all event
locations {s}Ek and the drawn particle {g, s}(p)Ek−1

. This joint
proposal has density:

qJ =
Poi(M̃ |λ∗, Ek)
|Ek|M̃

LD({g}Ek |{g}Ek−1
) (5)

Incorporating (3) and (4), we obtain the MH acceptance ratio
for the jth MCMC iteration as:

ρJ =
qj−1J (λ∗)N

∗
kLD({g}∗Ek |{g}

∗
Ek−1

)
∏
n σ{(−1)i

∗
ng∗1,n}

q∗J(λ
∗)N

j−1
k LD({g}j−1Ek |{g}

j−1
Ek−1

)
∏
n σ{(−1)i

j−1
n gj−11,n}

(6)
where the superscript ∗ indicates the variables proposed in
current iteration and j−1 indicates the accepted variables from
last iteration. Nburn iterations are run before before include the
accepted particle into new particle set to ensure convergence.
Tuning proposals with domain knowledge can certainly im-
prove convergence rate and performance.

3.2. Refinement Metropolis-within-Gibbs

A Joint proposal can sometimes result in low acceptance ra-
tios and ultimately low particle diversity. We hence use three
local conditional samplers to individually move the three
types of latent variables. Taking advantages from the SGCP
model, we use a similar construction as presented in [4]: a
MH move to perturb the number of thinned events M̃ in Ek;
a MH move to change the locations of the thinned events
{s̃m}M̃m=1 conditioned on M̃ ; and a Metropolis-Adjusted-
Langevin-Algorithm (MALA) for state vectors {g}Ek to
make efficient use of the gradient information available. The
refinement moves improve inference accuracy at a cost of
extra computation.

3.3. Sequential Batch Scheme

We defined earlier the interval Ek. If the times of the batch
intervals are fixed at the observed event times then this can
be non-ideal for inference as it decouples the local location
information among non-neighbouring points. Hence, in this

Table 1. Numerical results for models. Bold is the best.

S-LD KDE SGCP

λ1(s)
mse 0.0257 0.129 0.0704
L(p) 1.825 – -9.440

Time (s) 15.86 0.01 60.23

λ2(s)
mse 0.6531 0.8599 1.5257
L(p) -248.1 – -326.6

Time (s) 60.05 0.05 1326.28

(1) Data and model fits for λ1(s)

(2) Data and model fits for λ2(s)

Fig. 1. Model performances on synthetic datasets

section we experiment with regular sized batches of duration
δT . With an appropriate choice of the batch size, the scheme
recovers the temporal correlation among points in the same
batch and thus improves the sequential inference accuracy.
Furthermore by placing a Gamma prior over the maximum
intensity λ∗, we obtain a posterior Gibbs update of the lo-
cal λ∗k for each batch, which provides considerable compu-
tational saving compared to a global λ∗: αpost = α + Nk,
βpost = β + |Ek|.

4. RESULTS AND DISCUSSIONS

In this section, we present three empirical analyses of our
sequential-Langevin (S-LD) model. We use synthetic datasets
with ground truth λ(s) to compare the relative performance of
S-LD, SGCP and a baseline kernel density estimation (KDE)
method [3]. We then apply our model to a financial dataset
with high frequency input of events. Finally, we examine the
effects of hyperparameters on the S-LD model performance.



Fig. 2. Results of the S-LD model on limit order book data.
The top plot shows the inferred limit order arrival intensity at
price $1.12960. The bottom plot shows the market mid-price
and the selected price level for the same duration

4.1. Synthetic Data

Two sets of one-dimensional data are created with the follow-
ing intensity functions:

1. A sum of an exponential and a Gaussian bump:
λ1(s) = 2 exp{−s/15} + exp{−((s − 25)/10)2} on
the interval [0, 50] with 55 events.

2. A doubly-stochastic process with λ2(s) governed by
Langevin dynamics with parameters θ=−0.5, σ=0.5
on interval [0, 100] with 156 events.

We compared the S-LD model to both the SGCP model with
a square-exponential covariance function and the KDE ap-
proach with Gaussian smoothing kernel. Fig.1 shows the
graphical results of the three models and Table.1 quantita-
tively reports the performance averaged across 10 trials in
terms of the mean squared error (MSE), the (log) likelihood
of truth under Gaussian assumption and computational time.
Visually and numerically, the S-LD outperforms the other
two methods in both MSE and likelihood. Computational-
wise, our model gives reasonable computational costs even
with high number of input points whilst the SGCP model
is significantly more expensive with λ2(s). The KDE gives
the best computational speed but coarse estimations of the
intensity overall.

4.2. Application to Order Book Data

We ran the S-LD model on a small set of limit order book
(LOB) data taken from the EUR-USD FOREX market on the
2nd of September 20151. The data describes the limit order
arrivals at a fixed price level of $1.12960 for a duration of
5 minutes (19:35–19:40) from one of the busiest hour of the
day. The specific interval and price is picked intentionally
to show several transitions between bid and ask sides. Fig.2
shows the outcome from the S-LD model. Note the SGCP
model is far too expensive on this dataset.

1The authors would like to thank Cambridge Capital Management for
providing the datasets for these experiments.
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Fig. 3. The S-LD model performances under different settings
of hyperparameters under synthetic dataset λ1(s)

4.3. Hyperparameter Settings

This analysis focuses on the scheme-related hyperparameters
instead of the hyperparameters of the SSM as the latter can
be made adaptive with extension of a variational structure
[15]. The two plots in Fig.3 show how computational time
and MSE change with different settings of PJ and the num-
ber of batches respectively while other hyperparameters are
held fixed. The inference accuracy is improved considerably
upon the use of the refinement samplers. Reducing PJ lin-
early increases the computation time and eventually raises the
MSE due to the lack of sampling from previous particle col-
lection. The sequential batch scheme improves both accuracy
and efficiency of the inference. However, too many batches
give similar outcomes as the pointwise propagation scheme.
The sudden jump between PJ=1.0 and 0.9 indicates that the
refinement procedure significantly improves the acceptance
ratio by proposing samples in a Gibbs manner.

5. SUMMARY

We have introduced a novel sequential method for inference
about the intensity function in a NHPP. By avoiding the in-
tractability with generative prior and latent variables, our
model has demonstrated improved accuracy and efficiency
compared to the KDE and SGCP approaches. The sequential
framework utilising SMCMC algorithm allows our model
to stand in contrast to other approaches for the NHPP in
that it provides online inference and the possibility of auto-
adaptation of hyperparameters to input data, which can be
achieved with a variational structure. The sequential batch
scheme further improves the model performance by restor-
ing the local location information, which is crucial in the
inference of NHPP but usually ignored in standard sequential
inference methods.
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