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Abstract—In intelligent reflecting surface (IRS) aided wireless
communication systems, channel state information (CSI) is cru-
cial to achieve its promising passive beamforming gains. However,
CSI errors are inevitable in practice and generally correlated
over the IRS reflecting elements due to the limited training
with discrete phase shifts, which degrade the data transmission
rate and reliability. In this paper, we focus on investigating the
effect of CSI errors to the outage performance in an IRS-aided
multiuser downlink communication system. Specifically, we aim
to jointly optimize the active transmit precoding vectors at the
access point (AP) and passive discrete phase shifts at the IRS
to minimize the AP’s transmit power, subject to the constraints
on the maximum CSI-error induced outage probability for the
users. First, we consider the single-user case and derive the user’s
outage probability in terms of the mean signal power (MSP)
and variance of the received signal at the user. Since there is a
trade-off in tuning these two parameters to minimize the outage
probability, we propose to maximize their weighted sum with
the optimal weight found by one-dimensional search. Then, for
the general multiuser case, since the users’ outage probabilities
are difficult to obtain in closed-form due to the inter-user
interference, we propose a novel constrained stochastic successive
convex approximation (CSSCA) algorithm, which replaces the
non-convex outage probability constraints with properly designed
convex surrogate approximations. Simulation results verify the
effectiveness of the proposed robust beamfoming algorithms and
show their significant performance improvement over various
benchmark schemes.

Index Terms—Intelligent reflecting surface, channel estimation
error, robust beamforming, outage probability, phase-shift opti-
mization.

I. INTRODUCTION

For the fifth-generation (5G) wireless communication net-

works that are being standardized and deployed worldwide,

various transmission technologies such as massive multiple-

input multiple-output (MIMO), ultra-dense network (UDN)

and millimeter wave (mmWave) communication have been

adopted to meet the ever-increasing requirements in terms

of data rate, reliability, latency and connectivity [1]. How-

ever, these technologies face similar challenges in practical

implementation due to their required high hardware cost and

energy consumption. Moreover, they only adapt to the time-

varying radio environment to some extent and thus cannot

always guarantee the quality-of-service (QoS), especially in

harsh propagation environment with severe signal blockage or
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deep fading. Recently, intelligent reflecting surface (IRS) has

emerged as a promising technology to enhance the spectral

efficiency of wireless communication systems cost-effectively

[2]–[7]. Specifically, IRS is a planar surface composed of a

large number of passive reflecting elements, each of which can

induce an independent phase shift and/or amplitude change

of the incident signal in real-time. Thus, IRS is able to

program/reconfigure the signal propagation by dynamically

adjusting its reflection coefficients based on the channel state

information (CSI), and achieve cost-effective performance

improvement with low hardware and energy cost.

As such, IRS has attracted significant attention recently and

its reflection optimization has been investigated in various

aspects and under different setups (see, e.g., [8]–[17]), where

IRS was shown to be effective in enhancing the system perfor-

mance substantially. However, the above performance gains in

IRS-aided communication systems are crucially dependent on

the CSI of the IRS-associated channels, which is practically

challenging to obtain due to the following reasons. First,

since IRS is generally a passive device and does not have

power amplifies, the conventional channel estimation approach

relying on the pilot signal sent by the IRS is inapplicable.

Second, the number of channel coefficients in IRS-associated

channels is enormous due to massive reflecting elements at

the IRS, especially when the access point (AP) and/or users

are equipped with multiple antennas, which makes accurate

channel estimation practically difficult given limited channel

training power and time. To address the above challenges,

various methods have been proposed to estimate the IRS chan-

nels, see, e.g., [18]–[23] and the references therein. However,

despite the rapid progress in channel estimation studies for

IRS-aided systems, channel estimation errors are practically

inevitable and their impact on the system performance needs

to be taken into account for the IRS-aided data transmission.

In the literature, there have been some recent works that

studied robust beamforming designs for IRS-aided communi-

cation systems under imperfect CSI [19], [24]–[28], which

are generally based on three different design approaches

according to the assumed CSI error model. Firstly, the worst-

case performance optimization approach was adopted in [24],

[25] to design the active and passive beamforming jointly, by

assuming the bounded CSI error model for partial channel

uncertainty. The second approach adopted a probabilistic CSI

error model (such as Gaussian distributed) and considered the

average QoS performance [19], [26], [27]. For example, in

[19], the time-varying IRS reflection based channel estimation

http://arxiv.org/abs/2007.10769v2
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was proposed and the resultant CSI errors over IRS reflecting

elements were shown to follow the correlated Gaussian dis-

tribution due to the training with discrete IRS phase shifts

in practice. The achievable rates of users in an IRS-aided

multiuser system under the above CSI error model were

characterized in [27], where the reflection amplitude control

of IRS (with/without the conventional phase-shift control)

was further exploited to improve the system performance.

Thirdly, the beamforming can be designed subject to a given

QoS outage probability constraint for each user, i.e., the QoS

performance needs to be above a certain threshold with a

prescribed minimum probability (or its opposite maximum

outage probability). In general, it is challenging to handle the

outage probabilities since their closed-form expressions are

usually difficult to obtain, especially in the multiuser context

due to the inter-user interference. In [28], a Bernstein-type

approach was adopted to solve the outage-constrained power

minimization problem for an IRS-aided multiuser system, by

assuming that the CSI errors are independent Gaussian random

variables, which, however, cannot be applied to the case with

other channel estimation error distributions. Therefore, it still

remains unknown how to jointly optimize the active and

passive beamforming for IRS-aided multiuser communications

subject to QoS outage based constraints under correlated CSI

errors and with discrete IRS phase shifts, which thus motivates

this work.

In this paper, we consider the robust active and passive

beamforming co-design in an IRS-aided multiple-input single-

output (MISO) communication system, under the general

case of correlated CSI errors. The active transmit precoding

vectors at the AP and passive discrete phase shifts at the IRS

are jointly optimized to minimize the AP’s transmit power,

subject to the outage probability constraints of the users and

discrete uni-modular constraints on the reflection coefficients.

By leveraging the results in [27] on the distribution of the

IRS channel estimation errors, two new robust beamforming

optimization algorithms are proposed for the single-user and

multiuser cases, respectively. In particular, for the single-

user case, we show that with given active transmit precoding

vector and IRS phase shifts, the outage probability can be

expressed in terms of the cumulative distribution function

(cdf) of a non-central chi-square distribution with two degrees

of freedom [29]. Moreover, the outage probability is deter-

mined by the mean signal power (MSP) and variance of the

received signal at the user. Since there is a nontrivial trade-

off in tuning these two parameters to minimize the outage

probability, we propose to maximize their weighted sum with

the optimal weight found by one-dimensional search and

present a weighted sum maximization (WSMax) algorithm.

We show that when the weighting factor takes different values,

the proposed WSMax algorithm reduces to three baseline

algorithms, which correspond to maximizing the MSP, MSP

to variance ratio (MVR), and MSP plus variance (MPV),

respectively. For the multiuser case, since it is difficult to

obtain closed-form expressions of the outage probabilities due

to the inter-user interference, a novel two-stage constrained

stochastic successive convex approximation (CSSCA) algo-

rithm is proposed to solve the formulated multiuser robust

beamforming optimization problem, where convex surrogate

functions are iteratively constructed to replace the non-convex

outage probability constraints and a two-stage procedure is

devised to handle the discrete phase-shift constraints. Specif-

ically, in the first stage, the IRS phase shifts are relaxed to

continuous values, and the active and passive beamforming

vectors are jointly optimized. Then, in the second stage, by

quantizing the continuous phase shifts to discrete values and

keeping them fixed, the active precoding vectors are optimized

to compensate for the outage performance loss caused by

phase-shift quantization. Simulation results are presented to

demonstrate the effectiveness of the proposed algorithms as

compared to various benchmark schemes.

The rest of this paper is organized as follows. Section II

introduces the system model and problem formulation. In

Sections III and IV, we present the WSMax algorithm and

two-stage CSSCA algorithm to solve the formulated problems

in the single-user and multiuser cases, respectively. Section

V presents numerical results to evaluate the performance of

the proposed algorithms and finally Section VI concludes the

paper.

Notations: Scalars, vectors and matrices are respectively

denoted by lower/upper case, boldface lower-case and boldface

upper-case letters. For an arbitrary matrix A, AT , A∗, AH

and A† denote its transpose, conjugate, conjugate transpose

and pseudo-inverse, respectively. A−1 denotes the inverse of

a square matrix A if it is invertible. Cn×m denotes the space

of n×m complex matrices and Rn++ represents the space of

n×1 vectors with strictly positive real elements. For matrices

A ∈ CN1×M and B ∈ CN2×M , [A;B] ∈ C(N1+N2)×M

denotes row-wise concatenation of A and B. ‖ · ‖ and | · |
denote the Euclidean norm of a complex vector and absolute

value of a complex number, respectively. CN (x,Σ) denotes

the distribution of a circularly symmetric complex Gaussian

(CSCG) random vector with mean vector x and covariance

matrix Σ; and ∼ stands for “distributed as”. P [χ2|2, λ] de-

notes the cdf of a non-central chi-square distribution with

two degrees of freedom and non-centrality parameter λ [29].

QM (a, b) denotes the Marcum Q-function of real order M > 0
[29]. For given numbers {x1, · · · , xN}, diag(x1, · · · , xN ) de-

notes a diagonal matrix with {x1, · · · , xN} being its diagonal

elements, while diag(A) denotes a vector that contains the

diagonal elements of matrix A. FN is defined as the Cartesian

product of N identical sets each given by F . The symbol 
is used to represent

√
−1. For a complex number x, ℜ{x}

(ℑ{x}) denotes its real (imaginary) part and ∠x denotes

its angle. I and 0 denote an identity matrix and an all-

zero vector with appropriate dimensions, respectively. E{·}
denotes the statistical expectation. For given two sets A and

B, A\B , {x|x ∈ A, x /∈ B}. The probability of an event

A is written as Pr(A) and
∫∫

D
(·) denotes the double integral

of a probability distribution function of a complex random

variable over a disc D with certain center and radius in the

two-dimensional plane.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an IRS-aided wireless system where an IRS

equipped with N reflecting elements is deployed to assist the

communication between the AP (equipped with M antennas)

and K single-antenna users (denoted by K , {1, · · · ,K}), as

shown in Fig. 1. The IRS is attached with a smart controller

that is able to adjust the reflection amplitude and/or phase shift

of each reflecting element in real time and also communicates

with the AP via a separate wireless link for coordinating

transmission and exchanging information, such as CSI and

IRS reflection coefficients [2]. Denote by hH
d,k ∈ C1×M ,

hH
r,k ∈ C

1×N and G ∈ C
N×M the baseband equivalent

channels from the AP to user k, the IRS to user k, and the AP

to the IRS, respectively. Let Θ = diag(φ1, · · · , φN ) denote the

reflection-coefficient matrix at the IRS, where φn = ane
θn

(n ∈ N , {1, · · · , N}), an ∈ [0, 1] and θn ∈ [0, 2π) are

the reflection amplitude and phase shift of the n-th element,

respectively. In this paper, the reflection amplitude of each

element is set to an = 1, ∀n ∈ N to maximize the signal

reflection for the ease of passive beamforming design and

practical implementation. Moreover, we consider the practical

constraint that the phase shift at each reflecting element

only takes a finite number of discrete values [30]. Let Q
denote the number of control bits for phase-shifting per IRS

element. By assuming that the discrete phase-shift values are

obtained by uniformly quantizing the interval [0, 2π), we have

φn ∈ Fd , {φn|φn = eθn , θn ∈ {0, 2πZ , · · · , 2π(Z−1)
Z }},

where Z = 2Q.

Desired Signal

Interference

IRS

AP

User

IRS Controller

Wireless control link

Fig. 1. An IRS-aided multiuser MISO downlink system.

Then, the received signal at user k can be expressed as

yk = (hH
r,kΘG+ hH

d,k)
∑

j∈K
wjsj + nk, (1)

where sk represents the information symbol for user k which

is modeled as independent and identically distributed (i.i.d.)

CSCG random variables with zero mean and unit variance;

wk ∈ C
M×1 denotes the transmit precoding vector for user

k; nk denotes the i.i.d. complex additive white Gaussian noise

(AWGN) at the receiver of user k with zero mean and variance

σ2
k. Thus, the signal-to-interference-plus-noise ratio (SINR) of

user k is given by

SINRk =
|(hH

r,kΘG+ hH
d,k)wk|2

∑

j∈K\k
|(hH

r,kΘG+ hH
d,k)wj |2 + σ2

k

. (2)

In practice, due to the limited channel training resources

(e.g., power and time), perfect CSI is unlikely to obtain and

CSI errors are inevitable. In this paper, we adopt the time-

varying reflection pattern based channel estimation method in

[27], [31] to characterize the CSI error distribution. Specifi-

cally, let H̃k , [hH
d,k;Hk] ∈ C(N+1)×M denote the composite

channel from the AP to user k, where Hk , diag(hH
r,k)G

denotes the cascaded AP-IRS-user k channel, and define

H̄k = [ĥH
d,k; Ĥk] with ĥd,k and Ĥk denoting the estimated

channels. Then, by exploiting the uplink-downlink channel

reciprocity and applying the least-square (LS) estimation, we

have

H̄k =

(

1
√
pu,ksu,k

YkV
†
)H

= H̃k +
1

√
pu,ksu,k

(V†)HNH
u,k,

(3)

where su,k denotes the uplink training symbol which is

assumed to be 1 without loss of optimality; pu,k denotes the

uplink training power of user k; Nu,k = [n1
u,k, · · · ,nNr

u,k]

with nn
u,k ∼ CN (0, ε2kI) denoting the uplink AWGN vector,

ε2k is the noise variance of user k during channel train-

ing and Nr denotes the total number of training symbols;

Yk ∈ CM×Nr denotes the received uplink signal at the AP;

V = [ṽ1, · · · , ṽNr
] and ṽn , [1,vT

n ]
T (vn = diag{Θ∗

n})
denotes the reflection pattern employed in the n-th training

symbol duration. According to the analysis in [27], the CSI

error matrix ∆H̃k = H̄k − H̃k satisfies E{∆H̃k} = 0 and

E{∆H̃k∆H̃H
k } =

Mε2k
pu,k

(VVH)†. As can be seen, the CSI

error matrix ∆H̃k is Gaussian distributed due to the fact that

the channel noise is assumed to be CSCG and the adopted

LS channel estimator only involves linear operations to the re-

ceived uplink signals {Yk}. Besides, the elements in ∆H̃k are

correlated if the training reflection vectors are non-orthogonal,

i.e., (V†)HV† 6= I. This usually occurs in practice when

discrete phase shifts are used and/or Nr > N + 1.1 Similar

to [27], we assume in this paper that 1) V is given (e.g.,

{ṽn} can be chosen to be the columns of the quantized DFT

matrix or truncated Hadamard matrix according to the value

of Q [19]), 2) the uplink training powers {pu,k} are known

at the AP, and 3) the uplink channel noise variances {ε2k}
can be effectively estimated by off-the-shelf methods, see e.g.,

[32] and the references therein, thus the CSI error covariance

matrices E{∆H̃k∆H̃H
k }, ∀k ∈ K are fixed and known at the

AP. Note that although calculating E{∆H̃k∆H̃H
k } involves

the matrix inversion operation, the required computational

complexity can be practically ignored since V is known in

advance and this calculation only needs to be performed once

without the need of knowing any channel statistics.

In this paper, we assume that the AP can only obtain the full

CSI H̄ imperfectly, while the users can obtain their individual

perfect AP-user effective CSI, i.e., {(hH
r,kΘG + hH

d,k)wk},
which includes the transmit precoding vectors at the AP and

the reflection phase shifts at the IRS. As a result, the users can

1Note that there are only N + 1 elements in the orthogonal basis of the
(N + 1)-dimensional space. Therefore, if the training duration Nr is larger
than N + 1, it is inevitable that at least one training reflection vector would
be non-orthogonal to the others.



4

accurately evaluate the SINR in (2). To justify this assumption,

we illustrate in Fig. 2 a practical transmission protocol, which

is a simplified version of the 5G NR protocol specified in [33].

More specifically, there are two types of training symbols, also

known as reference signals (RSs), in the proposed transmission

protocol, i.e., the channel state information-RS (CSI-RS) and

the demodulation RS (DMRS), where the former is used to

estimate the full CSI for joint active and passive beamforming

design, while the latter is employed to estimate the effective

CSI for demodulation. Since the dimension of the effective

CSI (a complex scalar for each user) is much smaller than

that of the full CSI and the DMRS is beamformed (with

the designed {wk} and Θ), it is reasonable to assume that

the estimated effective CSI is much more accurate than the

estimated full CSI. Therefore, in this paper, we focus on

mitigating the outage caused by the full CSI error at the AP

side, and assume perfect effective CSI at the user side (with

the optimized active and passive beamformers). On the other

hand, even if the estimated effective CSI is imperfect, we can

always impose more conservative constraints on the users’

outage probabilities, such that the resulting negative effects

can be effectively compensated. Note that this assumption is

in consistent with the existing literature on outage-constrained

robust beamforming design, see e.g., [28], [34].2

CSI-RS DMRS Data transmission

Channel coherence time

Fig. 2. Transmission protocol in the considered IRS-aided communication
system.

Remark 1. Generally, the linear minimum mean square error

(LMMSE) estimation method can achieve better estimation

accuracy than the LS method [37]. In our case, the LMMSE

estimation of H̃k can be expressed as [38]

H̄LMMSE
k =

√
pu,kC

H
Hk

V(pu,kV
HCHk

V +Mε2kI)
−1

× (Yk − E{Yk})H + E{H̃k}
=
√
pu,kC

H
Hk

V(pu,kV
HCHk

V +Mε2kI)
−1

× (Yk −√pu,kE{H̃H
k }V)H + E{H̃k},

(4)

where CHk
, E{(H̃k −E{H̃k})(H̃k − E{H̃k})H}. Accord-

ingly, the corresponding CSI error covariance matrix is given

by

E{∆H̃k∆H̃H
k } = CH − pu,kCHV

× (pu,kV
HCHk

V +Mε2kI)
−1VHCH .

(5)

Fig. 3 shows the performance comparison between the LS and

LMMSE estimators, where the simulation parameters specified

in Section V are adopted and the normalized mean square

2Note that in [27], [35], [36], there is an additional interference term in the
SINR expression, which is caused by imperfect effective CSI estimated at the
users. In our considered system, according to the transmission protocol in Fig.
2, the estimated effective CSI is much more accurate than the estimated full
CSI, thus it will have little impact on the outage probabilities. As a result, we
ignore the impacts of the effective CSI errors in this paper and the resulting
interference is also not considered.

error (NMSE) is considered as the performance metric, which

is defined as NMSE ,
∑

k∈K ‖H̄k − H̃k‖2/
∑

k∈K ‖H̃k‖2.

It is observed that the LMMSE estimator outperforms the

LS estimator, especially in the low-pu regime. However, as

the price paid for better performance, the LMMSE estima-

tor requires complex matrix inversion operations and some

statistical knowledge about the channel, such as the chan-

nel mean values E{H̃k}, ∀k ∈ K and covariance matrices

CHk
, ∀k ∈ K. These additional costs may become overwhelm-

ing for a practical IRS-aided communication system, espe-

cially when N becomes large.3 Therefore, for ease of practical

implementation, we adopt the LS estimation method in this

paper, which is simpler and more computational friendly.

Nevertheless, we note that the proposed algorithms (as will

be introduced later) are still applicable when other channel

estimation methods are employed as long as the statistical

information of the CSI error matrix can be obtained. For

example, if we use the LMMSE channel estimation method

and assume that E{H̃k} and CHk
, ∀k ∈ K are known, then the

CSI error matrix is still complex Gaussian distributed (since

in LMMSE, the estimated channel is a linear transformation

of the received signal corrupted by CSCG noise) and the AP

can also calculate the CSI error covariance matrix according

to (5). Therefore, the proposed algorithms are still applicable

in this case and the difference is that the CSI error covariance

matrix under LMMSE is different. However, since E{H̃k} and

CHk
, ∀k ∈ K are difficult to obtain in practice and they may

also change over time, further investigation of the channel

statistics estimation, the corresponding robust beamforming

design and performance comparison is required, which is not

considered in this paper.

10 14 18 22 26 30
Uplink training power pu (dBm)

10-2

10-1

100

N
M
S
E

LS
LMMSE

Fig. 3. Performance comparison between the LS and LMMSE estimators.

B. Problem Formulation

In this paper, we aim to minimize the AP transmit power

subject to the individual SINR outage probability constraints

at the users as well as the discrete reflection coefficient

constraints, by jointly optimizing the active transmit precoders

3In Fig. 3, E{H̃k} and CHk
, ∀k ∈ K are obtained via extensive sample

averaging.
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at the AP and passive phase shifts at the IRS. Accordingly,

the optimization problem is formulated as

min
{wk}, Θ

∑

k∈K
‖wk‖2 (6a)

s.t. Pr(SINRk < ηk) ≤ ǫk, ∀k ∈ K, (6b)

φn ∈ Fd, ∀n ∈ N . (6c)

The outage probability constraints in (6b) guarantee the users’

QoS, i.e., the probability of each user that can successfully

decode its message at a transmission rate of log2(1 + ηk) is

no less than 1 − ǫk. This type of design is practically useful

for, e.g., delay-sensitive or low-latency applications, where the

system is required to provide a prescribed communication rate

with high probability.

Different from the prior works [27], [30], [31], solving prob-

lem (6) requires efficiently handling the outage probabilities

given in (6b), which are difficult to be characterized, especially

in the multiuser context due to the inter-user interference.

Besides, since the CSI errors are correlated in general, the dis-

crete IRS phase shifts in Θ and active precoding vectors {wk}
are intricately coupled in the constraints given in (6b) and thus

difficult to be jointly optimized. In the next two sections, we

present useful techniques to deal with the above difficulties

and propose efficient algorithms to solve problem (6) sub-

optimally in the single-user and multiuser cases, respectively.

III. SINGLE-USER SYSTEM

In this section, we consider the single-user case, i.e., K = 1,

to draw useful insights into the effect of IRS phase shifts on

the outage probability. In this case, multiuser interference does

not exist, therefore we can simply drop the user subscript k
and ignore the multiuser interference term in (2), which leads

to the following optimization problem:

min
w, Θ

‖w‖2

s.t. Pr
(

|(hH
r ΘG+ hH

d )w|2 < σ2η
)

≤ ǫ,

φn ∈ Fd, ∀n ∈ N .

(7)

Let v = diag(Θ∗), problem (7) is equivalent to

min
w, v
‖w‖2

s.t. Pr
(

|(vHH+ hH
d )w|2 < σ2η

)

≤ ǫ,

vn ∈ Fd, ∀n ∈ N .

(8)

We observe that the outage probability is a decreasing function

of the downlink transmit power ‖w‖2, i.e., for any w1 that

satisfies ‖w1‖2 = p1, we can always let w2 =
√

p2

p1
w1

(p2 ≥ p1) such that Pr
(

|(vHH+ hH
d )w1|2 < σ2η

)

≥
Pr

(

|(vHH+ hH
d )w2|2 < σ2η

)

holds. Therefore, instead of

minimizing the AP transmit power ‖w‖2 under the outage

probability constraint as in (8), we can alternatively minimize

the outage probability with given ‖w‖2 and then search for the

appropriate ‖w‖2 with which the achieved outage probability

is less than or equal to the outage probability target ǫ. As a

result, problem (8) can be tackled by solving a sequence of

outage probability minimization problems, i.e.,

min
w, v

Pr
(

|(vHH+ hH
d )w|2 < σ2η

)

s.t. ‖w‖2 ≤ p,

vn ∈ Fd, ∀n ∈ N ,

(9)

where the minimum required p can be found via bisection

search. Note that after solving one instance of problem (9)

with given p, we should decrease or increase p according to the

achieved outage probability, thus problem (9) is not explicitly

related to ǫ.
In the following, we focus on problem (9) with given p and

propose an efficient algorithm, called the WSMax algorithm,

to solve it. In particular, we first derive a closed-form expres-

sion of the outage probability based on the statistics of the

CSI errors and show that minimizing the outage probability is

equivalent to optimizing the MSP and variance of the received

signal at the user. Since there is a trade-off in tuning these two

parameters to minimize the outage probability, we propose to

solve problem (9) by maximizing the weighted sum of the

MSP and variance via the penalty dual decomposition (PDD)

method [39] and finding the optimal weighting factor by one-

dimensional search. Furthermore, we demonstrate that the

proposed WSMax algorithm contains three baseline algorithms

(namely, the MVR, MPV and MSP maximization algorithms)

as special cases when the weighting factor takes different

values.

A. Problem Transformation

First, by letting ṽ = [1,vT ]T , we have the following

equivalent form of problem (9):

min
w, v

Pr
(

|ṽHH̃w|2 < σ2η
)

s.t. ‖w‖2 ≤ p,

vn ∈ Fd, ∀n ∈ N .

(10)

It can be seen that since H̃ = H̄−∆H̃ and ∆H̃ is complex

Gaussian distributed with E{∆H̃} = 0 and E{∆H̃∆H̃H} =
Mε2

pu
(VVH)†, z = ṽHH̃w is a complex random variable

with mean ṽHH̄w and variance E{wH∆H̃H ṽṽH∆H̃w}.
Moreover, since ∆H̃ = 1√

pu
(V†)HNH

u , the variance

E{wH∆H̃H ṽṽH∆H̃w} can be expressed as

E{wH∆H̃H ṽṽH∆H̃w}

=
1

pu
E{wHNuV

†ṽṽH(V†)HNH
u w}

=
ε2

pu
ṽH(V†)HV†ṽwHw

= pṽHV̄ṽ,

(11)

where V̄ = ε2

pu
(V†)HV†. Therefore, problem (10) can be

equivalently rewritten as

min
w, v

∫∫

D

CN (z; ṽHH̄w, pṽHV̄ṽ)

s.t. ‖w‖2 ≤ p,

vn ∈ Fd, ∀n ∈ N ,

(12)
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where D is a disc centered at zero with radius
√

σ2η in the

complex plane. Then, we can see that ℜ(z) and ℑ(z) are

two independently and normally distributed random variables

with mean values ℜ{ṽHH̄w} and ℑ{ṽHH̄w}, respectively,

and variance 1
2pṽ

HV̄ṽ. Therefore, the double integral in the

objective function of problem (12) is given by
∫∫

D

CN (z; ṽHH̄w, pṽHV̄ṽ)

= P
(

ησ2

1
2pṽ

HV̄ṽ

∣

∣

∣

∣

2

,
|ṽHH̄w|2
1
2pṽ

HV̄ṽ

)

.

(13)

Since P [χ2|2, λ] = 1 − Q1(
√
λ, χ) and Q1(

√
λ, χ) is a

strictly increasing function of λ for all χ > 0 [40], we

have P [χ2|2, λ1] ≤ P [χ2|2, λ2] for any λ2 ≥ λ1; thus, the

optimal w of problem (12) is the maximum-ratio transmission

(MRT) beamformer w =
√
p(ṽHH̄)H/‖ṽHH̄‖ and the power

constraint in problem (12) must be satisfied with equality.

Consequently, problem (12) is further equivalent to

min
v
C(v; p) , P

(

ησ2

1
2pṽ

HV̄ṽ

∣

∣

∣

∣

2

,
ṽHH̄H̄H ṽ
1
2 ṽ

HV̄ṽ

)

s.t. vn ∈ Fd, ∀n ∈ N ,

(14)

where the transmit power constraint ‖w‖2 ≤ p in problem (12)

is safely ignored since ‖w‖2 = p is automatically satisfied by

employing the MRT beamformer.

Note that the MSP ṽHH̄H̄H ṽ and variance ṽHV̄ṽ are

both related to ṽ (the constant 1
2 and p can be ignored

without loss of generality). Moreover, we can observe from

(14) that in order to minimize the outage probability C(v; p),
we should maximize the non-centrality parameter (i.e., the

MVR) ṽ
H
H̄H̄

H
ṽ

ṽHV̄ṽ
and variance ṽHV̄ṽ simultaneously, based

on the fact that P [χ2|2, λ] is a deceasing function of λ and an

increasing function of χ2 for all λ > 0 and χ > 0. However,

the MVR and variance cannot be maximized at the same time

in general via tuning ṽ since larger variance usually leads to

smaller MVR, which renders problem (14) difficult to solve.

Finally, it is worth noting that minimizing the variance ṽHV̄ṽ

does not lead to the minimum outage probability in general,

which may be counter-intuitive at the first glance. This is

because in our case, flexible variance is needed to trade-off

between maximizing MSP and minimizing variance for outage

probability minimization.

B. Proposed WSMax Algorithm

In this subsection, we propose the WSMax algorithm to

efficiently solve problem (14) sub-optimally. First, in order

to gain insight into the optimal solution of problem (14), we

define the following MSP-variance region.

Definition 1 (MSP-variance region). The MSP-variance re-

gion of the considered IRS-aided single-user MISO downlink

system with correlated CSI errors is given by

S , {(S1, S2) :S1 = ṽHV̄ṽ , s1(v),

S2 = ṽHH̄H̄H ṽ , s2(v),v ∈ FN
d }.

(15)

We observe that S is a compact set since it is finite and S
is in general disconnected due to the discrete phase shifts at

the IRS. For the continuous phase-shift case, since the set

of feasible IRS phase shifts FN (F , {φn||φn| = 1}) is

compact and si(v), i ∈ {1, 2} are continuous functions of v

by definition, S is also a compact set since it is the image of

a continuous mapping from FN [41, Theorem 4.14]. Besides,

S is not a normal set since it does not satisfy that for any

point s ∈ S, all s̄ ∈ R2++ with s̄ ≤ s also satisfy s̄ ∈ S [42],

which is reasonable since either s1(v) = 0 or s2(v) = 0 is

unlikely to be true due to the uni-modular constraints on the

IRS phase-shift vector v. Therefore, S is generally non-convex

and it is difficult to characterize the MSP-variance region as

both the MSP and variance are nonlinearly coupled with v. In

Figs. 4 and 5, we illustrate some numerical examples of the

MSP-variance region for both continuous and discrete phase-

shift cases based on the simulation setup in Section V, where

higher color temperature means larger transmit power and vice

versa. For the continuous phase-shift case, we set N = 2 and

Nr = 4, while for the discrete phase-shift case, we set Q = 1,

N = 12 and Nr = N + 1. As can be observed, the MVR,

MPV and MSP optimal points are not necessarily the optimal

point (i.e., achieving the lowest transmit power with the given

outage probability constraint) for both continuous and discrete

phase-shift cases, and the MSP-variance region is non-convex

in general.

To proceed, we further define the upper boundary of S as

follows.

Definition 2 (Upper boundary point). A point s = (S1, S2) ∈
R2++ is called an upper boundary point of S if s ∈ S while the

set {s̄ = (S̄1, S̄2) ∈ R2++ : S̄1 = S1, S̄2 > S2} ⊆ R2++\S.

Based on this definition, we can infer that the optimal solution

of problem (14) must lie on the upper boundary of S since

with fixed s1(v), larger s2(v) always leads to smaller outage

probability (or equivalently, lower transmit power), which can

also be observed from Figs. 4 and 5. Therefore, we propose

to maximize the weighted sum of the MSP and variance (i.e.,

s2(v) and s1(v)), which leads to the following optimization

problem:

max
v

ṽHH̄H̄H ṽ + ωṽHV̄ṽ

s.t. vn ∈ Fd, ∀n ∈ N ,
(16)

where ω denotes the weighting factor which is a real number

and can be positive, negative or zero. It is noteworthy that the

AP transmit power p is not involved in problem (16), therefore

problem (16) does not need to be solved under different values

of p, i.e., the bisection search over p can be conducted with

the obtained v after solving (16).

Problem (16) is generally a non-convex quadratic program-

ming problem with discrete constraints and it can be efficiently

solved by employing a similar PDD-based algorithm as that

in [13]. However, since ω can be negative and the objective

function of problem (16) may contain both convex and concave

components, certain modifications need to be made which will

become clear later. In the following, we present the modified

PDD-based algorithm to solve problem (16), which mainly

consists of two loops. In the inner loop, the block successive

upper-bound minimization (BSUM) method is employed to

iteratively optimize the primal variables in different blocks,
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Fig. 4. Numerical example of the MSP-variance region for the continuous phase-shift case.
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Fig. 5. Numerical example of the MSP-variance region for the discrete phase-shift case.

while in the outer loop, we update the dual variable and

penalty parameter. Specifically, similar to [13], we introduce

an auxiliary variable u = [u1, · · · , uN ]T which satisfies u = v

and an additional constraint ‖v‖2 ≤ N , then the augmented

Lagrangian problem of (16) can be written as follows:

min
v, u

− ṽHH̄H̄H ṽ − ωṽHV̄ṽ +
1

2ρ
‖v − u+ ρλ‖2

s.t. ‖v‖2 ≤ N,

un ∈ Fd, ∀n ∈ N ,

(17)

where ρ is the penalty parameter and λ = [λ1, · · · , λN ]T

denotes the dual variable vector associated with the constraint

v = u. Then, we alternately optimize v and u in the

inner loop. In the v-optimization step, we have the following

problem:

min
v

vH

(

1

2ρ
I−UΣ−UH

)

v

+ 2ℜ
{

vH

(

1

2
λ− 1

2ρ
u− Ĥĥd − ωr

)}

− vHUΣ+UHv

s.t. ‖v‖2 ≤ N,

(18)

where we have used
[

v̄11 rH ; r R
]

= V̄ and the eigen-

decomposition ĤĤH + ωR = U(Σ+ + Σ−)UH . Since

the constraint of problem (18) is convex and its objective

function can be expressed as a difference of two convex

functions when u is fixed, we can apply the BSUM method

to solve it approximately. Note that vHUΣ−UHv contains

the concave component of the original objective function in

(16), and by only approximating the convex component, i.e.,

vHUΣ+UHv, we can reduce the approximation error and

potentially achieve a faster convergence speed. Specifically, by

resorting to the first-order Taylor expansion at a given point

v̄, problem (18) can be approximated by

min
v

vH(I− 2ρUΣ−UH)v

+ 2ℜ
{

vH
(

ρλ− u− 2ρĤĥd − 2ρωr
)}

− 4ρℜ{(UΣ+UH v̄)H(v − v̄)}
s.t. ‖v‖2 ≤ N.

(19)

Next, by resorting to the first-order optimality condition of

problem (19), we have

v(µ) =
(

(1 + µ)I− 2ρUΣ−UH
)−1

b, (20)

where b = 2ρUΣ+UH v̄ − ρλ + u + 2ρĤĥd + 2ρωr and

µ denotes the dual variable associated with the constraint

‖v‖2 ≤ N . If ‖v(0)‖2 ≤ N , then v(0) is the optimal solution

of problem (19); otherwise, the optimal dual variable µ can
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be found via bisection search. In the special case of Σ− = 0,

problem (19) admits a closed-form solution which is given by

[13]

v =

{

b, if ‖b‖2 ≤ N,
b√

‖b‖2/N
, otherwise. (21)

In the u-optimization step, we have

min
u
‖v − u+ ρλ‖2

s.t. un ∈ Fd, ∀n ∈ N ,
(22)

which can be optimally solved in parallel by mapping each

element of v + ρλ to the nearest discrete value in Fd.

Besides, in the outer loop, the dual variable λ is updated

by

λ = λ +
1

ρ
(v − u). (23)

To summarize, we can one-dimensionally search over ω and

for each fixed ω, we employ the PDD-based algorithm to

solve problem (16) and obtain the candidate IRS phase-shift

vector v[ω]; then with fixed v[ω] and the MRT-based solution

for w[ω], the corresponding AP transmit power p[ω] can be

easily found via bisection search; finally, we choose the best

solution pair (v[ω],w[ω]) that achieves the lowest transmit

power. The detailed steps of the proposed WSMax algorithm

to solve problem (7) are given in Algorithm 1. It is noteworthy

that the PDD-based algorithm in Algorithm 1 is guaranteed to

converge to the set of stationary solutions of problem (16) in

the continuous phase-shift case and it can also achieve good

performance in the discrete phase-shift case [13]. While for

the overall Algorithm 1, it is generally difficult to analyze

its convergence property since the outage probability C(v; p)
does not have an analytic expression and there exist discrete

variables in problem (7). However, Algorithm 1 is able to

converge to a high-quality suboptimal solution, as will be

verified by numerical simulations later in Section V.

Remark 2. Note that problem (16) needs to be solved multiple

times (each with a different value of ω) in the proposed

WSMax algorithm, and the number of times is determined

by the granularity during the one-dimensional search for ω.

Through numerical simulations, we find that only very coarse

search over ω is required to achieve near-optimal performance,

thus this one-dimensional search will not lead to unaffordable

computational complexity.

Remark 3. There are two alternative ways to solve prob-

lem (14), one is to find all Pareto-boundary points of the

MVR-variance region (since we want to maximize the MVR

and variance simultaneously) and employ a rate-profile-type

approach [43]; while the other is to formulate a variance-

constrained MSP maximization problem and search the vari-

ance region piece-by-piece. However, for the former approach,

solving the resulting problem is highly involved with compli-

cated MVR and variance constraints, while for the latter ap-

proach, the variance-constrained MSP maximization problem

is also very difficult to solve since the variance region can be

very sparse (as shown in Fig. 5); therefore we adopt the more

tractable WSMax approach in this paper.

Algorithm 1 Proposed WSMax algorithm for Solving Problem

(7)

1: Input: pδ and ǫδ . Initialize ωl, ωu and ∆ω, let ω = ωl

and pbest =∞.

2: repeat

3: Apply the PDD-based algorithm in [13] to solve prob-

lem (16) with the v-optimization step replaced by (20)

or (21) and obtain v[ω].
4: Let pl = 0 and set pu to a large number such that

C(v[ω]; pu) < ǫ.
5: repeat

6: Let p[ω] = (pl + pu)/2 and calculate C(v[ω]; p[ω]).
7: If C(v[ω]; p[ω]) < ǫ, then pu = p[ω], else pl = p[ω],

end.

8: until pu − pl ≤ pδ and |C(v[ω]; p[ω])− ǫ| < ǫδ.

9: Obtain w[ω] =
√

p[ω]
(v[ω]HĤ+ĥ

H
d )H

‖v[ω]HĤ+ĥH
d
‖ .

10: if p[ω] < pbest then

11: (vbest,wbest)← (v[ω],w[ω]), pbest ← p[ω].
12: end if

13: ω ← ω +∆ω.

14: until ω > ωu.

15: Output: vbest and wbest.

C. Relationship with Baseline Algorithms

In this subsection, we introduce three baseline algorithms to

solve problem (14) and show that they serve as special cases

of the proposed WSMax algorithm.

1) MVR Maximization: The first baseline algorithm aims

to maximize the MVR only, which leads to the following

problem:

max
v

vHĤĤHv + 2ℜ{vHĤĥd}+ ĥH
d ĥd

vHRv + 2ℜ{vHr}+ v̄11

s.t. vn ∈ Fd, ∀n ∈ N .

(24)

Problem (24) is similar to the achievable rate maximization

problem in [27], therefore the penalized Dinkelbach-BSUM

algorithm therein can be applied to efficiently solve it, and

the details are omitted for brevity. Note that problem (24) can

be interpreted as a special instance of problem (16) since when

ω is negative, −ω can be viewed as the Dinkelbach parameter

when applying the penalized Dinkelbach-BSUM algorithm.

After obtaining the optimized v, we can employ a similar

bisection search over p as that in Algorithm 1 to find the

required transmit power.

2) MPV Maximization: In the second baseline algorithm,

we aim to minimize the lower bound of the outage probabil-

ity. Specifically, from the Markov’s inequality, we have that

Pr(x ≥ t) ≤ t−1E{x} holds for any non-negative random

variable x [44], thus we can obtain4

Pr
(

|(vHH+ hH
d )w|2 < σ2η

)

= 1− Pr
(

|(vHH+ hH
d )w|2 ≥ σ2η

)

≥ 1− 1

ησ2
E
{

|(vHH+ hH
d )w|2

}

.

(25)

4It is difficult to obtain a sensible upper bound for the outage probability,
therefore we resort to its lower bound instead.
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It can be observed that minimizing this lower bound is

equivalent to maximizing the MPV E
{

|(vHH+ hH
d )w|2

}

.

By resorting to [27, Proposition 1] and employing the optimal

MRT-based solution of w, we have the following approxi-

mated problem of (9) (i.e., the MPV maximization problem):

max
v

vH(ĤĤH +R)v + 2ℜ{vH(Ĥĥd + r)}
s.t. vn ∈ Fd, ∀n ∈ N ,

(26)

which is a special instance of problem (16) when ω = 1.

3) MSP Maximization: Thirdly, based on the intuition that

the MSP should be as large as possible, we ignore the variance

term ṽHV̄ṽ and consider the following MSP maximization

problem directly:

max
v

vHĤĤHv + 2ℜ{vHĤĥd}
s.t. vn ∈ Fd, ∀n ∈ N .

(27)

Note that problem (16) reduces to problem (27) when ω = 0
and the latter is suitable for the case when the CSI errors are

uncorrelated (corresponding to the continuous phase-shift case

and Nr = N + 1).5

Therefore, compared to problems (24), (26) and (27), the

formulation of problem (16) is more general and by one-

dimensionally searching over ω and efficiently solving (16),

we are expected to achieve better performance than solving

(24), (26) or (27) individually in general.

D. Complexity Analysis

The complexity of the proposed WSMax algorithm (i.e.,

Algorithm 1) is mainly due to the PDD-based algorithm used

to solve problem (16), thus can be shown to be of order

O(NωIoIiN
3 log(1/ǫbi)), where Nω denotes the number of

ω-values traversed during one-dimensional search, Io and Ii
denote the maximum outer and inner iteration numbers of

the PDD-based algorithm, and ǫbi represents the accuracy

of the bisection method over the dual variable µ in (20).

Besides, the complexity of the MVR maximization algorithm

is O(IBCD2
QN3 + IP IDN3 log(1/ǫbi)) [27], where IBCD,

IP and ID denote the number of iterations required by the

block coordinate descent (BCD) method, penalty method and

Dinkelbach-BSUM method therein, respectively. For the MPV

and MSP maximization algorithms, the complexity is given by

O(IoIiN2) [13].

IV. MULTIUSER SYSTEM

In this section, we consider the general multiuser case,

where multiple users are assumed to share the same time-

frequency resource and there exists multiuser interference in

general. Since it is difficult to characterize the distributions

of the users’ SINRs, the WSMax algorithm designed for

the single-user system does not apply in this case. Thus,

we propose a two-stage CSSCA algorithm to solve problem

(6). Specifically, we first transform problem (6) into a more

tractable form by utilizing smooth approximation and then

5In this case, maximizing the MSP is optimal since V̄ becomes a diagonal
matrix and the variance ṽHV̄ṽ becomes a constant regardless of the design
of the reflection phase-shift vector v.

construct surrogate functions for the outage probabilities using

randomly generated CSI error samples based on their known

statistics. Next, in the first stage, the discrete IRS phase shifts

are relaxed into continuous ones and are jointly optimized with

the active precoders at the AP. Then, in the second stage, by

quantizing the continuous phase shifts to discrete values and

keeping them fixed, the active precoders are further optimized

to compensate for the outage performance loss caused by

phase quantization.

A. Problem Transformation

First, let i denote the time slot index, we have Pr(SINRk ≤
ηk) = limn→∞

∑
n
i=1 u(ηk−SINRk[i])

n = E{u(ηk − SINRk)} by

definition, where u(·) is the step function, i.e., the SINR outage

probability can be interpreted as the expectation of a step

function parameterized by ηk − SINRk. Then, to resolve the

difficulty brought by the non-smoothness of the step function,

we resort to the following smooth approximate function:

ûϑ(x) =
1

1 + e−ϑx
, (28)

where the smooth parameter ϑ is used to control the ap-

proximation error (i.e., larger ϑ leads to less approximation

error). By replacing the step function u(·) with its smooth

approximation ûϑ(·), we can obtain an approximation of

problem (6) as follows:

min
{wk},v

∑

k∈K
‖wk‖2

s.t. E{ûϑ(qk({wk},v;H))} ≤ ǫk, ∀k ∈ K,
vn ∈ Fd, ∀n ∈ N ,

(29)

where qk({wk},v;H) , ηk(
∑

j∈K\k |(vHHk + hH
d,k)wj |2

+σ2
k)− |(vHHk + hH

d,k)wk|2 and H , {Hk,hd,k}k∈K.

Problem (29) is a non-convex constrained stochas-

tic optimization problem with the random state given

by the CSI errors ξ , {∆H̃k}k∈K. Define ̟ ,

[wT
1 , · · · ,wT

K ,vT ]T as the composite optimization vari-

able, and let zk(̟;H) = ηk(
∑

j∈K\k |(̟HAHHk +

hH
d,k)Bj̟|2 + σ2

k) − |(̟HAHHk + hH
d,k)Bk̟|2 and

gk(̟;H) , ûϑ (qk({wk},v;H)) = ûϑ(zk(̟;H)), where

A ∈ {0, 1}N×(KM+N) and {Bk ∈ {0, 1}M×(KM+N)} are

selection matrices that satisfy A̟ = v and Bk̟ = wk,

respectively.6 Then, by replacing v and {wk} with A̟ and

{Bk̟}, respectively, problem (29) can be rewritten into a

more compact form as7

min
̟

∑

k∈K
̟HBkBk̟ (30a)

s.t. fk(̟) , E {gk(̟;H)} ≤ ǫk, ∀k ∈ K, (30b)

vn ∈ Fd, ∀n ∈ N . (30c)

Note that although the formulation of problem (30) is similar

to that considered in [28], the Bernstein-type approach em-

ployed in [28] is not directly applicable here due to the discrete

6Note that such selection matrices always exist.
7In the following, the notations q(̟;H) and q(̟; ξ) will be used

interchangeably to denote that a certain function q(·; ·) depends on the
optimization variable ̟ and random state ξ.
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IRS phase-shift constraints. Besides, the proposed two-stage

CSSCA algorithm works for any channel estimation error

distribution, while the Bernstein-type approach only works for

Gaussian error distributions.

B. Proposed Two-Stage CSSCA Algorithm

In this subsection, we leverage the stochastic optimization

framework in [45] and propose a novel two-stage CSSCA

algorithm to address problem (30). In the first stage, in order to

make problem (30) tractable, we relax the discrete constraints

in (30c) to |vn|2 ≤ 1.8 Then, we have the following problem:

min
̟

∑

k∈K
̟HBkBk̟

s.t. fk(̟) ≤ ǫk, ∀k ∈ K,
|vn|2 ≤ 1, ∀n ∈ N .

(31)

After solving problem (31) and obtaining the optimized IRS

reflection coefficient vector vo, we project their phase shifts

into Fd to obtain the quantized vq . Then, in the second stage

with fixed vq , we solve the following problem:

min
w
‖w‖2

s.t. f̃k(w) ≤ ǫk, ∀k ∈ K,
(32)

where w , [wT
1 , · · · ,wT

K ]T , f̃k(w) = E{g̃k(w;h)},
h , {hk = HH

k vq + hk} and g̃k(w;h) =
ûϑ(ηk(

∑

j∈K\k |hH
k wj |2 + σ2

k)−|hkwk|2). Note that problem

(32) reduces to the conventional robust beamforming problem

for a multiuser MISO downlink system, and it can be viewed

as a special case of problem (31) with fixed v = vq .

In the following, we present the proposed CSSCA algorithm

to iteratively solve problem (31) in the first stage. Specifically,

in the t-th iteration, convex surrogate functions {f̄ t
k(̟)}

are constructed to deal with the unavailability of closed-

form expressions for the approximated outage probabilities

{fk(̟)}k∈K, which can be expressed as [45]

f̄ t
k(̟) = f t

k+2ℜ
{

(f tk)
H(̟ −̟t)

}

+ τk‖̟−̟t‖2, (33)

where τk > 0 a positive constant and the term τk‖̟−̟t‖2
is added to ensure strong convexity of f̄ t

k(̟), f t
k is an

approximation for E{gk(̟t; ξ)} and f tk is an approximation

for the conjugate gradient ∇̟
∗E{gk(̟t; ξ)}. f t

k and f tk are

iteratively updated according to

f t
k =

1

L

L
∑

l=1

gk(̟
t; ξl), (34)

f tk = (1− ρt)f t−1
k + ρt

1

TH

TH
∑

l=1

∇̟
∗gk(̟

t; ξl), (35)

where f−1
k = 0, f−1

k = 0, L and TH denote the numbers

of channel error samples used to approximate E{gk(̟t; ξ)}
8We allow the reflection amplitudes to be in the interval [0, 1], which has

been shown in [13] to help accelerate the convergence. After obtaining the
optimized IRS phase shifts v, we can project each of its entries independently
onto Fd to obtain a unit-modulus feasible solution in case |vn| < 1, ∃n.
Besides, although this relaxation may not be tight theoretically, it works well
in all of our simulations and the converged solution almost always satisfies
|vn| = 1, ∀n ∈ N .

and ∇̟
∗E{gk(̟t; ξ)}, respectively, ρt ∈ (0, 1] is a sequence

properly chosen according to Assumption 5 in [45]. Note that

in (34) and (35), multiple channel error samples are generated

to improve the approximations f t
k and f tk in each iteration,

which can help accelerate the speed of the proposed algorithm

to converge to the feasible region of problem (31). Besides,

as t→∞, the following asymptotic consistency properties of

the surrogate functions are satisfied [45]: limt→∞ |f̄ t
k(̟

t)−
fk(̟

t)| = 0, limt→∞ ‖∇̟
∗ f̄ t

k(̟
t) − ∇̟

∗fk(̟
t)‖ = 0,

∀k ∈ K. This means that the approximations f̄ t
k(̟

t) and

∇̟
∗ f̄ t

k(̟
t) can converge to the true values of fk(̟

t) and

its conjugate gradient with respect to ̟, respectively, which is

essential for guaranteeing the convergence of the proposed al-

gorithm. For each channel error sample, the conjugate gradient

∇̟
∗gk(̟

t; ξl) is obtained by (ignoring the iteration index t
and sample index l for simplicity and applying the chain rule)

∇̟
∗gk(̟;H) = û′

ϑ(zk(̟;H))z′k(̟;H)

=
ϑe−ϑzk(̟;H)

(

1 + e−ϑzk(̟;H)
)2 z

′
k(̟;H), (36)

where z′k(̟;H) = 2ηk(
∑

j∈K\k qkj(̟;H)) − 2qkk(̟;H)
and qkj(̟;H) = AHHkBj̟̟HBH

j HH
k A̟ + ̟HAH

HkBj̟BH
j HH

k A̟+BH
j hd,kh

H
d,kBj̟+AHHkBj̟̟H

BH
j hd,k+̟HAHHk Bj̟BH

j hd,k+hH
d,kBj̟BH

j HH
k A̟.

Then, we solve the following problem in the t-th iteration:

¯̟ t = argmin
̟

∑

k∈K
̟HBkBk̟

s.t. f̄ t
k(̟)− ǫk ≤ 0, ∀k ∈ K,
|vn|2 ≤ 1, ∀n ∈ N ,

(37)

which can be further expressed as a convex second-order cone

program (SOCP) problem and efficiently solved by off-the-

shelf solvers, such as CVX [46]. If problem (37) is infeasible,

we solve the following problem instead:

¯̟ t = arg min
̟, α

α

s.t. f̄ t
k(̟)− ǫk ≤ α, ∀k ∈ K,
|vn|2 ≤ 1, ∀n ∈ N ,

(38)

which minimizes the gap between the surrogate functions

{f̄ t
k(̟)}k∈K and the corresponding outage probability targets

{ǫk}k∈K, i.e., α. Solving problem (38) helps to pull the

solution to the feasible region of problem (31) when the

current problem at iteration t is infeasible. Given ¯̟ t in one

of the above two cases, ̟ is updated according to

̟t+1 = (1− γt)̟t + γt ¯̟ t, (39)

where {γt} is a sequence satisfying γt → 0,
∑

t γ
t =∞ and

∑

t(γ
t)2 <∞.

In the second stage, problem (32) is iteratively solved

by applying a similar CSSCA algorithm with fixed vq . To

summarize, the proposed two-stage CSSCA algorithm to solve

problem (6) is listed in Algorithm 2. Besides, according to [45,

Theorem 1], the CSSCA algorithm in both stages can converge

to the set of stationary solutions of problems (31) and (32),

respectively, almost surely, therefore the convergence of the

overall Algorithm 2 can be guaranteed.
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Algorithm 2 Proposed Two-Stage CSSCA Algorithm for

Solving Problem (6)

1: Input: {ρt}, {γt}, L, TH and ξo. Initialize: ̟0. Set t =
0.

2: Stage I:

3: Generate {ξl} according to { 1√
pu,k

(V†)HNH
u,k}. Update

the surrogate functions f̄ t
k(̟), ∀k according to (33), using

{ξl} and ̟t.

4: If Problem (37) is feasible, then solve problem (37) to

obtain ¯̟ t, else solve problem (38) to obtain ¯̟ t, end.

5: Update ̟t+1 by (39).

6: Let t = t + 1, if the fractional decrease of f t
k is larger

than the threshold ξo, return to Step 3, otherwise, go to

Step 7.

7: Extract the optimized IRS reflection coefficients vo from

̟ and quantize vo to vq .

8: Stage II: Repeat Steps 3-6 with fixed vq to obtain

optimized {wk}.
9: Output: vq and {wk}.

Remark 4. Since we use the smooth approximation function

in (28) to imitate the behavior of the step function, the

gradient ∇̟
∗gk(̟;H) may approach to zero due to the term

ϑe−ϑzk(̟;H)

(1+e−ϑzk(̟;H))
2 in (36) when |zk(̟;H)| is too large. This

causes the so-called “vanishing gradient” problem that would

prevent the proposed algorithm from updating the variable ̟.

To tackle this difficulty, we modify the gradient in (36) as

follows:

∇̟
∗gk(̟;H) = ϑe−z̄k(̟;H)

(

1 + e−z̄k(̟;H)
)2 z

′
k(̟;H), (40)

where

z̄k(̟;H) =







ζ, if ϑzk(̟;H) ≥ ζ,
−ζ, if ϑzk(̟;H) ≤ −ζ,
ϑzk(̟;H), otherwise,

(41)

and ζ > 0 is a constant that is properly chosen according to

the smooth parameter ϑ. Equivalently, this modification can be

viewed as introducing a new piecewise smooth approximation

function that transforms (28) into a linear function when the

absolute value of its input is larger than a certain threshold,

i.e.,

ûϑ(x) =











ϑe−ζ

(1+e−ζ)2
x, if ϑx ≥ ζ,

ϑeζ

(1+eζ)2
x, if ϑx ≤ −ζ,

1
1+e−ϑx , otherwise.

(42)

In our simulations, utilizing (42) can effectively resolve the

“vanishing gradient” problem in the proposed Algorithm 2 and

accelerate its convergence.

Remark 5. Note that the proposed two-stage CSSCA algo-

rithm (i.e., Algorithm 2) can be applied to solve the single-user

problem (7) as well and it achieves a similar performance as

that of the WSMax algorithm in our simulations. However, the

WSMax algorithm is more suitable for the single-user case

since it is simpler to implement (as it does not require off-

the-shelf solvers) and invokes only efficient variable updating

steps, which either admit closed-form solutions or can be

carried out via simple iterative procedures.

C. Complexity Analysis

The complexity of the first-stage CSSCA algorithm is

mainly due to updating the surrogate functions in (33) (i.e.,

Step 3 in Algorithm 2) and solving problems (37) or (38)

(i.e., Step 4 in Algorithm 2). Specifically, the complexity of

updating the surrogate functions in each iteration is dominated

by a number of matrix multiplications, which is given by

O(K2(L + TH)((N + M)(KM + N) + NM)). Besides,

since problem (38) contains more optimization variables than

problem (37), the worst-case complexity of Step 4 in Algo-

rithm 2 is O(K0.5(N + KM + K)3). Therefore, the com-

plexity of the first-stage CSSCA algorithm is shown to be

C1 = O(I1(K2(L + TH)((N + M)(KM + N) + NM) +
K0.5(N +KM +K)3)), where I1 denotes the iteration num-

ber. Similarly, the worst-case complexity of the second stage

is shown to be C2 = O(I2(K(L+TH)M+K0.5(KM+K)3)
with I2 denoting the iteration number. Therefore, the overall

complexity can be expressed as C1 + C2.

V. SIMULATION RESULTS

In this section, we provide numerical results to evaluate

the performance of the proposed algorithms and draw useful

insights. In our simulations, the distance-dependent path loss

is modeled as L = C0 (dlink/D0)
−α

, where C0 is the path

loss at the reference distance D0 = 1 meter (m), dlink

represents the individual link distance and α denotes the path-

loss exponent. The path-loss exponents of the AP-user, AP-

IRS and IRS-user links are set to αAu = 3.6, αAI = 2.2
and αIu = 2.2, respectively. A three-dimensional coordinate

system is considered where the AP (equipped with a uniform

linear array (ULA)) and the IRS (equipped with a uniform

rectangular array (UPA)) are located on the x-axis and y-z
plane, respectively. We set N = NyNz where Ny and Nz

denote the numbers of reflecting elements along the y-axis

and z-axis, respectively. For the purpose of exposition, we

fix Ny = 4. The reference antenna and reference reflecting

element at the AP and IRS are located at (2m, 0, 0) and

(0, 45m, 2m), respectively, and the users are randomly located

on the x−y plane and in a cluster 2 m away from the IRS with

a radius of 1.5 m, as shown in Fig. 6. To account for small-

scale fading, we assume the Rician fading channel model for

all channels involved in general. Thus, the AP-IRS channel G

is given by

G =

√

βAI

(1 + βAI)
GLoS +

√

1

(1 + βAI)
GNLoS, (43)

where βAI is the Rician factor, and GLoS and GNLoS represent

the deterministic line-of-sight (LoS) and Rayleigh fading non-

LoS (NLoS) components, respectively. The AP-user and IRS-

user channels are also generated by following the similar

procedure and the Rician factors of these two links are denoted

by βAu and βIu, respectively. Other system parameters are

set as follows unless otherwise specified: σ2
k = −80 dBm
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C0 = −30 dB, N = 40, M = 4, Nr = N + 1, Q = 1,

βAu = βIu = 0, βAI = 3 dB, ηk = η = 5 dB, ∀k,

ǫk = ǫ = 0.1, ∀k, pu,k = pu = 6 dBm, ∀k, ωl = −40,

ωu = 10 and ∆ω = 1, ρt = (1 + t)−0.5, γt = (1 + t)−0.6,

ϑ = 100, ζ = 8, L = 105 and TH = 200. Note that the

specific coefficients in {ρt, γt} such as 0.5 and 0.6 are tuned

to achieve a good empirical convergence speed.

x

y

z

AP

IRS

2m

45m

2m

User cluster

1.5m

45m

Fig. 6. Simulation setup of the considered IRS-aided MISO downlink system.

A. Single-User Case

1) Performance Comparison with Benchmark Algorithms:

We first investigate the performance of the proposed WSMax

algorithm with fixed N = 10 and η = 15 dB, as shown in Fig.

7. For comparison, we consider four benchmark algorithms:

1) the performance bound obtained by exhaustively searching

over all combinations of the IRS phase shifts and then choose

the best one that achieves the minimum transmit power;

2) the BCD algorithm, where the AP transmit power p is

found via bisection search and with any given p, each IRS

phase shift is successively optimized with others fixed until

convergence; 3) the conventional scheme by using the MRT

beamforming at the AP, but without the IRS; and 4) the

progressive thresholding algorithm, where the following SNR-

constrained power minimization problem:

min
w, v
‖w‖2

s.t. |(vHĤ+ ĥH
d )w|2 ≥ ησ2, vn ∈ Fd, ∀n ∈ N ,

(44)

is solved many times using the algorithm in [13] and each

time with an increased SNR target η, i.e., η ← η + δη
(δη is set to 0.01 dB in our simulations), until the outage

probability is below ǫ. From Fig. 7, it is observed that the

performance of all algorithms improves as the uplink training

power pu increases, which is because larger pu implies that

the CSI is more accurate and thus less power for data trans-

mission is needed to meet the outage probability constraint.

The required AP transmit powers of all algorithms with IRS

are significantly lower than that without IRS, which implies

that IRS is practically useful even with coarse and low-cost

phase shifters and under imperfect CSI. Besides, the proposed

WSMax algorithm can achieve very closely to the performance

bound in this simulation setup and it is better than the BCD

and progressive thresholding algorithms, especially when the

CSI is less accurate.

2) Performance Comparison with Different Values of ω:

In Fig. 8, we plot the downlink transmit power at the AP

(for a typical channel realization) versus the weighting factor
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Fig. 7. Performance comparison with benchmark algorithms under different
values of pu.

ω with different values of the step-size ∆ω, where η = 15
dB. It can be seen that for many different values of ω
(especially when ω < 0), the downlink transmit power is

almost constant except for some minor variations and sudden

increases. As a result, a very coarse search over ω is sufficient

for the proposed WSMax algorithm to achieve near-optimal

performance, which validates the statement in Remark 2.
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Fig. 8. Downlink transmit power versus weighting factor ω with different
values of ∆ω.

3) Impact of Uplink Training Power, pu: In Fig. 9, we plot

the average downlink transmit power at the AP under different

values of pu and Q, and provide performance comparison

between the proposed WSMax algorithm and the baseline

algorithms introduced in Section III-C, where η = 15 dB.

First, it is observed that the proposed WSMax algorithm

achieves the best performance among the considered coun-

terparts. When Q = 1, its performance gains over the MPV

and MSP maximization algorithms gradually decrease with

the increasing of pu, while the performance gain over the

MVR maximization algorithm increases with pu. Besides,

maximizing the MVR is better than maximizing the MPV or

MSP in the low-pu regime, which implies that minimizing

the variance (corresponding to the negative-ω case) is more
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beneficial for minimizing the outage probability when the

estimated CSI is less accurate. On the contrary, in the high-

pu regime, maximizing the MPV/MSP is better since the CSI

errors are relatively small and it becomes more beneficial to

maximize the MSP. Second, we observe that when Q = 3,

the performance gain of the proposed WSMax algorithm is

less significant as compared to the case with Q = 1. This is

because as Q increases, the reflection patterns in V during

channel training become near-orthogonal and the CSI errors

are less correlated, thus the impact of the variance ṽHV̄ṽ is

minor. As a result, maximizing the MPV and MSP is better

than maximizing the MVR in this case.
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Fig. 9. Average downlink transmit power versus uplink training power, pu.

4) Impact of SNR Target, η: In Fig. 10, we investigate the

average downlink transmit power at the AP versus the SNR

target η. It can be seen that the required power of all the con-

sidered algorithms increases with η, which is reasonable since

more power is needed to achieve higher SNR. In addition, we

observe that the performance gains of the proposed WSMax

algorithm over the baseline algorithms are almost invariant

with different values of η. This is due to the fact that η scales

proportionally with p and thus does not affect the optimization

of the IRS phase shifts, as can be seen from (14).
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Fig. 10. Average downlink transmit power versus SNR target, η.

5) Impact of Outage Probability Target, ǫ: Next, in Fig. 11,

we plot the average downlink transmit power at the AP versus

the outage probability target ǫ, where η = 10 dB. First, it is

observed that the downlink transmit power of all algorithms

decreases as ǫ increases, which shows that less power is

needed if the outage probability requirement is less stringent.

Second, we observe that the proposed WSMax algorithm

achieves the lowest transmit power and its performance gains

over the baseline algorithms enlarges with the decreasing

of ǫ. Therefore, the proposed WSMax algorithm is able to

significantly reduce the required transmit power at the AP,

especially for more reliable transmissions (corresponding to

smaller values of ǫ).
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Fig. 11. Average downlink transmit power versus outage probability target,
ǫ.

6) Impact of Number of Reflecting Elements, N : In Fig. 12,

we plot the average downlink transmit power at the AP versus

the number of IRS reflecting elements N , where η = 15 dB. It

is observed that the downlink transmit power of all algorithms

decreases when N increases, which is reasonable since larger

N leads to higher aperture gain and offers more flexibility

when designing the passive beamforming with discrete phase

shifts at the IRS. Besides, we can see that the performance

gain of the proposed WSMax algorithm over the MVR max-

imization algorithm slightly increases with N and that over

the MPV maximization algorithm decreases with N . This is

because when N increases, the IRS becomes more effective

in maximizing the MSP and the impact of the variance is less

significant; therefore, it becomes less useful to minimize the

variance through maximizing the MVR. This also explains

why the performance of the MSP maximization algorithm

is better than that of the MVR maximization algorithm in

the large-N regime. Moreover, the performance gain of the

proposed WSMax algorithm over the MSP maximization

algorithm is almost invariant with different values of N , which

is because the latter ignores the optimization of the variance.

B. Multiuser Case

In this subsection, we consider the multiuser system with

K ≥ 2 users and the AP is equipped with M = 6 an-

tennas, with pu = 18 dBm. We first illustrate in Fig. 13
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N .

the convergence behavior of the proposed two-stage CSSCA

algorithm by plotting the required downlink transmit power

and maximum constraint violation (i.e., the highest outage

probability among the users maxk{f t
k} minus the outage

probability target ǫ) versus the number of iterations with

K = 4. From Fig. 13, we can observe that although the curves

are not necessarily monotonic due to the stochastic nature

of the proposed algorithm, it is able to converge in about

40 iterations (for both stages) and the maximum constraint

violation maxk{f t
k} − ǫ gradually converges to zero as the

iteration number increases.
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Fig. 13. Convergence behavior of the proposed two-stage CSSCA algorithm.

Finally, in Fig. 14, we investigate the average downlink

transmit power at the AP versus the number of users, K .

Similar to that in Fig. 7, the performance of the progressive

thresholding algorithm is provided for comparison, where the

underlying SINR-constrained power minimization problem is

solved by using the algorithm in [30]. The non-robust scheme

is obtained by designing {wk} and v based on the estimated

CSI and ignoring the outage probability constraints (thus

cannot guarantee any outage performance). It is observed that

the proposed two-stage CSSCA algorithm outperforms the

progressive thresholding algorithm and the performance gain

is more pronounced when K increases. This is because the

multiuser interference due to imperfect CSI is more severe

with larger K and for the progressive thresholding algorithm,

it becomes more difficult to design {wk} and v to guarantee

outage probability by simply increasing η. For the same

reason, the performance gap between the proposed algorithm

and the non-robust scheme enlarges with the increasing of K ,

which implies that more power is needed as a price paid for

guaranteed outage performance.
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Fig. 14. Average downlink transmit power versus number of users, K

VI. CONCLUSION

In this paper, we studied an outage-constrained power min-

imization problem for joint active and passive beamforming

design in an IRS-aided communication system, under corre-

lated CSI errors. We proposed two efficient algorithms, i.e.,

the WSMax algorithm and two-stage CSSCA algorithm, for

the single-user and multiuser cases, respectively. Simulation

results showed that the proposed algorithms can effectively

reduce the transmit power at the AP with guaranteed outage

performance, especially when the channel training resources

are limited.
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