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Abstract—Perceptive mobile network (PMN) is a recently
proposed next-generation network that integrates radar sensing
into communications. One major challenge for realizing sensing
in PMNs is how to deal with spatially-separated asynchronous
transceivers. The asynchrony between sensing receiver and trans-
mitter will cause both timing offsets (TOs) and carrier frequency
offsets (CFOs) and lead to degraded sensing accuracy in both
ranging and velocity measurements. In this paper, we propose an
uplink sensing scheme for PMNs with asynchronous transceivers,
targeting at resolving the sensing ambiguity and improving the
sensing accuracy. We first adopt a cross-antenna cross-correlation
(CACC) operation to remove the sensing ambiguity associated
with both TOs and CFOs. Without sensing ambiguity, both actual
propagation delay and actual Doppler frequency of multiple
targets can be obtained using CACC outputs. To exploit the
redundancy of the CACC outputs and reduce the complexity,
we then propose a novel mirrored-MUSIC algorithm, which
halves the number of unknown parameters to be estimated, to
obtain actual values of delays and Doppler frequencies. Finally,
we propose a high-resolution angles-of-arrival (AoAs) estimation
algorithm, which jointly processes all measurements from spatial,
temporal, and frequency domains. The proposed AoAs estimation
algorithm can achieve significantly higher estimation accuracy
than that of using samples from the spatial domain only. We
also derive the theoretical mean-square-error of the proposed
algorithms. Numerical results are provided and validate the
effectiveness of the proposed scheme.

Index Terms—Joint communication and radar sensing, dual-
functional radar-communications, uplink sensing, mirrored-
MUSIC, perceptive mobile network.

I. INTRODUCTION

The emerging joint communication and radar sensing (J-
CAS) techniques, aka, dual-functional radar-communications
(DFRC), integrate communication and radar sensing functions
into one system by sharing a single transmitted signal and
many hardware and signal processing modules [1]–[6]. The in-
tegration not only achieves immediate benefits of reduced size,
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power consumption, cost, and improved spectrum efficiency
but also helps to establish a communication link using sensing
information or vise versa [7]. The perceptive mobile network
(PMN) [8]–[11] is a recently proposed next-generation mobile
network based on the JCAS techniques. The concept of PMN
was first introduced in [8] and then elaborated in [9]. Evolving
from the current communication-only mobile network, PMN is
expected to serve as a ubiquitous radar-sensing network, whilst
providing uncompromising mobile communication services.

Although PMN and its systematic framework were intro-
duced in [8], JCAS technologies have been actively studied in
the past decade, particularly the technologies closely related to
modern mobile networks. In [12], the orthogonal-frequency-
division-multiplexing (OFDM) signal was used for sensing and
communication simultaneously. Also using the OFDM signals,
the authors in [13] developed a smoothing approach that jointly
estimates the delay and Doppler frequency of targets moving
at a high speed. In the scenario of multiuser systems, the
authors in [14] proposed an interleaved OFDM signal model to
mitigate the multiuser interference (MUI). The authors in [15]
analyzed the MUI tolerance of a multiple-input multiple-out
(MIMO) JCAS system in terms of the resulting radar signal-
to-interference-plus-noise ratio (SINR), using the signal model
in [14]. In [16], the authors used separated antenna arrays
to realize dual-function JCAS systems. A multi-objective
function was further applied to trade off the similarity of the
generated waveform to the desired one in [17]. It is noted that
all these papers use a co-located DFRC transceiver, similar
to a mono-static radar, and face an essential requirement of
the full-duplex capability of the transceiver [18]. Alternative
solutions other than full-duplex transceiver exist but require
changes to existing network infrastructure, e.g., the authors in
[19] used a synchronized single-antenna sensing receiver that
is sufficiently separated from the transmitter.

Since the full-duplex technology is not quite mature, there
exists an optional transceiver setup for realizing JCAS in
PMNs, similar to a bi-static radar [20], where the sensing
receiver is physically separated from the transmitter. This setup
is consistent with the uplink sensing as defined in [9]. Such a
setup can be implemented with minimal network changes only
and is a favorite option in the near term. Some works have
been done for realizing JCAS for the uplink channels [21],
[22]. In [21], the authors investigated the uplink sensing in a
fifth-generation (5G) cellular network using massive MIMO
and coexisting with a radar in the same frequency band. The
authors adopted broadband OFDM modulation and obtained
the uplink channel estimation via minimum-mean-squared-
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error (MMSE) or zero-forcing (ZF) based processing schemes.
In [22], the authors proposed a receiver architecture for DFRC
systems and obtained its corresponding uplink communication
channel capacity and radar channel capacity, respectively. The
main challenges for realizing this setup in PMNs are (1) the
unavailability of clock-level synchronization between the sens-
ing receiver and the transmitter; (2) the relatively low angle-
of-arrival (AoA) estimation accuracy due to the rich multi-path
environment in mobile networks [9]. Perfect synchronization
was assumed in most recent papers about JCAS, whereas the
asynchrony between the sensing receiver and the transmitter
is not addressed yet. Some papers on cognitive radio have
dealt with the asynchronous issues [23], [24] but they are
unrelated to JCAS. These works analyzed the interferences
caused by asynchrony but did not provide an effective way
for parameter estimation. Without clock-level synchronization
between the sensing receiver and the transmitter, both timing
offsets (TOs) and carrier frequency offsets (CFOs) can occur
[25], [26], leading to sensing ambiguity and degraded accuracy
in estimating delay and Doppler frequency of targets.

To handle the asynchronous transceivers, a limited number
of works on passive WiFi sensing have been proposed based
on a cross-antenna cross-correlation (CACC) method [25]–
[27]. The underlying principle of CACC is that TOs can be
removed by computing the cross-correlation between signals
of multiple receiving antennas and exploiting the same TO
across multiple antennas in one device. In [25], CACC is
applied to resolve the AoA estimation problem for device-free
human tracking with commodity WiFi devices. In [26], CACC
is used to resolve the ranging estimation problem for passive
human tracking using a single WiFi link. Unfortunately, there
exists a derivative problem with the CACC method, i.e., the
outputs from CACC contain mirrored unknown parameters.
The mirrored parameters double the number of unknown
parameters and also obscured the sign of Doppler frequencies,
leading to a degraded sensing accuracy. The author in [25]
proposed an add-minus suppression (AMS) method that sup-
presses the mirrored parameters and extracts the actual ones.
However, the AMS method needs the power of static paths to
be much stronger than that of the dynamic paths, otherwise the
mirrored component is suppressed slightly in a rich multi-path
environment.

To overcome the challenge of low AoA estimation accuracy
in the physically-separated transceiver, techniques based on
spatial smoothing and combining measurements in spatial and
other domains have been proposed [28]–[30]. In [28], the
authors proposed a high-resolution two-dimension (2D) MU-
SIC estimator via spatial smoothing, to obtain accurate AoA
estimates with a small scale of antennas. In [29], the authors
jointly combined spatial and temporal measurements to obtain
high-resolution AoA estimation. In [30], the authors defined a
spatial path filter that is used to separate signals from multiple
propagation paths and obtained the AoAs via CACC outputs.
All these methods are designed for narrowband systems and
they do not have the capability of jointly estimating AoAs and
other parameters such as delay and Doppler frequency.

In this paper, we propose a broadband uplink sensing
scheme for PMNs with physically-separated asynchronous

transceivers and OFDM modulation. There are two key nov-
elties in our scheme. Firstly, since the mirrored components
derived from the CACC outputs have not been addressed prop-
erly in prior works, we propose a mirrored-MUSIC algorithm
that jointly processing the actual and mirrored parameters to
overcome the mirrored parameter problem associated with
CACC. Secondly, noting that the estimates of AoAs are
not included in the proposed mirrored-MUSIC algorithm, we
propose a high-resolution AoA estimation algorithm that can
obtain high-resolution estimates of AoAs by combining spatial
and other domain measurements. Our proposed scheme is
applicable for practical scenarios requiring a single static
user equipment (UE) and a line-of-sight (LOS) path between
the static transmitter and the base station (BS). Our major
contributions are summarized as follows.

• We provide a practical radar sensing scheme that can
be implemented in mobile networks without the re-
quirement of clock-level synchronization between the
transmitter and receiver. By using a CACC method to
mitigate the TOs and CFOs resulted from asynchrony,
our scheme relaxes stringent clock-level synchronization
between physically-separated transceivers. The mean-
squared-error (MSE) between the CACC output and our
desired signal also keeps at a minimum level.

• We propose a mirrored-MUSIC algorithm to handle the
mirrored outputs of the CACC method and a gener-
al problem where the test basis vectors show mirror
symmetry. The algorithm, which halves the unknown
variables without introducing any approximation, has
lower complexity and better performances compared to
conventional MUSIC. This algorithm can also be applied
to many other applications, such as traditional harmonic
retrieval problems with the sinusoidal modulated signals
[31], [32], ESPRIT [29], and the matrix pencil method
[33].

• We develop a high-resolution MUSIC-based AoA es-
timation algorithm that combines measurements from
spatial, temporal, and frequency domains. This algorithm
equivalently increases the samples in the spatial domain
and hence significantly improves the resolution of AoAs,
compared with estimating the AoAs in the spatial domain
only. In particular, a new issue of “ambiguity of basis
vectors” occurs when integrating multiple parameters into
one domain measurement. Our algorithm resolves this
critical issue in combining multi-domain measurements
by selecting multiple peaks from the MUSIC outputs.

The rest of this paper is organized as follows. Section II
introduces system and channel models. Section III presents the
CACC method. Section IV introduces the proposed mirrored-
MUSIC algorithm for estimating the actual delays and Doppler
frequencies. Section V presents the high-resolution AoA esti-
mation scheme. Extensive simulation results are presented in
Section VI. Finally, conclusions are drawn in Section VII.

Notations: a denotes a vector, A denotes a matrix, italic En-
glish letters like N and lower-case Greek letters α are a scalar,
∠a is the phase angle of complex value a. |A|,AT ,AH ,A†

represent determinant value, transpose, conjugate transpose,
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Fig. 1. Illustration of the system model for uplink sensing.

pseudo inverse, respectively. We denote Frobenius norm of
a matrix as ‖A‖F . We use diag(α1, · · · , αk) to denote a
diagonal matrix. [A]N is the N th column of a matrix and
[A]N is the N th row of a matrix.

II. SYSTEM AND CHANNEL MODELS

We consider the uplink communication and sensing in a
PMN, as shown in Fig. 1. Multiple UEs communicate with
a BS. The BS is physically static and uses received uplink
signals for both communication and sensing. Each UE has one
antenna and the BS has a limited number of N antennas. Our
proposed scheme in this paper requires the following setups:
• The signals used for sensing are from a specific UE of

which location is fixed and known to the BS.
• There is a LOS propagation path between the BS and the

UE used for sensing. The power of the LOS path is much
larger than that of non-LOS (NLOS) paths.

This setup is practically feasible for PMNs. The fixed UE
can be a node that provides fixed broadband access in the
mobile network. We can adopt the millimeter-wave frequency
band to guarantee the dominating power of the LOS path.
In PMNs, several types of signals may be used for sensing.
Referring to the 5G mobile network, they can be demodulation
reference signals (DMRSs) that are specifically provided for
channel estimation, synchronization signal blocks (SSBs), and
even demodulated data symbols [34]–[37]. Without loss of
generality, we consider sensing via the uplink signal from a
specific UE, denoted as UE 1.

At all UEs, we adopt a simplified packet structure, as
shown in Fig. 2. In each packet, training symbols, denoted
as preambles, are followed by a sequence of data symbols.
OFDM modulation is applied across the whole packet. These
data symbols can be empty if the packet is a DMRS. We
only use the OFDM preambles for sensing. The preambles
can also be used for synchronization and channel estimation
for communications, which needs different processing at the
BS. In this paper, we would like to use the preambles for
sensing multiple targets in the PMN. The parameters of targets
including the propagation delay, Doppler frequency, and AoA
need to be obtained. Our proposed scheme can also be applied
to other systems with similar signal structure, such as WiFi
systems.

Without losing generality, we assume each packet has only
one preamble. For both preamble symbol and data symbol,
each of them has G subcarriers with a subcarrier interval
of 1/T , where T denotes the length of an OFDM symbol.

A
Interval between 2 Packets T

Fig. 2. Illustration of transmitted OFDM packets at the UE baseband.

Each of the OFDM symbols is prepended by a cyclic prefix
(CP) of period TC. Our scheme works if and only if a
segment of subcarriers with an interleaved interval is available
for UE 1. When multiple UEs communicate with the BS,
each UE occupies a unique segment of subcarriers with the
interleaved interval as in [15]. For notational simplicity, we
assume that UE 1 occupies the whole preamble symbol here.
Mathematically, the mth preamble symbol can be expressed
as [13], [14]

s(t|m) =

G−1∑
g=0

exp

(
j2πg

t

T

)
rect

(
t

T + TC

)
x[m, g], (1)

where x[m, g] is a modulated symbol transmitted on the gth
subcarrier of the mth preamble symbol and rect

(
t

T+TC

)
denotes a rectangular window of length T + TC.

The BS receives the preambles using a uniform linear array
(ULA) of N antennas. The uplink channel between receiver
at BS and the transmitter at UE 1 has L NLOS paths reflected
or refracted from L targets, together with a dominating LOS
path, where the index of the LOS path is denoted as l = 0.
Let αl, fD,l, τl and θl denote the channel gain, the Doppler
frequency, the propagation delay, and the AoA of the lth path,
respectively. Due to the fixed locations of BS and UE 1, we
assume that the parameters, τ0 and θ0, which correspond to the
LOS path, are known at the BS, and fD,0 is 0. We also assume
that |α0| � |αl|,∀l ∈ {1, · · · , L}. Note that the Doppler
frequency of the lth path comes from the lth target of the
channel, which can be either positive or negative depending
on the moving directions.

We assume that M packets are sent at the same interval,
denoted as TA, at the UE baseband. Since there is typically
no synchronization at clock level between BS and UE 1, the
received signal has an unknown time-varying TO, denoted
as δτ (m), associated with the clock asynchrony, even if the
packet level synchronization is achieved. Hence, the total time
delay during signal propagation for the lth target as seen by BS
equals τl+δτ (m). In [26], it is shown that there also exists an
unknown time-varying CFO due to the asynchronous carrier
frequency, denoted as δf (m). The received time-domain signal
corresponding to the preamble symbol in the mth packet can
be represented as [26]

y(t|m) =

L∑
l=0

αle
j2πm(TA+δτ (m)+τl)(fD,l+δf (m))×

s(t− τl − δτ (m))a(Ωl) + z(t|m)
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≈
L∑
l=0

αle
j2πmTA(fD,l+δf (m))×

s(t− τl − δτ (m))a(Ωl) + z(t|m), (2)

where the vector, a(Ωl) = exp[jΩl(0, 1, · · · , N − 1)]T , is the
array response vector of size N ×1, with Ωl being 2πd

λ cos θl,
d denoting the antenna interval, λ denoting the wavelength,
and θl being the AoA from the lth target, and z(t|m) is a
complex additive-white-Gaussian-noise (AWGN) vector with
zero mean and variance of σ2. Due to the instability of the
oscillating frequency in the transceiver, both TO and CFO
are slowly time varying. The accumulated varying values
across a long period can be non-negligible, particularly for
sensing. Hence they can directly cause ambiguity of ranging
and velocity measurements. They also make the total delay
and total Doppler frequency vary with time and prevent from
aggregating signals for joint processing. It should be noted
that, for the communication purpose, there is no need to
distinguish the actual parameters with these offsets, since they
can be estimated as a whole value and then be removed. As for
the radar sensing purpose, these offsets have to be mitigated
since the range and the velocity of targets only depend
on actual parameters. Note that we use the approximation
ej2πm(TA+δτ (m)+τl)(fD,l+δf (m)) ≈ ej2πmTA(fD,l+δf (m)), since
the timing values of (δτ (m) + τl) are much smaller than TA

and (fD,l + δf (m)) is also small in relation to the sampling
rate.

After removing CP from the received time-domain signal,
we then transform the signal into frequency domain via G-
point fast-Fourier-transform (FFT)’s. Referring to (2), the
received frequency-domain signal is

yn[m, g] =

L∑
l=0

αle
jnΩlej2πmTA(fD,l+δf (m))×

e−j2π
g
T (τl+δτ (m))x[m, g] + zn[m, g], (3)

where yn[m, g] is the received frequency-domain signal on the
gth subcarrier at the nth receiving antenna of the mth OFDM
preamble symbol, and zn[m, g] is a complex AWGN with zero
mean and variance of σ2. The actual value of |x[m, g]|2 has
insignificant impact on our proposed scheme. For simplicity,
we assume |x[m, g]|2 = 1.

III. CACC FOR MITIGATING TOS AND CFOS

As we mentioned in Section II, the actual delays and the
actual Doppler frequencies are mixed with TOs and CFOs,
respectively. In this section, we adopt and extend the CACC
method to generate signals with TOs and CFOs being re-
moved, in order to obtain the delay and the Doppler frequency
of targets.

We decompose the received signals into three parts, i.e.,

yn[m, g] = Dn[m, g] + In[m, g] + zn[m, g], (4)

where Dn[m, g] denotes the received signal from the LOS
path, given by

Dn[m, g] =α0e
jnΩ0ej2πmTAδf (m)e−j2π

g
T (τ0+δτ (m))x[m, g],

(5)

and In[m, g] is the received signals reflected or refracted from
the targets, given by

In[m, g]

=

L∑
l=1

αle
jnΩlej2πmTA(fD,l+δf (m))e−j2π

g
T (τl+δτ (m))x[m, g].

(6)

The CACC operation makes it possible to mitigate both
TO and CFO. This operation computes the cross-correlation
between different antennas and is generally used in estimating
the AoA with hybrid subarrays [30]. We select one antenna
that has the largest received average power as reference an-
tenna. Without losing generality, we assume that the reference
antenna is the 0th antenna. Neglecting the noise term, the
CACC operation between the nth antenna and the 0th antenna
generates

ρn[m, g] = yn[m, g]yH0 [m, g]

≈ (Dn[m, g] + In[m, g])(DH
0 [m, g] + IH0 [m, g])

, ρ(1)
n + ρ(2)

n [m, g] + ρ(3)
n [m, g] + ρ(4)

n [m, g], (7)

where y0[m, g] is the received signal at the reference
antenna, ρ

(1)
n [m, g] = Dn[m, g]DH

0 [m, g], ρ
(2)
n [m, g] =

In[m, g]IH0 [m, g], ρ
(3)
n [m, g] = Dn[m, g]IH0 [m, g], and

ρ
(4)
n [m, g] = In[m, g]DH

0 [m, g]. For those CACC outputs, we
have the following proposition.

Proposition 1. In ρn[m, g], ρ(1)
n [m, g] is invariant with m and

g. The 2D-FFT output of ρ(3)
n [m, g]+ρ

(4)
n [m, g] over m and g

shows an impulsive shape that is centred around τl and fD,l.
The power of ρ(2)

n [m, g] is significantly lower than the other
three terms.

Proof: The proof is provided in Appendix A.
According to Proposition 1, by using a 2D high-pass fil-

ter with respect to m and g, we can remove the invariant
component from the CACC outputs and obtain ξ̂n[m, g] ≈
ρ

(3)
n [m, g] + ρ

(4)
n [m, g]. The cut-off frequency of the 2D

high-pass filter depends on the bandwidth of ξ̂n[m, g]. From
Appendix A, the cut-off frequency of ξ̂n[m, g] is (ωf , ωτ ) =
(min |πTAfD,l| ,min(π(τl − τ0)/T )).

From the expression of ρ(3)
n [m, g] + ρ

(4)
n [m, g], we note

that ξ̂n[m, g] contains the actual sensing parameters without
TOs and CFOs. The output from the high-pass filter can be
represented as

ξ̂n[m, g] =ρn[m, g]− ρ̄n
≈ρ(3)

n [m, g] + ρ(4)
n [m, g]

=

L∑
l=1

α0α
H
l e

j2πmTA(−fD,l)e−j
2πg
T (τ0−τl)ejnΩ0+

L∑
l=1

αlα
H
0 e

j2πmTAfD,le−j
2πg
T (τl−τ0)ejnΩl

,ξn[m, g], (8)

where ρ̄n is the low-pass component in ρn[m, g]. Note that the
delays in (8) become relative values, i.e., τl−τ0, (0 < τ0 < τl).
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Since τ0 is assumed to be known at the BS, the problem of
estimating τl becomes how to estimate the relative delays. The
error between ξ̂n[m, g] and ξn[m, g] is resulted from ρ

(2)
n [m, g]

and hence not affected by the noise. We define this error as
the input error, i.e. e2 = E‖ξ̂n[m, g]− ξn[m, g]‖2.

In ξn[m, g], ρ(3)
n [m, g] can be seen as the side produc-

t, which is mixed with the actual component of interest,
ρ

(4)
n [m, g], since ρ

(4)
n [m, g] already contains all sensing pa-

rameters. It would be redundant to estimate ρ(3)
n [m, g] and the

estimation would require a doubled number of samples if con-
ventional methods are used to estimate the actual component
and the side product together. One idea is to separate ρ(3)

n [m, g]

from ρ
(4)
n [m, g], which is a challenging task. The AMS method

was proposed in [26] and [25] to remove the side product.
However, this method does not always work, particularly when
the number of signal propagation paths is large in a rich multi-
path propagation environment. In Appendix B, we briefly
describe the AMS method and compare its input error with
ξn[m, g] that is adopted in our scheme. We show that our
adopted ξn[m, g] has a smaller input error than that of the
AMS method.

IV. MIRRORED-MUSIC FOR ESTIMATING PROPAGATION
DELAYS AND DOPPLER FREQUENCIES

In this section, we propose a mirrored-MUSIC algorithm
that is tailored to directly estimating conjugated variables from
signals similar to the one in (8).

MUSIC-based algorithms have been widely used for es-
timating different parameters of channels, including delay,
Doppler frequency, and AoA [20], [26], [29]. With a given
signal matrix, conventional MUSIC finds the formulation of
basis vectors of the signal matrix. Utilizing the fact that the
basis vectors fall into the null-space of the signal matrix, the
parameter can be obtained by checking if the candidate basis
vector with a testing parameter falls into the null-space of the
signal matrix. Conventional MUSIC would construct ξn[m, g]
into a matrix. The matrix corresponding to ξn[m, g] has a
doubled number of parameters to be estimated. We will exploit
this redundancy, and the estimation of both delay and Doppler
frequency will be transformed into an equivalent problem
with halved unknown variables. This can achieve significantly
improved performance compared to the conventional MUSIC
algorithms.

A. Proposed Mirrored-MUSIC Algorithm

With integrating the side product and the actual component,
we rewrite ξn[m, g] to a general expression as

ξn[m, g] =

L∑
l′=−L,l′ 6=0

Pl′e
jmf̄D,l′ e−jgτ̄l′ ejnΩl′ . (9)

In (9), the variables with indexes l′ < 0 represent those actual
ones to be estimated and those with l′ > 0 belong to the
side product, that is, Pl′ equals α0α

H
l and αlαH0 when l′ > 0

and l′ < 0, respectively, f̄D,l′ = 2πTAfD,l(−1)step(l′) denotes
the mirrored Doppler frequency, τ̄l′ = 2π

T (τ0 − τl)(−1)step(l′)

denotes the mirrored delay, and Ωl′ equals Ω0 and Ωl when

l′ > 0 and l′ < 0, respectively. It is worth pointing out that
only the terms of Doppler frequency and delay exhibit mirror
symmetry, i.e., the Doppler frequency and the delay of the
side product are opposite to those of the actual component.
The AoA terms in the side product have no such a property.
By exploiting the mirror symmetry of both Doppler frequency
and delay, we can reduce the number of estimates for delay
and Doppler frequency by half to L, respectively.

Let us generate two types of mirrored signal vectors based
on ξn[m, g] by adding a vector with its reversed version. The
two new vectors are given by

pn[m, g] =[ξn[m, g], · · · , ξn[m+ P, g]]T+

[ξn[m+ P, g], · · · , ξn[m, g]]T , (10)

and

qn[m, g] =[ξn[m, g], · · · , ξn[m, g +Q]]T+

[ξn[m, g +Q], · · · , ξn[m, g]]T , (11)

where P and Q satisfy L ≤ P < M−L and L ≤ Q < G−L,
respectively, P ∈ N, Q ∈ N. The applied ranges of P and
Q guarantee that there are at least L mirrored vectors that
are linearly independent of each other. The proposed mirrored
vectors exhibit mirror symmetry too. It is clear to see that the
ith entry of p[m, g] is the same with the (P − i)th entry and
the ith entry of q[m, g] is the same with the (Q− i)th entry.
More importantly, we have the following theorem.

Theorem 1. The signal vectors, pn[m, g] and qn[m, g], have
only L basis vectors, respectively.

Proof: We define two types of mirrored basis vectors as

pm(f̄D,l′) =
[
ejmf̄D,l′ , · · · , ej(m+P )f̄D,l′

]T
+[

ej(m+P )f̄D,l′ , · · · , ejmf̄D,l′
]T
,

l′ ∈ {±1, · · · ,±L},m ∈ {0, · · · ,M − P − 1},
(12)

and

qg(τ̄l′) =
[
e−jgτ̄l′ , · · · , e−j(g+Q)τ̄l′

]T
+[

e−j(g+Q)τ̄l′ , · · · , e−jgτ̄l′
]T
,

l′ ∈ {±1, · · · ,±L}, g ∈ {0, · · · , G−Q− 1}.
(13)

It is noted that

pn[m, g] =

L∑
l′=−L,l′ 6=0

Pl′e
−jgτ̄l′ ejnΩl′ pm(f̄D,l′), (14)

and

qn[m, g] =

L∑
l′=−L,l′ 6=0

Pl′e
jmf̄D,l′ ejnΩl′ qg(τ̄l′). (15)

Hence, pm(f̄D,l′) and qg(τ̄l′), l′ ∈ {±1, · · · ,±L}, are the
basis vectors of pn[m, g] and qn[m, g], respectively.

Then, we need to prove that those mirrored basis vectors
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only span a space of rank L. For pm(f̄D,l′), we have

pm(f̄D,−l′) =
[
e−jmf̄D,l′ , · · · , e−j(m+P )f̄D,l′

]T
+[

e−j(m+P )f̄D,l′ , · · · , e−jmf̄D,l′
]T

=
[
ejmf̄D,l′ , · · · , ej(m+P )f̄D,l′

]T
e−j(2m+P )f̄D,l′ +[

ej(m+P )f̄D,l′ , · · · , ejmf̄D,l′
]T
e−j(2m+P )f̄D,l′

=pm(f̄D,l′)e
−j(2m+P )f̄D,l′ . (16)

and

pm+1(f̄D,l′) =[ej(m+1)f̄D,l′ , · · · , ej(m+1+P )f̄D,l′ ]T+

[ej(m+1+P )f̄D,l′ , · · · , ej(m+1)f̄D,l′ ]T

= pm(f̄D,l′)e
jf̄D,l′ . (17)

Therefore, all vectors of pm(f̄D,−l′), ∀m, ∀l′, have only
L linearly independent basis vectors, i.e., {p0(f̄D,l′)}Ll′=1.
Likewise, for qg(τ̄l′), we have

qg(τ̄−l′) = qg,l′e
j(2g+Q)τ̄l′ , (18)

and

qg+1(τ̄l′) = qg,l′e
−jτ̄l′ . (19)

Therefore, all vectors of qg(τ̄l′), ∀g,∀l′, have only L lin-
early independent basis vectors, i.e., {qg(τ̄l′)}Ll′=1. Overall,
2L(M − P ) pm,l′ span a space of rank L and 2L(G − Q)
qg,l′ span a space of rank L.

The class of MUSIC algorithms requires the formulation of
basis vectors that can span the entire signal space. Directly
using ξn[m, g] to construct the signal matrix, as in the case of
the conventional MUSIC, would require 2L basis vectors due
to the side product. The proposed mirrored signal vectors have
only L basis vectors that can span the whole signal space.

For pn[m, g], n ∈ {1, · · · , N−1}, m ∈ {0, · · · ,M−P−1},
and g ∈ {0, · · · , G−1}, there are G(N−1)(M−P ) vectors in
total. For qn[m, g], n ∈ {1, · · · , N−1}, m ∈ {0, · · · ,M−1},
and g ∈ {0, · · · , G − Q − 1}, there are M(N − 1)(G − Q)
vectors in total. Due to the high computational complexity
of singular value decomposition (SVD) in MUSIC, stacking
all signal vectors into a matrix would lead to prohibitive
complexity. Instead, we fix n and g as n0 and g0, respectively,
and stack pn0

[m, g0], m ∈ {0, · · · ,M −P −1}, into a matrix
of dimension (P + 1)× (M − P ), i.e.,

P = [pn0
[0, g0],pn0

[1, g0], · · · ,pn0
[M − P − 1, g0]]. (20)

Neglecting the noise term, all column vectors in P can be
expressed by

{
p0(f̄D,l′)

}L
l′=1

. Hence, the rank of P is L.
Similarly, we can stack all qn0

[m0, g], g ∈ {0, · · · , (G−Q−
1)}, into a matrix, denoted as Q, which is also of rank L. The
optimal value of n0 is demonstrated in Proposition 2. As for
optimizing m0 and g0, we can use the signals with the largest
received power on average.

The matrix P is only related to the Doppler frequency. Let
us perform the SVD of P, i.e., P = UPEPVH

P , where EP

is an L × L diagonal matrix, UP is the left singular matrix,

and VP is the right singular matrix. Denoting the null-space
of UP as ŪP, we can then estimate the Doppler frequency
via

PeakL

(
1∥∥pH0 (2πTAf ′)ŪP

∥∥2

F

)
, (21)

where PeakL(·) denotes the operation that takes L estimates
corresponding to the L largest peak values of the function
in the bracket, p0(2πTAf

′) has the same expression as (12)
with m = 0, and f ′, f ′ ∈

(
0, 1

TA

)
, is a quantized Doppler

frequency for testing, with the interval between adjacent f ′

being 1
TA(P+1) . Note that f ′ only needs to be tested from 0 to

1
TA

due to the mirror symmetry of the proposed basis vectors.
Hence, the proposed mirrored-MUSIC algorithm can increase
the estimation accuracy with the same quantization interval.

For Q = UQEQVH
Q , denoting the null-space of UQ as ŪQ,

we can estimate the relative delay, in parallel with estimating
the Doppler frequency, via

PeakL

(
1∥∥qH0 ( 2πτ ′

T

)
ŪQ

∥∥2

F

)
, (22)

where q0

(
2πτ ′

T

)
has the same expression as (13), and τ ′,

τ ′ ∈ (0, T ), is a quantized delay for testing, with the interval
between adjacent τ ′ being T

(Q+1) . Similar to f ′, τ ′ only needs
to be tested from 0 to T due to the mirror symmetry.

To determine the number of targets, we can adopt exist-
ing algorithms such as the well-known minimum description
length (MDL) method and the simplified one in [38], using
the diagonal elements in the singular value matrix of both P
and Q.

B. Pair Matching and Doppler Frequency’s Sign Determina-
tion

There are two problems yet to be solved, following the
’Peak’ function in (21) and (22). Firstly, the estimates of
delays and Doppler frequencies are not automatically matched
to one target. Hence, we need to make a pair for each
estimate of delay with each estimate of Doppler frequency.
Secondly, the sign of the estimate of Doppler frequency is
yet to be determined since we only obtain the absolute values
of Doppler frequency. The sign of delay does not need to be
determined, since τ̄l = τl − τ0 is larger than zero by default.
Note that the two derivative problems also exist and they are
even more challenging when a conventional MUSIC algorithm
is applied, because conventional MUSIC would obtain two
values for one Doppler frequency and it needs to determine
the correct value from two individual estimates. We now solve
these two problems based on the CACC outputs.

From (9), we see that the term of AoA does not have mirror
symmetry. All AoAs of ξn[m, g] equal Ω0 when l′ > 0. Since
Ω0 is known to the sensing receiver (BS), we can utilize Ω0

to address the above-mentioned two problems. Due to the
undetermined sign of Doppler frequency and the unmatched
delay and Doppler frequency, there are 2L2 candidates, i.e.,

(f̂D,lx , τ̂ly ), lx ∈ {±1, · · · ,±L}, ly ∈ {1, · · · , L}, (23)
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Algorithm 1 Proposed Mirrored-MUSIC Estimation Algorith-
m

1: Input: ξn[m, g] and Ω0.
2: Initialization: P ∈ N and Q ∈ N satisfy L ≤ P < M−L

and L ≤ Q < G − L. Candidates of quantized Doppler
frequency and delay for testing are selected uniformly over
(0, 1

TA
) and (0, T ), respectively.

3: Generate pn[m, g] and qn[m, g] according to (10) and
(11).

4: Assemble pn0
[m, g0] from m = 0 to m = (M − P − 1)

into matrix P. Assemble qn0
[m0, g] from g = 0 to g =

(G−Q− 1) into matrix Q.
5: SVD: P = UPEPVH

P and Q = UQEQVH
Q .

6: Denote the null-space of UP and UQ as ŪP and ŪQ,
respectively.

7: Estimate {fD,l}Ll=1 and {τl}Ll=1 via (21) and (22), respec-
tively. The estimates are denoted as f̂D,l and τl.

8: Generate 2L2 candidates for Doppler frequency and delay
according to (23), and obtain 2L2 Pξ(lx, ly) according to
(24).

9: for X = L : −1 : 1 do
10: Select one out of 2X2 candidates with the maximal

|Pξ(lx, ly)|, with the selected index being iX .
11: Find lx and ly that correspond to iX .
12: Remove Pξ(lx, ·) and Pξ(·, ly).
13: end for
14: Output: f̂D,l and τ̂l.

where f̂D,lx and τ̂ly are candidates to be paired. The value of
τ̂ly , which is larger than zero, is the estimate obtained from
(22). The absolute value of f̂D,lx is the estimate obtained from
(21). Note that there are two opposite values for one Doppler
frequency and only one of them matches the actual one. The
actual one has the maximum combining gain in the following
function that combines ξn[m, g], i.e.,

Pξ(lx, ly)

=

M−1∑
m=0

G−1∑
g=0

N−1∑
n=0

ξn[m, g]ejm2πTAf̂D,lx−jg
2πg
T (τ̂ly−τ0)−jnΩ0 .

(24)

We can first select one out of 2L2 candidates that maximizes
the absolute value of Pξ(lx, ly). Supposing that the selected
index of the obtained pair is (lx0 , ly0), we remove both
this pair and its mirrored index, (−lx0

, ly0) from the set of
candidates. Meanwhile, the sign of Doppler frequency for
fD,lx0

is determined. After removing the pair of (±lx0
, ly0),

the number of candidates is reduced to 2(L − 1)2, i.e.,
lx ∈ {±1, · · · ,±L}, lx /∈ {±lx0

}, ly ∈ {1, · · · , L}, ly /∈
{ly0}. We then match the next pair of Doppler frequency and
delay. Repeating the process L times, we can match Doppler
frequency with delay and obtain the sign of Doppler frequency
simultaneously.

The whole process of estimating Doppler frequency and
delay using the CACC outputs is summarized in Algorithm 1.

C. Performance Analysis

Since the MUSIC-based estimators are non-linear approach-
es, we analyze the performance of the proposed mirrored-
MUSIC using the perturbation methods as in [39], [40].
The mirrored-MUSIC is based on CACC, which makes the
analysis more challenging than that in [39], [40]. Without
losing generality, we analyze the performance for estimating
Doppler frequency, and the performance for estimating delay
can be similarly derived.

We rewrite the signal block, P, as P = Ps + Ψ, where Ps

is the signal block that is composed of the signals of interest,
and Ψ is the perturbations of signal block resulted from the
interference of the high-pass filter and the AWGN noise. Then,
we can rewrite the signal null-space, ŪP, as ŪP = ŪPs

+
∆ŪΨ, where ŪPs

is the null-space that corresponds to Ps

and ∆ŪΨ is the related perturbations. The perturbations of
the signal null-space can be approximately written as

∆ŪΨ = −UPE−1
P VH

P ΨHŪPs
. (25)

We define a null-spectrum function as F (f, ŪP) =
pt(f)HŪPŪH

P pt(f), which is the denominator of the objec-
tive function in (21). It is noted that F (fD,l, ŪPs) = 0. When
the interference and noise term are introduced, the objective
function in (21) is equivalent to finding L estimates of fD,l,
such that F (f̂D,l, ŪP) approach to 0. The error between f̂D,l

and fD,l is denoted as ∆fl, which determines the performance
of the MUSIC algorithms. For notational simplicity, we drop
the subscript l. At a high SNR, ∆f can be obtained via the
Newton method, i.e.,

∆f =

∂F (f,ŪP)
∂f

∂2F (f,ŪP)
∂2f

,
F1(f, ŪP)

F2(f, ŪP)
≈ F1(f, ŪPs

) + ∆F1

F2(f, ŪPs) + ∆F2

≈ ∆F1

F2(f, ŪPs)
=

Re
[
p0(f)H∆ŪΨŪH

Ps
p

(1)
0 (f)

]
p

(1)
0 (f)HŪPsŪ

H
Ps

p
(1)
0 (f)

, (26)

where F1(·) and F2(·) denote the first- and second-order
derivatives with respect to f , ∆F1 denotes the error between
F1(f, ŪP) and F1(f, ŪPs

), ∆F2 denotes the error between
F2(f, ŪPs

) and F2(f, ŪP), and p
(1)
0 (f) denotes the first order

derivative of the basis vector with respect to f . The derivation
can be referred to [39]. Substituting (25) into (26), we simplify
the expression of ∆f as

∆f =
Re
[
β(f)HΨHγ(f)

]
p

(1)
0 (f)Hγ(f)

, (27)

where β(f) and γ(f) are vectors given by
−VPE−1

P UH
P p0(f) and ŪPs

ŪH
Ps

p
(1)
0 (f), respectively.

Intuitively, an effective way to reducing the error of ∆f
is to suppress the variance of Ψ. When the entries of Ψ are
independent Gaussian variables with zero mean and variance
of σ2

Ψ, the variance of ∆f is given by 1
2‖β(f)‖2F ‖γ(f)‖2Fσ2

Ψ.
However, due to the CACC operation, the entries of Ψ are not
independent Gaussian variables. In Appendix C, we analyze
the variance of Ψ and obtain the following proposition.

Proposition 2. The index of the optimal reference antenna
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used for forming the matrix of P and Q, n0, is obtained by

minimizing
∣∣∣∣ L∑
l=0

|αl|2ejn0Ωl

∣∣∣∣2.

Proof: See proof in Appendix C.
Proposition 2 indicates that a fixed index of receiving

antenna can help suppress the variance of Ψ when performing
the MUSIC estimation algorithms, and hence improve the
sensing performance. It is unnecessary to integrate all n’s and

g’s to perform the SVD of P. We note that
∣∣∣∣ L∑
l=0

|αl|2ejn0Ωl

∣∣∣∣2
is equivalent to the low-pass component in the 2D-FFT of
the CACC signals. One way to obtain the optimal n0 is
to select the n0th 2D-FFT of ξn[m, g], such that the low-
pass component of the 2D-FFT of ξn[m, g] has the minimum
among all n’s. This proposition is as expected since only the
high-pass components contain the information of interest.

D. Complexity Analysis

In this subsection, we analyze the computational complexity
of Algorithm 1. Note that the delay and the Doppler frequency
are estimated in parallel. Without losing generality, we only
analyze the complexity of estimating Doppler frequency. One
main computation in Algorithm 1 is the SVD of P with the
dimension of (P + 1)× (M −P ). Since we only need the left
singular matrices of P, the complexities for obtaining UP is
O
(
(P +1)2(M−P )

)
. Another main computation is obtaining

the objective function in (21). Given FX candidates of f ′,
obtaining the objective function in (21) has a complexity of(
O(FX(P + 1)(M − P )) +O(FX(M − P ))

)
≈ O

(
FX(P +

1)(M − P )
)
. Other steps in Algorithm 1 have much lower

complexity and can be omitted. Generally, the number of
candidates, FX , should be no greater than P + 1. Hence,
the overall complexity for estimating Doppler frequency is
O
(
(P+1)2(M−P )

)
. Likewise, the complexity for estimating

delay is O
(
(Q+ 1)2(G−Q)

)
. The complexities of the main

steps of Algorithm 1 are summarized in Table I and are
compared with those of the conventional MUSIC method.
From Table I, we note that the overall complexity of conven-
tional MUSIC doubles our proposed mirrored-MUSIC, which
is because conventional MUSIC requires a doubled number of
candidates.

V. HIGH RESOLUTION AOAS ESTIMATION

In Algorithm 1, the NLOS AoAs are still unknown but
necessary for locating the targets. When the number of spatial
samples is large, AoAs can be estimated directly using one-
shot measurements in the spatial domain, which can be done
in parallel with estimating Doppler frequency and delay [10],
[41]. When the number of antennas at the BS is small, such
as the JCAS system setup in [9], the one-shot measurements
are insufficient for achieving accurate AoA estimation. In
this section, we propose a high-resolution AoA estimation
algorithm by combining measurements from the spatial and
other domains.

S. Chuang et al. proposed a high-resolution AoA estimation
method by using both time-domain and spatial-domain mea-
surements [29]. However, their method is only applicable to

narrowband systems and there exists a problem in the broad-
band scenario that some AoAs estimates would be missing
if multiple Doppler frequencies (or delays) are close to each
other. We will analyze the reason for this problem and obtain
more accurate AoA estimates using measurements from all
three domains in time, frequency, and space.

Using measurements in the spatial domain can distinguish
among N AoAs only. We attempt to equivalently enlarge the
length of the spatial array response vectors by integrating both
the time-domain and the frequency-domain signals into the
spatial domain. Since all other parameters except NLOS AoAs
have been obtained from Algorithm 1, the integrated signal
vector only varies with NLOS AoAs. Otherwise, without the
results from Algorithm 1, all parameters are mixed together
and can be difficult to be obtained simultaneously. In the
following of this section, we assume that delays and Doppler
frequencies are already obtained at the BS. Still using ξn[m, g],
we generate a spatial signal vector as

c[m, g] =[ξ1[m, g], · · · , ξN−1[m, g]]T

=

L∑
l′=−L,l 6=0

Pl′a(Ωl′)e
jmf̄D,l′ e−jgτ̄l′ , (28)

where a(Ωl′) = exp[jΩl′(1, · · · , N−1)]T is the (N−1)×1 ar-
ray response vector. Note that the length of the array response
vector is reduced to N − 1 due to the CACC operation. We
integrate the spatial domain with the other two domains to
enlarge the dimension of array response vectors. This can be
realized using the following proposed matrix, i.e.,

C′[m, g] =


c[m, g] c[m, g]

c[m, g + 1] c[m+ 1, g]
...

...
c[m, g + C − 1] c[m+ C − 1, g]

 , (29)

where C,C ∈ N, satisfies 4L/(N − 1) < C < min(G −
4L,M−4L). The dimension of C′[m, g] is C(N−1)×2. The
first column of C′[m, g] is an enlarged vector corresponding to
the spatial (angle) domain and the frequency (delay) domain.
The second column is an enlarged vector corresponding to
the spatial (angle) domain and the time (Doppler frequency)
domain. In Appendix D, we show that the basis vector for the
first column of C′[m, g] is given by

c1
l′ =


a(Ωl′)e

−j0τ̄l′

a(Ωl′)e
−j1τ̄l′

...
a(Ωl′)e

−j(C−1)τ̄l′

 . (30)

Likewise, the basis vector for the second column of C′[m, g],
denoted as c2

l′ , has the same expression as (30) with replacing
τ̄l′ by f̄D,l′ .

It is noted that the AoA parameter in (29) is mixed with
other known parameters. The other two parameters, i.e., delay
and Doppler frequency, are estimated and already available.
These parameters are used to enlarge the dimension of the
basis vector. We stack C′[m, g] with different m and g into a
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY

The proposed Algorithm 1
Operation Complexity
Conduct SVD of P O

(
(P + 1)2(M − P )

)
Obtain the objective function in (21) O

(
FX(P + 1)(M − P )

)
Overall O

(
(P + 1)2(M − P )

)
Conventional MUSIC

Operation Complexity
Conduct SVD O

(
(P + 1)2(M − P )

)
Obtain the objective function O

(
2FX(P + 1)(M − P )

)
Overall O

(
2FX(P + 1)(M − P )

)

bigger matrix,

C = [C′[0, 0],C′[1, 1], · · · ,C′[C1, C1]], (31)

where C1, C1 ∈ N, satisfies C +C1 < min(M,G). The basis
vectors of columns of C are given by c1

l′ and c2
l′ , with l′ ∈

{±1, · · · ,±L}. Hence, the rank of C is 4L. It is worth noting
that those 4L basis vectors only correspond to (L+ 1) AoAs,
i.e., one LOS AoA and L NLOS AoAs. The 2L basis vectors
with l′ > 0 all correspond to Ω0, which is already known at
the BS. For the other 2L basis vectors with l′ < 0, both c1

l′

and c2
l′ correspond to one AoA. Hence, it is not necessary to

test the basis vectors with l′ > 0.

The AoAs can be obtained by performing the SVD of C. In
general, one pair of basis vectors, c1

l′ and c2
l′ , corresponds to

one AoA. By using the total 2L basis vectors, l′ ∈ {1, · · · , L},
we can obtain L AoAs corresponding to L NLOS targets.
However, we notice an issue here: when the pairs of delay and
Doppler frequency of different targets are approximately the
same, the corresponding basis vectors with different AoAs are
ambiguous, causing that objective functions of different AoAs
are magnified by one MUSIC estimator with the ambiguous
pair of delay and Doppler frequency. This would directly cause
that some estimates of AoAs with a lower gain in the MUSIC
estimator will be missing from the estimated outputs. We call
this issue as the “ambiguity of basis vectors”. The method in
[29] is proposed for the narrowband scenario and does not
address the ambiguity of basis vectors.

Let us denote the SVD of C as C = UCECVH
C , where

EC is an 4L×4L diagonal matrix with the 4L largest entries,
UC is the left singular matrix of C, and VC is the right
singular matrix of C. We choose multiple peaks to address
the ambiguity of basis vectors, i.e.,

PeakXl′

(
1

‖ [c1
t (Ω
′, l′), c2

t (Ω
′, l′)]

H
ŪC‖2F

)
, l′ < 0, (32)

where ŪC is the null-space of UC, Xl′ is the number of
peaks in the objective function, and c1

t (Ω
′, l′) and c2

t (Ω
′, l′)

are the testing basis vectors that have the same expressions
as c1

l′ and c2
l′ , respectively, after replacing Ωl′ by a testing

AoA candidate, Ω′. The number of peaks is determined by
how many peaks that are larger than the half of the maximal
objective function. Note that the equivalent spatial dimension

Algorithm 2 Proposed High Resolution AoA Estimation
1: Input: ˆ̄τl and ξn[m, g].
2: Initialization: C ∈ N satisfies 4L/(N − 1) < C <

min(G − 4L,M − 4L). C1 ∈ N satisfies C + C1 <
min(M,G). The AoA candidate is Ω′ that goes through
the entire range of (−π, π).

3: Generate c[m, g] according to (28).
4: Generate C′[m, g] according to (29).
5: Generate C according to (31).
6: SVD: C = UCECVH

C , where the dimension of EC is
4L× 4L.

7: Denote the null-space of UC as ŪC.
8: Estimate {Ωl}Ll=1 according to (32).
9: Output: Ω̂l.

is extended to C(N − 1), hence the maximum detectable
number of AoAs is C(N−1). If Xl′ > 1, we need to retain one
AoA and discard the rest. The determined AoAs with Xl′ = 1
form a set of {ΩS}. Supposing that the undetermined AoAs
with Xl′ > 1 are Ω̂1, · · · , Ω̂Xl′ , we select the one with the
highest value of (32), dented as Ω̂1, if |Ω̂1 − ΩS | > 2π

C(N−1) .
Otherwise, we select the one with a second highest value.

Since Algorithm 2 is also based on MUSIC algorithms,
the analysis in Section IV-C can be applied to obtaining the
theoretical error of AoA estimates. Similar to (27), letting
C = Cs + Ψ′ and ŪC = ŪCs

+ ∆UΨ′ , we can obtain the
error of AoA estimates error as

∆Ω =
Re
[
β′(Ω)HΨ′Hγ′(Ω)

]
c

(1)
t (Ω, l′)Hγ′(Ω)

, (33)

where ct(Ω, l
′) = [c1

t (Ω, l
′), c2

t (Ω, l
′)], c

(1)
t (Ω, l′) is the first

order derivative of ct(Ω, l
′) with respect to Ω, β′(Ω) and

γ′(Ω) are vectors that are written as −VCE−1
C UH

C ct(Ω, l
′)

and ŪCs
ŪH

Cs
c

(1)
t (Ω, l′), respectively.

Now, we analyze the computational complexity of Algorith-
m 2. One main computation in Algorithm 2 is the SVD of C
with the dimension of C(N−1)×2C1. Since we only need the
left singular matrix of C, the complexity for obtaining UC is
O
(
2C2(N−1)2C1

)
. Another main computation is involved in

obtaining the objective function in (32). Given CX candidates
of Ω′, obtaining the objective function has a complexity of
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Fig. 3. An example of the 2D spectrum of ρn[m, g].

(
O(CXC(N−1)2C1)+O(2CXC1)

)
≈ O

(
2CXC(N−1)C1

)
.

Other steps in Algorithm 2 have much lower complexity and
can be omitted. Generally, the number of candidates should
be no greater than C(N − 1). Hence, the overall complexity
for estimating Doppler frequency is O

(
2C2(N − 1)2C1

)
.

VI. SIMULATION RESULTS

In this section, we provide simulation results to validate
the proposed scheme. The carrier frequency is 3 GHz. The
number of subcarriers is G = 256. The frequency bandwidth
is 128 MHz. Hence, the OFDM symbol period T is 2 µs. The
propagation delay is randomly distributed over [0, 0.4] µs. The
length of CP is D = 50 to avoid inter-symbol interference (ISI)
and the CP period TC is about 0.4 µs. The approximate interval
between two packets, TA, is 1 ms. We use the preamble
in M = 128 packets for sensing parameter estimation. The
velocities of targets range from -30 meter-per-second (mps)
to 30 mps, and the Doppler frequency is randomly distributed
over [−0.3, 0.3] kHz. The AoAs of targets are random values
uniformly distributed from 0 to π. All the targets are modeled
as point sources, and the radar cross-sections are assumed to
be 1. The BS employs a ULA with N = 4 antenna elements.
Unless stating otherwise, we assume that there is one LOS
path and L = 3 NLOS paths that are reflected or refracted
from 3 targets. The power of the LOS path is assumed to be
10 dB higher than those of the NLOS paths.

Fig. 3 illustrates an example of the spectrum of the cross-
correlated signals ρ1[m, g] by performing the 2D-FFT over m
and g. The x-axis of the plot denotes the Doppler frequency,
f̄D,l, and the y-axis denotes the relative delay, τ̄l. In order to
see the targets clearly, we truncate the absolute value of the
spectrum by half. At the origin of the spectrum plot, we see
that there is a rectangular spot with the highest brightness. This
spot denotes the low-pass component of ρn[m, g] which does
not contain targets’ information of interest. Above the origin,
there are three blue spots. We also see that there are three spots
at the bottom of the figure, which denote the side products
caused by cross-correlation. The side products also contain
the parameters of targets with the opposite signs. This figure
verifies the low-pass and the mirrored high-pass components

0 5 10 15 20 25 30
10-2

10-1

100

101

102

Removing 
n
(1) (L=1)

High-pass filter (L=1)

Removing 
n
(1) (L=3)

High-pass filter (L=3)

Fig. 4. MSE of ξn[m, g] versus SNR and number of paths.
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Fig. 5. NMSE of the estimates for the actual delays versus SNR.

of the CACC outputs as we described in Section III. It clearly
shows that a high-pass filter can be applied to remove the
non-desired low-pass component.

Fig. 4 presents the MSE of ξn[m, g], defined as |ξ̂n[m, g]−
ξn[m, g]|2. The MSE of ξn[m, g] reflects the accuracy of the
constructed high-pass signals and directly impacts the follow-
ing sensing parameter estimation. Two methods are tested to
filter out the low-pass component. One is a Butterworth filter
with the cut-off frequency of (ωτ , ωf ) = ( π

128 ,
π

128 ). The other
one is via removing the component of the LOS path, i.e., ρ(1)

n ,
over a short period from itself. It is clear that the Butterworth
filter outperforms the method of removing the LOS path for
either L = 1 or L = 3. It is worth pointing out that the MSE
of the Buttworth filter drops linearly with the SNR increasing
for L = 1 target. This indicates that the input error of ξn[m, g]
can be sufficiently small when there is only one target. This is
because, when L = 1, ρ(2)

n [m, g] is also a low-pass component,
and when there are multiple targets, the MSE approaches to a
fixed level that is the mean power of ρ(2)

n [m, g].
Next, we present the estimation performance for sensing

parameters. Since the Doppler frequencies are obtained by the
same algorithm as delays, we mainly present the simulation
results for delays and AoAs next.
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Fig. 6. NMSE of the estimates for the actual delays versus Q. The SNR is
fixed at 20 dB.

Fig. 5 illustrates the normalized MSE (NMSE) for the
estimates of the actual propagation delays, i.e., |τ̂l − τl|2/T 2.
The benchmark algorithms for comparison include the AMS
method in [26] and conventional MUSIC. The system setup
is the same as that in Fig. 3. For our proposed Algorithm 1,
the parameter Q, which defines the length of the mirrored
vector in (11), is set to 128. We see that our proposed
algorithm outperforms the other two methods significantly.
The AMS algorithm shows a large NMSE, possibly due to
its inefficiency in dealing with multiple paths. Our proposed
algorithm achieves lower NMSE than the conventional MUSIC
because it removes the mirrored side products and reduces the
rank of the signal space. An error floor can be observed for
both our proposed Algorithm 1 and the conventional MUSIC.
This is caused by the error of ξn[m, g], which cannot be
removed by increasing SNR. We also plot the theoretical
NMSE of the proposed mirrored-MUSIC. The NMSE of the
proposed Algorithm 1 matches the theoretical NMSE tightly.
Our proposed algorithm can achieve better performance by
using larger bandwidth since the bandwidth has a significant
impact on sensing performance and mainly influences the
time resolution. With the used bandwidth increasing, the time
duration of each symbol is reduced and the time resolution is
improved.

Fig. 6 shows how the NMSE of delay estimates varies with
L. The system setups are the same as those in Fig. 3, except
that the SNR is fixed at 20 dB. The number of targets, L,
is chosen from 1 to 10. We compare our proposed mirrored-
MUSIC with the conventional MUSIC and the AMS method.
It is noted that, when L is 1, the NMSEs for all these methods
are nearly the same. When L ranges from 3 to 10, our proposed
mirrored-MUSIC can achieve much lower NMSE than the
other two methods. The NMSE increases with the number
of targets while the growth rate drops, because the delays
of multiple targets become closer to each other and can be
separated into several groups.

Fig. 7 presents the receiver operating characteristic (ROC)
of the proposed Algorithm 1 after matching the estimates
for delays and Doppler frequencies. The y-axis measures the
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Fig. 8. RMSE of the AoA estimates versus SNR.

probability of detection (PD) and the x-axis measures the
probability of false alarm (PFA). We plot four curves with
fixed SNRs. In each curve, we use the threshold of NMSE
as the independent variable, which ranges from 10−8, 10−7,
to 10−1. If the NMSE of the targets is smaller than the
threshold, the targets are regarded as detected. We use random
values to denote non-targets, if the NMSE between non-targets
and the targets are smaller than the threshold, the non-targets
will be false alarm examples. With increasing the threshold
exponentially, we observe that both PD and PFA increase from
zero to one. According to the figure, there is a turning point
when the threshold is 10−6. From the turning point, 10−6, to
10−1, the PD increases slowly but the PFA increases sharply.
Hence, the optimal threshold should be around 10−6 to make
a good trade off between maximizing PD and minimizing
PFA. With the SNR increasing, the turning point approaches
to the optimal point of (0, 1), which means that all targets are
detected and all non-targets are excluded.

Fig. 8 shows the RMSE of the AoA estimation versus SNR.
Our proposed Algorithm 2 is compared with the H-MUSIC
method and the H-ESPRIT method from [29]. The system
setup is the same as that in Fig. 3. Noting that the H-MUSIC



12

and the H-ESPRIT are based on hybrid arrays, we simplified
their methods by letting each hybrid array has one receiving
antenna, which is equivalent to a fully-digital array. For the
initialization of Algorithm 2, we let C = 128 and C1 = 10,
and use the estimated delays obtained from Algorithm 1. Our
algorithm outperforms H-MUSIC and H-ESPRIT, since our
proposed Algorithm 2 can better address the ambiguity of basis
vectors as we discussed in the section V. We see that the RMSE
of AoAs drops slighly with SNR increasing from 15 dB to 30
dB, and the simulated RMSE matches well with the theoretical
values. To further decrease the RMSE, we can increase the
bandwidth to increase the accuracy of all estimates.

VII. CONCLUSION

We have proposed an uplink sensing scheme for JCAS
PWNs, which can achieve high-accuracy sensing parameter
estimation with asynchronous transceivers and a small num-
ber of receiving antennas. We extend the CACC methods
to mitigate the timing and frequency ambiguity. We then
propose a mirrored-MUSIC algorithm to efficiently handle the
CACC outputs with equivalently doubled unknown sensing
parameters, at a complexity lower than that of the conventional
MUSIC algorithm. Simulation results demonstrate that our
proposed mirrored-MUSIC can effectively estimate the actual
values of delay and Doppler frequency. Using the estimates of
delay and Doppler frequency, we then obtain high-resolution
AoAs estimates with a small number of receiving antennas.
This is achieved via an improved MUSIC algorithm that
combines measurements from spatial, temporal, and frequency
domains. Our scheme enables radar sensing to be effectively
implemented in mobile networks using the uplink channel
and requires little modifications on infrastructure or advanced
hardware, such as a full-duplex transceiver. The results show
that the proposed scheme of uplink parameter estimation
outperforms the state of the arts and can accurately detect
multiple targets for the JCAS PWNs.

Our proposed mirrored-MUSIC algorithm can be applied
to other problems with mirrored signals, such as the general
harmonic retrieval problem with sinusoidal modulations. Its
basic idea can also be extended to other spectral analysis
techniques such as ESPRIT and the matrix pencil method. The
proposed high-resolution AoA estimation can also be applied
to other problems involving a similar combination of multi-
domain measurements.

APPENDIX A
PROOF OF THEOREM 1

We write ρ(1)
n [m, g] as

ρ(1)
n = Dn[m, g]DH

0 [m, g] = |α0|2ejnΩ0 . (34)

It is noted that ρ(1)
n is invariant with m and g.

We express the sum of ρ(3)
n [m, g] and ρ(4)

n [m, g] as

ρ(3)
n [m, g] + ρ(4)

n [m, g]

=

L∑
l=1

α0α
H
l e

j2πmTA(−fD,l)e−j
2πg
T (τ0−τl)ejnΩ0+

L∑
l=1

αlα
H
0 e

j2πmTAfD,le−j
2πg
T (τl−τ0)ejnΩl . (35)

The 2D-FFT of ρ(3)
n [m, g] + ρ

(4)
n [m, g] is given by

FFT
(
ρ(3)
n [m, g] + ρ(4)

n [m, g]
)

=α0α
H
l e

jnΩ0
sin (MTAfD,l +m′)π

sin
(
TAfD,l + m′

M

)
π

sin
(
G τ0−τl

T + g′
)
π

sin
(
τ0−τl
T + g′

G

)
π

+

αlα
H
0 e

jnΩl
sin (MTAfD,l −m′)π
sin
(
TAfD,l − m′

M

)
π

sin
(
G τ0−τl

T − g′
)
π

sin
(
τ0−τl
T − g′

G

)
π
,

(36)

and has an impulsive shape with the peak points at

(ωf , ωτ ) = ±(πTAfD,l, π(τ0 − τl)/T ). (37)

Note that m′ and g′ are integers, while ωf and ωτ are
continuous values ranging from −π to π.

As for ρ(2)
n [m, g], it is written as

ρ(2)
n [m, g]

=In[m, g]IH0 [m, g]

=
( L∑
l=1

αle
jnΩlej2πmTA(fD,l+δf (m))e−j

2πg
T (τl+δτ (m))

)
×

( L∑
l=1

αHl e
−j0Ωle−j2πmTA(fD,l+δf (m))ej

2πg
T (τl+δτ (m))

)
=

L∑
l=1

|αl|2ejnΩl +

L∑
l=1

L∑
x6=l

αlα
H
x e

jnΩlej2πmTAfl,xe−j
2πg
T τl,x

,ρ̄(2) + ρ̃(2)[m, g], (38)

where fl,x = fD,l − fD,x and τl,x = τl − τx. It is noted
that ρ̄(2) is an invariant component and ρ̃(2)[m, g] is a variant
component. The 2D-FFT of ρ̃(2)[m, g] also has an impulsive
shape, but the power of ρ̃(2)[m, g] is significantly lower than
other components and can be neglected.

APPENDIX B
THE ERROR OF ξn[m, g]

The components of ρ(1)
n and ρ̄(2)

n are invariant with m and g
and can be largely suppressed after high-pass filtering. Without
the noise term, the error of ξn[m, g] is mainly caused by the
variant part of ρ̃(2)

n [m, g]. Hence, we can define the statistical
mean error of ξn[m, g] as

δξ = var(ρ̃(2)
n [m, g]). (39)

As for the AMS method, it assumes that |α0| � |αl| and
estimates Dn[m, g] as the mean value of yn[m, g], which is
denoted as D̂n[m, g]. Then, the AMS method obtains two
signals. One is An[m, g] = yn[m, g] − D̂n[m, g] = În[m, g]
and the other one is Bn[m, g] = yn[m, g] + D̂n[m, g] ≈
2D̂n[m, g]+ În[m, g]. The cross correlated signal of the AMS
method is expressed as

ξAMS
n [m, g] = An[m, g]BH0 [m, g]
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≈ In[m, g](2D0[m, g] + I0[m, g])

≈ 2ρ(4)
n [m, g] + ρ(2)

n [m, g]. (40)

The AMS method uses 2ρ
(4)
n [m, g] as output to conduct

parameter estimation. The error in the AMS method is up
to ρ

(2)
n [m, g], which is larger than the ξn[m, g] used in our

method without by-product suppression. More importantly,
Dn[m, g] and In[m, g] in the AMS method are approximated
values, which would result in extra errors. Therefore, the AMS
method causes larger ξn[m, g] errors than our method in (8).

APPENDIX C
THE VARIANCE OF Ψ

The dimension of Ψ is (P +1)×(M−P ). The expectation
of entries of Ψ can be approximately as

E[Ψ]pi,mj

=E
[
ρn0

[mj + pi, g0] + ρn0
[mj + P − pi, g0]− 2ρ̄n0

− ρ(3)
n0

[mj + pi, g0]− ρ(4)
n0

[mj + pi, g0]

− ρ(3)
n0

[mj + P − pi, g0]− ρ(4)
n0

[mj + P − pi, g0]
]

≈2E
[
ρ̃(2)
n0

[m, g0]
]

+ 2E [Dn0
[m, g0] + In0

[m, g0]]E[zn0
[m, g0]]

=2E
[
ρ̃(2)
n0

[m, g0]
]

+ 2E
[
ρ(1)
n + ρ̄(2)

n

]
E[zn0

[m, g0]]

=2E
[
ρ̃(2)
n0

[m, g0]
]

+ 2

L∑
l=0

|αl|2ejn0ΩlE[zn0 [m, g0]], (41)

where the definition of ρ̃
(2)
n [m, g] and ρ̄

(2)
n can be re-

ferred to Appendix A. The first term in the end of (41),
2E
[
ρ̃

(2)
n0 [m, g0]

]
, is the interference with variance of δξ after

conducting the high-pass filter, and the second term in (41)
denotes the noise term after CACC. Hence, the variance of
each entry of Ψ is

var
(
[Ψ]pi,mj

)
=var

[
2ρ̃(2)
n0

[m, g0]
]

+ var

[
2

L∑
l=0

|αl|2ejn0Ωlzn0
[m, g0]

]

=4δξ + 4

∣∣∣∣∣
L∑
l=0

|αl|2ejn0Ωl

∣∣∣∣∣
2

σ2

,4δξ + 4δn0σ
2. (42)

To minimize the variance of each entry of Ψ, δn0 needs to be
minimized. Therefore, the optimal selected index of receiving

antenna, n0, satisfies that
∣∣∣∣ L∑
l=0

|αl|2ejn0Ωl

∣∣∣∣2 is minimized.

APPENDIX D
PROOF OF (30)

From (28), the basis vectors of c[m, g] are given by a(Ωl′).
It is noted that

c[m, g + c] =

L∑
l′=−L,l 6=0

ψl′ [m, g]a(Ωl′)e
−jcτ̄l′ , (43)

where ψl′ [m, g] = Pl′e
jmf̄D,l′ e−jgτ̄l′ denotes the weighting

factor. Hence, the basis vectors of c[m, g+c] only have a phase

shift of −cτ̄l′ compared with those of c[m, g]. We denote the
first column of C′[m, g] as c1[m, g]. Then, we have

c1[m, g]

=
[
c′
T

[m, g], · · · , c′T [m, g + C − 1]
]T

=

L∑
l=−L

ψl[m, g]
[
aT (Ωl)e

−j0τ̄l , · · · ,aT (Ωl)e
−j(C−1)τ̄l

]T
.

(44)

Therefore, the basis vectors for c1[m, g] are given by
[aT (Ωl′), · · · ,aT (Ωl′)e

−j(C−1)τ̄l′ ]T . Likewise, the basis vec-
tors for the second column of C′[m, g] have the same expres-
sion with replacing τ̄ by f̄D.
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