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Theoretical Analysis for Extended Target Recovery
in Randomized Stepped Frequency Radars

Lei Wang, Tianyao Huang*, and Yimin Liu

Abstract—Randomized Stepped Frequency Radar (RSFR) is
very attractive for tasks under complex electromagnetic environ-
ment. Due to the synthetic high range resolution in RSRFs, a
target usually occupies a series of range cells and is called an
extended target. To reconstruct the range-Doppler information
in a RSFR, previous studies based on sparse recovery mainly
exploit the sparsity of the target scene but do not adequately
address the extended-target characteristics, which exist in many
practical applications. Block sparsity, which combines the sparsity
and the target extension, better characterizes a priori knowledge
of the target scene in a wideband RSFR. This paper studies
the RSFR range-Doppler reconstruction problem using block
sparse recovery. Particularly, we theoretically analyze the block
coherence and spectral norm of the observation matrix in RSFR
and build a bound on the parameters of the radar, under
which the exact recovery of the range-Doppler information
is guaranteed. Both simulation and field experiment results
demonstrate the superiority of the block sparse recovery over
conventional sparse recovery in RSFRs.

Index Terms—Randomized stepped frequency radar, block
sparse recovery, Block-Lasso, block coherence, spectral norm.

I. INTRODUCTION

RANDOMIZED Stepped Frequency Radar (RSFR) ran-
domly varies the carrier frequencies over wide band in

a pulse-by-pulse manner. It has attracted growing attentions
due to its multi-fold merits, e.g., excellent resistance to range
ambiguity [2], low probability of intercept and detection [3],
and promising potential for anti-neighbour interference [4]. In
addition, while using low-cost, narrow band receiver, RSFRs
coherently process with these varying carrier frequencies,
synthesizing a large bandwidth and enabling high range res-
olution (HRR) profiling. Since the works [2] and [5], more
and more applications in both military and civilian fields
have been developed, such as RSFR-based Synthetic Aperture
Radar (SAR) [6] and Inverse SAR (ISAR) imaging [7], micro-
motion feature extraction [8], cognitive radar system design [9]
and automotive applications [10]. Among these developments
on RSFRs, the range-Doppler reconstruction is a common,
fundamental but not simple problem.

Early works [2]–[5] apply the conventional matched filter
for range-Doppler reconstruction, which results in high side-
lobe pedestal. Weak targets could be submerged in the sidelobe
of dominant ones [11]. As explained in [12], the echoes of
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RSFR can be regarded as sampling of instantaneous wideband
radar echoes, where each pulse occupies an instantaneous
bandwidth as large as the synthetic bandwidth of RSFR. The
sidelobe pedestal comes from the incomplete information in
frequency domain [12]. In order to alleviate the sidelobe
pedestal problem, sparse recovery techniques have been in-
troduced [11], [13]. By exploiting the intrinsic sparsity of the
target scene, sparse recovery obtains provable performance on
range-Doppler reconstruction. Particularly, [12] proves that,
as long as the number of targets/scatterers is in the order
of O

(√
N

logMN

)
, where N and M are the numbers of

transmitted pulses and carrier frequencies, respectively, exact
recovery of range-Doppler parameters can be guaranteed with
high probabilities. We note here that [12] assumes a radar
target typically containing a single scatterer. This assumption
holds when the range resolution is larger or comparable to the
size of target.

However, when the synthetic bandwidth of RSFR becomes
wider, leading to a finer HRR, the size of a target can be
relatively larger than the range resolution. In this case, a target
occupies a series of range cells and is called an extended
target [14]. The extended-target scene has two properties that
may affect the range-Doppler recovery in RSFRs. Firstly, the
number of scatterers increases sharply along with the increase
of the synthetic bandwidth. As a consequence, it becomes
harder to ensure the sparsity of the observing scene, which
may give rise to failure of target recovery. Secondly, extended
targets exhibit additional structure. Particularly, scatterers of
such target usually cluster along range, while their Doppler
effects are identical. Together with the inherent sparsity,
this clustering character indicates that the extended target
scene possesses block sparsity. When a RSFR encounters
extended targets, we apply block sparse recovery to mitigate
the conceivable performance degradation of traditional sparse
recovery. Utilization of block sparsity can provably yield better
recovery performance than treating the signal just as being
sparse in the conventional sense [15].

Block sparse recovery has been well studied in the literature,
and successfully exploited in various applications such as
face/speech recognition [16] narrow-band interference sup-
pression [17] and multiple-measurement parameter estimation
[18]. Many effective algorithms including greedy approaches
and convex optimization methods are developed to reconstruct
block-sparse signals [19]–[22]. Adequate researches investi-
gate conditions under which a unique block-sparse represen-
tation of a signal can be determined by these algorithms;
see [22], [23] and references therein. Block sparse recovery
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provides good reconstruction results in practice, inspiring its
utilization in RSFR applications.

In this work, we focus on theoretical analysis of block
sparse recovery for RSFR. Different from previous works
[20]–[25] that establish generic conditions ensuring exact re-
covery of block-sparse signals, we prove that RSFRs are likely
to satisfy these conditions under a requirement associated
with radar parameters and the block sparsity of the extended-
target scene. Specifically, we begin by analyzing the specific
block structures of the observation matrix in RSFR, which has
not been revealed previously as the best of our knowledge,
and then discuss the block coherence and spectral norm [25]
of the observation matrix. Based on the block incoherence
condition [25], we finally prove that as long as the number
of extended targets is in the scale of O

(
N

M logMN

)
, exact

reconstruction of range-Doppler parameters are guaranteed
with high probabilities.

Both simulation and field experiments are carried out,
and the results demonstrate that the block sparse recovery
algorithms outperform the corresponding non-block sparse re-
covery algorithms on recovering extended targets with RSFRs.
Particularly, with measured data from practical RSFRs, block
sparse recovery is shown effective to reconstruct multiple
air targets and surface target in heavy clutter environment,
repectively.

The rest of the paper is organized as follows. Section
II formulates the signal model. Section III introduces some
basics of traditional sparse recovery and block sparse recovery.
The recovery performance analysis for RSFRs with block
sparse recovery is developed in Section IV. Section V presents
experimental results of simulated and measured (from both air
and surface targets) data. Section VI draws a brief conclusion.

The following notation is used throughout this paper. We
denote sets by upper case letters in an outline font, e.g., R
and C denote the real number set and the complex number
set, respectively. For x ∈ R, |x| and bxc (dxe) represent the
absolute value and the largest (smallest) integer no greater
(less) than x, respectively. And δ (x) is the indicator function,
which is 1 when x = 0 and 0 otherwise. For x ∈ C,
|x| represents the modulus of x. We use lowercase boldface
letters to denote vectors (e.g. a) and uppercase boldface letters
to denote matrices (e.g. A). The operators (·)∗ , (·)T and
(·)H represent the complex conjugate, transpose, and complex
conjugate-transpose operators, respectively. For a vector a,
[a]n denotes the n-th entry and ‖a‖i denotes the `i norm of a,
i = 0, 1, 2. For a matrix A, the (m,n)-th element is written as
[A]m,n and the spectral norm of A (i.e. the maximum singular
value ofA) is denoted by ‖A‖s. Let IN denote the N -th-order
identity matrix, P (·) denote the probability of an event, and
E [·] represent the expectation of a random argument.

II. RSFR SIGNAL MODEL

In this section, we present the signal model of RSFR,
following the presentation in [12]. However, unlike [12], which
models a target as a single scatterer, we consider an extended-
target model, in which each target contains multiple scatterers
moving at identical velocity. Under the extended target model,

we reveal that the target scene possesses block sparsity, which
inspires the application of block sparse recovery algorithms,
different from the use of traditional sparse recovery in previous
work [12]. We review the transmit model of RSFR in Subsec-
tion II-A, and detail the receive model in Subsection II-B,
which is then recast in matrix form as present in Subsection
II-C.

A. Transmission of RSFR
In a RSFR, there are N single-frequency sinusoidal pulses

transmitted during a Coherent Processing Interval (CPI). For
the n-th pulse, n ∈ N := {0, 1, . . . , N − 1}, the carrier
frequency is randomly varied as fn = fc + Cn∆f , where
fc is the initial carrier frequency, ∆f is the frequency step
interval and Cn ∈M := {0, 1, . . . ,M − 1} is the randomized
modulation code. Thus, the n-th transmitted pulse can be
expressed as

sT (n, t) = rect
(
t− nTr
Tp

)
ej2πfn(t−nTr), (1)

where Tr is the Pulse Repetition Interval (PRI), Tp is the pulse
width and rect (t) is the rectangular function defined as

rect (t) =

{
1 0 ≤ t ≤ 1,
0 otherwise. (2)

Here, we assume that the modulation codes Cn are indepen-
dently identically distributed random variables with uniform
density over M, i.e., Cn ∼ U (M). In RSFR, the instantaneous
bandwidth of each pulse, denoted by B0 := 1/Tp, is usually
narrow. The narrow bandwidth leads to a low Coarse Range
Resolution (CRR), i.e., c

2B0
, where c is the speed of light.

By synthesizing echoes of different frequencies, we obtain
a larger synthetic bandwidth, B = M∆f , which refines the
range resolution to c

2B .

B. Radar Returns Model
We then derive the expressions of received echoes, which

are delays of the transmissions. We begin by considering a
single ideal scatterer with complex scattering coefficient γ.
Multiple-scatterer scenario is a simple extension, and will be
discussed later in this section. Assume that the scatterer is
moving along the radar line of sight with a constant velocity
v and an initial range R. Let τ (t) := 2(R+vt)

c represent the
time delay at the time instant t. Under the “stop-and-go” model
[26], it holds that τ (t) ≈ τ (nTr). Then, the received echo can
be written as

sR (n, t) = γsT (n, t− τ (t)) ≈ γsT (n, t− τ (nTr)) . (3)

The RF echo of each pulse, sR (n, t), is down-converted to the
baseband by its corresponding carrier frequency, e.g., ej2πfnt

for the n-th pulse. After down-conversion, the baseband echo
is represented by

sR (n, t)= sR (n, t) · e−j2πfn(t−nTr)

= γrect
(
t− nTr − τ (nTr)

Tp

)
e−j2πfnτ(nTr)

= γrect
(
t− nTr − τ (nTr)

Tp

)
· ej2πfRCn+j2πfvξnn

(4)
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where γ = γe−j2πfcτ(nTr) and ξn := 1 + Cn∆f
fc

. We regard
fR := − 2∆fR

c and fv := − 2fcvTr
c as the range frequency and

velocity frequency, respectively.
For each pulse, we then sample the baseband echoes

sR (n, t) at time instants, t = nTr + ls/fs, ls =
0, 1, · · · , bTrfsc. We use the Nyquist sampling rate, i.e., fs =
B0, so that each sample corresponds to a CRR bin. Echoes
from these bins are processed identically and individually.
Without loss of generality, suppose that the l-th CRR bin
contains the scatterer, and the scatterer stays inside the bin
during the CPI. In the rest of paper we focus on this single
ls-th CRR bin. By substituting t = nTr + ls/fs into (4), we
obtain the echo sequence

sR (n) = sR (n, t) |t=nTr+ls/fs = γej2πfRCn+j2πfvξnn. (5)

The model (5) above is derived in the single target/scatterer
case. We now extend it to the scenario that a CRR bin contains
K targets and the k-th target consists of Pk scatterers, k =
0, 1, · · · ,K−1. Denote by vk and fvk the velocity of the k-th
target and its velocity frequency, respectively. Let {γ̄ki}Pk−1

i=0 ,
{Rki}Pk−1

i=0 and {fRki}
Pk−1
i=0 be the scattering coefficients,

initial ranges and the corresponding range frequencies of the
scatterers contained in the k-th target, respectively. We note
that these Pk scatterers have the same velocity vk, since they
belong to the same target. The received signal is modeled as
the superimposed echoes from all the scatterers belonging to
these K targets,

sR (n) =

K−1∑
k=0

Pk−1∑
i=0

γkie
j2πfRkiCn+j2πfvkξnn. (6)

Here, {γ̄ki}, {fRki} and {fvk}, representing the intensity,
range and Doppler parameters, respectively, are unknown and
should be estimated from the sampled echoes sR(n), n ∈ N.

In the next subsection, we will rewrite (6) in a matrix form
and reveal the connection between range-Doppler reconstruc-
tion and block sparse recovery.

C. Matrix form model with block structure

Following [12], in this subsection, we reformulate the
echo model (6) in matrix form and recast the range-Doppler
estimation as a sparse recovery problem. Different from the
previous work that exploits non-block sparsity [12], we will
emphasize the natural block sparsity that appears in wideband
RSFR.

Stacking the echoes forms the measurement vector y ∈ CN
with n-th entry given by [y]n = sR (n).

We then discretize the continuous range frequency and ve-
locity frequency parameters, fR and fv , into finite grid points.
Note that (fR, fv) is unambiguous in the region [0, 1)2 and the
resolutions of fR and fv are 1/M and 1/N , respectively. We
discretize fR and fv at the rates of 1/M and 1/N , respectively,
leading to the set of grid points, { pM }p∈M×{

q
N }q∈N. Under the

assumption that all the scatterers are located precisely on the
grid points, we denote by Γ ∈ CM×N the scattering intensities

corresponding to the grid points. The (p, q)-th entry of Γ,
denoted by Γp,q , is given by

Γp,q :=

{√
Nγki if ∃ (k, i) , (fRki , fvk) =

(
p
M , qN

)
0 otherwise,

(7)

where
√
N is a normalization factor, representing the gain of

coherent processing with N pulses.
We denote by xq the q-th column of Γ, i.e., xq :=

[Γ0,q,Γ1,q, · · · ,ΓM−1,q]
T ∈ CM , which corresponds to a

target with velocity frequency q
N and represents the HRR

profiles of the target. Vectorization of Γ yields x ∈ CMN ,
i.e.,

x :=
[
xT0 ,x

T
1 , · · · ,xTN−1

]T
, (8)

where the HRR profile of each target can be regarded as a
block of x.

Since there are generally only a few targets in a certain
CRR, the observed scene is often sparse. Particularly, due to
the block structure indicated in (8), only a few blocks in x
are nonzero, which reveals that in RSFS the scene possesses
block sparsity. This additional structure inspires us to apply
block sparse recovery in RSFR instead of the canonical sparse
recovery. Exploiting the block sparsity leads to better range-
Doppler reconstruction performance, as will be discussed later
by the theoretical analysis and simulation/field experiments,
presented in Section IV and V, respectively.

We now arrange (6) in matrix form as

y = Ψx, (9)

where Ψ ∈ CN×MN is referred to as the observation matrix.
Consistent with the definition of x, Ψ is divided into N blocks,
i.e.,

Ψ := [Ψ0,Ψ1, · · · ,ΨN−1] , (10)

and each block Ψq ∈ CN×M , q ∈ N, corresponds to a
unique velocity frequency q

N . There are M columns in a
block Ψq and we denote by ψp,q the p-th column, i.e.,
Ψq = [ψ0,q,ψ1,q,ψ2,q, · · · ,ψM−1,q]. From (5) and (7), the
n-th entry of ψp,q is given by

[ψp,q]n =
1√
N
ej

2πp
M Cn+j 2πq

N ξnn, (11)

where the factor 1√
N

normalizes the observing vectors so that
ψHp,qψp,q = 1.

In a noisy circumstance, (9) is rewritten as:

y = Ψx+w, (12)

where w is the additive white Gaussian noise with a noise
power σ2, i.e., w ∼ CN

(
0, σ2IN

)
.

In (9) and (12), y and Ψ are given, while x is unknown
and yet should be recovered. When x is reconstructed by
solving the linear equation (9) or (12), the HRR profiles and
velocity parameters of targets are recovered from the indices
of nonzero elements in x. Because the dimension of the
observations is less than that of the unknown vector x, i.e.
N < MN , the problem is under-determined, which inspires
the use of sparse recovery or compressed sensing, as discussed
previously in [12]. In this paper, observing the additional



4

block sparsity of the target scene, we apply the block sparse
recovery algorithms with the expectation of achieving better
reconstruction performance. Both traditional and block sparse
recovery will be briefly reviewed in the next section.

III. SPARSE RECOVERY AND BLOCK SPARSE RECOVERY

We first introduce some basic concepts of non-block sparse
recovery in Subsection III-A, and then briefly review block
sparse recovery in Subsection III-B.

A. Sparse recovery

Sparse recovery aims to solve the under-determined prob-
lems such as y = Ψx. In particular, it assumes that x is
sparse, i.e., there are only a few nonzero entries in x, and
seeks for the sparsest representation of y by minimizing the
`0 ”norm”

x̂ = arg min
x
‖x‖0, s.t. y = Ψx. (13)

Since the `0 optimization is generally NP-hard, many strategies
have been proposed to reduce the computational complexity
including greedy approaches and more efficient `1 minimiza-
tion, i.e.,

x̂ = arg min
x
‖x‖1, s.t. y = Ψx. (14)

There are many works addressing conditions under which
(14) has a unique solution; see [27] and references therein.
Most of these researches rely on the mutual coherence or
restricted isometry property (RIP) of the measurement matrix
Ψ, the sparsity level (the number of nonzero elements in x) as
well as the dimensions of the problem. For example, in RSFR,
a specific application of sparse recovery, [12] proves that (14)
guarantees the successful recovery of x with high probability
(with respect to the random selections of carrier frequencies)
when the number of nonzero entries in x is in the order
of O

(√
N

logMN

)
. We later introduce block sparse recovery,

which can provably yield better reconstruction properties than
treating x being sparse in this conventional sense.

B. Block sparse recovery

Block sparse recovery assumes that nonzero elements ap-
pear in a few blocks. And the vector x is said K-block
sparse, if there are at most K nonzero blocks. As discussed in
Subsection II-C, block sparsity naturally arise in RSFR when
targets are extended in range. Each block of x, as defined in
(8), represents the HRR profiles of an extended target moving
at a specific velocity. As noted in [23], in general, a block-
sparse vector is not necessarily sparse and vice versa.

Block sparse recovery turns to minimize the number of
nonzero blocks in x by solving the following optimization
problem

x̂ = arg min
x
‖x‖i,0, s.t. y = Ψx, (15)

where i ≥ 0 and ‖x‖i,0 :=
∑N−1
q=0 ‖‖xq‖i‖0 is the mixed

`i,0 norm. However, solving (15) is still NP-hard [23]. To
efficiently solve (15), convex relaxation that applies `2,1 norm
can be used, i.e.,

x̂ = arg min
x
‖x‖2,1, s.t. y = Ψx, (16)

where ‖x‖2,1 :=
∑N−1
q=0 ‖xq‖2. In a noisy case (12), a so-

called Block-Lasso [19] method is usually adopted as

x̂ = arg min
x

1

2
‖y −Ψx‖22 + λ‖x‖2,1, (17)

where λ > 0 is the weight coefficient for regularization.
By generalizing the notion of coherence or RIP to block

setting, many works study conditions under which (16) yields
correct reconstruction of block sparse x, including [20]–[25]
to name a few.

Among these works, we adopt the average-case analysis
framework provided in a more recent paper [25], for its
explicitly computable conditions on Ψ in contrast to the
classical setup. As opposite to the conventional analyses that
consider to recover an arbitrary K-block-sparse x, [25] resorts
to an average-case analysis by imposing a mild statistical prior
on x. We repeat a concise version of these mild statistical
constraints as the following:

M1) The block support of x,T := {q : xq 6= 0}, has a uniform
distribution over the all (NK) possible K-subsets of N,

M2) Entries in x have zero median: E [sign(x)] = 0, where
sign(x) = x/|x| denotes entry-wise sign operation, and

M3) Nonzero blocks of block-sparse signal x have statistically
independent “directions”.

We also inherit from [25] the definitions of intra-block
coherence, i.e.,

µI := max
q∈N
‖ΨH

q Ψq − IM‖s, (18)

and inter-block coherence, given by

µB := max
q1,q2∈N,q1 6=q2

‖ΨH
q1Ψq2‖s. (19)

With these definitions, [25] provides the following theorem
that guarantees the unique solution of block sparse recovery
(16).

Theorem 1 ([25]). Suppose that x is K-block sparse, drawn
according to the statistical model M1-M3, and is observed
according to (9). Then, as long as the block coherence of the
matrix Ψ satisfy

17

√
K log (MN) (1 + µI)

N
‖Ψ‖s

+48µB log (MN) +
2K

N
‖Ψ‖2s + 3µI ≤

1

4
,

(20)

solving (16) results in x̂ = x with probability at least
1− 4 (MN)

−4 log 2, with respect to the random choice of the
subset T.

Proof. See [25, (5) and Thm. 1 and 2].

Next, based on Theorem 1, especially the so-called block
incoherence condition (20), we analyze the block coherence of
Ψ, and establish the corresponding unique recovery condition
on the block sparsity K in RSFR. The condition (20) imposes
a joint constrain on the block coherence µI , µB , the spectral
norm ‖Ψ‖s and the block sparsity K. We note that these
parameters µI , µB and ‖Ψ‖s are not trivial extensions of the
traditional coherence used in [12], but rely on the structure
of the block matrices Ψq . The novelty vis-à-vis the reference
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[12] lies in revealing and leveraging the particular structure of
these blocks in Ψ.

IV. PERFORMANCE ANALYSIS FOR RSFR

In this section, we analyze the range-Doppler reconstruction
performance of RSFR using block sparse recovery based on
Theorem 1, which involves the block coherence µI and µB ,
and the spectral norm of the overall observation matrix ‖Ψ‖s.
Since the carrier frequency for each radar pulse is randomized,
the observation matrix Ψ is random. As a consequence, we
start analyzing the probabilistic characters of µI and µB
in Subsection IV-A, followed by the calculation of ‖Ψ‖s
present in Subsection IV-B. Given these results on µI , µB and
‖Ψ‖s, we then develop conditions that ensure unique recovery
exploiting block sparsity in Subsection IV-C.

In order to facilitate the analysis, we follow the typical
setting in [28], assuming ξn = 1, throughout this section,
so that the n-th entry of the observation vector (11) can be
simplified as follows

[ψp,q]n =
1√
N
ej

2πp
M Cn+j 2πq

N n. (21)

In fact, this assumption is to neglect the Doppler-shift dif-
ferences of different carrier frequencies, which holds when
the relative bandwidth B/fc is negligible. However, when we
consider a RSFR with large (synthetic) bandwidth, this approx-
imation does not usually hold unless the initial frequency fc is
sufficiently high. In the simulations and field experiments as
presented in Section V, the signal processing algorithms do not
adopt this assumption. The impact of the relative bandwidth
will be discussed in the simulation section.

A. Analysis on block coherence µI and µB

According to the definitions (18) and (19), the block coher-
ence µI and µB depend on the singular values of the matrix
product ΨH

q1Ψq2 (q1 = q2 for µI and q1 6= q2 for µB).
It is usually difficult to analyze singular values of a highly
structured random matrix. Fortunately, the matrix products
ΨH
q1Ψq2 are circulant matrices, as will be shown in the sequel,

which enables us to obtain the closed-form expressions of their
singular values with respect to the random carrier frequencies.
Based on these analytical results, we then derive the statistical
characters of the singular values and the consequent block
coherence.

For the sake of clear presentation, we introduce the follow-
ing notation. Let X and Xq1,q2 be matrix products, particu-
larly, X := ΨHΨ ∈ CMN×MN and Xq1,q2 := ΨH

q1Ψq2 ∈
CM×M , q1, q2 ∈ N. From the definition of Ψ (10), it can be
verified that

X =


X0,0 X0,1 · · · X0,N−1

X1,0 X1,1 · · · X1,N−1

...
...

. . .
...

XN−1,0 XN−1,1 · · · XN−1,N−1

 , (22)

indicating that Xq1,q2 are the blocks of X .

Observing the definitions (18) and (19), we define a variant
of Xq1,q2 as

Xq1,q2 :=

{
Xq,q − IM q1 = q2 = q,
Xq1,q2 q1 6= q2,

(23)

so that µI and µB can be rewritten in an unified form as

µI = max
q∈N

∥∥Xq,q

∥∥
s
, (24)

µB = max
q1,q2∈N,
q1 6=q2

∥∥Xq1,q2

∥∥
s
, (25)

respectively. As the spectral norm of a square matrix is highly
related to its eigenvalues and singular values, we then denote
by λ and σ the eigenvalue and singular value of a matrix,
respectively. In particular, we use λl, λq1,q2m and λ̄q1,q2m (σl,
σq1,q2m and σ̄q1,q2m ) to represent the l-th eigenvalue (singular
value) of the matrix X , and the m-th of Xq1,q2 and Xq1,q2 ,
respectively, l ∈ L := {0, 1, · · · ,MN − 1}, m ∈M.

With these notation, we now reveal in the subsequent
Lemma 1 that Xq1,q2 is a circulant matrix, where each row
is generated by moving the preceding row with one position
to the right and wrapping around [29]. This special structure
will be later leveraged to derive the closed-form expressions
of the eigenvalues λq1,q2m .

Lemma 1. The matrix Xq1,q2 , q1, q2 ∈ N, is a circulant
matrix.

Proof. See Appendix A.

Since the eigenvalues of a circulant matrix are discrete
Fourier transformation of its first row [30], we now derive
the analytical expression of the eigenvalues λq1,q2m as stated in
Lemma 2.

Lemma 2. The eigenvalues λq1,q2m can be expressed as

λq1,q2m =
M

N

N−1∑
n=0

ζn,me
j2π

q2−q1
N n, (26)

where ζn,m = δ (Cn −m).

Proof. See Appendix B.

From (26), we find that 1) the eigenvalue λq1,q2m is a random
variable. The randomness comes from the randomly selected
frequency code Cn. Recall that each frequency code obeys an
i.i.d uniform distribution, i.e., Cn ∼ U (M). We then have that
ζn,m obeys a Bernoulli distribution ζn,m ∼ B

(
1
M

)
, i.e.,

P (ζn,m = 0) = 1− 1

M
; P (ζn,m = 1) =

1

M
. (27)

And the random variables ζn,m, n ∈ N, are independent among
each other for a fixed m ∈M. This will be used later to derive
the tail probability of the block coherence.

The result (26) also indicates that 2) the value of λq1,q2m

depends on the difference q1 and q2, i.e. ∆q := q2−q1, and not
on the particular values of block indices q1 and q2. Witnessing
this, we replace the notation λq1,q2m with λ∆q

m , ∆q ∈ {±n}N−1
n=0 ,

for simplicity, which is given by

λ∆q
m :=

M

N

N−1∑
n=0

ζn,me
j2π∆q

N n. (28)
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We can further observe in (28) that 3) λ∆q
m has some

particular conjugate-symmetric characters as stated in the
following equations,

λ∆q
m =

(
λ−∆q
m

)∗
, (29)

λ∆q
m = λ∆q±N

m , (30)

which imply that there are duplicated values in the magnitudes{∣∣λ∆q
m

∣∣}
∆q∈{±n}N−1

n=0
, i.e.,∣∣λ∆q

m

∣∣ =
∣∣λ−∆q
m

∣∣ =
∣∣λ∆q±N
m

∣∣ ,∆q ∈ {±n}N−1
n=0 . (31)

Given the expression of λ∆q
m , we then derive λ̄q1,q2m and

σ̄q1,q2m . Invoking the definition (23) directly implies that
λ̄q1,q2m = λq1,q2m = λ∆q

m for q1 6= q2, and for q1 = q2 = q,
λ̄q,qm = λq,qm −1 = λ0

m−1. Thus, we find that λ̄q1,q2m also relies
on the difference ∆q . Similarly, we define λ̄∆q

m := λ̄q1,q2m for
∆q = q2 − q1, which can be expressed as

λ̄∆q
m =

{
λ0
m − 1 ∆q = 0,
λ∆q
m ∆q 6= 0.

(32)

Since Xq1,q2 is also a circulant matrix, the singular values
are given by the magnitudes of the eigenvalues [31],

σ̄q1,q2m =
∣∣λ̄q1,q2m

∣∣ , (33)

which indicates that the singular value σ̄q1,q2m also depends on
∆q and can be rewritten as σ̄∆q

m . Combing (32) and (33) yields

σ̄∆q
m =

{ ∣∣λ0
m − 1

∣∣ ∆q = 0,∣∣λ∆q
m

∣∣ ∆q 6= 0.
(34)

Invoking the fact that the spectral norm of a matrix equals the
maximum singular values, we can rewrite the intra-block (24)
and inter-block coherence (25) with respect to the singular
value σ̄∆q

m as

µI = max
q∈N

max
m∈M

σ̄0
m = max

m∈M
σ̄0
m, (35)

µB = max
∆q∈{±n}N−1

n=1

max
m∈M

σ̄∆q
m , (36)

respectively. Here, regarding (36), we note that among these
2N − 2 elements in σ̄∆q

m , ∆q ∈ {±n}N−1
n=1 , there are at most

bN/2c unique values, i.e., σ̄∆q
m , ∆q ∈ {n}bN/2cn=1 . This is a

consequence of applying (34) and (31). Then, (36) becomes

µB = max
∆q∈{n}bN/2cn=1

max
m∈M

σ̄∆q
m . (37)

Note that the singular values are random variables, and a
bound of their tail probabilities are presented in Theorem 2.
With the obtained results, we will later analyze the probabilis-
tic characters of the block coherence µI and µB .

Theorem 2. For ε ≤ 1 and ∆q ∈ {n}bN/2cn=0 , the singular
values σ̄∆q

m satisfy

P

(
σ̄∆q
m >

√
M − 1

N
+ ε

)
< e−

N
4(M−1)

ε2 . (38)

Proof. See Appendix C.

Given (38), we derive a probability bound on µI by applying
the union bound to (35). In particular, let c1 =

√
M−1
N + ε,

and we have

P (µI > c1) = P

(
max
m∈M

σ̄0
m > c1

)
≤
∑
m∈M

P
(
σ̄0
m > c1

)
< Me−

N
4(M−1)

ε2

= Me−
(
√
Nc1−

√
M−1)2

4(M−1) .

(39)

Regarding with µB in (37), we follow the same technique in
(39), and obtain the subsequent bound

P (µB > c2) < MbN/2ce−
(
√
Nc2−

√
M−1)2

4(M−1) . (40)

Probability bounds (39) and (40) characterize the block co-
herence of the observation matrix Ψ. To establish a sufficient
condition for exact recovery that uses Ψ, we calculate its
spectral norm ‖Ψ‖s in the next subsection.

B. Derivation of ‖Ψ‖s
Despite of the randomness, we find that Ψ has a determinate

spectral norm ‖Ψ‖s =
√
M . To reveal this, we start by

analyzing the structure of the Gram matrix X = ΨHΨ, since
the singular values of a matrix correspond to the eigenvalues
of its Gram matrix [32]. Particularly, the l-th singular value
of Ψ satisfies

σl(Ψ) =
√
λl(X) =

√
λl, l ∈ L. (41)

Leveraging a particular structure (as will be stated in Lemma
3), we then derive the analytical form of the eigenvalues λl,
which completes the calculation of ‖Ψ‖s.

From (22), we find that 1) X has circulant blocks, since
each block Xq1,q2 is a circulant matrix as revealed in Lemma
1. Besides this, X has an additional structure. As we will
prove later in the Appendix D, each (block) row ofX is a right
cyclic shift of the row above it, i.e., for q1 = 1, 2, . . . , N − 1,

Xq1,q2 =

{
Xq1−1,q2−1 q2 = 1, 2, . . . , N − 1,
Xq1−1,N−1 q2 = 0,

(42)

or equivalently, for q1, q2 ∈ N,

Xq1,q2 =

{
X0,q2−q1 q2 ≥ q1,
X0,q2−q1+N q2 < q1,

(43)

which indicates that 2) X is a block criculant matrix. Com-
bining 1) and 2) implies the following Lemma 3.

Lemma 3. The matrix X is a block circulant matrix with
circulant blocks.

Proof. This is a simple consequence of the previous discus-
sion.

For a matrix with such structure, its eigenvalues are given
by the eigenvalues (λnm, m ∈M) of the circulant blocks X0,n,
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n ∈ N [29, Thm 5.8.1]. In particular, for l = qM +m, q ∈ N,
we have the following

λl =

N−1∑
n=0

ej2π
qn
N λnm. (44)

Given the eigenvalues of X , we then obtain the singular
values of Ψ using (41). Finding the maximum of these singular
values yields ‖Ψ‖s, as stated in the following corollary.

Corollary 1. The spectral norm of Ψ is given by

‖Ψ‖s =
√
M. (45)

Proof. See Appendix E.

Using probability bounds on µI and µB together with ‖Ψ‖s,
we are now ready to derive a unique recovery condition in the
subsequent subsection.

C. Unique recovery condition

Based on the condition (20) in Theorem 1, we develop a
requirement on M , N (radar parameters) and K (the block
sparsity, i.e., the number of extended targets), under which
the observation matrix Ψ meets the condition (20) with high
probability. We state the main result in the following theorem.

Theorem 3. For any constant ε > 0 and a sufficiently large
N , the inequality (20) holds with a probability at least 1− ε
when the block sparsity satisfies

K ≤
N
(

1
8 − δ1 − δ2

)2
81M logMN (1 + 2δ2/3)

, (46)

where δ1 := 24
√

M−1
N logMN

(
2
√

logMN − log ε+ 1
)

and δ2 := 3
2

√
M−1
N

(
2
√

log 2M − log ε+ 1
)

are small con-
stants for large N .

Proof. See Appendix F.

Theorem 3 reveals that the observation matrix of RSFR
satisfies (20) with high probability (with respect to the ran-
dom selection of carrier frequencies) if the number of the
extended targets, i.e., the block number, is in the order of
K = O

(
N

M logMN

)
. In this case, according to Theorem 1, we

obtain average-case guarantees for range-velocity reconstruc-
tion in RSFR. In terms of the number of scattering points, the
scale becomes KM = O

(
N

logMN

)
since each block contains

M elements. Comparing this result with the previous bound
that was built on canonical (i.e., non-block) sparse recovery
[12], i.e., KM = O

(√
N

logMN

)
, makes us optimistic to

use block sparse recovery in RSFR. In the ensuing section,
both synthetic and field experiments are executed, results of
which demonstrate that block sparse recovery leads to better
performance on range-velocity reconstruction than the non-
block counterparts.

V. EXPERIMENTAL RESULTS

In this section, both simulated and measured data are
provided to test the performance of the block and non-block
sparse recovery algorithms. We consider noiseless and noisy
scenarios. In noiseless cases, we use the the mixed `2,1 norm
minimization and the Block-OMP as examples of block sparse
recovery algorithms, the `1 norm minimization and OMP
as the counterparts of non-block algorithms for comparison,
respectively. In noisy cases, the `1 and mixed `2,1 norm min-
imization become Lasso and Block-Lasso, respectively. When
we deal with measured data, we apply matched filter addition-
ally, which simply reconstructs the range-Doppler parameters
as x̂ = ΨHy. The results demonstrate the effectiveness of
block sparse recovery and imply its superiority over con-
ventional sparse recovery. Specifically, the simulation results
are presented in Subsection V-A, in which we focus on two
aspects: 1) the statistical property of the observation matrix
Ψ including µI , µB and ‖Ψ‖s, and 2) the reconstruction
performance in both the noiseless and noisy scenarios. Then,
the measured-data results are provided in Subsection V-B, in
which the reconstruction performance of both air and surface
target scenarios is tested.

A. Simulation Results

In this subsection, three simulation experiments are con-
ducted for different considerations. In the first experiment, we
focus on the block coherence and the spectral norm of the
observation matrix Ψ, and study the impact of the relative
bandwidth on them. In the second and third experiments, we
discuss the range-velocity reconstruction performance in the
noiseless and noisy scenarios, respectively.

In the first experiment, we study the Complementary Cumu-
lative Distribution Functions (CCDFs) of µI , µB and ‖Ψ‖s.
We set the pulse number and the frequency point number as
N = 32 and M = 4, respectively. Different Relative Band-
widths (RB) are simulated, which is defined as RB = M∆f

fc
.

The observation matrix Ψ is generated according to (11). In
the cases when RB= 0.01 or 0.1, the assumption ξn = 1 does
not apply. And we denote by ”RB= 0” when we generate Ψ
under the assumption ξn = 1. The results are shown in Fig.
1-3, in which the theoretical bounds of µI and µB , presented
in (39) and (40), respectively, are also shown for comparison.
As expected, when the assumption ξn = 1 applies, the CCDFs
of µI and µB are bounded by (39) and (40), respectively;
and ‖Ψ‖s =

√
M . When ξn = 1 does not hold, the CCDF

of µI does not change, which can also be deduced from
the fact that the definition of µI (24) is irrelevant with ξn.
However, in this situation, CCDFs of µB and ‖Ψ‖s change.
In the tested scenarios, µB and ‖Ψ‖s tend to take values
slightly larger than those when we assume ξn = 1. Changes
of µB and ‖Ψ‖s may affect reconstruction performance in
RSFR applications and we leave the theoretical analysis for
future investigation. However, as indicated in the following
experiments, the block sparse recovery algorithms still enjoy
satisfactory reconstruction performance though the assumption
ξn = 1 does not apply.
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Fig. 1. CCDFs of µI with N = 32 and M = 4.
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Fig. 3. CCDFs of ‖Ψ‖s with N = 32 and M = 4.

In the next two experiments, we verify the robustness
of block sparse recovery algorithms and their superiority in
comparison with conventional sparse recovery algorithms. The
RSFR works with the parameters as follows: fc = 9GHz,
Tr = 20µs, ∆f = 30MHz, M = 8 and N = 128. Multiple
extended targets are simulated. And each one consists of
Pk = 8 scatterers distributed in cluster along range. The ve-
locity frequencies of the targets {fvk} are randomly uniformly
selected from the grid points {q/N}q∈N and each scatterer has
a random scattering coefficient obeying a complex Gaussian
distribution as γki ∼ CN (0, 1). When we run OMP and
Block-OMP, the sparsity and block sparsity are set as the true
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Fig. 4. The exact recovery ratio comparison in the noiseless case.
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Fig. 5. The hit rate of different algorithms in the noisy case.

numbers of scatterers and targets, respectively. In the `1 and
mixed `2,1 norm minimization, an entry x̂ of x̂ is regarded as
nonzero and its index is contained in the support set when the
magnitude exceeds a rather low threshold (i.e., |x̂| > 10−5).
For Lasso and Block-Lasso used in the noisy scenario, the
support sets are identified by seeking for elements in x̂ with∑
k Pk largest magnitudes, where

∑
k Pk denotes the true

scatterer number.
The second experiment considers the noiseless case. We

repeat the simulation independently for 1000 times under
different target numbers (i.e., block numbers). Exact recovery
rate is introduced to evaluate the recovery performance. An
exact recovery is proclaimed when the recovered support set
exactly matches the ground truth and the exact recovery rate
is defined as the ratio of exact recovery times to the overall
simulation times. Results are shown in Fig. 4. We find that
block sparse recovery algorithms reconstruct larger numbers
of blocks than the non-block counterparts. The performance
improvement is indicated by double-headed arrows, which
reveals the superiority of block sparse recovery over the
conventional sparse recovery.
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Fig. 6. The reconstructed air targets using different methods.

The third experiment is designed for noisy scenarios. Due to
the existence of noise, exact recovery is hard to obtain. Instead,
we introduce hit rate for performance evaluation, which is
defined as the ratio of the number of correctly recovered
nonzero entries to the total number of nonzero entries. Dif-
ferent block numbers and Signal-to-Noise Ratio (SNR) are
simulated. The SNR is defined as SNR = 10 log10

1
σ2 . Hit rate

results are shown in Fig. 5, in which each square is obtained
by averaging 1000 Monte Carlo trials. Larger area of the dark
color part represents better performance, which also reveals
the superiority of block sparse recovery over the conventional
sparse recovery.

B. Measured Data Results

In this subsection, measured data is used to demonstrate
the effectiveness of the block sparse recovery methods. Radar
data is obtained in two different target scenarios. One is an
air-target scenario, where there are two targets but no clutter,
while the other is a surface-target scenario with only one target
and serious clutter. For OMP and Block-OMP, the sparsity
and block sparsity are set to 2M and 2, respectively. In Lasso
and Block-Lasso, we identify 2M elements of x̂ with largest
magnitudes and apply least squares to these elements to refine
the estimates of scattering coefficients. Finally recovered x̂ is
reshaped into matrix form Γ according to the definition (7),
and the magnitudes of Γ will be shown in Fig. 6 and Fig.
7 corresponding to the range-velocity plane. Note that each
range cell and velocity cell correspond to a grid point of range
frequency and velocity frequency, respectively. In addition,
the velocity spectrum is introduced to evaluate the velocity
estimation performance of extended targets. Specifically, the
q-th entry of the velocity spectrum νs is defined as the `2

norm of the estimated HRR profile in the q-th velocity cell,
i.e.,

[νs]q = ‖x̂q‖2, q ∈ N, (47)

where x̂q is the q-th block of x̂.
1) Air Target Recovery: Here, we provide experimental

results with real measured RSFR data from civil aircraft in air.
During the observing time, the radar transmits N = 64 pulses
in a CPI, whose carrier frequencies cover M = 16 frequency
points with the frequency step size ∆f = 50MHz. Two civil
aircraft are flying away from the radar with relative velocities
35m/s (Target A) and 45m/s (Target B), respectively. Echoes
from these two aircraft are measured individually with identi-
cal radar waveform. We add the echoes of the two aircraft to
generate a two-target scenario. For the measured two-target-
scenario data, the SNR is high, and extra complex Gaussian
noise is added to lower the SNR to approximately 10dB.
Magnitudes of reconstructed Γ are shown in Fig. 6. From
Fig. 6, we observe that the matched filter result has a high
sidelobe pedestal: only a few strong scatterers of Target A
are distinct but many other scatterers are submerged by the
sidelobe pedestal. Non-block sparse recovery algorithms, i.e.,
OMP and Lasso, extract more strong scatterers of Target A
than matched filter, but lead to many spurious peaks. In the
resuls of Block-OMP and Block-Lasso, both the HRR profiles
of Target A and Target B are extracted and only one spurious
peak with weak magnitude appears in the Block-Lasso result.
These results demonstrate the validness of the block sparse
recovery for extended targets and the advantage over the non-
block counterparts.

The results of velocity spectrum are also shown in Fig. 6.
To make the results clear, we only show the results of matched
filter, Lasso and Block-Lasso because the results of the OMP
and Block-OMP are similar with those of Lasso and Block-

Lasso, respectively. As one can find, all the three spectrums
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Fig. 7. The reconstructed surface target and clutter using different methods.

 

Fig. 8. The photograph of the surface target scene.

have two peaks corresponding to the true velocities of the
targets. However, in matched filter and Lasso, the peaks are
not distinct and many spurious peaks have magnitudes close
to the true peaks. In contrast, Block-Lasso results in sharp
velocity spectrum with only one spurious peak approximately
13dB weaker than those of the targets.

2) Surface Target and Clutter Recovery: We also use a
RSFR to measure a boat moving in a lake. In this field
experiment, the radar is amounted about 10m above the lake
surface and the boat is moving with a relative velocity about
2m/s. The target scene is presented in Fig. 8, which is a
photograph taken from the radar site. The RSFR is configured
with parameters: N = 128, M = 16 and ∆f = 32MHz.
Due to the backscatter from the lake surface and other static
objects, there are serious clutter in the received echoes and the
clutter-to-signal ratio is approximately 25dB.

We demonstrate the reconstructed Γ in Fig. 7. Due to the
dominant intensities of the clutter, the HHR profiles of the
clutter are recovered identically by all the five methods tested.

In the result of matched filter, however, the target is completely
submerged in the sidelobe pedestal of the clutter. Though the
non-block OMP and Lasso indicate the true velocity of the
boat, many spurious peaks appear in their reconstructed Γ.
Some of these spurious peaks have even higher amplitudes
than the true target, which may lead to false alarm. While in
the results of Block-OMP and Block-Lasso, both HRR profiles
of the target and clutter are reconstructed and there are only a
few spurious peaks appearing in the Block-Lasso result with
inferior amplitudes in comparison with those of the dominant
scatterers in the target. These measured data results demon-
strate the effectiveness of the block sparse recovery algorithms
for range-Doppler reconstruction of extended targets. Since
similar conclusions can be drawn from the velocity spectrum
results, we omit the detailed discussions.

VI. CONCLUSION

In this paper, we consider the range-velocity reconstruction
of extended targets in RSFRs. By exploiting the natural block
sparsity of the extended targets, we introduce the block sparse
recovery. We analyze the block coherence and the spectral
norm of the observation matrix, and then establish a bound on
the radar parameters, i.e., KM = O

(
N

logMN

)
, under which

the range-velocity reconstruction is guaranteed. The obtained
theoretical bound relaxes the previous constrain KM =

O
(√

N
logMN

)
, which is based on non-block sparse recovery.

Both simulated and measured data results demonstrate the
effectiveness of the block sparse recovery algorithms used for
RSFRs and their superiority over the non-block counterparts.

APPENDIX A
PROOF OF LEMMA 1

According to the definition of a circulant matrix [29, Chap-
ter 3], it is equivalent to prove that for p1, p2 ∈M, the (p1, p2)-
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th element satisfies

[Xq1,q2 ]p1,p2
=

{
[Xq1,q2 ]0,p2−p1

p2 ≥ p1,

[Xq1,q2 ]0,p2−p1+M p2 < p1.
(48)

Substituting the definitions Xq1,q2 = ΨH
q1Ψq2 and (21) into

the left hand side of (48), we have

[Xq1,q2 ]p1,p2
= ψHp1,q1ψp2,q2

=
1

N

N−1∑
n=0

ej2π
p2−p1
M Cn+j2π

q2−q1
N n.

(49)

Noticing the phase term

ej2π
p2−p1
M Cn = ej2π

(p2−p1)−0
M Cn

= ej2π
(p2−p1+M)−0

M Cn ,
(50)

we have [Xq1,q2 ]p1,p2
= [Xq1,q2 ]0,p2−p1

and [Xq1,q2 ]p1,p2
=

[Xq1,q2 ]0,p2−p1+M , as long as p2−p1 and p2−p1 +M belong
to M, respectively, which proves (48). Therefore Xq1,q2 is a
circulant matrix.

APPENDIX B
PROOF OF LEMMA 2

Remember that Xq1,q2 is a circulant matrix according to
Lemma 1, whose eigenvalues are discrete Fourier transfor-
mation of its first row [30]. For brevity, we let χp :=
[Xq1,q2 ]0,p ∈ C be the p-th element of the first row in matrix
Xq1,q2 . From (49), χp is given by

χp =
1

N

N−1∑
n=0

ej2π
p
M Cn+j2π

q2−q1
N n. (51)

By applying discrete Fourier transformation to
[χ0, χ1, . . . , χM−1]T , we obtain the eigenvalue as

λq1,q2m =

M−1∑
p=0

χpe
−j2π mM p

=
1

N

M−1∑
p=0

N−1∑
n=0

ej2π
q2−q1
N n+j2πCn−mM p

=
1

N

N−1∑
n=0

(
ej2π

q2−q1
N n

M−1∑
p=0

ej2π
Cn−m
M p

)

=
1

N

N−1∑
n=0

ej2π
q2−q1
N n ·Mδ (Cn −m)

=
M

N

N−1∑
n=0

ej2π
q2−q1
N n · ζn,m,

(52)

where ζn,m := δ (Cn −m) ∈ {0, 1}, completing the proof.

APPENDIX C
PROOF OF THEOREM 2

We prove the theorem in the cases ∆q 6= 0 and ∆q = 0
individually.

In the case of ∆q 6= 0, from (28) and (34), we have

σ̄∆q
m =

∣∣∣∣∣MN
N−1∑
n=0

ej2π
∆q
N n · ζn,m

∣∣∣∣∣ . (53)

Let Jn =
Mζn,m−1

N ej2π
∆q
N n, we can verify that∣∣∣∣∣

N−1∑
n

Jn

∣∣∣∣∣ =

∣∣∣∣∣MN
N−1∑
n=0

ej2π
∆q
N nζn,m −

1

N

N−1∑
n=0

ej2π
∆q
N n

∣∣∣∣∣ = σ̄∆q
m ,

by invoking the fact that
∑N−1
n=0 e

j2π∆q
N n = 0 for ∆q 6= 0.

We can also find that Jn is independent from each other,
which comes from the independence of ζn,m with respect to
n. According to the distribution of ζn,m as mentioned in (27),
we have E [Jn] = 0. Then (38) is a direct consequence of the
Bernstein inequality [33, Thm. 12] with V and ε given by

V =

N−1∑
n=0

E
[
|Jn|2

]
=
M2

N2

N−1∑
n=0

E
[
(ζn,m − 1/M)

2
]

=
M − 1

N
,

(54)

and

ε ≤ V/max
n∈N
|Jn| = 1, (55)

respectively.
When ∆q = 0, let Jn = M

N ζn,m−
1
N and follow the similar

steps as above, leading to the same result (38) for σ̄0
m.

APPENDIX D
PROOF OF (42)

Since (42) is equivalent to (43), we prove the latter follow-
ing the same technique in Appendix A.

For q1, q2 ∈ N, p1, p2 ∈ M, combining the definition of
[Xq1,q2 ]p1,p2

in (49) and the fact that

ej2π
q2−q1
N n = ej2π

(q2−q1)−0
N n

= ej2π
(q2−q1+N)−0

N n,
(56)

yields that [Xq1,q2 ]p1,p2
= [X0,q2−q1 ]p1,p2

when q2− q1 ∈ N,
and [Xq1,q2 ]p1,p2

= [X0,q2−q1+N ]p1,p2
when q2−q1+N ∈ N.

This completes the proof.

APPENDIX E
PROOF OF COROLLARY 1

To calculate the singular values of Ψ, according to (41), we
start by continuing the derivation of λl, l = qM +m, in (44)
as

λl =

N−1∑
n=0

ej2π
qn
N λnm =

M

N

N−1∑
n1=0

N−1∑
n2=0

ζn2,me
j2π

q+n2
N n1 . (57)

With the substitute of ζn2,m = δ (Cn2
−m), (57) becomes

λl = M

N−1∑
n2=0

δ (Cn2 −m)

(
1

N

N−1∑
n1=0

ej2π
n2+q
N n1

)

= M

N−1∑
n2=0

δ (Cn2
−m) δ ((q + n2) mod N)

= Mδ
(
C(N−q) mod N −m

)
.

(58)

From (58) we find that λl ∈ {0,M}, which implies

‖Ψ‖s = max
l∈L

σl (Ψ) = max
l∈L

√
λl =

√
M. (59)
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APPENDIX F
PROOF OF THEOREM 3

Given a positive constant ε, we set

Me−
(
√
Nc1−

√
M−1)2

4(M−1) =
MN

2
e−

(
√
Nc2−

√
M−1)2

4(M−1) =
ε

2
, (60)

yielding

c1 =

√
M − 1

N

(
2
√

log 2M − log ε+ 1
)
, (61)

c2 =

√
M − 1

N

(
2
√

logMN − log ε+ 1
)
. (62)

Note that for a fixed M and sufficiently large N , both c1 and c2
approach 0. From (39) and (40), we have that P (µI > c1) <
ε/2 and P (µB > c2) < ε/2, respectively. Applying the union
bound implies

P (µI > c1 ∪ µB > c2) <
ε

2
+
ε

2
= ε. (63)

Substituting (45) into (20) and letting a := 1
8 −

24µB logMN− 3
2µI , b := 17

4

√
logMN (µI + 1), we rewrite

(20) with some arrangement as(√
KM

N
+ b

)2

− b2 ≤ a. (64)

For a ≥ 0, this becomes√
KM

N
≤
√
a+ b2 − b. (65)

To find a condition such that (65) holds, we note that 17a
36b ≤√

a+ b2−b (because a < 1
8 and 17

4 < b) and that 17a
36b increases

monotonically with the increase of a (or the decrease of b) for
a > 0. This implies that 17a

36b is a monotonically decreasing
function with respect to µI and µB . We are now ready to
construct a sufficient condition that makes (65) hold.

By substituting µI = c1 and µB = c2 into 17a
36b , (65) and

(20) hold with a probability at least 1 − ε as long as a > 0
and √

KM

N
≤ 17a

36b
=

1
8 − 24c2 logMN − 3

2c1

9
√

logMN (c1 + 1)
. (66)

With the substitution of (61) and (62), we obtain (46), com-
pleting the proof.
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