
A Depth-First Iterative Algorithm for the Conjugate Pair FastA Depth-First Iterative Algorithm for the Conjugate Pair Fast
Fourier TransformFourier Transform
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-NC-SA 4.0

SUBMISSION DATE / POSTED DATE

26-12-2020 / 29-12-2020

CITATION

Becoulet, Alexandre; Verguet, Amandine (2020): A Depth-First Iterative Algorithm for the Conjugate Pair Fast
Fourier Transform. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.13489392.v1

DOI

10.36227/techrxiv.13489392.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.13489392.v1

DRAFT

1

A Depth-First Iterative Algorithm
for the Conjugate Pair Fast Fourier Transform

Alexandre Becoulet, Freebox and Amandine Verguet, Université Paris-Sud

Abstract—The Split-Radix Fast Fourier Transform has the
same low arithmetic complexity as the related Conjugate Pair
Fast Fourier Transform. Both transforms have an irregular
datapath structure which is straightforwardly expressed only in
recursive forms. Furthermore, the conjugate pair variant has
a complicated input indexing pattern which requires existing
iterative implementations to rely on precomputed tables. It
however allows optimization of the memory bandwidth as it
requires a single twiddle factor load per radix-4 butterfly. In
existing algorithms, this comes at the cost of using additional
precomputed tables or performing recursive function calls. In
this paper we present two novel approaches that handle both
the butterfly scheduling and the input index generation of the
Conjugate Pair Fast Fourier Transform. The proposed algorithm
is cache-friendly because it is depth-first, non-recursive and does
not rely on precomputed index tables. In order to achieve this,
we relate the butterfly execution pattern of the Split-Radix and
Conjugate Pair FFTs to the binary carry sequence. Based on
this finding, we describe how common integer arithmetic and
bitwise operations can be used to perform input reordering and
depth-first traversal of the transform datapath with O(1) space
complexity.

Index Terms—FFT, Split-Radix, Conjugate Pair, Fast Fourier
Transform, Binary Carry Sequence

I. INTRODUCTION

THE performance of fast Fourier transform (FFT) software
and hardware implementations depends on many factors,

including algorithmic complexity, arithmetic complexity and
memory access patterns. It is challenging to keep all aspects
under control as certain design choices may lead to trade-offs.
Moreover, high performance implementations use a myriad of
optimizations that undermine simplicity [1].

Although both the Split-Radix Fast Fourier Transform
(SRFFT) [2], [3] and the more common Cooley-Tukey FFT
(CTFFT) [4] algorithms share the same algorithmic complex-
ity of O(N logN), the former has a lower arithmetic operation
count than the latter. Let N be a power of 2. CTFFT has a
regular datapath structure, forming a discrete Fourier transform
(DFT) of length N from two DFTs of length N/2, assuming
that radix-2 butterflies are used. The SRFFT algorithm uses
L-shaped butterflies, forming a DFT of length N from one
DFT of length N/2 and two DFTs of length N/4. The
lower arithmetic complexity of SRFFT allows a performance

*A. Becoulet is with Freebox SAS, PARIS 75008, FRANCE. e-mail:
alexandre.becoulet@free.fr

A. Verguet was with Université Paris-Sud, Université Paris-Saclay, ORSAY
91405, FRANCE.

This work has been submitted on 11-Apr-2020 to the IEEE for possible
publication. Copyright may be transferred without notice, after which this
version may no longer be accessible.

function CP BF2(out[], h, in[], i0, i1)
out[h]← in[i0] + in[i1]
out[h+ 1]← in[i0]− in[i1]

function CP BF4S(l, out[], h, k)
a← out[h+ k]
b← out[h+ k + l/4]
c← out[h+ k + l/2]
d← out[h+ k + 3l/4]
ω ← e−2iπk/l

if S = 1 then
out[h+ k]← a+ (ωc+ ωd)
out[h+ k + l/4]← b− i (ωc− ωd)
out[h+ k + l/2]← a− (ωc+ ωd)
out[h+ k + 3l/4]← b+ i (ωc− ωd)

else if S = −1 then
out[h+ k]← a+ (ωc+ ωd)
out[h+ k + l/4]← b+ i (ωc− ωd)
out[h+ k + l/2]← a− (ωc+ ωd)
out[h+ k + 3l/4]← b− i (ωc− ωd)

Fig. 1. These functions implement the radix-2 and radix-4 butterflies of
CPFFT. Together, they provide transforms of fixed lengths 2 and 4, used
as base cases in the algorithm. The radix-4 butterfly is where the forward
transform differs from the inverse transform. Unlike other FFT algorithms, a
single twiddle factor ω is required in the radix-4 butterfly of CPFFT.

improvement at the cost of more complex implementations
due to the irregular datapath structure [5]–[7].

The Conjugate Pair FFT (CPFFT) algorithm has originally
been introduced as a variant of the SRFFT algorithm that
further reduces the number of arithmetic operations [8] while
retaining the same datapath structure. However, the claim
on lower arithmetic complexity was later disproved [9], [10]
and interest for the algorithm declined. Interestingly, CPFFT
requires less memory bandwidth than the original SRFFT.
This led to a recent regain of interest for the algorithm due
to the optimization challenges posed by hierarchical memory
architectures used in modern computers. In the design of
CPFFT, Kamar and Elcherif used a different subset of the
samples in the second sub-transform of length N/4. This
allows using e−2iπk/l and e2iπk/l as twiddle factors instead of
e−2iπk/l and e−6iπk/l. CPFFT thus uses a pair of conjugates as
twiddle factors where SRFFT uses two unrelated values. This
makes CPFFT require only a single complex root of unity
load per radix-4 butterfly, instead of two (Fig.1). Moreover,
two butterflies in the same block can share the same twiddle
factor, further halving the required number of twiddle-related

DRAFT

2

memory loads [11]. This design however makes the CPFFT
algorithms more complicated because it requires taking some
of the samples backward in time.

Indeed, in addition to the irregular datapath structure inher-
ited from SRFFT, CPFFT has a complicated indexing pattern
of the input array. When decimation in frequency (DIF) is used
instead of decimation in time (DIT), the reordering takes place
at the output [5]. The indices of the second sub-transform of
length N/4 are cyclically offset by a negative amount [11],
[12]. The proper reordering is however naturally handled by
the recursive form of the algorithm.

Incontestably, the SRFFT and CPFFT algorithms are simple
when expressed in a recursive form (Fig.2). In the past, efforts
have been made to devise iterative algorithms for SRFFT,
resulting in algorithms that perform a breadth-first traversal
of the transform datapath [6], [7].

Depth-first traversal of the FFT datapath is favored in
recent research as it is more memory cache-friendly than
the breadth-first approach [1]. Even though the function call
overhead may impact the performance of recursive algorithms
[13], they are guaranteed to perform a depth-first traversal of
the datapath. The memory access pattern of the depth-first
approach improves cache usage because it tends to work on the
same samples as much as possible, iterating over stages before
moving to another part of the data array [14]. Algorithms
relying on the function call stack as well as algorithms relying
on an explicit stack data structure to implement the depth-first
order are all considered recursive by the authors.

In this paper, we describe a depth-first and non-recursive
algorithm that computes the DIT CPFFT using two novel
approaches which support scheduling of butterflies and genera-
tion of input indices. Both tasks are performed without relying
on precomputed tables. Moreover, the novel iterative approach
does not require a stack, allowing the depth-first traversal of
the transform datapath to yield a space complexity of O(1)
instead of O(log(N)), circumventing the associated memory
accesses altogether. This is the main contribution of the paper.
The reduced number of twiddle-related memory loads com-
mon to all CPFFT variants further lowers the required memory
bandwidth. All these properties render the algorithm optimized
in terms of memory access count and locality. Moreover, the
cache-obliviousness [15] of the recursive CPFFT algorithm is
retained.

Because the proposed algorithm computes the conventional
CPFFT, some of its properties are shared with the previously
known CPFFT algorithms. Indeed, we can see that the recur-
sive algorithm presented in Fig.2 and the proposed algorithm
presented in Fig.6 both rely on the butterfly provided in Fig.1
that is derived from the original CPFFT paper [8]. As a result,
the number of arithmetic operations is as detailed in [10] and
the floating-point accuracy is expected to be as given in [11].

The proposed algorithm has a concise and regular structure.
It is composed of three nested loops that iterate, from the
outermost to the innermost loop, over the data arrays, the
transform stages and the blocks of butterflies. In addition to the
three loops, a single conditional statement is needed in order
to implement its entire control flow. All computations related
to the datapath traversal and index generation processes can be

function CPFFT RECSN (l, out[N], h, in[N], i)
i0 ← imod N
if l = 1 then

out[h]← in[i0]
else if l = 2 then

i1 ← (i+N/l)mod N
CP BF2(out, h, in, i0, i1)

else
CPFFT RECSN (l/2, out, h, in, i)
CPFFT RECSN (l/4, out, h+ 2l/4, in, i+N/l)
CPFFT RECSN (l/4, out, h+ 3l/4, in, i−N/l)
for b← 0 to l/4− 1 do

CP BF4S(l, out, h, b)

function DFTN (out[N], in[N])
CPFFT REC1

N (N, out, 0, in, 0)

function DFT INVERSEN (out[N], in[N])
CPFFT REC−1

N (N, out, 0, in, 0)

Fig. 2. The recursive CPFFT algorithm has the same structure as the SRFFT
algorithm: A DFT of length N is fromed by a single DFT of length N/2 and
two DFTs of length N/4, yielding a total of three recursive function calls.
This algorithm is described in [12].

implemented using integer arithmetic and bitwise operations
available as general-purpose instructions in modern processors.
The simple control flow and use of low gate count operators
is expected to allow straightforward implementations of the
algorithm in hardware as well.

In the next section, we give a brief review of the pub-
lished algorithms that share some properties with the pro-
posed algorithm. In the subsequent sections, we detail how
the proposed iterative algorithm schedules execution of the
butterflies, yielding the same depth-first order as the recursive
algorithm. We then explain how this process can be extended
in order to generate indices suitable for accessing the input
array of CPFFT in appropriate order. In the last section, we
present several experiments that compare the performance of
the proposed algorithm with many FFT algorithm variants.

II. RELATED WORK

In 1986, Sorensen, Heideman, and Burrus proposed an
SRFFT algorithm [7]. They managed to perform traversal of
the irregular datapath of SRFFT using an iterative algorithm.
The algorithm is composed of three nested loops. Because
breadth-first order is used, the outer loop iterates over stages.
The second loop iterates over adjacent radix-4 butterflies
and the innermost loop handles butterflies sharing the same
twiddles in the stage. Two separate loops are used to reorder
the input and to process the first stage composed of radix-2
butterflies.

In 1992, Skodras and Constantinides noticed that redun-
dancies exist in the butterfly scheduling part of the Sorensen
SRFFT algorithm. They proposed a modified algorithm that
relies on two precomputed tables [6]. The outer loop still
makes the algorithm breadth-first. The lookup tables contain

DRAFT

3

Algorithm Sorensen [7] Skodras [6] Johnson [11] Blake [12] Blake [16] Lin [17] Ocovaj [13] Proposed

Traversal Breadth-First Breadth-First Depth-First Depth-First Hybrid Unspecified Breadth-First Depth-First
Structure Iterative Iterative Recursive Recursive Hybrid Unspecified Iterative Iterative
Butterfly SRFFT SRFFT Novel CPFFT CPFFT Novel CPFFT CPFFT

Twiddles grouping By stage By stage By block By block By block Unspecified By block By block
Precomputed indices No Yes No No Yes Yes Yes No

Fig. 3. A summary of the properties of algorithms related to CPFFT described in the literature. We can see that association of the depth-first traversal
approach and the iterative structure does not exist in published algorithms.

the indices and number of radix-4 butterflies sharing common
twiddles in a stage and are thus used in the innermost loop.

In 2007, Johnson and Frigo proposed a CPFFT variant with
a reduced number of arithmetic operations [11]. The authors
notice that CPFFT allows to share a twiddle between two
butterflies. They provide a recursive algorithm that computes
their new FFT.

In 2013, Blake, Witten and Cree proposed the FFTS soft-
ware package that relies on CPFFT [16]. The proposed algo-
rithm uses two different approaches for the first and subsequent
stages of the transform. The first stage of the transform is
handled by an iterative pass which also fetches input samples
in the right order. A precomputed table of input indices is
used for that purpose. The next stages are then processed in
depth-first order by the recursive CPFFT algorithm. The im-
plementation uses SIMD parallelism and run-time specialized
codelets for base case processing. This design allowed FFTS
to outperform state-of-the-art FFT implementations [18].

Using specialized codelets for small sub-transforms, i.e.
hard-coded transforms for base cases, is a common practice
in high performance FFT implementations [1]. Even if it is
sometimes considered an implementation detail that does not
always appear in the algorithm description, hard-coded base
cases improve performance by not forcing data to be stored
into memory between stages of smallest sub-transforms.

The same year, Lin and Chung proposed a variant of CPFFT
with a more regular datapath structure than the original SRFFT
[17]. The algorithm however still yields an unconventional
ordering of output values due to the use of conjugate twiddle
pairs. The authors propose a separate iterative algorithm that
computes a single output index. Since finding all indices
requires executing this additional algorithm N times per
transform, we assume that a practical way to implement this
FFT would be to rely on a precomputed table of indices. The
paper focuses on butterfly and datapath designs and does not
suggest a butterfly scheduling strategy.

In 2014, Zheng and Li proposed three novel DFTs [19]
based on [11]. The paper focuses on the arithmetic complexity
of their butterfly designs. It briefly discusses the twiddle factor
access count of their approach as well as the input samples
reordering in CPFFT. No algorithm structure is proposed.

The same year, Ocovaj and Lukac proposed a CPFFT
algorithm for DSP platforms with SIMD instructions [13].
Their algorithm is not recursive in order to avoid function call
overhead. Instead, they devise a breadth-first algorithm with a
datapath traversal approach similar to that of the Skodras algo-
rithm [6]. The paper focuses on SIMD-based optimization and

use of precomputed tables for butterfly scheduling. Reordering
of samples specific to CPFFT is however not covered.

As exposed in (Fig.3), we were unable to find a published
non-recursive algorithm that schedules the SRFFT butterflies
in the cache-friendly depth-first order. Likewise, we found no
existing iterative CPFFT algorithm that computes input/output
indices on the fly, despite this being performed by the concise
recursive algorithm (Fig.2).

III. DATAPATH TRAVERSAL AND BUTTERFLY SCHEDULING

The structure of SRFFT and CPFFT is often represented
using a tessellation of L-shaped butterflies. We choose to
represent the datapath of CPFFT of length 32 with a clear
boundary between processing stages (Fig.4), in order to better
expose how the butterflies can be scheduled.

After every stage Sj , intermediate values are stored into the
output array. At stage S0, input values are either processed by
radix-2 butterflies or copied directly to the output array. Stages
S1 to Slog 2(N)−1 are processed in-place on the output array,
conditionally computing blocks of radix-4 butterflies. This rep-
resentation shows that when walking through the output array
for a given stage, blocks of butterflies are either computed or
skipped following the non-periodic pattern T0 = (1, 0, 1, 1,
1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1,
1, 1, 0, 1, 0, 1...) for any value of N . Interestingly, this is an
integer sequence known as the parity of 2-adic valuation of n
[20] that has not been related to the SRFFT yet.

This sequence can be used by our algorithm to schedule
radix-2 butterflies as appropriate for stage S0 of the data-
path. The depth-first traversal implies that the outer loop of
the algorithm has to walk through the output array while
the second nested loop walks through the transform stages.
This second loop has to conditionally trigger computation of
butterfly blocks while iterating over the transform stages.

We observe that for stage S0, butterflies of radix-2 are only
computed when the index of the output pair is associated
to a 1 in the sequence T0. In this paper, we assume that
the first term of any sequence has index 0. For the higher
stages Sj |j > 0, the same observation can be made regarding
blocks of butterflies, with Fig.4 showing a 2j scale factor of
the pattern. For stage S0, it is trivial to use the sequence
T0 to conditionally execute the radix-2 butterflies. For higher
stages however, a scaled variant of the pattern T0 cannot
be used because we have to reach the output index of the
last butterfly in the block before computing the whole block
at once. This yields more sparse butterfly execution patterns
for higher stages. For instances, the pattern for stage S1 is

DRAFT

4

2

4*

4*

4*

4*

2

4**

4

4

2
4**

4

2

4

4

2

4**

2

4

4

4

4*

2

2

4*

2

2

2

4*

4*

4**

4*

4*

4**

Input Output Output

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

0

1

30

31

0

1

30

31

Fig. 4. Datapath of CPFFT of length 32. The input array is partially processed by radix-2 butterflies. Intermediate results are stored in the output array where
radix-4 butterflies operate in-place and are grouped in blocks. When the depth-first order is used, a block is processed at once, as soon as the last pair of
intermediate results becomes available from the previous stage. Block execution index is marked by a pair of filled circles at its output. The patterns formed
by pairs of circles at the output of stage j is related to the Tj sequences. Radix-4 butterflies denoted by 4∗ and 4∗∗ use twiddles ω = e0 and ω = e−iπ/4

respectively that allow arithmetic simplifications. .

T1 = (0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0...). Fortunately,
there is an integer sequence that can be used to derive all Tj
sequences. This is the 2-adic valuation of n, also known as
the binary carry sequence [21], defined as C = (0, 1, 0, 2, 0,
1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2,
0, 1, 0, 5, 0, ...). The sequence T0 is the parity of C.

C can be used to drive the whole datapath execution of
SRFFT and CPFFT in depth-first order. Let h be the index in
the output array and g the outer loop variable in our algorithm.
In order to decide which butterflies must be computed at a
given output pair index g = bh/2c, the value C(g) is used
as follows: When C(g) is odd, blocks of radix-4 butterflies

are computed for odd stages S1 to SC(g). When C(g) is
even, a radix-2 butterfly is computed for S0, then blocks of
radix-4 butterflies are computed for even stages S2 to SC(g),
unless C(g) = 0. This approach makes the second loop iterate
over radix-4 stages that need processing, skipping other stages
altogether.

In order to complete the butterfly scheduling part of our
algorithm without relying on a precomputed table, we need
an efficient way to compute the binary carry sequence C.
The computation of C(g) can be performed by counting the
number of trailing zero digits of g+1 in binary representation
[21]. This is a cheap operation in hardware. Software imple-

DRAFT

5

mentations may rely on the standard POSIX function ffs for
that purpose. Some processors have a dedicated instruction to
support this, as is the case on the x86 architecture. However
most processors only provide an instruction able to find the
number of leading zero bits of an integer, which is related to
computing the rounded down base 2 logarithm over N. Thus,
we propose a novel formula which takes advantage of the more
common bit counting instruction:

C(g) = blog2(g ⊕ (g + 1))c (1)

It is manifest that the number of trailing zero bits of an integer
corresponds to the most significant bit position where the
carry propagates when subtracting 1. By using an exclusive or
operation, we can extract the bitwise difference between two
contiguous integers, yielding zeros for the most significant bits
that were not impacted by the carry propagation and ones for
the remaining trailing bits. Counting the number of leading
zeros in this result is thus similar to counting the number
of trailing ones. That is why either method can be used to
compute the binary carry sequence. The first method is used in
(1). This formula can thus be computed thanks to an eXclusive
OR and a Count Leading Zeros or equivalent general-purpose
instructions available on x86, ARM, MIPS, PowerPC and many
other processor architectures.

Relying on a precomputed table to store the values of
C(g) used in our algorithm would require N/2 entries and is
against our general strategy of reducing the number of memory
accesses. Software experiments have shown that the bitwise
method and the precomputed table method are both very fast
when compared to the execution time of a CPFFT butterfly.
Because of this, the raw performance of the method retained
to compute C(g) in the algorithm has no direct impact on
the overall performance. However, we have noticed that the
precomputed table method degrades the performance on large
transforms due to cache pollution.

Because the two algorithms share the same datapath struc-
ture, the butterfly scheduling approach we have just described
for CPFFT also works for SRFFT.

IV. GENERATION OF INDICES FOR THE INPUT ARRAY

The input indexing of CPFFT looks irregular (Fig.4) and
makes the datapath of stage S0 specific to this algorithm.
The sequence of indices used to access the input array of the
transform is a distinctive permutation of the output indices. For
instance, the sequence suitable for a transform of length 32 is
defined as I32 = (0, 16, 8, 24, 4, 20, 28, 12, 2, 18, 10, 26, 30,
14, 6, 22, 1, 17, 9, 25, 5, 21, 29, 13, 31, 15, 7, 23, 3, 19, 27,
11). It has no symmetry. Permutations for different transform
lengths are not related, that is IN0

is not a subsequence of IN1

when N0 < N1.
The recursive implementation of CPFFT (Fig.2) composes

the input indices as sums of powers of 2, negated powers of
2 or a mix thereof. When decomposed and ordered in output
array order, the terms of the sums show interesting properties
(Fig.5). First, the terms with greater magnitudes toggle with
the lower binary digits of h. This property is shared with other
FFT algorithms working in-place on the output array and is

I32(0) = 0
I32(1) = 16 ≡ +16
I32(2) = 8 ≡ +8
I32(3) = 24 ≡ -8
I32(4) = 4 ≡ +4
I32(5) = 20 ≡ +16 +4
I32(6) = 28 ≡ -4
I32(7) = 12 ≡ +16 -4
I32(8) = 2 ≡ +2
I32(9) = 18 ≡ +16 +2

I32(10) = 10 ≡ +8 +2
I32(11) = 26 ≡ -8 +2
I32(12) = 30 ≡ -2
I32(13) = 14 ≡ +16 -2
I32(14) = 6 ≡ +8 -2
I32(15) = 22 ≡ -8 -2
I32(16) = 1 ≡ +1
I32(17) = 17 ≡ +16 +1
I32(18) = 9 ≡ +8 +1
I32(19) = 25 ≡ -8 +1
I32(20) = 5 ≡ +4 +1
I32(21) = 21 ≡ +16 +4 +1
I32(22) = 29 ≡ -4 +1
I32(23) = 13 ≡ +16 -4 +1
I32(24) = 31 ≡ -1
I32(25) = 15 ≡ +16 -1
I32(26) = 7 ≡ +8 -1
I32(27) = 23 ≡ -8 -1
I32(28) = 3 ≡ +4 -1
I32(29) = 19 ≡ +16 +4 -1
I32(30) = 27 ≡ -4 -1
I32(31) = 11 ≡ +16 -4 -1

Fig. 5. Decomposition of input indices of a 32 point CPFFT as sums of
powers of 2 and negated powers of 2, modulo N .

commonly handled by the bit-reversal operation [22]. Then,
some of the sums are negative, which makes the input indices
wrap modulo N . This is due to the third sub-transform of
CPFFT using points taken backward in time [8]. Finally, terms
can be arranged in a way that yields a pattern derived from the
T0 sequence, due to the specific datapath structure of SRFFT,
as exposed in the previous section. When combined, these
properties explain the apparently complicated permutation of
indices used to fetch the input samples in DIT CPFFT.

Obviously, the IN sequence is suitable for use in the outer
loop of our algorithm which iterates over the output array. We
therefore need an efficient way to compute this sequence. Let
hn be the binary digits of h:

N = 2L|L ∈ N

h =

L−1∑
n=0

hn2
n

∀n /∈ {0, ..., L− 1} hn = 0

(2)

Based on (2) and the three properties mentioned above, the
sequence of interest can then be defined as:

IN (h) =

[
L−1∑
n=0

2n(−1)2−hL−2−n

[
1− T0(b

h2n+1

N
c)
]]

modN

(3)

Relying on (3), our algorithm would require an additional
nested loop in order to compute the sum, iterating over bits of
h for each output pair. However, because our algorithm iterates
over the output array in ascending order, evaluation of IN (h)

DRAFT

6

using a recurrence relation is a possible approach. Reusing
computations from the previous iteration actually allows to
perform fewer operations than direct evaluation of the above
sum. Consider the sequence:

KN (h) = L− C(h)− 1 (4)

This yields K32 = (4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4,
0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4, ...). We observe in
Fig.5 that terms 2K32(h) appear in I32(h+1) when 2K32(h)−1

is not in I32(h). Moreover, existing 2K32(h)−1 terms in I32(h)
are negated in I32(h+1). Finally, all terms with a magnitude
greater than 2K32(h) are cleared in I32(h+1). Based on these
observations, we propose a recurrence relation that is valid for
all N . For this purpose, we separate the positive and negative
terms. Additionally, we avoid cases where 2KN (h)−1 = 2−1

by doubling all terms. We also need to extract binary digits
of positive terms:

IN (h) =
PN (h)−QN (h)

2
mod N

PN (h) =

L−1∑
n=0

PN (h)n2
n

(5)

Based on (4), (5) and our observations, the proposed recur-
rence relation can be defined as:

PN (0) = 0

QN (0) = 0

PN (h) = PN (h− 1) mod 2KN (h)

+
[
1− PN (h− 1)KN (h)

]
2KN (h)+1

QN (h) = QN (h− 1) mod 2KN (h)

+ PN (h− 1)KN (h)2
KN (h)

(6)

The depth-first iterative CPFFT algorithm presented in Fig.6
relies on the butterfly scheduling mechanism proposed in the
previous section and employs the recurrence relation (6) for
computing input indices. An implementation of the algorithm
with additional twiddle factor sharing is proposed in the
Appendix.

Because our algorithm iterates over output pairs, processing
base cases of length 2, the recurrence relation (6) is actually
used to compute IN (g) rather than IN (h). This is convenient
since it allows reusing the value of C(g), involved in butterfly
scheduling. In the same way, it is also possible to use this
recurrence to generate indices for larger base cases, allowing
usual FFT optimizations. When a sub-transform that processes
a base case of length m is to be used in place of the radix-2
butterfly, a pair of sub-transforms of lengths m/2 have to be
computed in the alternative branch of the conditional.

Since only powers of 2 are involved, implementation of the
recurrence can be done by inversion and copy of bits between
two variables p and q, where bit positions are derived from
C(g). Again, this is cheap to perform in hardware and requires
a few bit-oriented instructions in software.

V. EXPERIMENTAL EVALUATION

Because the proposed algorithm structure does not impact
the arithmetic complexity of CPFFT, a new evaluation of

function CPFFT DISN (out[N], in[N])
p, q ← 0, 0
for g ← 0 to N/2− 1 do

c← blog2(g ⊕ (g + 1))c
i0 ← (p− q)/4 mod N
i1 ← (i0 +N/2) mod N
if c mod 2 = 1 then

out[2g], out[2g + 1]← in[i0], in[i1]
else

CP BF2(out, 2g, in, i0, i1)
for j ← 1− c mod 2 to c− 1 by 2 do

for b← 0 to 2j − 1 do
CP BF4S(2j+2, out, 2g − 2j+2 + 2, b)

k ← log2(N)− c− 1
q ← q mod 2k + (bit k of p)2k

p← p mod 2k + (1−bit k of p)2k+1

Fig. 6. The proposed depth-first iterative CPFFT algorithm

the arithmetic operations count is not required. However,
the novel structure impacts the memory access behavior of
the algorithm. When conceiving an FFT algorithm, there
are multiple design choices that impact both the number of
memory accesses performed and the access pattern. In this
section we will explore a subset of the FFT algorithm design
space in order to determine how the proposed algorithm
compares to others when accessing memory. The first part of
the experiment focuses on memory bandwidth and the second
part on cache friendliness.

The explored design space contains implementations of
out-of-place DIT FFT algorithms. The four base algorithms
considered are: the CTFFT radix-2 algorithm, the mixed radix-
2/4 FFT algorithm, the SRFFT algorithm and the CPFFT algo-
rithm. The resulting implementations are denoted CT, MR, SR
and CP respectively. These algorithms are implemented using
three different structures that impact the datapath traversal
order: the breadth-first iterative structure, the depth-first recur-
sive structure and the proposed depth-first iterative structure,
denoted BI, DR and DI respectively.

In addition to the memory accesses generated by the
compiler for storage of the program’s local variables, FFT
implementations perform explicit accesses to memory for
distinct purposes: accessing samples in the input and output
arrays, reading from the twiddle factor table and optionally
performing recursive calls and loads from additional lookup
tables. Along with the datapath traversal order, different array
access strategies exist that greatly impact the memory behavior
of FFT algorithm implementations.

Among the multiple twiddle access optimization strategies
described in the literature, we retained three that can be
readily applied to the four base algorithms considered in our
experiment. First, depending on the design of the butterflies,
the memory bandwidth may be reduced by loading a single
twiddle that can be used to compute related twiddles by trivial
operations [11], [23]. This allows loading a single twiddle
table entry shared by multiple butterflies in the block. This
twiddle factor sharing (S) strategy is applicable to all evaluated

DRAFT

7

DI DI F DI S DI SF
DR DR F DR S DR SF
BI BI F BI S BI SF BI G BI GF BI GS BI GSF

CT i/o refs 2.000 ·NL 2.000 ·NL 2.000 ·NL 2.000 ·NL 2.000 ·NL 2.000 ·NL

CT tw loads 0.500 ·NL′ 0.500 ·NL′ 0.125 ·NL′ 1.000 ·N 1.000 ·N 0.250 ·N
CT tw entries 0.500 ·N 0.125 ·N 0.125 ·N 0.500 ·N 0.125 ·N 0.125 ·N

MR i/o refs 1.000 ·NL 1.000 ·NL 1.000 ·NL 1.000 ·NL 1.000 ·NL 1.000 ·NL 1.000 ·NL 1.000 ·NL

MR tw loads 0.375 ·NL′ 0.375 ·NL′ 0.187 ·NL′ 0.187 ·NL′ 1.000 ·N 1.000 ·N 0.500 ·N 0.500 ·N
MR tw entries 1.000 ·N 0.125 ·N 0.500 ·N 0.125 ·N 1.000 ·N 0.125 ·N 0.500 ·N 0.125 ·N

SR i/o refs 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL

SR tw loads 0.333 ·NL′ 0.333 ·NL′ 0.167 ·NL′ 0.167 ·NL′ 1.000 ·N 1.000 ·N 0.500 ·N 0.500 ·N
SR tw entries 0.500 ·N 0.125 ·N 0.250 ·N 0.125 ·N 0.500 ·N 0.125 ·N 0.250 ·N 0.125 ·N
SR L LUT refs 1.351 ·N 1.351 ·N 1.351 ·N 1.351 ·N 1.278 ·N+ 1.278 ·N+ 1.278 ·N+ 1.278 ·N+

0.083 ·NL 0.083 ·NL 0.083 ·NL 0.083 ·NL

CP i/o refs 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL 1.333 ·NL

CP tw loads 0.167 ·NL′ 0.167 ·NL′ 0.083 ·NL′ 0.500 ·N 0.500 ·N 0.250 ·N
CP tw entries 0.250 ·N 0.125 ·N 0.125 ·N 0.250 ·N 0.125 ·N 0.125 ·N
CP L LUT refs 1.351 ·N 1.351 ·N 1.351 ·N 0.823 ·N+ 0.823 ·N+ 1.046 ·N+

0.166 ·NL 0.166 ·NL 0.082 ·NL

Fig. 7. Estimates for the number of memory references to the input/output arrays, the number of memory loads from the twiddle table, the number of
twiddle entries and the number of references to additional lookup tables. These estimates can all be expressed as products of the transform length N and
related parameters L = log2(N) and L′ = log2(N/8). The values were measured for all evaluated algorithms and grouped by equivalent results. The LUT
references results are only relevant for implementations that rely on lookup tables for butterfly scheduling and input indexing.

algorithms to different extents, allowing to divide the loads
count and the number of stored twiddle entries by 2, 4 or 8.

Then, symmetry of the sine function always allows to keep
only N/8 roots of unity in the twiddle table. When twiddle
sharing is not implemented or when it is unable to reduce
the table length down to N/8, exploiting the sine symmetry
can still be done by folding (F) the table index on each
twiddle access. This however does not reduce the number
of loads performed by the algorithm and requires conditional
manipulations of both the loaded twiddle value and the twiddle
index [24], [25].

Finally, when the breadth-first approach is implemented, it
is possible to exchange the inner loops in order to group (G)
all the butterflies that use the same twiddles in a stage [26],
further reducing the number of related loads. It is worth noting
that both S and G twiddle access strategies impose constraints
on the algorithm structure that also impact the access order to
the array of samples.

In addition to the memory accesses mentioned above, some
implementations need to perform even more loads as algo-
rithms are designed to rely on two or three lookup tables
(L) in order to implement the complex datapath structure of
SRFFT and CPFFT. When such a design choice is retained for
these algorithms, lookup tables are used to store the butterfly
scheduling pattern and optionally the permutation of input
sample indices. The scheduling pattern is described by two
tables that contain the number of butterflies to compute for
each stage as well as the indices that require computation, as
proposed in [6], [13].

We retained 47 FFT algorithm implementations formed by
combination of the mentioned base algorithms (denoted CT,
MR, SR and CP) and the various design choices mentioned pre-

viously (denoted BI, DR, DI, S, G, F and L). Most of the resulting
algorithm structures are of common use and some have been
described by other authors. We have implemented the follow-
ing variants: CP BI F L, CP BI GF L, CP BI GS L, CP BI G L,
CP BI L [13], CP BI S L, CP DI, CP DI F, CP DI S, CP DR
[12], CP DR F, CP DR S, CT BI, CT BI F, CT BI G, CT BI GF,
CT BI GS, CT BI S, CT DR, CT DR F, CT DR S, MR BI, MR BI F,
MR BI G [26], MR BI GF, MR BI GS, MR BI GSF, MR BI S,
MR BI SF, MR DR, MR DR F, MR DR S, MR DR SF, SR BI F L,
SR BI G [7], SR BI GF, SR BI GF L, SR BI GSF L, SR BI GS L,
SR BI G L [6], SR BI L, SR BI SF L, SR BI S L, SR DR [12],
SR DR F, SR DR S and SR DR SF.

All evaluated implementations have been written in the
C language with uniform programming practices. They all
use hard-coded base cases of length 4 which process double
precision samples. Accessing the twiddle table for ω = e0

and ω = e−iπ/4 is avoided by relying on simplified butterfly
functions when appropriate. The source code of the implemen-
tations is made available under a free software license [27].

The number of sample and twiddle-related memory accesses
performed by the implementations under evaluation were
measured by running instrumented programs, that is counters
introduced in the source code. The programs were executed
for transform lengths between 24 and 224. The obtained results
are proportional to N , logN , logN/8 or a mix thereof. We
thus were able to use a fitting method to extract the constant
factors shown in Fig.7. This table gives estimates for memory
access counts expressed as functions of the transform length
for all evaluated algorithms.

We observe that the number of sample-related accesses
varies with the base algorithm only. The MR implementations
yield the lowest value. Because samples are stored and loaded

DRAFT

8

multiple times as the output array is used to keep intermediate
results, this measurement is expected to change with the size
of the hard-coded base case. Likewise, it does not account for
the compiler ability to keep some of the intermediate results
in registers.

On the contrary, the number of twiddle-related loads dif-
fers between variants of the same base algorithm. The CP S
implementations have the lowest number of twiddle-related
accesses of any depth-first algorithm. This is due to the
CPFFT algorithm requiring only a single twiddle value per
butterfly and a N/4 sized twiddle table. Twiddle sharing is
then sufficient to halve the number of loads and reduce the
table size down to the minimal length of N/8. This makes
the more costly folding strategy (F) irrelevant with CPFFT.
In contrast, breadth-first approaches allow implementation of
grouping (G) which further divides the number of twiddle-
related loads by logN/8, allowing CT BI GS and CP BI GS
implementations to yield the lowest number of twiddle loads
when N is large enough.

We also observe that CP L and SR L implementations per-
form a number of additional memory loads from lookup tables
proportional to N . When combined with grouping (G), an
additional term proportional to NlogN is introduced. Indeed,
exchanging the inner loops in order to reduce the number
of twiddle loads has the opposite effect on the number of
scheduling-related loads.

As mentioned previously, when memory caches are in-
volved, the number of memory accesses performed by the
implementation is not directly related to the main memory
bandwidth. Depending on the platform architecture, the num-
ber of memory cache misses generated by the algorithm can
have a major performance impact. Many factors have to be
considered when optimizing for a cache-based architecture.
Regarding the evaluated implementations, the obtained results
suggest that the size of the precomputed tables, the call stack
usage and the array access patterns all contribute to the amount
of cache misses.

High performance FFT software packages rely on hard-
coded base cases larger than what is implemented in our
experiment. However, we believe that increasing the length of
the base case does not have a major impact on the data cache
measurements because this optimization aims to remove highly
localized accesses to intermediate results. When recursive code
is optimized by compilers, the generated DR programs actually
implement base cases that are larger than expressed at the
source level, due to inlining of leaf function calls. We have
observed that disabling this optimization does not yield results
significantly different from what is presented below.

In order to measure the cache behavior of the 47 imple-
mentations, we relied on a virtual machine that embeds a
cache simulation model. The valgrind project provides such a
tool [28]. It is designed to execute native binary code while
performing various run-time analysis. The callgrind module is
able simulate two levels of cache while recording the number
of hits and misses [29]. The chosen simulated cache sizes
were 16384 bytes for the first level and 1048576 bytes for
the second level. Both caches have been parameterized to use
a line size of 32 and an associativity of 8. The evaluated

programs are 64-bit x86 binaries generated by using the -O3
-ffast-math compiler options. Unlike with the previous
experiment relying on source level embedded counters, the
quality of the generated code impacts the results. In order to
mitigate the impact of possible compiler miss-optimizations
on the measurements, the programs have been compiled with
three different compilers and the best performing program
file has been retained for each FFT implementation. The
compilers used were the GNU Compiler Collection version
9.2.0, the LLVM-based Clang compiler version 9.0.0 and the
Intel C++ Compiler version 19.0.5.281. Measurements were
only performed during execution of the FFT algorithm in
the program, excluding all initialization and reporting steps
that take place before and after the actual processing. The
simulated cache is cold on FFT algorithm entry.

The measured number of cache misses per sample is plotted
for all algorithms in Fig.8. The plot shapes are similar for the
two levels of cache. We can see that as long as the length
of the transform is small enough, all algorithms have similar
cache performance. As expected, when the cache becomes too
small, the number of misses per sample starts to rise. This
occurs either progressively or by suddenly jumping to high
values, depending on the algorithm. Then, as the transform
length is further increased, all implementations generate more
misses but with different progression rates. Analysis of the
data also confirms that for large transform lengths, depth-
first implementations perform better than breadth-first imple-
mentations. In order to display results of the best performing
implementations in more detail, measurements were sorted
by number of cache misses separately for different transform
lengths. The five best performing implementations are listed in
Fig.9 for five different transform lengths between 28 and 224.
We notice that implementations relying on additional lookup
tables (L) do not appear in any of the truncated lists. No such
implementation is actually ranked better than 14 in any list. We
also notice that no recursive implementations appear for small
transform lengths and no breadth-first implementations appear
for large transform lengths. This does not occur before rank
10 with MR DR F and rank 11 with MR BI SF for lengths 28

and 224 respectively. In contrast, the CP DI S implementation,
based on the proposed depth-first iterative approach, is ranked
between 1 and 4 in all lists. Moreover, CP DI S has the lowest
amount of cache misses for large transforms on the two caches.

Nowadays, high performance processors implement another
specific cache component designed to optimize execution of
conditional branches. Because the complexity of the retained
FFT datapath shape drives the algorithm control flow, it is
expected that irregular datapath structures impact the per-
formance on processors that implement a branch predictor.
Even if there are multiple branch predictor design strategies
that yield different behaviors and performance, the predictor
model provided by the valgrind tool can give an insight of the
possible performance penalty incurred by a complex datapath
structure. The measured number of conditional branch mis-
predictions per sample is plotted for all algorithms in Fig.10.
We can see that when N is large enough, the results do not
depend on the transform length. All branch predictor-related
results discussed here are related to transforms of length 224.

DRAFT

9

 0

 5

 10

 15

 20

 25

24 28 212 216 220 224

L
1

d
at

a
ca

ch
e

m
is

se
s

p
er

 s
am

pl
e

Transform length

 0

 5

 10

 15

 20

 25

24 28 212 216 220 224

L
2

d
at

a
ca

ch
e

m
is

se
s

p
er

 s
am

pl
e

Transform length

Fig. 8. Measured number of data cache misses per sample for all evaluated algorithms. The left and right plots are related to the level 1 and level 2 caches
respectively. Results related to the CP DI S algorithm are emphasized using black line plots.

N = 28 N = 212 N = 216 N = 220 N = 224

#1 MR BI F MR DR F CP DI S CP DI S CP DI S
1.09766 2.63037 4.48425 6.1502 7.82717

#2 CT BI F MR DR SF CP DR S CP DR S CP DR S
1.10156 2.65625 4.535 6.20647 7.89299

#3 MR BI GF CP DI S MR DR SF MR DR SF MR DR SF
1.10156 2.73779 4.86038 6.67025 8.45642

#4 CP DI S CP DR S MR DR S MR DR S MR DR S
1.10547 2.80908 5.11118 6.8849 8.66334

#5 CT BI S CP DI F CP DI F CP DI F CP DI F
1.10547 2.84253 5.17249 7.19755 9.19956

N = 28 N = 212 N = 216 N = 220 N = 224

#1 MR BI F MR BI F MR DR SF CP DI S CP DI S
1.09766 1.0647 2.02948 4.09885 5.68393

#2 CT BI F CT BI F MR DR F CP DR S CP DR S
1.10156 1.06494 2.06219 4.10009 5.68511

#3 MR BI GF MR BI GF CP DI S MR DR SF MR DR SF
1.10156 1.06494 2.12862 4.47248 6.68751

#4 CP DI S CP DI S CP DR S CP DR F MR DR S
1.10547 1.06519 2.13014 4.47486 6.95293

#5 CT BI S CT BI S CT DR S CP DI F CP DR F
1.10547 1.06519 2.13135 4.48298 6.98917

Fig. 9. Algorithms sorted according to the number of data cache misses measured while computing transforms of various lengths. The left and right tables are
related to the level 1 and level 2 caches respectively. Only five algorithms that yield the lowest number of misses per sample are displayed for each transform
length.

The MR BI S implementation yields a value as low as 0.005
misses per sample. It is worth noting that when excluding
breadth-first algorithms that do not perform well with the data
cache on large transforms, the MR DR S implementation has
the best branch predictor behavior with a miss rate of 0.032.
There are only MR and CT implementations ranked between 1
and 18. The fact that no SR and CP implementations are ranked
better than 19 tends to acknowledge the initial hypothesis. All
SR and CP programs have miss rates between 0.106 and 0.408
with the proposed CP DI S algorithm yielding 0.109.

Different processor architectures have different penalties in
terms of number of cycles for data cache misses and branch
mispredictions. Instead of performing global execution time
measurements related to a specific architecture, we choose to
provide separate cache-related results. Other experiments and
measurements could be considered in order to better under-
stand the impact of the algorithm structures on performance.
However, we believe the provided cache-related results help to
forecast behavior of the algorithms on various architectures.

VI. CONCLUSION

Depth-first FFT algorithms are favored in state-of-the-art
implementations because of the cache-friendly order they use
to access memory. Even if the depth-first order does not
imply recursion, the two concepts are not always clearly
distinguished in the literature. A recursive algorithm relies
on memory to implement the depth-first order by constantly

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

24 28 212 216 220 224

M
is

pr
ed

ic
ti

o
ns

 p
er

 s
am

pl
e

Transform length

Fig. 10. Measured number of branch mispredictions per sample for all eval-
uated algorithms. Results related to the CP DI S algorithm are emphasized
using a black line plot.

accessing a stack data structure. In this paper, we proposed
a novel approach to perform the depth-first traversal of the
SRFFT datapath iteratively with O(1) space complexity, based
on properties of binary numbers. Moreover, our approach
allows on the fly generation of input indices for CPFFT. Al-
though the proposed iterative algorithm is not straightforward,
it is still concise as it uses a few arithmetic and bitwise
operations in place of multiple recursions.

It has previously been noticed that the binary carry se-
quence is related to the optimal solution of the well-known

DRAFT

10

Tower of Hanoi mathematical game [30]. There is a concise
recursive algorithm that yields this solution. In this paper, we
have shown that SRFFT is another recursive algorithm that
can be related to the binary carry sequence. This strongly
suggests that the sequence is actually not specific to either of
these two algorithms but is instead related to their recursive
structure. Relying on this sequence to devise iterative variants
of recursive divide and conquer algorithms, possibly unrelated
to the FFT, is thus a research topic of interest.

Future work may also include design, optimization and
evaluation of both hardware and software implementations of
the proposed FFT algorithm.

VII. ACKNOWLEDGMENT

The authors would like to thank Alexandra Zaharia for
comments that improved the manuscript and Mehdi Khairy
for the valuable discussions we had.

APPENDIX
C PROGRAM FOR THE DEPTH-FIRST ITERATIVE CPFFT

1 #include <complex.h>

2 #include <math.h>

3 #include <stdint.h>

4 #include <stdlib.h>

5
6 /* Initialization of the twiddles table */

7
8 complex double *
9 cpfft_init(unsigned n)

10 {

11 unsigned m = n / 8;

12 complex double *tw = malloc(m * sizeof(*tw));

13
14 if (tw) {

15 for (unsigned i = 0; i < m; i++) {

16 tw[i] = cexp(-2 * M_PI * I * i / n);

17 }

18 }

19
20 return tw;

21 }

22
23 /* Conjugate Pair FFT radix-4 butterfly */

24
25 static inline void

26 cp_bf4(unsigned s,

27 complex double * restrict out,

28 complex double w)

29 {

30 complex double a = out[0];

31 complex double b = out[s];

32 complex double c = out[s * 2];

33 complex double d = out[s * 3];

34 out[0] = a + (w * c + conj(w) * d);

35 out[s] = b - I * (w * c - conj(w) * d);

36 out[s * 2] = a - (w * c + conj(w) * d);

37 out[s * 3] = b + I * (w * c - conj(w) * d);

38 }

39
40 /* Depth-First Iterative Conjugate Pair FFT */

41
42 void

43 cpfft_di(unsigned n,

44 complex double * restrict out,

45 const complex double * restrict in,

46 const complex double * restrict tw)

47 {

48 unsigned log2_n = 31 - __builtin_clz(n);

49 unsigned r = 32 - log2_n;

50 uint32_t p = 0, q = 0; /* allows n <= 1<<31 */

51
52 /* output indices */

53 for (uint32_t h2, h = 0; h < n; h = h2) {

54
55 /* binary carry sequence */

56 h2 = h + 2;

57 unsigned c = 30 - __builtin_clz(h ˆ h2);

58
59 /* input indices */

60 unsigned i0 = (p - q) >> r;

61 unsigned i1 = i0 ˆ (n >> 1);

62
63 if (c & 1) { /* stage 1 */

64 out[h] = in[i0];

65 out[h + 1] = in[i1];

66 cp_bf4(1, out + h - 2, 1);

67
68 } else { /* stage 0 */

69 out[h] = in[i0] + in[i1];

70 out[h + 1] = in[i0] - in[i1];

71 }

72
73 /* higher stages */

74 for (unsigned j = 1 + (c & 1); j < c; j += 2) {

75 unsigned s = 1 << j;

76 unsigned r = h2 - 4 * s;

77 unsigned t = log2_n - j - 2;

78
79 /* butterfly blocks */

80 for (unsigned b = 1; b < s / 2; b++) {

81 /* w = cexp(-2 * M_PI * I * b / s / 4); */

82 complex double w = tw[b << t];

83
84 cp_bf4(s, out + r + b, w);

85 cp_bf4(s, out + r + s - b, conj(w) * -I);

86 }

87
88 cp_bf4(s, out + r, 1);

89 cp_bf4(s, out + r + s/2, M_SQRT1_2 * (1-I));

90 }

91
92 /* next input index */

93 uint32_t m2 = 0x20000000 >> c;

94 uint32_t m1 = m2 - 1;

95 uint32_t m = p & m2;

96 q = (q & m1) | m;

97 p = (p & m1) | ((m ˆ m2) << 1);

98 }

99 }

REFERENCES

[1] S. G. Johnson and M. Frigo, “Implementing FFTs in Practice ∗,” 2009.
[2] R. Yavne, “An economical method for calculating the discrete Fourier

transform,” ACM, pp. 115–125, Dec 1968.
[3] P. Duhamel and H. Hollmann, “Split radix FFT algorithm,” Electron.

Lett., vol. 20, no. 1, pp. 14–16, Jan 1984.
[4] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[5] P. Duhamel and M. Vetterli, “Fast fourier transforms: A tutorial review
and a state of the art,” Signal Processing (Elsevier), vol. 19, no. 4, pp.
259–299, 1990.

DRAFT

11

[6] A. N. Skodras and A. G. Constantinides, “Efficient computation of the
split-radix FFT,” IEE Proceedings F - Radar and Signal Processing,
vol. 139, no. 1, pp. 56–60, Feb 1992.

[7] H. Sorensen, M. Heideman, and C. Burrus, “On computing the split-
radix FFT,” IEEE Trans. Acoust. Speech Signal Process., vol. 34, no. 1,
pp. 152–156, Feb 1986.

[8] I. Kamar and Y. Elcherif, “Conjugate pair fast Fourier transform,”
Electron. Lett., vol. 25, no. 5, pp. 324–325, Mar 1989.

[9] A. M. Krot and H. B. Minervina, “Comment on ’Conjugate pair fast
Fourier transform’,” Electron. Lett., vol. 28, no. 12, pp. 1143–1144, Jun
1992.

[10] H.-S. Quian and H.-J. Zhao, “Comment on Conjugate pair fast Fourier
transform,” Electron. Lett., vol. 26, no. 8, pp. 541–542, Apr 1990.

[11] S. G. Johnson and M. Frigo, “A Modified Split-Radix FFT With Fewer
Arithmetic Operations,” IEEE Trans. Signal Process., vol. 55, no. 1, pp.
111–119, Jan 2007.

[12] A. M. Blake, “Computing the fast fourier transform on simd micro-
processors,” Ph.D. dissertation, University of Waikato, Hamilton, New
Zealand, 2012, thesis, Doctor of Philosophy (PhD).

[13] S. Ocovaj and Z. Lukac, “Optimization of conjugate-pair split-radix
FFT algorithm for SIMD platforms,” IEEE International Conference
on Consumer Electronics (ICCE), pp. 373–374, Jan 2014.

[14] R. C. Singleton, “On computing the fast Fourier transform,” Commun.
ACM, vol. 10, no. 10, pp. 647–654, Oct 1967.

[15] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
Oblivious Algorithms,” ACM Trans. Algorithms, vol. 8, no. 1, pp. 1–22,
Jan 2012.

[16] A. M. Blake, I. H. Witten, and M. J. Cree, “The Fastest Fourier
Transform in the South,” IEEE Trans. Signal Process., vol. 61, no. 19,
pp. 4707–4716, Oct 2013.

[17] S.-J. Lin and W.-H. Chung, “The split-radix fast Fourier transforms with
radix-4 butterfly units,” Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference, Oct 2013.

[18] A. Blake and M. Hunter, “Dynamically Generating FFT Code,” J. Signal
Process. Syst., vol. 76, no. 3, pp. 275–281, Sep 2014.

[19] W. Zheng, K. Li, and K. Li, “Scaled Radix-2/8 Algorithm for Efficient
Computation of Length-N = 2m DFTs,” IEEE Trans. Signal Process.,
vol. 62, no. 10, pp. 2492–2503, Mar 2014.

[20] N. J. A. S. Karamanos Konstantinos, “A035263, The On-Line
Encyclopedia of Integer Sequences,” 2000, parity of 2-adic valuation
of n. [Online]. Available: http://oeis.org/A035263

[21] J. Tromp, “A007814, The On-Line Encyclopedia of Integer Sequences,”
1996, exponent of highest power of 2 dividing n, a.k.a. the binary carry
sequence, the ruler sequence, or the 2-adic valuation of n. [Online].
Available: http://oeis.org/A007814

[22] D. Evans, “An improved digit-reversal permutation algorithm for the
fast Fourier and Hartley transforms,” IEEE Trans. Acoust. Speech Signal
Process., vol. 35, no. 8, pp. 1120–1125, Aug 1987.

[23] Y. Wang, Y. Tang, Y. Jiang, J.-G. Chung, S.-S. Song, and M.-S. Lim,
“Novel Memory Reference Reduction Methods for FFT Implementations
on DSP Processors,” IEEE Trans. Signal Process., vol. 55, no. 5, pp.
2338–2349, Apr 2007.

[24] F. Qureshi and O. Gustafsson, “Analysis of twiddle factor memory
complexity of radix-2i pipelined FFTs,” Conference Record of the Forty-
Third Asilomar Conference on Signals, Systems and Computers, pp.
217–220, Nov 2009.

[25] M. Hasan and T. Arslan, “Scheme for reducing size of coefficient
memory in FFT processor,” Electron. Lett., vol. 38, no. 4, pp. 163–164,
Feb 2002.

[26] G. H. Allen, “Programming an efficient radix-four FFT algorithm,”
Signal Process., vol. 6, no. 4, pp. 325–329, Aug 1984.

[27] A. Becoulet, “A Collection of FFT Algorithms.” [Online]. Available:
https://github.com/diaxen/fft-garden

[28] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 89–100, Jun 2007.

[29] J. Weidendorfer, M. Kowarschik, and C. Trinitis, “A Tool Suite for
Simulation Based Analysis of Memory Access Behavior,” SpringerLink,
pp. 440–447, Jun 2004.

[30] E. W. Weisstein, “Binary Carry Sequence.” [Online]. Available:
http://mathworld.wolfram.com/BinaryCarrySequence.html

