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Abstract—This paper provides an overview of results and
concepts in minimax robust hypothesis testing for two and
multiple hypotheses. It starts with an introduction to the subject,
highlighting its connection to other areas of robust statistics and
giving a brief recount of the most prominent developments. Sub-
sequently, the minimax principle is introduced and its strengths
and limitations are discussed. The first part of the paper focuses
on the two-hypothesis case. After briefly reviewing the basics
of statistical hypothesis testing, uncertainty sets are introduced
as a generic way of modeling distributional uncertainty. The
design of minimax detectors is then shown to reduce to the
problem of determining a pair of least favorable distributions,
and different criteria for their characterization are discussed.
Explicit expressions are given for least favorable distributions
under three types of uncertainty: ε-contamination, probability
density bands, and f -divergence balls. Using examples, it is shown
how the properties of these least favorable distributions translate
to properties of the corresponding minimax detectors. The second
part of the paper deals with the problem of robustly testing
multiple hypotheses, starting with a discussion of why this is
fundamentally different from the binary problem. Sequential
detection is then introduced as a technique that enables the
design of strictly minimax optimal tests in the multi-hypothesis
case. Finally, the usefulness of robust detectors in practice is
showcased using the example of ground penetrating radar. The
paper concludes with an outlook on robust detection beyond
the minimax principle and a brief summary of the presented
material.

Index Terms—Robust Detection, Robust Hypothesis Testing,
Sequential Analysis, Robust Statistics, Minimax Optimization,
Ground Penetrating Radar.

I. INTRODUCTION

AFUNDAMENTAL task in signal processing, data sci-
ence, and machine learning is to extract useful infor-

mation from noisy data. In more and more applications,
signal processing algorithms are being employed that have
not been designed by experts, but whose behavior was learned
exclusively from large data sets [1]–[3]. In practice, learning
from data often means choosing a (probabilistic) model such
that the behavior of a system following this model is close
to that of its real-world counterpart. Here “choosing a model”
is meant in a wide sense and can range from simply fitting
a distribution to training a deep neural network. In any case,
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the information contained in the original data set is condensed
into a preferably small number of model parameters.

This approach is common practice and can provide excellent
results if the training data adequately capture the dynamics
of the underlying system. However, it has been shown to be
susceptible to errors caused by unrepresentative samples, be
it because of noisy measurements, corrupted or mislabeled
entries in data bases, or simply an insufficient number of data
points [4]–[7]. In general, every data set is subject to uncer-
tainty about which aspects of it represent useful, generalizable
information and which are spurious, random artifacts. As a
consequence, there typically is a mismatch between reality and
the model that is fitted to the training data.

Robust statistical signal processing provides the tools to deal
with many commonly encountered types of model mismatch
and distributional uncertainty in a systematic and rigorous
manner. It offers methods and algorithms that do not rely on
strict assumptions, but allow for deviations within well-defined
boundaries. In this way, robust signal processing makes it
possible to combine the efficiency of parametric, model-based
methods with the reliability and flexibility of non-parametric,
model-free methods. Therefore, robust statistics is often argued
to provide a middle ground between both approaches [4].

This paper deals with a particular area of robust statistics,
namely robust detection and hypothesis testing.1This topic
tends to exist in the shadow of its bigger, more prominent
sibling, robust estimation. One of the goals of this paper is to
convey that this does not do robust detection justice, but that it
is an interesting and useful area in its own right. Moreover, it
has seen notable progress within recent years, including more
flexible uncertainty models and novel results in robust multiple
and sequential hypothesis testing. Taking into account that
many readers might not be closely familiar with the subject,
a thorough review of classic results is also provided.

A. Robust Detection in the Context of Robust Statistics

While robust estimation has long been an active area of re-
search and comprehensive treatments of the subject have been
released regularly since its inception in the early 1960s [8]–
[14], robust detection has not received comparable attention.
But what sets robust detection apart from robust estimation?
Why does it require a separate treatment in the first place?

Conceptually speaking, robust estimation deals with the
problem of inferring parameters or statistics of a distribution,

1Some authors use “hypothesis testing” to refer to the general problem of
deciding from which population a sample was drawn and reserve “detection”
for the problem of establishing the presence or absence of a signal in (additive)
noise. Since this distinction is not always clear and often merely a matter of
interpretation, both terms are used interchangeably in this paper.
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such as its location or scale. The parameters are typically
real-valued vectors so that there exist natural measures for
“how far off” an estimate is. Commonly used examples are the
square error, absolute deviation and other, often geometrically
motivated, distances and norms. The robustness of an estimator
can then be quantified by studying how sensitive to a model
mismatch these accuracy measures are, that is, how large the
(expected) distance between the estimated and true parameter
value can grow under deviations from the nominal model. In
principle, robust detection can be embedded in this frame-
work by assigning each hypothesis a numeric value, which
in turn can be estimated from the data. However, in many
detection problems, there is neither a natural choice for the
numeric values associated with the hypotheses, nor a mean-
ingful measure for the distance between them, in particular
in the multi-hypothesis case. This makes it difficult, although
not impossible [15]–[17], to apply common techniques from
robust estimation directly to robust detection.

Nevertheless, there do exist useful connections between the
two areas. In particular, two concepts that emerge naturally
in both robust detection and robust estimation are maximum
likelihood (ML) or maximum a posteriori probability (MAP)
estimation and divergence measures between distributions. ML
or MAP estimation offers an approach that does not require
the notion of a distance between estimates, while divergence
measures allow for replacing geometric distances between
parameters with statistical distances between distributions.
This connection will be made clearer and more explicit in
the course of the paper.

In addition to robust estimation, there are many other areas
of robust statistics that intersect in one form or another with
robust detection. These include robust optimization and chance
constrained programming [18]–[21], robust decision making
[22], [23], robust control [24]–[30], constrained Bayesian
optimization [31]–[33], robust dynamic programming [34],
[35], and imprecise probability theory [36]–[39], to name just
a few. Doing all these topics justice is well beyond the scope
of any single article, or even a book. However, in order to
position robust detection in this vast landscape, it is often
sufficient to keep just one fundamental definition in mind:
robust detectors are insensitive to changes in the similarity
of probability distributions with respect to each other. This
statement may sound trivial, but it summarizes some important
characteristics of robust detection. First, it implies that multiple
distributions are subject to uncertainty. This is in contrast
to many problems in robust statistics in which a single
distribution is subject to uncertainty, as is typically the case in
robust estimation, robust control, or robust signaling. Second,
robust detection is about the similarity of distributions, not
individual realizations or functions of realizations. This also
implies that there is no intrinsic notion of “good” and “bad”
observations or even outliers. The usefulness of an observation
is entirely determined by the certainty with which one can state
that it was drawn from one and not from another distribution.
Finally, changing the emphasis, robust detection is about the
similarity of distributions, which is reflected in the fact that
statistical distance or divergence measures arise naturally in
the vast majority of problem formulations.

The notions of similarity, cost, distance, usefulness etc. will
shortly be made explicit. Before going into the technicalities,
however, it is worthwhile to have a look at the origins of
minimax robust detection and its history. This will help to
paint a broader picture of the subject, although in admittedly
rough strokes, and to put more recent results into perspective

B. A Brief Historical Account
The birth of robust detection as a self-contained branch of

robust statistics can be dated to a seminal paper by Huber [40],
published in 1965. In [40], Huber showed that a statistical test
based on a clipped version of the likelihood ratio is minimax
optimal when the observations are contaminated by a fraction
of arbitrary outliers. To the present day, this result is one of the
most fundamental and influential findings in robust detection.
Interestingly, Huber’s paper would remain an “outlier” in the
robust statistics literature until several years later.

In the early 1970s, the idea of robust detection was picked
up by researchers and practitioners in various areas of ap-
plied statistics, with the information theory, communications,
and signal processing communities arguably leading the way
[41]–[47]. In particular, robust detectors were identified as a
practical yet rigorous way of dealing with non-Gaussian and
impulsive noise environments, a problem that remains relevant
to the present day [4], [48]. While the earliest works in applied
robust detection were variations of Huber’s original problem
and used the same outlier model, it soon became clear that
it should be possible to design minimax detectors for a much
larger class of uncertainty sets.

This conjecture was proved true in 1973, when Huber and
Strassen showed that a sufficient and, in a certain sense,
also necessary condition for the existence of minimax ro-
bust detectors is the existence of least favorable distributions
that attain a 2-alternating Choquet capacity [49] over the
uncertainty sets of feasible distributions [50]. This result,
which will be discussed in more detail in Section V-A, was
significant for several reasons. First, it showed that the problem
of designing a minimax robust detector can, under mild
assumptions, be reduced to finding a pair of least favorable
distributions. Second, it provided a characterization of least
favorable distributions that is independent of a particular cost
function, but only depends on the uncertainty sets. Finally, the
characterization via Choquet capacities established a strong
connection between robust detection and convex divergence
measures. In fact, recent results on this connection have
partially motivated this overview paper.

In the years after the publication of [50], a substantial
number of notable papers had been written on the form and
characteristics of least favorable distributions under various
types of uncertainty. Besides the classic outlier models, these
included Prokhorov neighborhoods [51], density band models
[52], [53], p-point classes [45], [54], and many more [55]–
[57]. In fact, the period between the late 1970s and the early
1990s can be considered the most prolific in the history of
robust detection. In addition to deepening the understanding
of the classic minimax test, the scope of robust detection
also widened. Topics that came into focus include, for ex-
ample, robust detection for dependent observations [15], [58],
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[59], robust sequential detection [60], [61], robust distributed
detection [62], robust filtering [63]–[69], robust quantization
[70], and alternatives to the minimax approach, such as locally
robust detection [71]–[75] and robust detection based on robust
estimators [45], distance criteria [76], or extreme-value theory
[77]. It was also the time when the first systematic reviews of
the growing body of literature on the subject were published,
most notably the surveys by Poor and Kassam [78]–[81].
However, to the best of our knowledge, there has been no
survey article covering robust detection in a signal processing
context since then.

In recent years, the trend of diversification in robust detec-
tion has continued, with new topics emerging, such as robust
change detection [82]–[85], robust detection of adversarial
attacks [86], [87], and robust Bayesian filtering [88]–[91].
Also, new combinations of existing problems have been in-
vestigated, such as robust distributed sequential detection [92],
[93] and robust joint detection and estimation [94]. Some of
these advanced topics will be picked up in later sections, after
the necessary foundations have been introduced. However,
giving a comprehensive overview of all flavors and areas of
application of robust detection is not the main goal of this
paper.

II. SCOPE AND OUTLINE OF THE PAPER

As the title suggests, the objective of this paper is two-fold.
On the one hand, it is supposed to give a self-contained, in-
depth overview of the fundamental concepts underlying mini-
max robust detection. Most of these can of course be found in
the literature, however, they are scattered over different books
and articles, with arguably none of them proving a complete
and transparent picture. With this paper, our aim is to aggregate
these sources into a coherent, tutorial style treatment that can
serve as a unified reference and as a starting point for future
researchers interested in the topic.

On the other hand, the second goal of this paper is to
present a recent line of research that builds on and generalizes
classic results. It is based on the aforementioned fundamental
connection between minimax robust detectors and convex
similarity measures. This connection turned out to be fruitful
in terms of both a more comprehensive theory of robust
detectors as well as more flexible algorithms for their design.
In particular, recent results include
• an alternative criterion for the characterization of least fa-

vorable distributions, which is typically easier to evaluate
than the existing criteria by Huber and Strassen;

• a unified approach to the construction of least favorable
distributions for several uncertainty sets that have so far
been considered separately in the literature;

• an extension of minimax detectors to uncertainty sets for
which no capacity achieving distributions in the sense of
Huber and Strassen exist;

• useful insights into what characteristics robust detectors
for multiple hypotheses need to admit and why their
design is significantly harder or even impossible;

• a proof of existence and insights into the working-
principles of strictly minimax sequential detectors, whose
existence had not been established rigorously before;

• efficient algorithms for the design of the latter;
• a promising route towards a more unified theory of robust

and sequential detection for two and multiple hypotheses;
• in extension, a possible route towards a more unified

theory of robust detection and estimation in general.
Most of these findings have been published as standalone

technical papers [95]–[105] and the reader will be referred
to these for details. The additional value provided by this
overview paper is a coherent presentation, with a strong
emphasize on conceptual insights, as well as a more compre-
hensive discussion. Ultimately, we are convinced that a solid
understanding of the concepts presented here equips the reader
with powerful tools that will remain useful and relevant in
robust signal processing, communications, and data science
for the foreseeable future.

The remainder of the paper is structured as follows:
Section III introduces the minimax principle as a design ap-

proach to robust detectors and discusses its implications,
limitations, and areas of applicability.

Section IV revisits optimal detectors for two hypotheses, in-
troduces common jargon, and fixes some notations.

Section V is the main section of the paper. It covers how
distributional uncertainty is modeled via uncertainty sets
of feasible distributions, how the least favorable among
these distributions can be identified, and introduces three
types of uncertainty sets for which the latter are guaran-
teed to exist and can be calculated efficiently. In addition,
it presents tangible examples and discusses some intrica-
cies of robust detectors, such as the need for randomized
decision rules.

Section VI enters the more advanced topic of robustly testing
multiple hypotheses and shows why this problem cannot
be solved in analogy to the two-hypothesis case.

Section VII identifies minimax robust sequential detectors as
a useful generalization of regular detectors, offering an
increased efficiency on the one hand, and enabling the
design of minimax optimal tests for multiple hypotheses
on the other hand. However, this comes at the expense
of a more complex design and, in a sense, a violation of
the ideas underlying the minimax principle.

Section VIII uses the example of ground penetrating radar
(GPR) to illustrate how robust detectors can improve
the performance of real-world systems while introducing
little to no extra costs and complexity.

Section IX gives an outlook on the future of robust detection.
In particular, it argues that for future applications a more
unified framework of robust detection and estimation will
be required that goes beyond the traditional minimax
approach, yet is informed by the underlying concepts and
insights.

Section X summarizes and concludes the paper.

III. THE MINIMAX PRINCIPLE

The discussion in this paper is limited to the minimax
approach [106], [107]. That is, the worst-case performance
over a given set of feasible scenarios is used as an objective
function. This section provides a conceptual introduction to the
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minimax principle, highlights its strengths and limitations, and
compares it to alternative ways of handling model uncertainty.

As an introductory example, consider the problem of detect-
ing a deterministic signal in additive noise with an unknown
shape parameter. A qualitative illustration of different ways of
dealing with this uncertainty is given in Fig. 1. The simplest
approach is to ignore the uncertainty and to assume that the
noise distribution is known and fixed. A common example is
a detector that is designed under the assumption of normally
distributed noise. This results in a procedure that is optimal
at the assumed parameter value, but whose performance can
deteriorate rapidly when the true noise distribution starts to
differ from the assumed one. A more practical approach is to
design the detector such that it works well over a certain range
of parameter values. A typical example is a locally optimal
detector [108], [109], which achieves close to optimal perfor-
mance at the assumed parameter value, while also performing
well in a neighborhood around it. Other common examples
are methods based on low or high signal-to-noise ratio (SNR)
assumptions [110], [111], which perform close to optimal only
in the respective SNR regime.

Approaches that aim to provide good performance over
the entire uncertainty set typically achieve this by adapting
to the true scenario, that is, by estimating the unknown
parameters and thereby reducing the uncertainty [108], [112].
In the context of detection, commonly used examples are
the generalized likelihood ratio test [113], [114] or Bayesian
detectors [108], [115]. A downside of adaptive techniques is
that they are often difficult to analyze so that performance
guarantees are only available in the asymptotic regime [116],
[117]. Moreover, their implementation, in particular that of
Bayesian detectors, can be prohibitively complex. The min-
imax approach also aims to provide good performance over
the entire uncertainty set, however, it is stricter in the sense
that a minimax procedure guarantees a certain performance,
independent of the true value of the unknown parameter.
In order to achieve this independence, a minimax detector
does not reduce the uncertainty, but tolerates it. That is, it
is designed a priori such that it works sufficiently well under
all feasible scenarios. As a consequence, minimax procedures
often turn out to be equalizers over the uncertainty set,
meaning that the performance is (almost) identical under all
feasible distributions. This is indicated by the flat performance
profile in Fig. 1.

In general, a minimax optimal solution consists of two
ingredients: a least favorable scenario among all feasible ones
and a procedure that is optimal under this scenario [106]. In
robust detection, the scenario is determined by the distributions
under each hypothesis, so that a minimax detector reduces
to an optimal detector for the least favorable distributions.
Compared to Bayesian or adaptive detectors, this has the
advantage that a minimax detector is of the same form and
complexity as a simple detector, only that it is designed under
very specific worst-case assumptions. Owing to this property,
minimax detectors can often be used as drop-in replacements
for standard, non-robust methods.

Naturally, the minimax paradigm of tolerating uncertainty
instead of reducing it is not always appropriate. In fact, the
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Simple Local Adaptive Minimax

Fig. 1. Typical performance profiles of common approaches to dealing with
distributional uncertainty, here in form of an unknown parameter. The dashed
line indicates the optimal performance when the true parameter value is
known, that is, when there is no uncertainty.

minimax design objective is frequently criticized for being
“too pessimistic” or “too conservative”. This criticism is
sometimes justified, but just as often based on misconceptions
or overgeneralizations. Whether or not a robust detector should
be used mainly depends on the type of uncertainty: if the
unknown parameters can be estimated reliably and efficiently,
the additional information used by adaptive procedures usually
make them the method of choice. However, in cases where no
efficient estimators exist, the environment changes too rapidly
to estimate the unknown parameters, or entire distributions
are subject to uncertainty—the latter being the focus of this
paper—minimax optimal detectors are an attractive alternative
that offers high reliability at comparatively low-complexity.
Some common questions and reservations concerning the ap-
plicability of minimax robust detectors will also be addressed
in Sec. V-E, in the form of an FAQ, after having discussed the
fundamentals of minimax robust detection for two hypotheses.

In general, the type of uncertainty that can be handled by
robust detectors needs to be such that the set of feasible distri-
butions is “large” enough to contain all or most distributions
of interest, yet “small” enough to contain a meaningful worst-
case scenario. If the uncertainty sets are too small, they do
not guarantee robustness; if they are chosen too large, the
worst-case is indeed too pessimistic and the minimax detector
stops working well under regular conditions. The latter effect
is known as over robustification and will be further illustrated
in Sec. V-D and Sec. VIII. Three non-parametric uncertainty
models that offer a good trade-off between robustness and
nominal performance will be revised in Sec. V-B.

Defining the least favorable distributions among the feasible
ones is rather straightforward: they are those that minimize a
suitably chosen performance metric. The main difficulty in
designing minimax detectors lies in identifying and character-
izing these least favorable distributions. For this purpose, two
qualitative, intuition based properties of the latter are useful
to keep in mind throughout the remainder of the paper. First,
least favorable distributions are such that the probability of
confusing them for each other, which corresponds to the error
probabilities of the underlying test, is maximized. Second,
least favorable distributions are maximally similar in the sense
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that they minimize an appropriately chosen divergence or dis-
tance measure. It is not difficult to see that these two properties
are closely related. Interestingly, while the characterization via
maximum error probabilities might appear to be more natural
at first, the characterization based on divergence measures
turns out to provide some additional insights and to be more
easily generalizable to sequential tests and tests for multiple
hypotheses.

IV. OPTIMAL TESTS FOR TWO HYPOTHESES

Before entering the subject of minimax detection, it is
useful to briefly revise optimal non-robust detectors in order
to introduce basic concepts as well as jargon and notation.
Let XN = (X1, . . . , XN ) be a sequence of random variables
defined on a common sample space (X ,F). In what follows,
the joint distribution of XN is dented by PXN

and the
distribution of the individual Xn by PXn . Assume for now
that X1, . . . , XN are independent and identically distributed
(i.i.d.) according to a distribution PX , that is

PXN
=

N∏

n=1

PXn = PNX . (1)

The goal of a binary detector is to decide between the two
hypotheses

H0 : PX = P0,

H1 : PX = P1,
(2)

where P0 and P1 are two given distributions and H0 and
H1 are referred to as the null and alternative hypothesis,
respectively. Both P0 and P1 are assumed to admit probability
density functions (PDFs) p0 and p1, respectively.2 A statistical
test for H0 against H1 is defined by a randomized decision
rule

δ : XN → [0, 1],

where δ = δ(xN ) denotes the conditional probability of
deciding for the alternative hypothesis, given the observations
xN = (x1, . . . , xN ).

In practice, the effect of randomization on the performance
of the detector is often negligible. It is introduced here for
two reasons. First, it is helpful from a technical point of view
since the set of randomized decision rules can be shown to
be convex, while the set of non-randomized decision rules
is not. Second, more importantly, randomization can indeed
play a crucial role for robust detectors, especially in the small
sample size regime. This aspect is discussed in more detail in
Section V-D.

Given a decision rule δ, the corresponding type I and type
II error probabilities are given by

Pr(“reject H0 when it is true”) = EP0
[ δ(XN ) ], (3)

Pr(“reject H1 when it is true”) = EP1
[1− δ(XN )], (4)

2Note that this assumption is not restrictive since there always exists a
reference measure µ, for example µ = P0 + P1, such that both P0 and P1

are absolutely continuous with respect to µ. Usually, as here, the standard
Lebesgue measure for continuous distributions is the reference measure of
interest yielding PDFs. Or, in the case of discrete distributions, the counting
measure is the reference measures of interest yielding probability mass
function (PMFs) [118].

where EP0 and EP1 denote the expected value taken with
respect to distributions P0 = PN0 and P1 = PN1 , respectively.
Based on the error probabilities, different cost functions can
be formulated to quantify the performance of a detector. Three
common examples are defined below.

Definition 1. Common cost functions in (robust) detection:
1) Weighted sum error cost

CWSE(δ;P0,P1) = EP0
[ δ(XN ) ]

+ η EP1
[1− δ(XN )], (5)

where η denotes a positive cost coefficient;
2) Bayes error cost

CBE(δ;P0,P1) = Pr(H0)EP0
[ δ(XN ) ]

+ Pr(H1)EP1
[1− δ(XN )], (6)

where Pr(H0) and Pr(H1) denote the prior probabilities
of the hypotheses, and

3) Neyman–Pearson cost

CNP(δ;P0,P1) = EP1 [1− δ(XN )], (7)

where δ is required to satisfy a constraint on the type I
error probability

EP0
[ δ(XN ) ] ≤ α0, (8)

with α0 being a preset level.

The optimal decision rule is then defined as the one that
minimizes the cost C for a given pair of distributions (P0, P1),
that is,

δ∗ ∈ arg min
δ

C(δ;P0,P1). (9)

It is well known that the three cost functions introduced above
all lead to the same optimal decision rule δ∗, namely, the so-
called likelihood ratio test [108], [119]–[121].

Theorem 1. The decsion rule

δ∗(xN )





= 1, z(xN ) > λ

∈ [0, 1], z(xN ) = λ

= 0, z(xN ) < λ

(10)

where z : XN → R+ denotes the likelihood ratio

z(xN ) =
dP1

dP0
(xN ) =

N∏

n=1

p1(xn)

p0(xn)
(11)

and λ > 0 denotes the detection threshold, is optimal in the
sense of the weighted sum error, with λ = 1/η, the Bayes
error, with λ = Pr(H0)/Pr(H1), and the Neyman–Pearson
error, with λ chosen such that the constraint in (8) is satisfied
with equality.

This strong optimality property of the likelihood ratio test
extends to the minimax case in a natural manner, namely, by
replacing the likelihood ratio of the nominal distributions with
that of the least favorable distributions. However, the ques-
tion how to define, characterize and calculate least favorable
distributions is non-trivial. For the two-hypothesis case, it is
answered in the following section.
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V. MINIMAX TESTS FOR TWO HYPOTHESES

The idea underlying robust detection is to relax the assump-
tion that the distributions P0 and P1 in (2) are known exactly
without giving up the benefits of model based techniques
entirely. This is achieved by allowing the true distributions
to lie within a neighborhood around the nominal distributions
P0 and P1. Mathematically, this means replacing the simple
hypotheses in (2) with composite hypotheses of the form

H0 : PXn ∈ P0,

H1 : PXn ∈ P1,
(12)

for all n = 1, . . . , N . Here P0 and P1 denote the sets of
feasible distributions under the respective hypothesis and are
usually referred to as uncertainty or ambiguity sets.3 The exact
form of these sets is intentionally left unspecified at this point,
but will be of importance later on. For now, it suffices to think
of P0 and P1 as any two disjoint sets of distributions, be it
parametric or non-parametric. If P0 and P1 intersect, the two
hypotheses in (12) become indistinguishable in the minimax
sense since there exist distributions for which both hypotheses
are true; this effect is comparable to the breakdown of a robust
estimator and will be revisited in Sec. V-C. For the sake of a
more compact notation, the hypotheses in (12) are also written
as

H0 : PXN
∈ P0,

H1 : PXN
∈ P1.

(13)

Note that in (12) and (13) the random variables X1, . . . , XN

are no longer assumed to be identically distributed. In fact,
they do not even need to be independent as long as the
dependencies between them are such that their conditional
distributions remain within the uncertainty sets. In this man-
ner, uncertainty about the dependencies between the random
variables can be absorbed in the distributional uncertainty.
However, for strong dependencies this approach is rarely
practical, since it can inflate the uncertainty sets to the point
where they are no longer useful. In such cases, it is better
to directly formulate the composite hypotheses in terms of the
conditional distributions. This problem will be picked up again
in Section VII, but a detailed technical discussion of minimax
detection for dependent data is beyond the scope of this paper.

The minimax optimal decision rule is defined as the one
that minimizes the maximum cost C, where the maximum is
taken over all pairs of feasible distributions (P0,P1), that is,

δ∗ ∈ arg min
δ

max
(P0,P1)∈P0×P1

C(δ;P0,P1). (14)

A necessary and sufficient condition for minimax optimally
is that (δ∗;Q0,Q1) satisfies the saddle point condition [106],
[121], that is,

C(δ∗;P0,P0) ≤ C(δ∗;Q0,Q1) ≤ C(δ;Q0,Q1) (15)

3The vast majority of problems in minimax detection are of the form
(12), but sometimes additional complications are considered. For example, the
uncertainty set can be defined jointly for P0 and P1, that is, (P0, P1) ∈ P .
This means that the uncertainty under each hypothesis is allowed to depend on
the true distribution under the other hypothesis. Another possible complication
is to allow observations under one hypothesis to contain information about the
distribution under the other hypothesis. However, both cases are non-standard
and are not covered in this overview paper.

for all (P0,P1) ∈ P0 × P1. From the previous section it
is clear that once the least favorable distributions are fixed,
the optimal decision rule is simply a likelihood ratio test of
the form (10), with P0 and P1 replaced by Q0 and Q1. The
question of how to determine the latter will accompany us
throughout the remainder of the paper.

A. Characterizing Least Favorable Distributions

Knowing that the optimal decision rule is a likelihood ratio
test between the least favorable distributions, the design of
minimax optimal tests reduces to finding the latter. Hence,
being able to identify least favorable distributions is crucial to
robust detection.

For the two hypotheses case, a first criterion was given by
Huber in his seminal paper [40]. It is based on a property
known as stochastic dominance and fixed in the following
definition.

Criterion 1 (Stochastic Dominance). If a pair of distributions
(Q0, Q1) satisfies

Q0

[
q1(X)

q0(X)
> λ

]
≥ P0

[
q1(X)

q0(X)
> λ

]
(16)

Q1

[
q1(X)

q0(X)
≤ λ

]
≥ P1

[
q1(X)

q0(X)
≤ λ

]
(17)

for all (P0, P1) ∈ P0 × P1 and all λ ≥ 0, then the joint
distributions Q0 = QN0 and Q1 = QN1 are least favorable
for all cost functions in Definition 1, all thresholds λ, and all
sample sizes N .

Stochastic dominance is based on the intuition that the
error probabilities of a minimax test should be maximum
under the least favorable distributions. Criterion 1 makes this
notion formal and precise: by inspection, the probabilities in
(16) and (17) correspond to the two error probabilities of
a single-sample likelihood ratio test between the two least
favorable distributions with threshold λ. The least favorable
joint distributions of XN under each hypothesis are simply
the corresponding product distributions, meaning that the
i.i.d. case is also the worst case. Note that this is indeed a prop-
erty of the least favorable distributions and not an assumption
made beforehand. That is, within the given uncertainty sets,
even allowing dependencies cannot further increase the error
probabilities of the minimax test.

There are two more properties of the stochastic dominance
criterion that are worth highlighting. First, Q0 and Q1 play two
different roles in (16) and (17). On the one hand, they define
the test statistic and in turn the events of interest, namely
q1(X)
q0(X) ≶ λ. On the other hand, they define the distributions
with respect to which the probabilities of these events are
taken. This coupling is typical for objective functions in
minimax robust detection, and it can be found in all three
criteria given in this section.

Second, the stochastic dominance criterion requires the pair
(Q0, Q1) to maximize the error probabilities jointly for both
type I and type II errors and jointly for all positive likelihood
ratio thresholds λ. In other words, Q0 and Q1 need to be
independent of λ and independent of which hypothesis is
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associated with which distribution. Only under these condi-
tions do the properties of the single-sample test with particular
threshold λ carry over to tests with arbitrary thresholds and
sample sizes. This is a strong requirement and the existence
of a pair of least favorable distributions that satisfy it is not
guaranteed, but critically depends on the uncertainty sets P0

and P1. However, before going into the details of different
uncertainty models, two alternative characterizations of least
favorable distributions are introduced that shed some light on
their relation to statistical similarity measures.

Huber and Strassen [50] showed that least favorable distri-
butions in the sense of Criterion 1 also satisfy the following
criterion.

Criterion 2 (Minimum f -Divergence). If a pair of distribu-
tions (Q0, Q1) minimizes

Df (P1‖P0) =

∫

X
f

(
p1(x)

p0(x)

)
p0(x) dx (18)

over (P0, P1) ∈ P0 × P1 for all twice differentiable convex
functions f : R+ → R, then the joint distributions Q0 = QN0
and Q1 = QN1 are least favorable for all cost functions in
Definition 1, all thresholds λ, and all sample sizes N .

The quantity in (18) is known as f -divergence (or φ-
divergence), where f is a convex function satisfying f(1) = 0.
The class of f -divergences was introduced independently and
almost simultaneously by Csiszár [122], Morimoto [123] and
Ali and Silvey [124]. It includes many frequently encountered
distances and divergences, such as the Kullback–Leibler (KL)
divergence (relative entropy), the α-divergence (Rényi en-
tropy), the χ2-divergence, the Hellinger distance, and the total
variation distance. A comprehensive survey on f -divergences
and related distance measures can be found in [125]. Also, see
the box on the right for a brief discussion of some properties
of f -divergences that make them a natural similarity measure
in a detection context.

The minimum f -divergence criterion is based on the in-
tuition that, in order to maximize the error probabilities,
the least favorable distributions should be maximally similar.
However, it is not sufficient for them to be most similar
with respect to a single similarity measure, but they need to
jointly minimize all f -divergences whose defining functions
are twice differentiable. This joint optimality can be seen as
the “divergence domain” counterpart to the property that the
least favorable distributions need to be independent of the
threshold λ in Criterion 1. In [50], it is shown that distributions
admitting this property are so-called 2-alternating capacities in
the sense of Choquet [49]. However, for the purpose of this
paper the definition as universal minimizers of f -divergences
is sufficient and more transparent.

At first glance, Criterion 2 might seem stricter than Crite-
rion 1 since it has to hold for a whole class of convex functions
f , not just for all positive scalars λ. Nevertheless, both can
be shown to be exactly equivalent. Some insight into why
this is the case can be obtained by looking at yet another
characterization of least favorable distributions.

f -Divergences in Robust Detection

In (robust) detection, f -divergences emerge naturally
as an appropriate class of measures for the distance or
similarity of distributions. This is not a coincidence.
By construction, f -divergences admit several proper-
ties that one would intuitively expect from a similarity
measure in a detection context [124]:

1) Transformations can only decrease similarity.
That is,

X ′ = T (X) ⇒ D(P ′‖Q′) ≤ D(P‖Q), (19)

where T : X → X ′ is a measurable function and
P ′ and Q′ are the distributions on X ′ induced
by applying T to X . This is a variant of the
data-processing inequality, implying that a detec-
tor based on processed observations X ′ cannot
perform better than a detector based on the raw
observations X .

2) D(P‖Q) is invariant under permutations of X .
This property implies that D(P‖Q) depends on
the sample space only via P and Q, but not via
x. It again emphasizes the fact that in detection
the probability of an event is of importance, not
the event itself; recall the discussion in Sec. I-A.

3) D(P‖Q) is jointly convex in P and Q. This prop-
erty is interesting from a robustness perspective,
since it implies that a pair of distributions that
is locally least favorable is also globally least
favorable. In other words, there is no such thing
as a locally minimax detector based on locally
least favorable distributions.

These properties, in combination with some other nat-
ural requirements, can be used to define f -divergences
in an axiomatic manner [126], thus proving a strong,
theoretical backing for using f -divergences instead
of other, alternative distance measures in a detec-
tion context. Finally, it is interesting to note that
the properties stated above only admit an operational
interpretation for (minimax) optimal detectors. When
using sub-optimal detectors, preprocessing the data or
redefining events can indeed affect the performance of
the detector and, in turn, local similarity peaks and
valleys can emerge. A nice illustration of this effect
is known as stochastic resonance [127], [128], where
additional noise, added in a smart way, can in fact
improve the performance of a sub-optimal detector.

Criterion 3 (Maximum Weighted Sum Error). If a pair of
distributions (Q0, Q1) maximizes

L(λP1‖P0) =

∫

X
min{p0(x), λp1(x)}dx (20)

over (P0, P1) ∈ P0 × P1 for all λ ≥ 0, then the joint
distributions Q0 = QN0 and Q1 = QN1 are least favorable
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for all cost functions in Definition 1, all thresholds λ, and all
sample sizes N .

This characterization of distributions that minimize f -
divergences has been derived and used in various forms in
the literature [129]–[131]. In the context of robust detection,
it was recently shown in [97]. In a sense, Criterion 3 bridges
the first two criteria. On the one hand, it is not hard to show
that
∫

X
min{p0(x), λp1(x)}dx

= P0

[
p1(X)

p0(X)
>

1

λ

]
+ λP1

[
p1(X)

p0(X)
≤ 1

λ

]
, (21)

which means that when performing a single-sample likelihood
ratio test, the pair that solves (20) admits the largest weighted
sum error probabilities among all feasible pairs. This is clearly
in close analogy to Criterion 1. However, Criterion 3 exploits
more properties of the minimax likelihood ratio test, such as
the connection between the cost coefficient η in (5) and the
likelihood ratio threshold λ. This makes it possible to replace
the separate constraints on the two error probabilities with
a single constraint on their weighted sum. Moreover, it can
be shown that it is not necessary to consider a missmatch
between test statistic and true distributions, as is the case on
the right-hand side of (16) and (17). As a consequence of
these simplifications, Criterion 3 is usually easier to evaluate
in practice.

There also exists a strong connection between Criterion 3
and Criterion 2, although it is less obvious. It is based on the
observation that any f -divergence can be decomposed into a
superposition of weighted total variation distances. The total
variation distance between P0 and P1 is defined as the largest
possible difference when calculating the probability of any
event E under one distribution instead of the other. That is,

DTV(P0, P1) = sup
E∈F
|P1(E)− P0(E)|, (22)

where F denotes the σ-algebra of measurable events. If both
P0 and P1 admit a probability density function, the total
variation distance can be written as

DTV(P1‖P0) =
1

2

∫

X
|p1(x)− p0(x)|dx (23)

=
1

2

∫

X

∣∣∣∣
p1(x)

p0(x)
− 1

∣∣∣∣ p0(x) dx. (24)

Hence, under these mild assumptions, total variation is the
f -divergence induced by

fTV(t) =
1

2
|t− 1|. (25)

Now consider a version of fTV, where t is weighted by a
nonnegative scalar λ, that is,

fλTV(t) =
1

2

(
|λt− 1| − |λ− 1|

)
. (26)

The second term in (26) is merely a re-normalization so that
fλTV(1) = 0 for all λ ≥ 0. In a slight abuse of notation, the
divergence DfλTV is in the following written as

DfλTV(P1‖P0) = DTV(λP1‖P0), (27)

which emphasizes the interpretation of λ as a weight and
will generalize in a natural way to the multi-hypothesis case
discussed in later sections. In [132] it was shown that for
every twice differentiable function f , the corresponding f -
divergence can be written as

Df (P1‖P0) =

∫ ∞

0

DTV(λP1‖P0) f ′′(λ) dλ, (28)

where f ′′ denotes the second derivative of f .4 The right-
hand side of (28) is known as the spectral representation of
Df . It implies that every f -divergence can be composed by
superimposing weighted elementary f -divergences of the total
variation type.

From (28) it follows that for a pair of distributions (Q0, Q1)
to minimize all f -divergences induced by twice differentiable
functions f , it is sufficient that it minimizes DTV(λP1‖P0) for
all λ > 0. The last step to arrive at Citerion 3 is to note that
for two real scalars a, b it holds that

|a− b| = a+ b− 2 min{a , b}, (29)

so that

DTV(λP1‖P0) = min{1, λ} − L(λP1‖P0). (30)

Hence, DTV(λP1‖P0) is minimum if and only if L(λP1‖P0)
in (20) is maximum.

Before proceeding further, it is important to note that all
three criteria presented in this section are necessary for the
least favorable distributions to factor (Q = QN ) and to be
independent of both the sample size, N , and the detection
threshold, λ. However, they are not necessary for minimax
optimality in general. That is, there can exist minimax optimal
tests whose least favorable distributions do not satisfy Crite-
ria 1–3. Such tests, however, are significantly less well-studied,
significantly harder to design, and their usefulness in practice
is limited. In fact, we are not aware of any commonly used
stricly minimax robust detector that does not satisfy Criteria 1–
3. This problem and the question of how it can be overcome
will be picked up again later in this section as well as in
Sec. VII, in the context of robust sequential detection.

At this point, it becomes hard to make more concrete state-
ments about least favorable distributions, their existence, and
their properties without fixing the uncertainty sets P0 and P1.
Hence, in the next section, three commonly used uncertainty
models are introduced and discussed in detail. These three
models were chosen because they are flexible and useful
in practice, yet admit tractable least favorable distributions.
Moreover, they admit interesting theoretical properties that
help to shed a light on certain fundamental properties of
minimax robust detectors in general.

B. Uncertainty Models

In this section, three useful non-parametric uncertainty mod-
els are detailed, which capture different types of uncertainty
corresponding to different effects in real-world applications.

4This result can be generalized to non-differentiable f by replacing f ′′ with
an appropriate curvature measure. The technical details will not be entered
here, but can be found, for example, in [133].
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p◦(x) h(x) p(x)

0.7× + 0.3× =

Fig. 2. Example of a distribution under ε-contamination with outlier ratio ε = 0.3. Here, clean samples from a normal distribution (left) are contaminated
by outliers from a distribution with heavy tails (middle) causing the mixture distribution (right) to notably deviate from the nominal case.

For all of them, the minimax detector is well-defined, simple
to implement, and meaningful in the sense of the discussion
in Section III. Moreover, they can be argued to form a single,
larger class of uncertainty models. A more detailed discussion
of this aspect is deferred to the next subsection.

1) ε-contamination uncertainty: One of the oldest and most
common uncertainty models in both detection and estimation
is the ε-contamination model [40]. It is based on the idea that
the majority of the data indeed follow an ideal model (nominal
model), whereas a fraction ε < 0.5 of the data can be outliers.
Here the term outlier is used in the sense that a data point does
not contain any useful information about the nominal model at
all, but was drawn independently from a different distribution.
Formally, the ε-contamination model is defined as

Pε(P ◦) =
{
P : P = (1− ε)P ◦ + εH

}
(31)

with ε ∈ [0, 0.5), P ◦ denoting a known nominal distribution,
and H denoting the distribution of the outliers, which can be
any distribution defined on the given sample space. See Fig. 2
for a graphical illustration.

The ε-contamination uncertainty model is particularly ap-
propriate for scenarios in which a suitable model for the
observed system exists, but individual measurements or data
points can be severely corrupted. Typical examples for such
scenarios are impulsive noise in radio systems [134], [135],
motion artifacts in biomedical data [136], [137], or defective
sensors in monitoring systems [138], [139]. However, the
concept of outlies can also be applied in cases where the
clean and corrupted data points are not entirely independent.
For example, mislabeled entries in data sets [140], [141] or
corrupted bits in digitally stored data [142] can also be mod-
eled as outliers. In such cases, ε-contamination is a pessimistic
approximation of the true, more complex uncertainty model.

In general, the ε-contamination model is pessimistic in the
sense that it requires the corresponding robust detector to be
able to handle all possible outliers in the data, irrespective
of how unlikely or nonsensical they are. In some scenarios,
this requirement can be too strict. For example, in applications
where the distributions generating the clean data are discrete
or have a bounded support, gross outliers can easily be
identified—one can think of counting the number of defective
products in a lot or measuring the angle between two beams.
In other applications, the data acquisition procedure has been
perfected to a degree where it can safely be assumed not to
produce severe outliers, for example, in laboratory experiments
under highly controlled conditions.

On the other hand, the assumption that only a fraction of
the data points is subject to a model mismatch can be too
optimistic. In most real-world scenarios, even the nominal
model only holds approximately so that all observations are
subject to a moderate model mismatch, instead of a few
observations being subject to a severe model mismatch. In
fact, this is the case for almost all procedures that are based
on strong distributional assumptions, such as Gaussianity,
uniformity, or independence, which are rarely satisfied exactly
in practice. In such cases, instead of assuming outliers in the
data, it is more natural to assume that the true distributions
are not identical to the nominal distributions, but only similar.

2) f -Divergence ball uncertainty: A common way of mod-
eling this type of uncertainty is via divergence balls. More
precisely, the true distribution is assumed to lie within a ball
of radius ζ > 0 around the nominal distribution P ◦:

Pf,ζ(P ◦) =
{
P : Df (P‖P ◦) ≤ ζ

}
(32)

The exact distance D defining this ball can be chosen depend-
ing on the application. As indicated by the notation in (32), the
class of f -divergences again arises as a natural choice that has
been shown to offer a favorable compromise between being
useful in practice and having favorable theoretical properties;
compare the box on page 7. The f -divergence ball uncertainty
model is illustrated in Fig. 3.

Many special cases of the f -divergence ball uncertainty
model have been studied in the literature, including KL di-
vergence balls [100], [143], α-divergence balls [99], Hellinger
distance balls [144], and combinations of the former [98]. We
are not yet in a position to discuss how the choice of f affects
the least favorable distributions and the properties of the robust
detector, but we will return to this question later on.

3) Density band uncertainty: An alternative to defining a
neighborhood of similar distributions via a divergence ball
around a nominal distribution is to allow the true density
function to deviate from the nominal density function by a
certain amount, more precisely,

Pb(p′, p′′) =
{
P : p′(x) ≤ p(x) ≤ p′′(x)

}
(33)

where p′ and p′′ denote point-wise lower and upper bounds, re-
spectively. This type of uncertainty model is known as density
band model [52], [97]; see Fig. 4 for an illustration. Similar
to f -divergence balls, it can be used to model uncertainties
in the shape of distributions, but with the difference that
neither a nominal distribution nor a divergence need to be
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Fig. 3. Illustration of the f -divergence ball uncertainty model, where each
ball represents the feasible distributions under the corresponding hypothesis.
The least favorable distributions correspond to the two closest points not being
contained in the same ball.
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Fig. 4. Illustration of a band uncertainty model for a density function (top)
and the corresponding outlier density function (bottom). Here the outlier ratio
in (35) is given by ε = 0.4.

introduced explicitly. This has the advantage of making it more
transparent which distributions are included in an uncertainty
set, even to non-experts. For example, it can be much easier for
a practitioner to specify a band of typical densities for a certain
random phenomenon than to specify a nominal distribution
and a suitable divergence. Moreover, the amount of uncertainty
in a density band model can be defined locally for different
regions of the sample space by choosing tighter or loser
bounds, whereas it is controlled globally, by a single parameter
ζ, for divergence balls. However, this additional flexibility
can also be a disadvantage of the density band model. For
example, when constructing uncertainty sets based on training
data, estimating the radius of a divergence ball is typically
easier and more accurate than estimating a confidence interval
for a density function.

Despite its conceptual connection to divergence balls, the
density band model can also be interpreted as a variant of
the ε-contamination model with additional constraints on the
outlier distribution. More precisely, Pb in (33) can equivalently
be written as

Pb(p′, p′′) = {P : p(x) = p′(x) + εh(x), εh(x) ≤ ∆b(x) },
(34)

where ∆b(x) = p′′(x) − p′(x). This analogy can be made
closer by defining the outlier ratio of a band model as

ε = 1−
∫
p′(x) dx (35)

and its nominal distribution as that which admits the density

p◦(x) =
1

1− εp
′(x). (36)

Using these definitions, the band model in (33) can be written
as a constrained ε-contamination model [97]

Pb(p′, p′′) = {P : P = (1− ε)P ◦ + εH, H ∈ Pb(0, h′′) },
(37)

where the outlier density is bounded from above by

h′′(x) =
p′′(x)− p′(x)

ε
. (38)

Both interpretations are useful to keep in mind. While the
one in (33) is typically more intuitive, the constrained ε-
contamination model in (37) allows for an easier comparison
to the other two uncertainty models since it admits an explicit
nominal distribution and a global uncertainty parameter ε.

As a concluding remark, constructing uncertainty sets in
practice always implies making a compromise between mod-
eling the application-specific uncertainty as accurately as
possible and keeping the model simple enough to be able to
identify and calculate least favorable distributions. The three
models presented above are by no means a comprehensive
or exhaustive selection, and some applications might require
an entirely different model. Nevertheless, they provide a good
starting point in the sense that they are flexible enough to
cover a wide range of distributional uncertainties, while at the
same time allowing for an efficient calculation of their least
favorable distributions. The latter is a topic in its own right
and detailed in the next section.

C. Calculating Least Favorable Distributions

Having characterized the least favorable distributions im-
plicitly, the question of how to calculate them explicitly arises.
In this section, this question is answered for the two-hypothesis
case and the three uncertainty models introduced in Sec. V-B.
First, the least favorable distributions under uncertainty of the
density band type are introduced, the corresponding results
under uncertainty of the f -divergence ball and ε-contamination
type are then obtained as special cases of the former.
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Density band uncertainty: Let two uncertainty sets P0 and
P1 of the form (33) be given. In [97] it is shown that in this
case the pair (Q0, Q1) ∈ P0 × P1 is least favorable if the
densities (q0, q1) satisfy

q0(x) = min{p′′0(x) , max{c0q1(x) , p′0(x)}}, (39)
q1(x) = min{p′′1(x) , max{c1q0(x) , p′1(x)}}, (40)

for some c0, c1 > 0. The min and max operators on the right-
hand side of (39) and (40) have to be read pointwise and
guarantee that q0 and q1 are within the feasible bands. In
words, q0 is the projection of q1 onto the band of feasible
densities P0, where the projection is performed by scaling q1
such that the right-hand side of (39) integrates to one. Analo-
gously, q1 is the projection of q0 onto P1. Similar projection
operators are commonly found in other areas of robustness
[63], [145]–[148], but typically without the coupling between
the least favorable distributions, which is a characteristic of
robust detection.

An example of a density band uncertainty model and its
least favorable densities is given in Fig. 5. Here, the upper
and lower bounds were chosen to be scaled Gaussian densities,
more precisely,

p′i(x) = a pN (x;µi, σ
2
i ),

p′′i (x) = b pN (x;µi, σ
2
i ),

(41)

where pN (•;µ, σ2) denotes the density of a Gaussian distri-
bution with mean µ and variance σ2. For the uncertainty sets
shown in Fig. 5, indicated by the shaded areas, the parameters
are a = 0.75, b = 1.2, µ0 = −2, µ1 = 0, σ2

0 = 4, and
σ2
1 = 16. It can be seen how the least favorable densities

either coincide with one of the bounds or, on intervals where
at least one of them lies in the interior of the band, are
scaled versions of each other. Note that the least favorable
densities are not guaranteed to be unique, that is, it can be
possible to construct (infinitely) many density pairs satisfying
(39) and (40). However, the scaling factors c0 and c1 as well
as the likelihood ratio q1/q0 can be shown to be unique. The
properties of the latter will be investigated more closely in
Sec. V-D.

A straightforward yet efficient way of calculating the least
favorable densities is to iteratively solve (39) and (40) for c0
and c1. That is, starting from an initial guess (q

(0)
0 , q

(0)
1 ), one

constructs a sequence of pairs (q
(k)
0 , q

(k)
0 ), k = 1, 2, . . . via

q
(k)
0 (x) = min{p′′0(x) , max{c(k)0 q

(k−1)
1 (x) , p′0(x)}}, (42)

q
(k)
1 (x) = min{p′′1(x) , max{c(k)1 q

(k)
0 (x) , p′1(x)}}. (43)

Note that the only unknowns in (42) and (43) are the scalars
c
(k)
0 and c(k)1 so that each update reduces to finding a scaling

factor such that the projected density on the right-hand side
integrates to one. Mathematically, this translates to finding
the scalar root of a monotonic function, which is a well-
known problem in numerics that can be solved by off-the-
shelf algorithms. Moreover, this procedure is independent of
the underlying sample space and its dimensions. As long as
the right-hand sides of (42) and (43) can be integrated over the
sample space, the least favorable densities can be computed

iteratively. For high-dimensional problems, representing and
integrating the least favorable distributions can become a
non-trivial task. However, even in such cases, state-of-the-art
approximation and integration techniques [149] in combination
with modern hardware are usually powerful enough to obtain
close approximations.
ε-contamination uncertainty: Being able to calculate least

favorable densities for the band model also enables one to
calculate least favorable densities for the ε-contamination
model. As stated in (37), the density band model can be
interpreted as a constrained ε-contamination model, so that
the latter can be recovered as a special case of the former.
First, since the outlier distributions are unbounded under ε-
contamination uncertainty, the upper bounds p′′0 , p′′1 and in turn
h′′0 , h′′1 do not bind. Moreover, according to (36), the lower
bounds p′0 and p′1 are scaled versions of the nominal densities.
In combination, this yields least favorable densities that are of
the form

q0(x) = max{c0q1(x) , (1− ε0)p0(x)}, (44)
q1(x) = max{c1q0(x) , (1− ε1)p1(x)}. (45)

Finally, it can be shown that q0, q1 on the right-hand side of
the above equations can be replaced by the nominal densities
p0, p1. In order to see this, note that Lλ in Criterion 3 can be
written as∫

X
min{q0(x), λq1(x)} dx = Q0(X1,λ) + λQ1(X0,λ)

where

X0,λ = {x ∈ X : q0(x) > λq1(x)}, (46)
X1,λ = {x ∈ X : q0(x) ≤ λq1(x)}, (47)

so that X0,λ ∪ X1,λ = X and X0,λ ∩ X1,λ = ∅. Under ε-
contamination uncertainty, it holds that

Q0(X1,λ) = (1− ε0)P0(X1,λ) + ε0H0(X1,λ) (48)
≤ (1− ε0)P0(Xλ) + ε0 (49)

and

Q1(X0,λ) = (1− ε1)P1(X0,λ) + ε1H1(X0,λ) (50)
≤ (1− ε1)P1(X0,λ) + ε1 (51)

The upper bounds are attained if H0(X1,λ) = H1(X0,λ) = 1,
which implies that H0 and H1 need to be orthogonal in order
to be least favorable.

Now, consider the region on which q0 does not attain its
lower bounds. On this region it holds that

q0(x) > (1− ε0)p0(x) ⇒ h0(x) > 0. (52)

Hence, h1(x) = 0 and q1(x) = (1−ε1)p1(x), so that q1 in (44)
can be replaced by p1; the factor (1− ε1) can be absorbed in
the free parameter c1. The same line of arguments also applies
to (45). This yields the least favorable densities

q0(x) = max{ c0p1(x) , (1− ε0)p0(x) }, (53)
q1(x) = max{ c1p0(x) , (1− ε1)p1(x) }. (54)

This result was obtained by Huber [40] without recourse to
the band model, but the proof via this connection is arguably
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Fig. 5. Example of a density band uncertainty set (top left) and the corresponding least favorable densities (top right). In the bottom plots it can be seen how
the least favorable densities either coincide with one of their bounds or are scaled versions of their respective counterpart. The scaling factors c0 and c1 are
determined by (39) and (40).

more instructive. The fact that q0 and q1 are decoupled under
ε-contamination means that there is no need for an iterative
procedure to determine c0 and c1, which in turn simplifies
their calculation. Under density band uncertainty, it is in
general not possible to construct orthogonal outlier densities,
which explains the coupling between q0 and q1 in the general
equations (39) and (40).

The transition from a density band model to an ε-
contamination model can be illustrated by successively relax-
ing the upper bounds of the density band model in Fig. 5.
The effect of this relaxation on the least favorable densities
is shown in Fig. 6. As can be seen, the more the upper
bounds are relaxed, the more freely the probability mass
can be moved and the more overlap there is between the
distributions. Finally, under unconstrained ε-contamination,
the least favorable distributions become similar enough to
almost overlap completely. In fact, if the outlier ratio, which is
25 % in this example, is further increased, the least favorable
distributions in the lower right plot of Fig. 6 become indeed
identical, meaning that in the worst case the two hypotheses
become indistinguishable in the minimax sense.

This effect is the closest equivalent to what is know as a
breakdown point in robust estimation. The breakdown point
of an estimator determines how large a ratio of outliers in the
data an estimator can tolerate without deviating arbitrarily far
from the true value of the parameter. Hence, for outlier ratios
above its breakdown point, an estimator is no longer guaran-
teed to perform better than randomly guessing the unknown
parameter. In analogy, the breakdown point of a detector

can be defined as the ratio of outliers it can tolerate while
still performing better than random guessing. This breakdown
happens exactly when the two least favorable distributions
become identical and, in turn, the likelihood ratio becomes
a constant. It is important to note that while in estimation the
breakdown point is a property of the estimator, in detection
it is a property of the uncertainty sets, more precisely, of the
nominal distributions under each hypothesis. In the example
shown in Fig. 6, the outlier ratio is 25 %, which is well
below the theoretical limit of 50 %. However, for the given
nominal distributions, this outlier ratio is already close to the
breakdown point, which is at approximately 28 %. Choosing
the nominal distributions to be more or less similar, decreases
or increases the breakdown point accordingly.

The outlier densities corresponding to the least favorable
distributions in Fig. 6 are plotted in Fig. 7. Here, “outlier
density” refers to the two densities h0, h1 which satisfy q0 =
p′0 + ε0h0(x) and q1 = p′1 + ε1h1(x), where ε0 and ε1 are
as in (35). For the band model, the sets of feasible outlier
distributions in the sense of (37) are indicated by the shaded
areas. It can clearly be seen how the outlier densities start
to overlap less as their constraints are relaxed. Interestingly,
in the upper right and lower left plot, h1 does not “fill the
gap” left by h0, although the constraints would allow for it.
However, merely concentrating probability mass in order to
reduce the spread of q1 is not minimax optimal, since it ignores
the coupling between q0 and q1. Figuratively speaking, the
“gap” left by h0 needs to be large enough to fit h1 without
violating the constraints on its shape in (39) and (40).
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Fig. 6. Example of how an ε-contamination model can be obtained by relaxing a density band model. The upper bounds are of the form (41), with c′′ = 1.2
(top left), c′′ = 2 (top right), c′′ = 5 (bottom left), and c′′ = ∞ (bottom right), the latter corresponding to unconstrained ε-contamination. Purple shaded
areas indicate overlapping density bands.
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Fig. 7. Outlier densities corresponding to the least favorable distributions in Fig. 6. While the outlier densities are orthogonal under ε-contamination (lower
right), the coupling in (39) and (40) forces them to overlap under density band uncertainty. Purple shaded areas indicate overlapping density bands.
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Another intersting observation is that, although the outlier
densities admit very particular shapes with sharp transitions
and large intervals of probability zero, their probability mass
is concentrated on a finite interval. That is, in contrast to robust
estimation, the worst-case outliers are not extreme values
generated by heavy-tailed distributions. Instead, they are in
the same range as the clean data and are generated by slightly
shifted and distorted versions of the nominal densities. An
intuitive explanation for this observation is that in detection the
“most misleading” samples are not those which are extremely
large or small, but those that appear as if they had been
generated under the hypothesis that should be rejected; recall
the discussion in the introduction. Consequently, the least
favorable distributions generate outliers that mimic the clean
data under the opposite hypothesis. From a practitioner’s
point of view, this phenomenon highlights the fact that, even
in the absence of impulsive noise and for seemingly clean
data, deviations from the nominal model can still be present
and can have a detrimental effect on detection performance.
The outlier density h1 shown in the lower right plot of
Fig. 7, for example, could very well correspond to a defective
sensor randomly oscillating around a small negative value. In
summary, this example indicates that encountering a close-to-
worst-case scenario is not just a mere theoretical possibility,
but it is a real danger that should be taken seriously when
designing detectors for critical applications.
f -divergence ball uncertainty: For the f -divergence ball

uncertainty model, the situation is more complex than for the
previous two uncertainty models. In general, least favorable
distributions in the sense of the three criteria given in Sec. V-A
do not exist. This is the case for the KL divergence, the χ2-
divergence, the Hellinger divergence, the Rényi divergence,
and many more. As mentioned in Sec. V-A, this does not
imply that no minimax optimal tests exists. But it means that
the least favorable distributions do not factor and depend on
the sample size and the detection threshold. Moreover, least
favorable distributions of this kind are significantly harder to
characterize since no clear criteria comparable to those in the
previous section exist. Naturally, this is a major obstacle for
the use of f -divergence ball uncertainty models in practice.
Although this obstacle cannot be overcome completely, it
can be worked around by exploiting a connection between
density bands and f -divergence balls, which makes it possible
to design robust tests with least favorable distributions that
admit the strong properties enforced by Criteria 1-3 without
sacrificing strict minimax optimality.

This connection is based on single-sample tests, whose least
favorable distributions exist under much milder conditions.
For any given λ > 0, the cost function Lλ in Criterion 3
can be maximized under f -divergence ball uncertainty. This
is the case because Lλ is jointly concave in the pair (P0, P1)
and f -divergence balls are convex sets of distributions. Let
these minimizers of Lλ be denoted by Q0,λ and Q1,λ, where
the subscript indicates the dependence on λ. Q0,λ and Q1,λ

are indeed least favorable, but only for a single-sample test
(N = 1) with fixed likelihood ratio threshold λ. If the
threshold changes, Q0,λ and Q1,λ need to be recalculated.
Clearly, this weaker minimax property is not very useful in

practice, where redesigning tests is costly and having multiple,
independently drawn observations (N > 1) is by far the most
common scenario.

In [105], it is shown that for every f -divergence ball model
there exists an equivalent density band model that admits
the same single-sample least favorable distributions Q0,λ and
Q1,λ, but for which the latter are in fact least favorable in
the strong sense of Criteria 1-3. In other words, given an
uncertainty set of the f -divergence ball type and a threshold
parameter λ, an equivalent density band model can be con-
structed such that the least favorable distributions of the latter
coincide with the single-sample least favorable distributions
of the former. Moreover, the bounds of the equivalent density
band model can be shown to be simply scaled versions of
the nominal densities. Schematically, this connection can be
depicted as follows:




λ
Pf0(P0, ζ0)
Pf1(P1, ζ1)


 ⇒

(Pband(a0p0, b0p0)

Pband(a1p1, b1p1)

)
(55)

⇓ ⇓
(Q̃λ,0, Q̃λ,1) = (Q0, Q1) (56)

The scaling factors a0, b0 and a1, b1 depend on ζ0, ζ1 and
f and can be obtained from the (generalized) inverses of the
derivatives of the function f . Alternatively, the four constants
can be determined numerically, by successively constructing
least favorable densities until the f -divergence ball constraints
of the original model are satisfied with equality. See [105] for
more details on both methods.

From (55), it is clear that the least favorable distributions
of every f -divergence ball uncertainty model are again of the
form in (39) and (40), with the bounds being scaled versions
of the nominal densities. In fact, it can be shown that the band
model in Fig. 5 is equivalent to a KL divergence ball model,
f(t) = t log(t), with radii ζ0 ≈ 0.0136 and ζ1 ≈ 0.0242.

As mentioned in Section V-B, for special cases of f -
divergences, more explicit expressions for (single-sample)
least favorable distributions can be found in the literature.
Evaluating these directly is usually easier than first construct-
ing the equivalent band model and then solving (39) and
(40). Also note that, having calculated the least favorable
densities in one way or another, it is not difficult to construct
the equivalent band model. As discussed in Sec. V-B, this
can be helpful to translate f -divergence ball uncertainty into
a form that is easier to interpret. Moreover, the fact that
the upper bounds of the equivalent band model are scaled
versions of the nominal densities provides a nice illustration
for why f -divergence balls cannot contain distributions that are
significantly more heavy-tailed than the nominal distributions:
increasing the f -divergence ball radius increases this scaling
factor, but does not affect the type of decay. However, one
should always keep in mind that, although their least favorable
densities are identical, the sets of feasible distributions on the
left and right-hand side of (55) are different in general.

We conclude this section with a historical remark. The
least favorable densities for both the band model and the ε-
contamination model had both been derived long ago; the
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latter by Huber [40], the former by Kassam [52]. However,
the form in which the least favorable densities of the band
model were stated made it hard to work with them in practice.
The respective theorem in [52] distinguishes between four
special cases, each involving a piecewise definition of the
densities. In order to know which case holds, one has to
check the existence or non-existence of in total six constants
that have to be chosen such that the solutions are valid
densities. This might partially explain why the band model
never became as popular as the ε-contamination model in
robust statistics. In fact, it can be argued that its popularity
has been decreasing. While it used to be one of the standard
models in robust testing and filtering in the 1980s [66], [79],
today many signal processing practitioners do not seem to be
aware of its existence and recent books on robust statistics
ignore it entirely [13], [121]. Based on the discussion above,
we strongly encourage practitioners and researchers to have
a second, closer look at the density band model: in practice,
it provides a more flexible alternative to the common outlier
model with little increase in complexity, and in theory, it
provides useful insights into fundamental connections between
uncertainty sets based on outliers and f -divergence balls.

D. Detector Design and Implementation

Assume that two sets P0 and P1 have been determined
that adequately describe the model uncertainty and a pair
of least favorable distributions (Q0, Q1) has been calculated.
According to Theorem 1, the minimax optimal test is then a
likelihood ratio test with threshold λ > 0 and test statistic

zN (xN ) =

N∏

n=1

q1(xn)

q0(xn)
. (57)

This test statistic is referred to as minimax likelihood ratio in
what follows. A closer look at it provides some insight into
the kind of counter measures that are called for by the three
types of uncertainty introduced above.

From the general form of the least favorable densities in (39)
and (40), it follows that for a density band uncertainty model
the minimax likelihood ratio q1(x)

q0(x)
can take on six different

values at any point x, namely,

q1(x)

q0(x)
∈
{
p′1(x)

p′0(x)
,
p′′1(x)

p′0(x)
,
p′1(x)

p′′0(x)
,
p′′1(x)

p′′0(x)
,

1

c0
, c1

}
. (58)

That is, over the entire sample space, the minimax likelihood
ratio is determined by the density bounds and the two constants
c0, c1. Consequently, there are two, not necessarily connected,
regions on which the likelihood ratio is constant. These regions
can clearly be identified in Fig. 8, where, on the left-hand side,
the minimax likelihood ratio is plotted for the band model in
Fig. 5.

For the ε-contamination model, the set of possible minimax
likelihood ratio values reduces to

q1(x)

q0(x)
∈
{

1− ε1
1− ε0

p1(x)

p0(x)
,

1

c0
, c1

}
. (59)

That is, the minimax likelihood ratio is either a scaled ver-
sion of the nominal likelihood ratio or a constant, which is

illustrated on the right-hand side of Fig. 8. Note that in Fig. 8
ε0 = ε1 so that the minimax likelihood ratio coincides with
the nominal one on the respective region of the sample space.

Finally, for uncertainty sets of the f -divergence ball type,
the minimax likelihood ratio can again take on six values,
namely,
{
a1
a0

p1(x)

p0(x)
,
b1
a0

p1(x)

p0(x)
,
a1
b0

p1(x)

p0(x)
,
b1
b0

p1(x)

p0(x)
,

1

c0
, c1

}
.

(60)
This results in minimax likelihood ratios of the same type as
for the density band model, with the ratios of the upper and
lower bounds being replaced by scaled versions of the nominal
likelihood ratio.

While all three uncertainty models admit two regions of
constant likelihood ratio, what distinguishes them and the
corresponding robust tests is the shape and location of these
regions. For ε-contamination models, the minimax likelihood
ratio is a clipped version of the nominal one, as depicted on
the right-hand side of Fig. 8. This seminal result was first
proved by Huber in [40]. A clipped likelihood ratio limits
the influence of any single observation on the outcome of
the test so that even extreme outliers cannot overwrite the
evidence provided by the majority of the data. This renders the
detector robust against noise from heavy-tailed distributions.
However, as shown in the previous section, the least favorable
distributions themselves are not necessarily heavy-tailed.

The density band model, being a generalization of the ε-
contamination model, provides more subtle means of robustifi-
cation than just clipping. An example of a minimax likelihood
ratio based on a band model can be seen on the left-hand
side of Fig. 8. While the negative part of the likelihood ratio
is clipped, just as it is for the ε-contamination model, the
positive part is merely “dampened”, meaning that the influence
of highly indicative observations is reduced, but not bounded.
This is a consequence of the assumption that the outlier
distribution itself is constrained, compare (37), so that extreme
outliers are too rare to justify the performance loss incurred by
clipping. Likelihood ratios of this form are sometimes referred
to as compressed [97], in the sense that on any given interval
the absolute value of the minimax likelihood ratio is bounded
by the absolute value of the nominal likelihood ratio.

Finally, there exists a third type of minimax likelihood
ratio that can emerge from both the band model and the
f -divergence ball model; it is illustrated by the example in
Fig. 9, which is obtained form a density band model of the
form (41) with a = 0.7, b = 3, µ1 = −µ0 = 2, and
σ2
0 = σ2

1 = 4. It can be shown that for this particular
uncertainty set, the two constants c0 and c1 coincide, so
that there is a single region where the likelihood ratio is
constant. Moreover, in this example, the constant equals one,
meaning that the observations falling in this region do not
contribute to the test statistic, but are entirely ignored. Hence,
this scheme is usually referred to as censoring [150]. The
intuition underlying censoring is that samples providing little
evidence for either hypothesis should not be trusted, since this
evidence is likely to be exclusively due to random deviations
from the nominal model. Hence, censoring can be interpreted
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Fig. 8. Examples of minimax log-likelihood ratios under density band uncertainty (left) and ε-contamination (right). The uncertainly model is the same as
in Fig. 5. The ε-contamination model is obtained by letting p′′0 , p

′′
1 →∞, which corresponds to an outlier ratio of ε = 0.25.
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Fig. 9. Example of a minimax log-likelihood ratio under density band or f -divergence ball uncertainty (left), which results in censored observations on an
interval around x = 0. The distribution function of the log-likelihood ratio under Q0 is depicted on the right.

as a data cleaning procedure, where the cleaning happens
implicitly when evaluating the test statistic.

Censoring or rejecting data points is an old, well-known
technique for dealing with contaminated data sets [151], [152]
and still plays an important role in modern robust statis-
tics [153]–[155]. In robust estimation, outlier rejection arises
naturally as a consequence of so-called redescending weight
functions, which assign a vanishingly small or even zero
weight to large observations [4], [156]. Interestingly, in robust
detection, censoring has almost the opposite effect. A minimax
optimal procedure never rejects observations with extremely
large nominal likelihood ratio, but can reject observations with
small nominal likelihood ratio. In other words, while censoring
in estimation prevents rare, grossly corrupted observations
from overruling the majority of the data, censoring in robust
detection prevents the errors introduced by small but frequent
model deviations from accumulating in the test statistic. This
example highlights the fact that there are indeed connections
between robust estimation detection, but that results from one
are not guaranteed to carry over to the other in a straightfor-
ward manner.

Another important aspect of minimax optimal detectors is
that they may require randomized decision rules in order to
perform well in practice. This problem was briefly touched
upon in Sec. IV, however, we are now in a better position
to explain it. Using the censored likelihood ratio depicted

in Fig. 9 as an example, it is clear that when evaluating
this test statistic a value of exactly one occurs with non-
zero probability, that is, the distribution of the likelihood
ratio contains a point mass. This can clearly be seen in the
plot on the right-hand side of Fig. 9, where the cumulative
distribution function of the censored log-likelihood ratio is
plotted under the corresponding least favorable distribution
Q0. By inspection, the probability of erroneously rejecting H0

jumps from approximately 12.5 % to approximately 50.7 %
when λ changes from +0 to −0. Consqeuently, a detector
with a reasonable false alarm rate can be reduced to a random
coin flip, depending on which decision rule is applied when
the likelihood ratio evaluates to one. The same considerations
apply to the probability of erroneously rejecting H1.

The effect of having a point mass in the distribution of
the test statistic can better be illustrated by inspecting the
receiver operating characteristic (ROC) of the corresponding
detector. The ROC of the minimax detector with the censored
test statistic shown in Fig. 9 is depicted in Fig. 10. The upper
plot shows the ROC under the nominal, Gaussian distributions
(a = b = 1 in (41)), and the lower plot shows the ROC under
the least favorable distributions. In both cases, it can be seen
that on regions where the error probabilities are approximately
balanced, the ROC is linear, which implies that the correspond-
ing points of operation require a randomized decision rule.
Especially under the least favorable distributions, all useful
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Fig. 10. Receiver operating characteristics (ROC) of the minimax detector
with test statistic shown on the left-hand side of Fig. 9 under the nominal
distributions (top) and the least favorable distributions (bottom).

points of operation fall in this category.
Large linear segments in the ROC are a strong indicator that

the uncertainty sets have been chosen too large and the detector
has been “over robustified”. The larger the uncertainty sets, the
more similar are the least favorable distributions, and the more
is the distribution of the minimax likelihood ratio concentrated
around one. In the extreme case that the uncertainty sets
intersect each other, the test reduces to random guessing and
the ROC becomes entirely linear. In practice, this collapse can
easily be avoided by making sure that the uncertainty sets are
disjoint. However, observing a highly concentrated test statistic
or a strong influence of the randomization rule on the outcome
should generally ring an alarm bell.

The effect of point masses is most detrimental for censored
test statistics. It can also occur for clipped and compressed
likelihood ratios. However, for these, the point masses are
usually smaller and, in particular for the clipped test, occur at
values that are too large or too small to be useful thresholds in
practice. The effect also becomes less critical for large sam-
ple sizes, since summing the individual log-likelihood ratios
spreads the distribution and smoothes out the point masses.
This effect can be observed in Fig. 10, where the ROCs are
plotted for different sample sizes. Nevertheless, point masses
in the distributions of the test statistic cannot be avoided
entirely, so the potential need for randomization should be
kept in mind when designing robust detectors, the more so
the smaller the sample size and the larger the uncertainty sets.
A good example for the importance of randomized decision

rules and how to design them optimally can be found in [99],
where the technical aspects are discussed in more detail.

Randomization issues aside, the performance of a minimax
robust detector can be analyzed in analogy to the performance
of a regular likelihood ratio detector. From the Chernoff–Stein
Lemma [157, Sec. 11.8] it follows that the error probabilities
of a likelihood ratio test for two hypotheses of the form
(2) decrease exponentially. More precisely, keeping one er-
ror probability fixed and letting the sample size grow, the
other error probability decays exponentially with exponents
DKL(Q0‖Q1) and DKL(Q1‖Q0), that is,

EP0
[ δ∗(XN ) ] ≈ 2−NDKL(P0‖P1) (61)

and

EP1 [1− δ∗(XN ) ] ≈ 2−NDKL(P1‖P0) (62)

for large N . In the context of robustness, however, the per-
formance under distribution mismatch is more interesting. In
[158], it is shown that the error exponents of a likelihood ratio
test that is designed for the hypotheses in (2), but is evaluated
under different (not necessarily least favorable) distributions
Q0, Q1, are given by

EQ0
[ δ∗(XN ) ] ≈ 2−N(DKL(P0‖Q1)−DKL(P0‖Q0)) (63)

and

EQ1 [1− δ∗(XN ) ] ≈ 2−N(DKL(P1‖Q0)−DKL(P1‖Q1)). (64)

Note that for (63) and (64) to hold, the exponents on the
right-hand side need to be positive, meaning that Q0 is more
similar to P0 than to P1 and Q1 is more similar to P1 than
to P0. Using (63) and (64), the performance of optimal and
minimax optimal likelihood ratio tests can be approximated
for large sample sizes. Of course, in practice, Monte Carlo
simulations are often used as an alternative or additional
way of evaluating the performance of a detector under more
complex distributions and for small sample sizes.

Before concluding this section, two remarks about designing
and analyzing robust detectors are in place. First, the form
of the error exponents under mismatch suggests that the KL
divergence is the “most natural” uncertainty measure. This
conception can be misleading. In (63) and (64), the KL
divergence quantifies the asymptotic performance of a detector.
The f -divergence in the definition of the uncertainty model
in (32) specifies the type of uncertainty. The latter should
always be chosen according to an honest assessment of the
model at hand, not based on mathematical convenience. The
performance evaluation is a separate step. In other words, the
error exponents of a robust detector should be a consequence
of the uncertainty model and not the other way around.

A second important aspect when designing robust detectors
is that one should not focus exclusively on the performance
under one particular pair of distributions—be it the nominal
distributions or the least favorable distributions. After all, the
very idea underlying robustness is that it is more important
to perform well under all feasible distributions than to per-
form optimally under any specific distribution. Ultimately, the
minimax design approach is merely a means to this end.
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E. Conclusions

The discussion of the two-hypothesis case so far has re-
vealed that

• minimax optimal tests are standard likelihood ratio tests
based on least favorable distributions;

• the latter can be characterized by their property to max-
imize error probabilities and minimize f -divergences;

• there are useful uncertainty models for which least favor-
able distributions exist and can be calculated efficiently
in practice;

• robust detectors for these uncertainty models admit
clipped, censored, or compressed test statistics.

All in all, minimax robust tests for two-hypothesis are well-
understood and, except for some caveats, such as the potential
need for randomized decision rules, they can be designed
and operated in a relatively straightforward manner. In most
cases, transitioning from a non-robust test to a robust one
boils down to a simple transformation of the test statistic.
Yet, despite their drop-in nature and potential benefits, robust
detectors are still not widespread in practice, in particular
for uncertainty models that are not of the ε-contamination
type. In light of this, we highly recommend practitioners in
signal processing, data science, and related areas to try robust
detectors for themselves. A toolbox for the calculation of least
favorable distributions in MATLAB and Python is available
online [159]. For answers to some common questions and
resevation concerning the use of robust detectors in practice,
also see the FAQ box on the right.

While tests for two hypotheses are arguably most common
in practice, there are also many applications in which a
decision for one out of multiple options needs to be made.
The state-of-the-art in robust testing is less complete for
this problem, however, some interesting findings have been
obtained recently, which are detailed in the next two sections.

VI. MINIMAX DETECTION FOR MULTIPLE HYPOTHESES

The problem of deciding for one out of multiple possible
hypotheses, also known as statistical classification in the
literature, is a natural generalization of binary hypothesis
testing and has applications in signal processing [160], com-
munications [161], and other areas [162].

In the previous sections it has become clear that the ex-
istence of least favorable distributions that are independent
of the sample size and the threshold parameter is crucial for
the existence of minimax optimal tests. Unfortunately, the
existence of distributions that are least favorable in this strong
sense can only be guaranteed for tests for two hypotheses. As a
consequence, the design of minimax optimal tests for multiple
hypotheses becomes significantly harder. In this section, it
is discussed why this is the case, why robust detection for
multiple hypotheses is a fundamentally different problem, and
how sequential hypothesis testing can help in solving this
problem.

Robust Detection in Practice: FAQ

Q: Robustness seems like a waste of resources. Why
not aim for optimal performance, if the conditions
allow for it?

A: If the goal is to achieve optimal performance under
ideal conditions, then robust detectors are indeed
not a good choice. However, in practice it can be
better to guarantee “good enough” performance
under a variety of conditions. For example, the
nominal sensitivity of a smoke detector under lab
conditions is irrelevant if it is supposed to work
reliably for many years in a dusty basement or a
poorly insulated attic.

Q: Why should a detector be designed such that it
performs optimally only in pathological worst-
case scenarios? Those will never arise in practice!

A: Many worst-case scenarios, particularly in detec-
tion, are not pathological at all; recall the least
favorable distributions in Fig. 7. Moreover, and
more importantly, the point of robust detectors is
not that they perform optimally under a single
peculiar distribution, but that they perform well
under all distributions in the uncertainty set.

Q: Robust detectors seem to be very inflexible. Would
it not be better to adapt to the true distribution?

A: Whether or not the true distribution should be
estimated critically depends on the type of un-
certainty; compare the discussion in Sec. III. As
a rule of thumb, whenever the uncertainty is such
that resolving it seems to require non-parametric
estimators, robust detectors are likely to be a
better performing alternative.

Q: There are detectors that have been shown to be
asymptotically optimal under mild assumptions.
Does this not make robust detectors obsolete?

A: Asymptotically, distributional uncertainty becomes
an almost negligible issue. As the sample size
goes to infinity, any unknown property of the
true distribution can be inferred with arbitrary
precision from the data. In other words, having
access to an unlimited amount of data is as good
as having perfect knowledge of their distribution.
In practice, however, the sample sizes are typi-
cally nowhere near the asymptotic regime. In fact,
interpreting “asymptotically optimal” as “guaran-
teed to be close-to optimal” is a misconception
that can lead to a false and potentially dangerous
sense of security. Robust detectors, on the other
hand, not only provide actual performance guar-
antees, but also force the designer to explicitly
take the uncertainty into account.

Q: Robust detection seems to be rather niche, is it not
better to use well-established techniques?

A: Robust detection is undeniably niche; but it does
not have to stay niche. The theory is well under-
stood and software packages are readily available.
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A. Optimal Tests for Multiple Hypotheses

In analogy to the two-hypothesis case, it is useful to briefly
revise optimal non-robust test for multiple hypotheses before
entering the discussion of their robust counterparts. Again,
assume for now that XN = (X1, . . . , XN ) are i.i.d. with
common distribution PX such that

PXN
=

N∏

n=1

PXn = PNX . (65)

The goal is now to decide between the hypotheses

Hk : PX = Pk, (66)

where k = 0, . . . ,K and all Pk are known exactly. The
decision rule of the test is defined as

δ : XN → [0, 1]K+1, (67)

where δ = (δ0, . . . , δK) is a K+ 1-dimensional vector whose
kth entry denotes the conditional probability of deciding for
the kth hypothesis given the observations (x1, . . . , xn).

Throughout this section, the focus will be on the weighted
sum error cost

CWSE(δ;PPP) =

K∑

k=0

λkEPk [1− δk(X)], (68)

where PPP = (P0, . . . ,PK) denotes a vector of distributions,
λk, k = 1, . . . ,K, denote positive cost coefficients and it is
assumed without loss of generality that λ0 = 1. Note that the
Bayes error cost function can be obtained form (68) by setting
λk = Pr(Hk)

Pr(H0)
.

The optimal decision rule is again defined as the one that
minimizes a cost function for a given vector of distributions PPP.
For the cost function in (68), it can be shown that the optimal
decision rule is a weighted maximum likelihood test [163],
[164].

Theorem 2. The optimal decsion rule for the cost function in
(68) is given by

δ∗k(x)

{
≤ 1, λkzk(xN ) ≥ λlzl(xN ) ∀ l 6= k

= 0, otherwise
(69)

where k = 0, . . . ,K, and zk : XN → R+ is defined as

zk(xN ) =
dPk
dP0

(xN ) =

n∏

n=1

pk(xn)

p0(xn)
. (70)

The first case on the right-hand side of (69) is defined as
an inequality in order to allow for randomization.

From the discussion in the previous section it is clear that
any minimax optimal robust test needs to be based on the
decision rule in (69) in combination with a vector QQQ of
least favorable distributions. However, characterizing or even
defining the latter in a meaningful manner is a much more
delicate problem for multiple hypotheses.

B. Characterizing Least Favorable Distributions

Just as in the two-hypothesis case, uncertainty under multi-
ple hypotheses is introduced by allowing the true distributions
to lie in a set of feasible distributions, that is,

Hk : PXn ∈ Pk, (71)

for all n = 1, . . . , N , where Pk denotes the uncertainty set
under Hk. In analogy to (13), (71) is written more compactly
as

Hk : PXN
∈ Pk. (72)

In Section V-A, three equivalent criteria for the charac-
terization of least favorable distributions of binary detection
problems were given. All three criteria can be extended to
the multi-hypothesis case. However, here only the generalized
version of Criterion 2 is stated since it is the most instructive.

Criterion 4 (Minimum f -Dissimilarity). If a vector of distri-
butions (Q0, . . . , QK) minimizes

Df (P1, . . . , PK‖P0) =

∫

X
f

(
p1(x)

p0(x)
, . . . ,

pK(x)

p0(x)

)
p0(x) dx

(73)
over (P0, . . . , PK) ∈ P0 × . . .PK for all twice differentiable
convex functions f : RK+ → R, then the joint distributions
Qk = QNk are least favorable w.r.t. the cost function in (68)
for all thresholds λ and all sample sizes N .

In a nutshell, Criterion 2 is obtained from Criterion 4 by re-
placing the class of f -divergences by that of f -dissimilarities.
The latter are a natural extension of f -diverences to multiple
distributions and inherit all relevant properties. They were first
proposed and studied by Györfi and Nemetz in the 1970s
[165]–[167] and play an important role in the general theory
of statistical decision making. In particular, the connection
between f -dissimilarities and Bayesian risks has been a topic
of high interest in statistics [168], signal processing [169] and
machine learning [170].

Although Criterion 4 is a neat extension, its significance
is of a purely negative nature. In a nutshell, there exist no
distributions for K > 1 that satisfy Criterion 4 under useful
(nontrivial) uncertainty models. As a consequence, no multi-
hypothesis equivalent to the minimax optimal tests for two
hypotheses exists.

Before discussing a possible way of working around this
problem, it is instructive to look at an example that illustrates
why least favorable distributions for multiple hypotheses can-
not be defined in analogy to those for two hypotheses. To this
end, consider the following f -dissimilarity, which is simply a
convex sum of KL divergences,

Df (P1, P2‖P0) = αDKL(P1‖P0)

+ (1− α)DKL(P2‖P0), α ∈ [0, 1]. (74)

It is not hard to verify that the right-hand side of (74) is a
valid f -dissimilarity. Now, consider three uncertainty sets P0,
P1, P2 of the ε-contamination type with 25 % contamination
ratio and nominal distributions that are shifted Gaussians with
identical variance σ2 = 4 and shift ∆µ = 3. The nominal
densities are shown in the top left plot of Fig. 11. The other
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Fig. 11. Examples of different least favorable distributions for the f -dissimilarity in (74) under 25% contamination and with nominal densities shown in the
top left plot. By inspection, different weights α lead to different minimizers.

three plots of Fig. 11 depict the densities of the distributions
that minimize (74) under this uncertainty model for different
values of α. It can clearly be seen how different combination
weights affect the shape of the least favorable distributions
and cause probability mass to be shifted towards P0, in the
upper right plot, P1, in the lower left plot, and P2, in the lower
right plot. The effect illustrated with this example holds true
in general: for more than two distributions, different similarity
measures lead to different weights for the pairwise similarities
and, as a consequence, to least favorable distributions that
depend on f .

The same idea can be expressed in terms of error prob-
abilities. In a test for two hypotheses, there is only one
possible source of errors: confusing P0 and P1. In a test for
multiple hypotheses, there are also multiple sources of error,
namely any pair of distributions Pk and Pj 6=k that can be
confused. However, making P0 and P1 as similar as possible,
thus maximizing this particular probability of confusion, might
decrease the similarity between, say, P0 and P2—compare
the different least favorable distributions in Fig. 11. Hence,
there exist in general no distributions that jointly maximize
all pairwise error probabilities.

These considerations already hint at a common approach to
overcoming the problems with the design of minimax optimal
detectors for multiple hypotheses. Namely, instead of jointly
testing for K + 1 hypotheses, one can test each pair of
hypotheses Hk, Hj 6=k individually. This kind of procedure
is known as mulitple testing or mulitple comparison and has
been studied extensively in the literature; see [171]–[179] and

the references therein. A particularly attractive implementation
of a detector based on this approach is the sequential matrix
likelihood/probability ratio test [180], whose robust version is
based on separate pairs of least favorable distributions for each
pairwise test [181], [182]. Sequential tests will be revisited
in more detail shortly. Detectors based on robust versions
of multiple comparison procedures are indeed robust in the
sense that they do not breakdown under model uncertainties.
However, they are not minimax robust and do not necessarily
provide performance guarantees. The difficulties in obtaining
such guarantees for multiple pairwise tests stems from the fact
that some of the pairwise tests are performed under neither the
null hypothesis nor the alternative hypothesis. That is, while
the test is supposed to decide for either P0 or P1, in reality
the data might have been drawn from a third distribution, say,
P2. Unless P2 is by chance included in P0 or P1, the behavior
of the minimax tests under P2 is not considered in its design.

We have only scratched the surface, and we will not enter
a more detailed discussion of robust pairwise tests at this
point. Since multiple testing is a distinct topic with its very
own characteristics and terminology, an in-depth discussion is
beyond the scope of this paper. Moreover, it would lead away
from the central theme of strictly minimax detection.

Returning to the latter, it can be summarized that minimax
robust detectors for multiple hypotheses are still in their
infancy and are held back not just by implementation issues,
but by fundamental theoretical limitations. One possible way
forward, which is implicitly already followed by methods
using multiple pairwise tests, is to give up on strict minimax
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optimality and to focus on defining and analyzing robustness
in detection in closer analogy to robustness in estimation. This
avenue is discussed in more detail in Section IX. Alternatively,
instead of relaxing the definition of robustness, the problem
formulation of the underlying test can be relaxed by not
assuming the sample size N to be fixed beforehand. This
leads into the territory of sequential tests, which adapt the
sample size to the observed data. The existence of strictly
minimax optimal sequential tests has recently been shown in
[104]. Combining the benefits of adaptive procedures with
strict robustness guarantees makes them a promising choice for
future applications that require both efficiency and reliability.

VII. MINIMAX SEQUENTIAL DETECTION

The idea underlying sequential detection is the following:
instead of fixing the number of samples, N , in advance,
samples are collected one at a time until the probability of
making a correct decision based on the current collection is
sufficiently large. The advantage of this approach is that it
can adapt the sample size to the quality of the observations
at hand. That is, the sample size can be reduced if the first
n < N observations are already highly significant, or it can be
increased if N observations are not yet significant enough. In
practice, the latter case occurs less frequently so that sequential
tests typically admit an expected sample size considerably
below that of fixed sample size tests with identical error
probabilities [180], [183].

The price one has to pay for this increase in efficiency is that
the number of samples becomes a function of the realization of
the random sequence (X1, X2, . . .). Consequently, the sample
size, or run-length, of a sequential test is itself a random
variable whose properties have to be taken into account in
the test design. A typical cost function in sequential detection
is the weighted sum of the expected run-length and the error
probabilities, that is

CSEQ(δ;PPP) = EP0

[
τ
]

+

K∑

k=1

λkEPk
[
1− δk(Xτ )

]
, (75)

where τ denotes the random stopping time of the test and δ
is a decision rule of the form (67). Note that (75) corresponds
to a test for K hypotheses H1 to HK , that is, there is no
null hypothesis. Instead, in what follows P0 refers to the
distribution under which the expected run-length of the test
is supposed to be minimum. In practice, P0 is often chosen
as one of the hypothesized distributions Pk, k ≥ 1. However,
in particular in the context of robust detection, other choices
can also be useful.

The reason for not including a null hypothesis in (75) is two-
fold. On the one hand, this formulation leads to a notation that
is more in line with the one used in the previous sections. On
the other hand, it reflects the fact that in sequential hypothesis
testing all error probabilities can be made arbitrarily small
by increasing the expected sample size. Consequently, at least
from a mathematical point of view, it becomes unnecessary to
single out one hypothesis as a null hypothesis.

In his seminal book on sequential detection [183], Wald
showed that the optimal sequential test for two simple hy-
potheses H1 and H2 is a likelihood ratio test of the form
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Fig. 12. Examples of log-likelihood ratio trajectories as functions of the
sample number n. If the lower threshold (logB = −3) is crossed, the test
decides for H0, if the upper threshold (logA = 3) is crossed, the test decides
for H1.

(10), but with two thresholds instead of one. More precisely,
after the sample xn was observed, the likelihood ratio z is
updated according to

z(xn) = z(xn−1)
p2(xn)

p1(xn)
(76)

and a decision is made according to the rule

δ∗(xn) =





1, z(xn) ≥ A
0, z(xn) ≤ B,
continue sampling, otherwise

(77)

where A and B are the threshold parameters. This so-called
sequential probability ratio test (SPRT) is illustrated in Fig. 12.
Wald showed that for correctly chosen thresholds A and B,
the SPRT is optimal in the sense that it satisfies the constraints
on the error probabilities with equality and at the same time
admits minimum expected run-length under both hypothesized
distributions. Similar optimality properties of the SPRT also
hold for Bayesian cost functions [180].

Sequential tests for multiple hypotheses are covered in [184]
and [104]. While an in-depth discussion is beyond the scope of
this paper, the underlying concepts can be understood without
going into technical details. Essentially, a sequential test for
multiple hypotheses compares the cost for stopping the test at
the current sample to the expected cost for continuing the test
using an optimal decision rule. This leads to a cost function
of the form

ρ(z) = min{ g(z) , 1 +D(z) } (78)

where ρ denotes the optimal cost, which is given by the
minimum of the cost for stopping at the current sample, g,
and the cost for continuing the test, 1 + D. Note that the
additional cost of 1 in the latter term arises from the extra
sample that is taken when deciding to continue the test. The
vector z = (z1, . . . , zK) denotes the likelihood ratios defined
in (70), which can be shown to be a sufficient statistic for
the cost function in (75). The exact form of ρ and g depends
on the distributions PPP as well as the weights λ; see [184] for
more details. In any case, both ρ and g are guaranteed to be
concave in z, a property that will become important shortly.
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When running a sequential test for multiple hypotheses,
each likelihood ratio zk is updated according to

zk(xn) = zk(xn−1)
pk(xn)

p0(xn)
, (79)

k = 0, . . . ,K, and the test stops as soon the cost for continuing
exceeds the cost for stopping, that is,

τ = min
{
n ≥ 0 : g(z(xn)) ≤ 1 +D(z(xn))

}
(80)

Once the test stops, a decision is made according to Theorem 2
with N = τ .

How does robustness enter in all of this? In analogy to
the fixed sample size case, the minimax robust sequential
test is formulated in terms of uncertainty sets of feasible
distributions. In general, it makes sense to assume that the
conditional distribution Xn|Xn−1 is subject to uncertainty.
For random processes with Markovian representations this
problem has been studied in [104]. However, in order to reduce
the technicalities, (X1, X2, . . .) are assumed to be independent
in what follows. In this case, uncertainty is introduced as
in (71), by assuming each PXn to be within an uncertainty
set Pk under the corresponding hypothesis Hk. A special
case is the uncertainty set P0, which determines the set of
distributions over which the worst-case expected run-length
is minimized. Natural choices for this set are P0 = Pk for
some k > 0, or P0 =

⋃
k∈K Pk, where K ⊂ {1, . . . ,K},

that is, worst-case expected run-length under one or more
hypotheses is considered. However, in principle, P0 can be
chosen independently. It can even be chosen to be the set of
all distributions on the sample space, so that the run-length is
guaranteed to remain bounded for all possible realizations of
the underlying random process.5

Once the uncertainty sets are fixed, the least favorable
distributions need to be determined. While for fixed-sample-
size tests this turned out to be an all but impossible task, it
becomes feasible in the sequential case. In order to establish
a connection to Criterion 4, recall that D on the right-hand
side of (78) is the expected cost of continuing the test with an
optimal decision rule. Hence, it can be expressed recursively
as a function of the optimal cost ρ, namely,

D(z) = EP0

[
ρ

(
z1
p1(X)

p0(X)
, . . . , zK

pK(X)

p0(X)

)]
, (81)

where the expectation is taken over the likelihood ratios after
the next sample has been observed, that is, after an update of
the form (79). Since ρ is a concave function, it holds that

−D(z) =

∫

X
−ρ
(
z1
p1(x)

p0(x)
, . . . , zK

pK(x)

p0(x)

)
p0(x) dx (82)

= D−ρ
(
z1P1, . . . , zKPK‖P0

)
(83)

is a weighted f -dissimilarity, whose weights correspond to the
current likelihood ratios. Alternatively, Dρ, being a negative
f -dissimilarity, can be considered an f -similarity. It can be

5This particular problem, which is a nonparametric variant of the Kiefer–
Weiss problem, is studied in [185], and can be shown to be solved by a
non-standard sequential test that admits randomized stopping rules and other
counterintuitive properties. A detailed discussion of this corner case is beyond
the scope of this paper.

1: input
Cost functions g and ρ (implicitly dependent on λ1, . . . , λK )
Uncertainty sets P0, . . . ,PK

2: initialize
Set n = 0
Set zk = 1 for k = 1, . . . ,K.

3: loop
4: Calculate least favorable distributions

Q ∈ argmax
Pk∈Pk

Dρ
(
z1P1, . . . , zKPK‖P0

)
,

5: if g(z) ≤ 1 +Dρ
(
z1Q1, . . . , zKQK‖Q0

)
then

6: Stop test with a decision according to (69)
7: else
8: Set n← n+ 1 and take next observation xn
9: Update likelihood ratios

zk ← zk
qk(xn)

q0(xn)
,

10: end if
11: end loop

TABLE I
PSEUDO CODE OF A MINIMAX ROBUST SEQUENTIAL TEST FOR K

HYPOTHESES

shown that given Xn = xn, the least favorable distributions
of the next sample, Xn+1, are those that minimize the f -
dissimilarity in (83) over the uncertainty sets. More formally,

QXn+1
∈ arg max

Pk∈Pk
Dρ

(
z1P1, . . . , zKPK‖P0

)
, (84)

where zk = zk(xn).
In a nutshell, the minimax sequential test works as follows:

There exists a convex function ρ that determines an appropriate
f -similarity Dρ. This f -similarity, weighted by the likelihood
ratios z1, . . . , zK , determines the least favorable distributions
of the next observation. The latter are in turn used to update the
likelihood ratios. The test stops once the similarity measure Dρ

exceeds a certain threshold, determined by the function g. This
stopping rule can be interpreted as the distributions becoming
more similar, that is, more costly to separate, when continuing
the test compared to stopping it and deciding based on the
observations at hand. The procedure of the robust sequential
test is summarized in Table I.

At this point, it is instructive to take a step back and return
to the question of how the sequential test is able to solve
the problems arising with minimax fixed-sample-size tests
for multiple hypothesis that were discussed in the previous
section. Recall that the fundamental obstacle turned out to be
that for K > 1 no distributions exist that jointly minimize
all f -dissimilarities. Instead, different choices of f give rise
to different definitions of joint similarity. Hence, it followed
that minimax optimal tests for multiple hypotheses only exist
for the single-sample case. This is where the sequential test
comes in: By introducing the option to take another sample,
it allows one to break a test based on N samples down into
N consecutive single-sample tests, which in turn admit well
defined least favorable distributions.

The price one has to pay for this is that the least favorable
distributions themselves need to be updated with every new
observation, that is, they become data dependent. In this sense,
it can be argued that the minimax robust sequential test is
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no longer true to the spirit of minimax robustness, whose
characteristic feature, as discussed in Sec. III, is that the
procedure can be determined entirely offline and does not
depend on the data. However, this does not mean that minimax
sequential tests should in turn be classified as purely adaptive;
they rather combine aspects of both robust and adaptive
procedures: The robust or static aspect is that the function ρ
and the induced similarity measure Dρ are fixed throughout the
test and can indeed be calculated offline. The dynamic aspect is
reflected in the likelihood ratios z1, . . . , zK , which are updated
online. Large likelihood ratio values imply that a decision for
the corresponding hypothesis is likely, small likelihood ratio
values imply that a decision is unlikely. Hence, distributions
with large weights have a strong influence on the similarity
measure, distributions with small weights have little influence.
In other words, the similarity measure automatically adapts to
the data—not by changing the similarity measure itself, but
by changing the weights of the individual distributions.

Since, by design, the fixed-sample-size minimax test needs
to make a decision in a “single shot”, it lacks this ability
to successively adapt the similarity measure and weights to
the data. In the two-hypothesis case, it was possible to turn
this limitation into a strength, by exploiting the fact that a
“one fits all” solution existed that is optimal with respect to
all f -divergences at the same time. In the multi-hypothesis
case, however, the class of similarity measures that need to be
considered becomes too large to be tackled in this manner. By
relaxing the problem formulation and allowing data depended
stopping rules, it can be narrowed down again, at the expense
of an increase in complexity.

This increase in complexity is in fact significant. While the
underlying theory is well-understood by now, designing and
implementing minimax sequential tests still requires a consid-
erable computational effort. The procedure proposed in [104]
designs a minimax sequential test by alternatingly updating
ρ and (Q0, . . . , QK). The former can be done by solving a
system of coupled integral equations, the latter by solving the
minimization problem in (84). Numerical algorithms for both
problems can be found in the general optimization literature.
However, more efficient methods have been proposed recently
that exploit the additional structure of both problems in the
context of robust detection. In [95], it has been shown that
the function ρ can be determined by solving a linear program,
which is a standard problem in numerical optimization and
can be solved efficiently even for large problem sizes. The
minimization problem in (84) is studied in detail in [103],
where an iterative fixed point algorithm is proposed that works
by repeatedly finding the scalar root of a monotonic function,
which again is a well-known problem in numerics. Moreover,
the proposed algorithm is highly parallelizable and has low
memory requirements. In combination, both algorithms pro-
vide a powerful numerical tool that is tailored for the design
of robust tests. Implementations in Python, MATLAB, and C
are available online [159].

In order to make the results and concepts discussed so far
more tangible, a numerical example of a minimax sequential
test is presented next.

A. A Numerical Example

The example presented here is taken from [104], and
the reader is referred to this reference for a more detailed
discussion. In addition, [104] also presents an example with
dependent observations, which is beyond the scope of this
overview.

For this example, all Xn, n ≥ 1, are assumed to be
independent and distributed on the interval X = [−1, 1]. The
task is to decide between the following three hypotheses:

H1 : PXn ∈ P1,

H2 : PXn ∈ P2,

H3 : PXn = U[−1,1],
(85)

where U[a,b] denotes the continuous uniform distribution on
the interval [a, b] and the uncertainty sets P1, P2 are of the
density band form with

p′1(x) = ae−2x + 0.1, p′′1(x) = ae−2x + 0.3, (86)

p′2(x) = ae2x + 0.1, p′′2(x) = ae2x + 0.3, (87)

where a ≈ 0.1907 is chosen such that P ′1(X ) = P ′2(X ) =
0.9 and P ′′1 (X ) = P ′′2 (X ) = 1.1. The expected run-length is
minimized under H3, that is, P0 = U[−1,1], so that z3 = 1 and
ρ in (78) can be written as a function of (z1, z2) only.

The scenario in this example can arise, for instance, in
monitoring applications, where H3 corresponds to an “in
control” state in which the distribution of the data is known
almost exactly, while H1 and H2 correspond to two different
“out of control” states, with only partially known distributions.
If it needs to be established that the system is “in control”
before a certain procedure starts, it is reasonable to minimize
the expected run-length of the test under the “in control” distri-
bution, while still requiring it to be insensitive to distributional
uncertainties in the “out of control” states.

The example was solved numerically on a discretized like-
lihood ratio plane. The cost coefficients were chosen to be
λ∗ ≈ (133.41, 133.41, 45.41), resulting in error probabilities
of ≈1 %; see [104] for how to set λ such that the test
meets certain error probability constraints. The resulting test-
ing policy is depicted in Fig. 13. In analogy to the regular
SPRT, the minimax optimal test consists of two corridors
that correspond to a binary test between H{1,2} and H3,
respectively. Interestingly, there is a rather sharp intersection
of the two corridors so that the test quickly reduces to a quasi-
binary scenario.

Four examples of the corresponding least favorable densities
are depicted in Fig. 14. In line with the previous discussion,
the densities change significantly, depending on the state of the
test statistic. In the top left plot, the test statistic is in its initial
state, meaning that there is no preference for either hypothesis.
Consequently, the least favorable densities are chosen such that
all three distributions are equally similar to each other, which
in this case implies that they are symmetric around the y-
axis and that q1 and q2 jointly mimic the uniform density p3.
Also note that q1 and q2 overlap on an interval around x = 0,
which can be considered the multi-hypothesis equivalent of the
censored likelihood ratio discussed in Sec. V-D. As the test
statistic is updated, the least favorable distributions change. In
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Fig. 13. Minimax optimal decision regions in the log-likelihood ratio plane
when sequentially testing the hypotheses in (85).

the upper right and the lower left plot of Fig. 14 two cases are
depicted where the test has a strong preference for H1 or H2,
respectively; compare the decision regions in Fig. 13. In both
cases, the least favorable densities are no longer symmetric,
but their probability masses are shifted, their tail-behavior is
noticeably different, and the interval of overlap can no longer
be observed. Finally, in the lower right plot, there is a strong
preference for H3, which leads to q1 and q2 both shifting as
much probability mass as possible to their tails in order to
reduce the significance of the corresponding observations. It
is interesting to observe that an imminent decision for H3

casues q1 and q2 to become less similar to each other in order
to increase their joint similarity to p3. This is in contrast to
the initial state depicted in the upper left plot, where q1 and q2
are also such that they approximate p3, but at the same time
they need to be similar to each other.

Although it is not obvious from mere inspection of the
least favorable densities, the idea of robustifying a test by
setting the test statistic to a constant on certain regions of
the sample space carries over to the multi-hypothesis case as
well. However, it does so in a modified form. Namely, for
each k = 0, . . . ,K, there exists a region of the sample space
on which

ρ′zk

(
z1
q1(x)

q0(x)
, . . . , zK

qK(x)

q0(x)

)
= const, (88)

where ρ′zk denotes the partial derivative of ρ w.r.t. zk. In the
one-dimensional case, (88) reduces to

ρ′z1

(
z1
q1(x)

q0(x)

)
= const. ⇒ q1(x)

q0(x)
= const, (89)

which recovers the characteristic constant likelihood ratios of
the two-hypothesis case. In the multi-hypothesis case, how-
ever, this simplification no longer holds. Instead, the likelihood
ratios of the least favorable distributions, as functions of
x, now follow the contour lines of the partial derivatives

of ρ. The latter can be shown to be closely related to the
error probabilities and the expected run-length of the test.
Hence, the constant likelihood ratios in the two-hypothesis
case and the contour-line-tracing likelihood ratios in the multi-
hypothesis case, both imply a constant performance over the
corresponding regions of the sample space. This is in line
with the general property of minimax procedures to admit
flat performance profiles over the uncertainty sets, recall the
discussion in Sec. III. A more detailed discussion of this
connection requires technical results that are beyond the scope
of this paper, but can be found in [96], [102], [103].

In summary, this example shows that robust sequential
tests provide a viable option for enabling the use of strictly
minimax tests for multiple hypotheses. The seamless extension
to multiple hypotheses is a great advantage and opens up
numerous potential applications in practice. However, at this
point in time, one quickly runs into complexity constraints
when trying to extend robust sequential tests beyond simple
toy examples. Hence, more research is required before they
will become useful in real-world scenarios. For now, the
significant additional complexity will only be warranted in
special corner cases.

One promising application, namely, forward looking ground
penetrating radar, is presented in the next section, where it is
shown how robust detectors can already help to improve the
state-of-the-art in some areas.

VIII. APPLICATIONS OF ROBUST DETECTORS

In this section, examples of current and possible future
applications of robust detectors are presented. In the first part,
it is shown how robust techniques can lead to noteworthy
performance improvements for the detection of buried objects,
such as unexploded ordnance (UXO), via ground penetrating
radar (GPR) [186], [187]. This application will be used as a
realistic example to illustrate that robust detectors are able
to work reliably under uncertainty and forgo the need to
accurately estimate parameters in environments with impulsive
noise and non-stationary clutter. In the second part, a brief
outlook on promising future applications is given.

A. Current Application: Ground Penetrating Radar6

GPR is a nondestructive method that uses electromagnetic
radiation to detect buried targets [175], [188]. It can detect
metallic as well as non-metallic targets having dielectric
properties different from the background medium. A forward-
looking GPR (FL-GPR) offers the advantage of a reduced
risk to the operator and reduced risk of damaging the target
[189]–[192]. However, a challenge of using FL-GPR is that
the illuminating signals and the reflected signals experience
substantial attenuation owing to the near cancellation of the
direct and ground-reflected waves. Furthermore, the interface
roughness and subsurface clutter, which are usually highly
non-stationary, have a strong impact on FL-GPR performance.
In order to reduce detection errors, these effects need to be
compensated with an appropriate signal processing method.

6This is joint work with Fauzia Ahmad (Temple University, PA, USA).
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Fig. 14. Examples of least favorable distributions for different values of the test statistic when sequentially testing the hypotheses in (85). The uncertainty
sets in (86) and (87) are indicated by the shaded areas.
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Fig. 15. FL-GPR vehicle-based system with antenna array mounted on top.
Brown lines on the ground indicate sensor array positions.

The numerical data used in this example were simulated
using the Near-Field Finite-Difference Time-Domain software
package, NAFDTD, developed by the U.S. Army Research
Laboratory (ARL) [189]. Fig. 15 illustrates the FL-GPR sys-
tem with an antenna array mounted on top of a vehicle. In
order to sense the investigation area, indicated by the blue
rectangle in Fig. 15, the radar platform successively moves
along the x-direction, starting at −22 m.

Fig. 16 depicts the measurement configuration considered
in the simulation. The investigation area is a rough surface
environment containing nine targets. Six targets are buried at
a depth of 3 cm, five of which are metallic {1, 3, 4, 6, 7}
and one is made of plastic {9}. The remaining targets, two
plastic ones {2, 8} and a metallic one {5}, are placed on
the surface. The ground is modeled as a dielectric medium
which is non-dispersive, non-magnetic, and homogeneous. The
surface roughness is described as a two-dimensional Gaussian

random process; see [186] for more details on the sensing
setup.

A total of 90 array positions spaced ∆x = 0.33 m apart are
considered, whose projections on the x-y plane are depicted
as parallel brown lines in Fig. 16. An image segment is ob-
tained by integrating eight full aperture measurements. Fig. 16
indicates the eight measurements between −19.33 and −5 m
used to image the first segment (dashed rectangle in Fig. 16).
The full tomographic image is constructed by combining 4
segments, integrating 32 full aperture measurements in total.
In order to improve the detection performance, ten additional
images are generated by successively moving the radar closer
to the target area. For more details on the multiview tomo-
graphic imaging approach, the reader is refered to [191].

An example for a tomographic image obtained this way is
shown in Fig. 17. It is normalized to 40 dB dynamic range
and consists of 1153 pixels in downrange and 721 pixels
in crossrange with a resolution of 5 cm. The targets located
near the boundaries of the investigation area are less visible
since they are outside of the mainlobe of the antenna array,
and, compared to the targets placed on the surface, the buried
targets are more challenging to detect due to the clutter caused
by the radar back-scatter from the rough ground surface.

Several methods to overcome the challenges of FL-GPR
have been proposed [193]–[198]. The approach followed here
is based on a pixel-wise likelihood-ratio test to detect targets
in the image domain [191], [192]. In order to model the
distribution of the return intensity of targets and clutter, two
training images were generated using the NAFDTD software.
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Fig. 17. Normalized tomographic reconstruction of the scene in Fig. 16 in
dB scale.

The first image is clutter-free, meaning it only contains target
pixels; the second image is composed of only clutter pixels.
In this way, two sets of training data are obtained that can be
used to construct a probabilistic model under each hypothesis.
The histograms of the training data sets are shown in the top
plot of Fig. 18.

A common way of obtaining a nominal model is to fit a
parametric family of distributions to the training data. The
authors of [191], [199], [200] showed that the clutter pixels
are approximately Rayleigh distributed, while the distribution
of the target pixels can be approximated by a Gaussian mixture
distribution. The fitted densities corresponding to this nominal
model are indicated by the solid lines in the bottom plot of
Fig. 18.

While the nominal model appears to be a good fit in this
case and has the advantage of being clean and simple, it is
highly idealized and does not guard against deviations from the
fitted distributions. Minimax robust detection, in combination
with the uncertainty models introduced in Sec. V-B, provides
a way of keeping the model complexity low, while still taking
the inherent uncertainty in the fitted distributions into account.

For this example, two uncertainty models were considered,
namely, the density band model and an ε-contamination model.
The density band model was obtained by bootstrapping the
target and clutter densities from the training data using a
Gaussian kernel density estimator and taking the lower and
upper envelope of the bootstrap estimates to be the upper
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Fig. 18. Histograms (top) and parametric density estimates with confidence
intervals (bottom) of the return intensity of clutter and noise pixels.

and lower density bounds; see [187] for more details. The
resulting uncertainty band is depicted in the bottom plot of
Fig. 18. One of the advantages of the band model becomes
apparent here, namely, that the amount of uncertainty can
vary locally. For example, while the uncertainty band of the
clutter intensity distribution is wide around its peak at small
intensities, it becomes vanishingly narrow towards the tail of
the distribution. This means that there is uncertainty about the
true height and shape of the peak, but there is little uncertainty
about gross outliers in the clutter data.

However, since the density bands were bootstrapped from
the training data, the question arises whether this uncertainty
model really reflects reality or just reproduces characteristics
of the particular realizations used for training. In order to
see in how far the density model might be biased towards
the training data, a simple ε-contamination model with an
outlier rate of ε = 0.4 was considered as well. Both minimax
detectors were then evaluated under a mixed scenario, with
some segments of the ground admitting the same surface
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Fig. 19. Detection results based on the tomographic reconstruction depicted
in Fig. 16. By inspection, there is a notable performance improvement when
replacing the standard likelihood ratio detector (top) with a minimax robust
detector based on a density band (middle plot) or an ε-contamination (bottom
plot) uncertainty model.

roughness as the training data and other areas admitting
different surface roughness values. This is in line with the
non-stationarity of the clutter returns that can be observed in
practice.

The detection results of the standard likelihood ratio test
based on the nominal model as well as the minimax tests under
the density band and ε-contamination uncertainty are depicted
in Fig. 19. It can clearly be seen how incorporating uncertainty
in the model reduces the number of false alarms, here indicated
in black. The nominal test is too quick to declare a pixel with
even medium return intensity a target, while the two robust
tests require stronger evidence. Note that all tests have been
designed such that they admit roughly the same detection

rate in order to make for a fair comparison. Of course, the
false alarm rate of the nominal test could be decreased by
increasing the decision threshold, however, this would come at
the expense of a decreased detection rate. Overall, the minimax
test under ε-contamination performs best in this example,
admitting the lowest false alarm rate. However, it can be seen
that the outlier ratio of 40 %, which was deliberately chosen
large, is starting to affect the sensitivity of the test. The red
regions around targets 4 and 7, for example, are visibly smaller
than they are for the other two tests, meaning that these targets
are likely to be missed under slightly less favorable conditions.
This effect is to be expected. On the one hand, the outlier
model allows for larger deviations from the nominal model,
which makes it less sensitive to the choice of training data
and in turn enables it to deal with the mixed surface areas
better than the fitted density band model. On the other hand,
assuming a large share of the data to be potential outliers
causes the test to be exceedingly cautious. While the test has
not been over robustified yet, recall the discussion in Sec. V-D,
one would be well advised not to increase ε any further.

In general, the question if and how training data should
be used to fit uncertainty models has not been answered
satisfactorily yet. On the one hand, training data provide
useful information that should be taken into account, on the
other hand, the goal of robust statistics is to work well even
under conditions that are not typical, have not been observed
before, or change too frequently to produce reliable training
data. An interesting approach proposed in [100] is to combine
two uncertainty models. For example, an f -divergence ball
could be used to determine the least favorable distribution
according to the training data, which is then used as the
nominal distribution in an outer ε-contamination model. In any
case, further exploring and developing approaches to a data-
driven design of uncertainty sets is a highly relevant topic for
future research, which is likely to have direct implications on
how robust detectors are and will be used in practice.

B. Future Applications: Biomedical Engineering and Adver-
sarial Machine Learning

GPR is a good example for an area where robust detectors
can be applied today, as plug-in replacements for standard de-
tectors. Beyond these areas, there are applications that are too
complex for this simple plug-in method to work, yet are likely
to benefit from robust detectors and the techniques underlying
their design. Two of those, namely biomedical engineering
and adversarial machine learning, are briefly introduced in this
section.

Detection and classification problems in biomedical engi-
neering [14], [137], [201], [202] typically show two character-
istics that make them natural candidates for the application of
minimax techniques: small sample sizes, with generating new
samples often being either impossible or requiring elaborate
experiments, and uncertainty about both the underlying biolog-
ical processes as well as the quality of the measurements [201],
[203]. Moreover, the observations often cannot be assumed
to be independent and abnormalities have to be detected
both reliably and quickly, which motivates the use of robust
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sequential detectors. Research on robust and efficient methods
in this area is ongoing.

In adversarial machine learning [204]–[207], an adversary
is assumed to generate samples with the aim of deceiving
an algorithm or system that takes these samples as an input.
In the context of detection and classification, the aim of the
adversary is to be able to control the output of the detector
as much as possible, irrespective of the underlying ground
truth. This corresponds to a classic minimax scenario, the only
difference being that the uncertainty set is interpreted as the set
of actions available to the adversary. Interestingly, in several
recent works on learning under adversarial settings [208]–
[210], f -divergences and other similarity measures are used as
surrogate objective functions, meaning that the adversary’s aim
of mimicking a certain behavior is formulated as the problem
of minimizing a certain f -divergence. The advantage of this
approach is that no strong assumptions about the underlying
detector need to be made. The disadvantage is that there are no
rigorous guidelines which f -divergence should be used in the
design/training process. We conjecture that the lessons learned
in minimax detection can help to overcome this problem in
the sense that, given the hypotheses and the action/uncertainty
sets, the “correct” f -divergence can be identified, that is, the
one corresponding to the true minimax optimal detector. In
this way, the f -divergence loses its character of being merely
a surrogate objective, while at the same time existing training
procedures can be used. In other words, an optimal detector
can be used for the training, only by carefully choosing the
divergence measure and without actually implementing the
detector.

Another potentially fruitful area is to explore the connection
between robust detectors and machine learning procedures
in the other direction, that is, to answer the question of
how machine learning techniques can be leveraged for the
design of robust hypothesis tests. In particular, the implicit
definition of the optimal cost function ρ in (78) and (81),
can be shown to correspond to a Bellman equation with state
vector z, a discount factor of 1 (no discount), and a piecewise
constant reward function. This correspondence suggests that
reinforcement learning techniques [3], [211], [212] can be
used to learn the optimal dissimilarity measure ρ from given
sets of training data or even in an online manner. Since ρ
completely characterizes the minimax optimal test, this would
be sufficient for an implementation in practice. Moreover, the
spectral representation of f -divergences discussed in Sec. V-A
shows that the latter can be decomposed into superpositions
of functions of the form f(t) = max{0, λt}. Functions of this
type are known as rectifiers in the machine learning literature
and are among the most commonly used activation functions
in (deep) neural networks. This suggests neural networks with
rectifier activation functions as a natural way of implementing
and learning complex divergence measures. However, as of
now, it is not clear if and how this approach would extend to
multidimensional divergences, such as f -dissimilarities. Nev-
ertheless, we conjecture that robust tests based on a machine
learning aided design could provide highly useful detectors
that combine the power of modern learning techniques with
the strict robustness properties of classic minimax procedures.

These considerations already point towards a fundamen-
tal limit of minimax robust detectors in practice: the more
complex problem formulations, cost functions, and uncertainty
models are required, the less likely it becomes that the mini-
max approach can be followed in an uncompromising manner.
While advances in machine learning and approximation theory
will continue to push this limit, there certainly is a need for
robust detection that goes beyond the minimax principle. A
brief outlook on this topic is given in the next section.

IX. BEYOND MINIMAX ROBUST DETECTION

The discussion in the previous sections showed that mini-
max robust detection has its distinct strengths and weaknesses.
On the positive side, it is a well-motivated, principled approach
that results in detectors with strict performance guarantees
over large, non-parametric families of distributions. More-
over, a variety of tractable uncertainty models have been
shown to exist, making minimax detectors flexible enough to
guard against gross outliers, subtle model mismatches, and
violations of common assumptions, such as symmetry, zero-
mean, or Gaussianity. In addition, at least for the binary
case, minimax detectors can often be implemented by simply
clipping, compressing, or censoring the test statistic of the
optimal non-robust test, making them a low-complexity, drop-
in replacement. On the other hand, the design of minimax
detectors can quickly become prohibitively complex when
dealing with high-dimensional distributions, sequential data
acquisition, or multiple hypotheses, all of which are commonly
encountered in practice. Hence, it is safe to say that, for
the foreseeable future, there will remain many applications
for which minimax robust detectors simply do not exist—be
it because they are not known, such as the minimax fixed-
sample-size detector for multiple hypotheses, or because their
design requires excessive computational resources, such as the
minimax sequential detector.

The fact that minimax detectors run into complexity limi-
tations at some point, however, does not imply that no robust
detectors exist or can be designed for such scenarios. Besides
purely heuristic or highly specialized, application driven ap-
proaches, there are several avenues that can followed to extend
the range of application of robust detectors.

First, instead of looking for strictly minimax detectors,
one can relax this requirement and look for asymptotically
minimax detectors, whose design is usually significantly sim-
pler. Without going into details, the reason for this is that in
the asymptotic regime, that is, for very large sample sizes,
the error probabilities of any detector are determined by the
KL divergences of the distributions; recall the discussion in
Sec. V-D. As a consequence, the asymptotically least favorable
distributions no longer have to minimize all f -divergences
(or f -dissimilarities in the multi-hypothesis case), but only
a single one, namely the KL divergence (or a weighted
sum of KL divergences). This makes finding least favorable
distributions and in turn designing robust tests significantly
simpler. Several examples of this approach, especially for
sequential detectors, can be found in the literature [213]–[220].

However, resorting to asymptotic measures of robustness is
not without disadvantages. First, since asymptotically minimax



29

detectors are still based on least favorable distributions, they
inherit their ancestors’ limitations when it comes to high di-
mensional data and non-standard uncertainty models. Second,
as briefly discussed in the FAQ in Sec. V-D, there are concep-
tual problems with asymptotic minimax robustness. In the non-
asymptotic sample size regime, there are no strict performance
guarantees, while in the asymptotic regime the sample size is
likely to be large enough to reduce the uncertainty to a point
where robust methods stop being attractive.

An alternative to the asymptotic approach, which is of a sim-
ilar spirit, is to extend the techniques that have been identified
in minimax robust detection to more complex scenarios. For
example, the idea of clipping, compressing or censoring the
test statistic in order to make a detector robust with respect to
outliers or model uncertainties often shows excellent results in
practice, even if the techniques are no longer provably optimal.
It is clear, however, that such detectors, although being well-
motivated, are based on a speculative generalization. Neverthe-
less, as of today, transforming the test statistic of an existing
detector is often the most viable option, given that it is easy
to implement, theoretically backed and well-tried in practice.

The idea of transforming a nominal test statistic is reminis-
cent of a popular class of robust estimators, namely, Huber’s
M-estimators [4], [10], [14]. The estimates obtained by M-
estimators can be interpreted as maximizers of a transformed
version of the log-likelihood function. Huber’s loss function,
for example, corresponds to the regular squared loss with a
clipped derivative. More elaborate loss functions can be found
in the literature. In general, there are clear guidelines what
properties a loss function needs to admit such that the resulting
estimator is robust. Moreover, a variety of measures exist to
make the notion of robustness precise, such as the breakdown
point, the influence function, and the sensitivity curve, to
name just a few. This split between flexible yet theoretically-
backed design guidelines on the one hand and independent yet
rigorous and well-motivated robustness measures on the other
hand has proved highly useful in robust estimation.

In robust detection, the situation is very different. Although
various design guidelines and robustness measures have been
proposed in the literature, none of them—except for the
minimax approach—is as well-studied, as useful in practice,
and as universally accepted as their counterparts in robust
estimation. In order to close this gap and to make progress
towards a more unified theory of robust statistics, researchers
in robust detection will need to find answers to questions
such as: What is the detection equivalent of an influence
function? Can ideas similar to those underlying, for example,
the class of M-estimators be applied in detection as well? And
how can complexity constraints be incorporated in the design
process? Questions like these may sound obvious, but are hard
to answer or even formulate. Often enough, although strong
connections between estimation and detection clearly exist, the
different nature of the two problems makes a straightforward
transfer of concepts difficult; recall the example of censoring
discussed in Sec. V-D.

Based on the discussion in the previous chapters, we conjec-
ture that statistical similarity measures might offer a possible
path towards a more unified theory of robust detection and

estimation. In particular, defining distances on the distribution
space instead of the parameter space makes it possible to
formulate detection and estimation problems within the same
framework, with the KL divergence playing the role of a
“nominal” distance, in analogy to the squared error loss in es-
timation. An M-procedure, for example, could then be defined
by choosing different, robustness inducing distances. Results
pointing in this direction have been published throughout the
last decades, however, they remain somewhat isolated and
have not been unified into a coherent, canonical framework
[17], [76], [221]–[223]. An interesting connection between
Bayesian and minimax inference based on Wasserstein dis-
tance uncertainty sets has recently been shown in [224] and
[225]. Some preliminary results on robust joint detection and
estimation can be found in [94], [226].

In order to illustrate how similarity measures bridge dif-
ferent areas of statistics, consider the example of the KL
divergence. In information theory, it provides a measure for the
randomness or predictability of a random variable in relation
to a reference random variable. Hence, it usually goes by
the name relative entropy in this context. In detection, it
determines the asymptotic rate at which the error probabilities
decrease when the sample size increases; compare (61) and
(62). In estimation, the KL divergence between two distribu-
tions of the same parametric family is locally approximated by
the Fisher information, which provides a fundamental bound
on the accuracy of estimators. Moreover, the KL divergence
has been shown to be closely related to the mean square error
when estimating a random variable in additive Gaussian noise.

The latter connection is worth exploring in some more
detail. To this end, consider the additive Gaussian channel

Yγ =
√
γX +W,

where γ > 0 denotes the SNR and X ∼ P , W ∼ N (0, 1).
The KL divergence can now be written as [227]

DKL(P‖Q) =
1

2

∫ ∞

0

mseQ(P, γ)−mseP (P, γ) dγ, (90)

where

mseQ(P, γ) = EP
[(
X − EQ

[
X|Yγ

])2]
. (91)

That is, the KL divergence can be obtained by accumulating
the increase in the mean squared error (MSE) when using
a mismatched MMSE estimator over all SNR values. The
identity in (90) is reminiscent of the spectral representation
of f -divergences in (28). In fact, the latter has a similar inter-
pretation: the weighted total variation distance in (30) can be
shown to correspond to the decrease in the Bayesian error of a
detector when making a decision based on the posterior distri-
butions instead of the prior distributions. Hence, in both detec-
tion and estimation there exist representations that express the
KL divergence as an accumulated difference in performance
of an optimal and a sub-optimal procedure. Finally, using the
standard definition of entropy, H(P ) = −EP [log p(X)], and
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cross-entropy, H(P,Q) = −EQ[log p(X)], one can arrive at
the following triangle:

H(P )−H(P,Q)

=
=

1

2

∫ ∞

0

∆ mseQ(P, γ) dγ =

∫ ∞

0

DTV(P‖λ−1Q) dλ

This triangle connects central measures in information theory
(the Shannon entropy), estimation theory (the MMSE), and
detection theory (the Bayes error) with the KL divergence
being the central linchpin. Similar connections can be shown
to exist around other divergence measures as well [227], [228].

These and related findings suggest that convex similarity
measures may provide a solid foundation for a unified theory
of robustness in detection, estimation, and information theory,
where “least favorable” seamlessly translates to “most similar”
with respect to a certain divergence, the latter inherently
defining a performance and robustness measure.

In summary, although there has been steady progress in
both areas, there are still lose ends in robust detection and
estimation and future research is called for to identify ways
of tying them together, both in theory and practice.

X. CONCLUSION

The paper has discussed classic results as well as recent
advances in minimax robust detection. After having introduced
the minimax principle, the two-hypothesis case has been
studied in detail. Three criteria for the characterization of least
favorbale distributions have been presented and discussed.
In this context, the importance of f -divergences in robust
detection has been highlighted and explained. Three types of
uncertainty models have been presented in more detail, namely
ε-contamination, probability density bands, and f -divergence
balls, and it has been shown how their properties translate
to clipping, censoring, or compressing the test statistic of the
corresponding minimax detectors. The second part of the paper
has been concerned with robust testing for multiple hypotheses
(classification), starting with a discussion of why it poses a
much more challenging problem than the binary case. Sequen-
tial detection has then been introduced as a technique that
enables strictly minimax optimal tests in the multi-hypothesis
case. Finally, the usefulness of robust detectors in practice has
been demonstrated using the example of ground penetrating
radar and an outlook on robust detection beyond the minimax
principle has been given. In conclusion, robust tests for two
hypotheses are well-researched, yet arguably underused in
practice, while robust tests for multiple hypotheses are an
active area of research with potential future applications in
many areas of applied statistics.
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[106] S. Verdú and H. V. Poor, “On Minimax Robustness: A General Ap-
proach and Applications,” IEEE Transactions on Information Theory,
vol. 30, no. 2, pp. 328–340, 1984.

[107] D.-Z. Du and P. M. Pardalos, Eds., Minimax and Applications, ser.
Nonconvex Optimization and its Applications. New York City, NY,
USA: Springer, 1995, vol. 4.

[108] H. V. Poor, An Introduction to Signal Detection and Estimation. New
York City, NY, USA: Springer, 1994.

[109] I. Song, J. Bae, and S. Y. Kim, Advanced Theory of Signal Detection—
Weak Signal Detection in Generalized Observations, ser. Signals and
Communication Technology. Berlin/Heidelberg, Germany: Springer,
2002.

[110] R. Tandra and A. Sahai, “Fundamental Limits on Detection in low SNR
Under Noise Uncertainty,” in Proc. of the International Conference on
Wireless Networks, Communications and Mobile Computing, 2005, pp.
464–469.

[111] M. Matthaiou, C. Zhong, M. R. McKay, and T. Ratnarajah, “Sum
Rate Analysis of ZF Receivers in Distributed MIMO Systems,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 180–
191, 2013.

[112] E. J. Kelly, “An Adaptive Detection Algorithm,” IEEE Transactions on
Aerospace and Electronic Systems, vol. AES-22, no. 2, pp. 115–127,
1986.

[113] H. L. Van Trees, Detection, Estimation, and Modulation Theory.
Hoboken, NJ, USA: John Wiley & Sons, 1968.

[114] O. Zeitouni, J. Ziv, and N. Merhav, “When is the Generalized Likeli-
hood Ratio Test Optimal?” IEEE Transactions on Information Theory,
vol. 38, no. 5, pp. 1597–1602, 1992.

[115] J. V. Candy, Bayesian Signal Processing: Classical, Modern, and
Particle Filtering Methods. Hoboken, NJ, USA: John Wiley & Sons,
2016.

[116] C. C. Leang and D. H. Johnson, “On the Asymptotics of M-
Hypothesis Bayesian Detection,” IEEE Transactions on Information
Theory, vol. 43, no. 1, pp. 280–282, 1997.

[117] A. Shapiro, “Asymptotic Normality of Test Statistics under Alternative
Hypotheses,” Journal of Multivariate Analysis, vol. 100, no. 5, pp. 936–
945, 2009.

[118] H. Bauer and R. B. Burckel, Probability Theory, ser. De Gruyter
Studies in Mathematics. Berlin, Germany: De Gruyter, 2011.

[119] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory, ser. Prentice Hall Signal Processing Series. Upper Saddle
River, NJ, USA: Prentice Hall, 1998.

[120] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3rd ed.
New York City, New York, USA: Springer, 2005.

[121] B. C. Levy, Principles of Signal Detection and Parameter Estimation.
New York City, NY, USA: Springer, 2008.

[122] I. Csiszár, “Eine informationstheoretische Ungleichung und ihre An-
wendung auf den Beweis der Ergodizität von Markoffschen Ketten,”
Publications of the Mathematical Institute of the Hungarian Academy
of Sciences, vol. 8, pp. 85–107, 1963.

[123] T. Morimoto, “Markov Processes and the H-Theorem,” Journal of the
Physical Society of Japan, vol. 18, no. 3, pp. 328–331, 1963.

[124] S. M. Ali and S. D. Silvey, “A General Class of Coefficients of
Divergence of One Distribution from Another,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 28, no. 1, pp. 131–
142, 1966.

[125] S.-H. Cha, “Comprehensive Survey on Distance/Similarity Measures
Between Probability Density Functions,” Int. Journal of Mathematical
Models and Methods in Applied Sciences, vol. 1, no. 4, pp. 300–307,
2007.

[126] I. Csiszár, “Axiomatic Characterizations of Information Measures,”
Entropy, vol. 10, no. 3, pp. 261–273, 2008.

[127] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, “Stochastic
Resonance,” Reviews of Modern Physics, vol. 70, pp. 223–287, 1998.

[128] A. Palonpon, J. Amistoso, J. Holdsworth, W. Garcia, and C. Saloma,
“Measurement of Weak Transmittances by Stochastic Resonance,”
Optics Letters, vol. 23, no. 18, pp. 1480–1482, 1998.

[129] D. Mussmann, “Sufficiency and f -Divergences,” Studia Scientiarum
Mathematicarum Hungarica, no. 14, pp. 37–41, 1979.

[130] E. Torgersen, Comparison of Statistical Experiments. Cambridge, UK:
Cambridge University Press, 1991.

[131] F. Liese and I. Vajda, Advances in Inequalities from Probability Theory
and Statistics. New York City, NY: Nova Science Publishers, 2008,
ch. f-Divergences: Sufficiency, Deficiency and Testing of Hypotheses,
pp. 113–158.

[132] A. Guntuboyina, S. Saha, and G. Schiebinger, “Sharp Inequalities for
f -Divergences,” IEEE Transactions on Information Theory, vol. 60,
no. 1, pp. 104–121, 2014.

[133] F. Liese, “φ-Divergences, Sufficiency, Bayes Sufficiency, and Defi-
ciency,” Kybernetika, vol. 48, no. 4, pp. 690–713, 2012.

https://arxiv.org/abs/1702.06280


33

[134] K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements
and mModels of Radio Frequency Impulsive Noise for Indoor Wireless
Communications,” IEEE Journal on Selected Areas in Communica-
tions, vol. 11, no. 7, pp. 991–1001, 1993.

[135] M. Fernández, I. Landa, A. Arrinda, R. Torre, and M. M. Vélez,
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