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Abstract—The problem of identification of nonstationary
stochastic processes (systems or signals) is considered and a new
class of identification algorithms, combining the basis functions
approach with local estimation technique, is described. Unlike the
classical basis function estimation schemes, the proposed regular-
ized local basis function estimators are not used to obtain interval
approximations of the parameter trajectory, but provide a sequence
of point estimates corresponding to consecutive instants of time.
Based on the results of theoretical analysis, the paper addresses and
solves all major problems associated with implementation of the
new class of estimators, such as optimization of the regularization
matrix, adaptive selection of the number of basis functions and the
width of the local analysis interval, and reduction of complexity of
the computational algorithms.

Index Terms—System identification, parameter estimation,
time-varying systems, adaptive estimation.

I. INTRODUCTION

L INEAR time-varying models of nonstationary processes
(signals or systems) are the basis of many real-life appli-

cations in various disciplines such as telecommunications [1],
biomedicine [2], [3], geophysics [4], [5] and control science [6],
to name just a few. In all such cases accurate estimation/tracking
of time-varying parameters of the underlying models is of pri-
mary importance. When process parameters vary slowly, their
estimation can be carried out using the time-localized versions
of classical identification algorithms. However, as the speed of
parameter changes increases, such an unstructured local estima-
tion approach fails unless some explicit models of parameter
variation are incorporated into the identification process. Such
models, often called hypermodels, can be either stochastic or
deterministic. In the first case the parameter tracking task is
usually reformulated as a problem of filtering/smoothing in the
state space, and its solution is obtained using an appropriately
designed Kalman filters/smoothers [7]–[10]. In the determin-
istic setup, parameter trajectories are approximated by linear
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combinations of some known functions of time, usually referred
to as basis functions [11]–[18].

Quite recently a new estimation paradigm for identification
of linear time-varying processes, based on the concept of prees-
timation, was proposed [19]. Preestimates are raw estimates of
process parameters – unbiased but with a very large variabil-
ity. For this reason, to obtain statistically meaningful results,
preestimates must be further processed (denoised). The resulting
two-stage identification procedure compares favorably with the
existing solutions to the problem of parameter tracking as it of-
fers, without compromising good tracking performance, signifi-
cantly lower computational complexity and increased numerical
robustness. The current paper aims to further improve, using
the regularization technique, the solutions described in [18]
and [19].

Regularization is a successful and long standing concept
in machine learning and system identification. The idea is to
add to the minimized cost function a term (regularizer) which
reduces a norm of the solution. Regularization can serve different
purposes. The L2 regularization, such as ridge regression or
Tikhonov regularization, was originally introduced as a way of
solving ill-posed or numerically ill-conditioned inverse prob-
lems [20], [21]. In the context of least squares estimation, the
difficulty arises when the inverted regression matrix is poorly
conditioned (almost singular) [22], [23].

However, from the estimation perspective, regularization has
more to offer [24], [25]. First, it can improve the bias-variance
trade-off which decides upon accuracy of the identified model.
More specifically, by choosing the regularization term in a judi-
cious way, one can decrease the variance of the estimates at the
expense of increasing their bias, while ensuring that the overall
mean square error is reduced [26], [27]. Secondly, regularization
allows one to include in the formulation of the identification
problem some expected, or desired, properties of the solution.
This way of looking at the estimation task was pioneered by
Whittaker [28], [29]. Whittaker considered the problem of ap-
proximation of an unknown function based on noisy measure-
ments and suggested to add to the minimized quadratic cost
function theL2 smoothness enhancing regularizer. Later on, this
idea was extended to signals [8] and systems [30]. Quite recently
a considerable attention was payed to the problem of estimation
of an impulse response of a time-invariant linear system [31]. In
this case regularization may be used to incorporate into the es-
timation process some prior knowledge about a “typical” shape
of an impulse response of an asymptotically stable dynamical
system (“exponentially decaying and smooth”).
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Finally, in some applications the main purpose of regulariza-
tion is to prevent the identified models from overfitting, i.e., from
including in the model more parameters than can be justified
by the data. To this end the L1 regularization is more effective
than the L2 one [32], leading to such well-known techniques
as LASSO (least absolute shrinkage and selection operator) in
statistics [33], or basis pursuit in signal processing [34].

Whatever is the purpose of regularization, its success heavily
depends on the choice of regularization hyperparameters, such as
gains, coefficients of the regularization matrix etc. Optimization
of these hyperparameters can be performed using techniques
such as cross-validation, Stein’s unbiased risk estimator (SURE)
or stochastic embedding [9], [35], [36]. It seldom leads to closed-
form solutions – a numerical search has to be used instead.

The paper presents a regularized version of the local ba-
sis function approach described in [18]. To the best of our
knowledge this is the first attempt to incorporate the regu-
larization technique into identification of nonstationary pro-
cesses in the deterministic hypermodel setup. First, extending
the result established in [31] for time-invariant FIR systems,
we derive closed-form expressions allowing one to optimize
the coefficients of a diagonal regularization matrix. Since the
optimal settings depend on true (unknown) parameters of the
identified system, direct application of this result is not possible.
Instead, we propose a two-stage approach. At the first stage
identification is carried out using the standard basis function
approach proposed in [18]. Then, at the second identification
stage, the regularized estimates are evaluated after replacing
the unknown regularization hyperparameters with their esti-
mates obtained at the first stage. In the second part of the
paper, which is based on the concept of parameter preesti-
mation [19], the computationally fast and numerically robust
version of the regularized basis function scheme is proposed.
It is shown that in spite of its simplicity, the fast regularized
local basis function algorithm has very good parameter tracking
capability, comparable with that of the original scheme. It is
also shown that regularization improves accuracy of parameter
estimates and that the proposed approach compares favorably
with the state-of-the-art wavelet-based approach described in
[16], [17].

All algorithms developed in this paper provide a sequence of
local point estimates of process parameters, each corresponding
to a particular time instant t, namely, the estimation is carried
out independently for each value of t based on the input/output
data gathered in the local analysis interval centered at t. Since
the resulting estimates are noncausal (the estimation results
depend on both “past” and “future” observations relative to t)
they cannot be used in real-time applications such as adaptive
prediction or adaptive control. However, many almost real-time
applications exist, such as time-frequency signal analysis [37],
channel equalization [1] or self-interference mitigation [38], that
are not time-critical in the sense that the model-based decisions
can be delayed by a certain number of sampling intervals.
Since the well-tuned noncausal estimation algorithms provide
a better bias-variance trade-off than their comparable causal
counterparts, the achievable parameter tracking performance is
usually considerably better.

II. ESTIMATION SCHEME

A. Notation

Consider a nonstationary stochastic process governed by the
equation

y(t) = ϕT(t)θθθ(t) + e(t), (1)

where t = − . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, θθθ(t) = [θ1(t), . . . , θn(t)]

T denotes the n-dimensional
vector of unknown time-varying parameters, ϕ(t) =
[ϕ1(t), . . . , ϕn(t)]

T denotes regression vector and e(t) denotes
white noise with variance σ2

e . The two practically important
cases include finite impulse response (FIR) systems where

ϕ(t) = [u(t), . . . , u(t− n+ 1)]T (2)

and {u(t)} denotes the observable input signal, and autoregres-
sive processes where

ϕ(t) = [y(t− 1), . . . , y(t− n)]T. (3)

Further assumptions about the sequences {ϕ(t)}, {θθθ(t)} and
{e(t)} will be given later.

In this article we will apply the localized approach combined
with the basis function method, which assumes that inside
the local analysis interval, Tk(t) = [t− k, t+ k], centered at
the time instant t, the true parameter trajectories can be mod-
eled as a linear combination of m linearly independent basis
functions

Fm|k = {f1|k(i), . . . , fm|k(i), i ∈ Ik}
namely

Hm|k : θj(t+ i) =

m∑
l=1

bjl;m|kfl|k(i) = βT
j;m|kfm|k(i)

j = 1, . . . , n, i ∈ Ik = [−k, k], (4)

where

βj;m|k = [bj1;m|k, . . . , bjm;m|k]T

fm|k(i) = [f1|k(i), . . . , fm|k(i)]T.

For a given set of basis functions, the hypermodel Hm|k has
two user-dependent degrees of freedom: the number of basis
functions m and the width of the local analysis window K =
2k + 1. The problem of selection of m and k will be discussed
later in Section IV.

Let

αm|k = [βT
1;m|k, . . . ,β

T
n;m|k]

T

be the nm× 1 vector made up of all basis function coefficients,
and denote by

ψm|k(t, i) = ϕ(t+ i)⊗ fm|k(i) (5)

the nm× 1 generalized regression vector, where ⊗ stands for
the Kronecker product.

Using the expansion (4), the time varying model (1) of ordern
can be locally, i.e., inside the analysis interval Tk(t), expressed
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as a nm-dimensional time invariant model

y(t+ i) = ψT
m|k(t, i)αααm|k + e(t+ i), i ∈ Ik. (6)

Based on (4) and (6), the parameter vector θ(t) can be written
down in the form

θ(t)|Hm|k = θθθm|k(t) = FFFm|kαααm|k

FFFm|k = IIIn ⊗ fffTm|k(0). (7)

B. Identification Procedure

Our identification scheme is based on the regularized
weighted least squares (WLS) method

α̂ααRLBF
m|k (t) = arg min

αααm|k

×
{ k∑

i=−k

wk(i)
[
y(t+ i)−ψT

m|k(t, i)αααm|k
]2

+ αααT
m|kΛΛΛm|kαααm|k

}
, (8)

where Λm|k > O denotes the nm× nm positive definite regu-
larization matrix and {wk(i), i ∈ Ik}, wk(0) = 1, is a bell-
shaped, nonnegative and symmetric window used for local-
ization purposes. We will further assume that wk(i) = w0( i

k )
is obtained by sampling the continuous-time window generat-
ing function w0(s), s ∈ [−1, 1]. One of the possible choices
of w0(s), attractive from the computational viewpoint, is the
cosinusoidal window

w0(s) = cos
πs

2
. (9)

The resulting local estimate of αm|k will be referred to as
regularized local basis function (RLBF) estimate. Selection
of the form (structure) of the regularization matrix Λm|k and
optimization of its coefficients will be discussed in Section III B.

Without any loss of generality we will assume that the basis
Fm|k is w-orthonormal, namely

k∑
i=−k

wk(i)fm|k(i)fTm|k(i) = IIIm. (10)

Furthermore, to allow asymptotic reasoning, we will assume that
Fm|k is obtained by means of orthonormalization of the basis

Gm|k = {gl|k(i), l = 1, . . . ,m, i ∈ Ik},
where

gl|k(i) = g0l

(
i

k

)
and g0l (s), s ∈ [−1, 1], l = 1, . . . ,m, denote continuous-time,
square integrable basis generating functions defined on the in-
terval [−1, 1].

When no prior knowledge about the nature of parameter
variation is available, a reasonable choice of the basis would be to
select functions with high generalization capacity. For example
one could use the basis made up of powers of time (Taylor series

approximation)

g0l (s) = sl−1, l = 1, . . . ,m (11)

or cosinusoidal functions (Fourier series approximation)

g0l (s) = cos

[
πs(l − 1)

2

]
, l = 1, . . . ,m. (12)

It is straightforward to check that the solution to (8) is given by

α̂ααRLBF
m|k (t) = RRR−1

m|k(t)pm|k(t) (13)

where

RRRm|k(t) = PPPm|k(t) +Λm|k

PPPm|k(t) =
k∑

i=−k

wk(i)ψm|k(t, i)ψ
T
m|k(t, i)

pppm|k(t) =
k∑

i=−k

wk(i)y(t+ i)ψm|k(t, i). (14)

According to (7) the local (pointwise) estimate of the process
parameter vector θ(t) can be obtained from

θ̂θθ
RLBF

m|k (t) = FFFm|kα̂αα
RLBF
m|k (t). (15)

The described procedure is called local because estimation is
repeated for each position of the sliding analysis window Tk(t).

The estimate (13) is a straightforward generalization of the
local basis function (LBF) estimate introduced recently in [18]

α̂ααLBF
m|k (t) = α̂ααRLBF

m|k (t)
∣∣∣
ΛΛΛm|k=OOO

= P−1
m|k(t)pm|k(t)

θ̂θθ
LBF

m|k (t) = FFFm|kα̂αα
LBF
m|k (t) (16)

From the qualitative point of view, the LBF and RLBF ap-
proaches can be regarded as an extension, to the process iden-
tification case, of the signal smoothing technique known as
Savitzky-Golay filtering [39] (filtering successive subsets of
adjacent data points with a low-degree polynomial by the method
of least squares).

III. PROPERTIES OF RLBF ESTIMATORS

Originally, regularization was introduced as a general treat-
ment of ill-posed problems, which can also be the case for LBF
estimators since the dimension of the generalized regression
matrix PPPm|k can be much larger than the number of process
parameters and close to the number of analyzed data points.
From the identification point of view, regularization techniques
may prove useful to achieve better bias-variance trade-off. It
is well known that the discrepancy between true process tra-
jectories and their estimates, measured by the mean square
estimation error, is the sum of the bias and variance components.
Therefore, reduction of the variance (at the cost of increased
bias), accomplished with a carefully calibrated regularization
method, can improve the MSE measure of fit.
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A. Deterministic Case

Within this subsection we will assume that {ϕ(t)} is a de-
terministic sequence and hence all expectations will be carried
over {e(t)}. We will assume that

A1) {e(t)}, independent of {ϕ(t)}, is a sequence of zero-
mean independent and identically distributed random
variables with variance σ2

e .
Note that

α̂ααRLBF
m|k (t)−αααm|k = vvvm|k(t) + hhhm|k(t), (17)

where

vvvm|k(t) = −RRR−1
m|k(t)ΛΛΛm|kαααm|k

hhhm|k(t) = RRR−1
m|k(t)rrrm|k(t)

rrrm|k(t) =
k∑

i=−k

wk(i)ψm|k(t, i)e(t+ i). (18)

Since E[rrrm|k(t)] = 0, one obtains

E
[
α̂ααRLBF
m|k (t)−αααm|k

]
= vvvm|k(t) (19)

which means that, unlike the LBF estimator, the regularized
LBF estimator is biased. Denote by ΔΔΔm|k(t) the mean square
hyperparameter estimation error matrix. Using (17), one arrives
at

ΔΔΔm|k(t) = E

{[
α̂ααRLBF
m|k (t)−αααm|k

] [
α̂ααRLBF
m|k (t)−αααm|k

]T}
= E[vm|k(t)vT

m|k(t)] + E[hm|k(t)vT
m|k(t)]

+ E[vm|k(t)hT
m|k(t)] + E[hm|k(t)hT

m|k(t)].

Then, using (18), one obtains

E[vm|k(t)vT
m|k(t)] = R−1

m|k(t)ΛΛΛm|kαααm|kαααT
m|kΛΛΛm|kR−1

m|k(t).

Under assumption (A1) it holds that

E[hm|k(t)vT
m|k(t)] = E[vm|k(t)hT

m|k(t)] = 0.

Finally, since {e(t)} is white noise

E[hm|k(t)hT
m|k(t)] = R−1

m|k(t)E

[
k∑

i=−k

k∑
j=−k

wk(i)wk(j)

×ψm|k(t, i)ψ
T
m|k(t, j)e(t+ i)e(t+ j)

]
R−1

m|k(t)

= R−1
m|k(t)σ

2
e

k∑
i=−k

w2
k(i)ψm|k(t, i)ψ

T
m|k(t, i)R

−1
m|k(t).

Combining all of the above, one arrives at

ΔΔΔm|k(t)

= RRR−1
m|k(t)

[
SSSm|k(t) +ΛΛΛm|kαααm|kαααT

m|kΛΛΛm|k
]
RRR−1

m|k(t), (20)

where

SSSm|k(t) = σ2
e

k∑
i=−k

w2
k(i)ψm|k(t, i)ψ

T
m|k(t, i). (21)

The mean square parameter estimation error matrix Σm|k(t)
takes the form

Σm|k(t)

= E

{[
θ̂
RLBF

m|k (t)− θ(t)
] [
θ̂
RLBF

m|k (t)− θ(t)
]T}

= Fm|kΔΔΔm|k(t)FT
m|k. (22)

B. Stochastic Case

In this section we will assume that the sequence of regression
vectors is stochastic and all expectations will be additionally
carried out over {ϕ(t)}. In addition to (A1), we will assume that

A2) {ϕ(t)} is a zero-mean wide sense stationary Gaussian
sequence, persistently exciting of order at least n, with
an exponentially decaying autocorrelation function.

A3) {θθθ(t)} is a uniformly bounded sequence, independent
of {ϕ(t)} and {e(t)}.

Denote by E[ϕ(t)ϕT(t)] = ΦΦΦ0 > 0, ∀t, the positive definite
covariance matrix of ϕ(t). It is possible to show that (see
Appendix 1)

lim
k→∞

PPPm|k(t) = E[PPPm|k(t)]

= E

{ k∑
i=−k

wk(i)[ϕ(t+ i)ϕT(t+ i)]⊗

⊗ [fm|k(i)fTm|k(i)]
}

= ΦΦΦ0 ⊗ IIIm = PPPm|k, (23)

where convergence takes place in the mean square sense.
Setting PPPm|k(t) ∼= PPPm|k, one arrives at

E[ΔΔΔm|k(t)] ∼= RRR
−1

m|k[SSSm|k +ΛΛΛm|kαααm|kαααT
m|kΛΛΛm|k]RRR

−1

m|k
=ΔΔΔm|k (24)

and

E[Σm|k(t)] ∼= Fm|kΔΔΔm|kFT
m|k = Σm|k, (25)

where

RRRm|k = PPPm|k +ΛΛΛm|k
SSSm|k = E[SSSm|k(t)] = σ2

eΦΦΦ0 ⊗HHHm|k

HHHm|k =

k∑
i=−k

w2
k(i)fm|k(i)fTm|k(i). (26)

We will optimize the RLBF scheme in the case where the
regularization matrix Λm|k is diagonal

Λm|k = diag{Λ1;m|k, . . . ,Λn;m|k}
Λj;m|k = diag{λj1;m|k, . . . , λjm;m|k}

and ΦΦΦ0 = σ2
ϕIIIn. The latter condition holds e.g. when (1) de-

scribes a FIR system excited by a white input sequence. Under
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the constraints mentioned above

RRRm|k = σ2
ϕIIInm +Λm|k.

B. Approach 1

We will choose the elements of the diagonal regularization
matrix so as to minimize the mean square hyperparameter es-
timation errors E{[̂bRLBF

jl;m|k(t)− bjl;m|k]2} which constitute the

diagonal elements of the MSE matrixΔΔΔm|k. Denote by δm|k the
vector made up of diagonal elements of ΔΔΔm|k

δm|k = [δ11;m|k, . . . , δ1m;m|k, . . . , δn1;m|k, . . . , δnm;m|k]T

Straightforward calculations lead to

δjl;m|k =
sjl;m|k + b2jl;m|kλ

2
jl;m|k

[σ2
ϕ + λjl;m|k]2

sjl;m|k = σ2
eσ

2
ϕηl;m|k

ηl;m|k =

k∑
i=−k

w2
k(i)f

2
l|k(i). (27)

Since for any a, b, c > 0 it holds that

arg minx

a+ bx2

(c+ x)2
=

a

bc

the regularization coefficient which is optimal in the mean square
error sense is given by

λopt
jl;m|k =

σ2
eηl;m|k
b2jl;m|k

j = 1, . . . , n, l = 1, . . . ,m. (28)

Since the optimal regularization coefficients minimize all diag-
onal elements of ΔΔΔm|k, they also minimize the L2 norm of the

estimation error: E[‖ α̂RLBF
m|k (t)−αm|k ‖2].

B. Approach 2

We will choose the elements of the diagonal regularization
matrix so as to minimize the mean square parameter estimation
errors E{[θ̂RLBF

j;m|k (t)− θj(t)]
2} which constitute the diagonal

elements of the MSE matrix Σm|k. Note that minimization of
these errors is the primary goal of identification.

Let

σj;m|k = [Σm|k]jj = E{[θ̂RLBF
j;m|k (t)− θj(t)]

2}.
It is easy to check that

σj;m|k = fTm|k(0)[σ
2
ϕIm +Λj;m|k]−1

× [σ2
eσ

2
ϕHm|k +Λj;m|kβj;m|kβ

T
j;m|kΛj;m|k]

× [σ2
ϕIm +Λj;m|k]−1fm|k(0)

= σ2
eσ

2
ϕx

T
j;m|kHm|kxj;m|k

+ [fm|k(0)−σ2
ϕxj;m|k]TAj;m|k[fm|k(0)−σ2

ϕxj;m|k],
(29)

where xj;m|k = [xj1;m|k, . . . , xjm;m|k]T, Aj;m|k = βj;m|k
βT
j;m|k and

xjl;m|k =
fl|k(0)

λjl;m|k + σ2
ϕ

. (30)

Prior to minimizing the mean square parameter estimation error
(29), we will introduce the row/column deletion shorthands.
Consider any m× 1 vector c and any m×m matrix C. Let
I 	= ∅ and J 	= ∅ be any subsets of Ω = {1, . . . ,m}. By c<I|

and C<I| we will denote the vector/matrix obtained after delet-
ing from c and C all rows indicated by the set I. Similarly,
by c|J> and C|J> we will denote the vector/matrix obtained
after deleting from c and C all columns indicated by the set J .
Finally, by C<I|J> = (C<I|)|J> = (C|J>)<I| we will denote
the result of deleting from C the indicated rows and columns.

Note that when fl|k(0) = 0, the mean square error σj;m|k
does not depend on xjl;m|k, and hence also on λjl;m|k. Such a
situation may take place, for example, for a polynomial basis.
Actually, when the basis set corresponding to (11) is orthogonal-
ized sequentially using the Gram-Schmidt procedure, it holds
that fl|k(0) = 0 for all even values of l. Therefore, to make
the problem of minimization of σj;m|k well posed, we will
eliminate from the vector xj;m|k all null elements. Denote by L
the subset of Ω which indicates position of such zero elements
L = {l : fl|k(0) = 0} and let

x̃j;m|k = x
<L|
j;m|k, f̃m|k(0) = f

<L|
m|k (0), β̃j;m|k = β

<L|
j;m|k

Ãj;m|k = β̃j;m|kβ̃
T

j;m|k H̃m|k = H
<L|L>
m|k .

Observe, that (29) can be rewritten in the form

σj;m|k = σ2
eσ

2
ϕx̃

T
j;m|kH̃m|kx̃j;m|k

+ [̃fm|k(0)− σ2
ϕx̃j;m|k]TÃj;m|k [̃fm|k(0)− σ2

ϕx̃j;m|k]
(31)

leading to

x̃opt
j;m|k = arg minx̃j;m|kσj;m|k

= [σ2
eH̃m|k + σ2

ϕÃj;m|k]−1Ãj;m|k f̃m|k(0)

=
β̃
T

j;m|k f̃m|k(0)

σ2
e + σ2

ϕβ̃
T

j;m|kH̃
−1
m|kβ̃j;m|k

H̃−1
m|kβ̃j;m|k, (32)

where the last transition follows from the well known matrix
inversion lemma [40]. According to (30),

λopt
jl;m|k =

fl|k(0)

x̃opt
jl;m|k

− σ2
ϕ. (33)

The expression (33) was derived assuming that l ∈ L = Ω−
L. Our analysis shows that all elements of the regularization
matrix Λm|k which correspond to l ∈ L should have no, or at
least negligible [since (25) is an approximate MSE expression]
influence on the value of the mean square parameter estimation
error. This means that the corresponding values of λjl;m|k can be
chosen arbitrarily, e.g. set to zero. However, to retain numerical
robustness of the RLBF estimator, we recommend replacement
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of all such “dummy” elements with the quantities (28) obtained
by means of minimization of the hyperparameter MSE. This
leads to

λopt
jl;m|k =

⎧⎨⎩
fl|k(0)
x̃opt
jl;m|k

− σ2
ϕ for l ∈ L

σ2
eηl;m|k
b2
jl;m|k

for l ∈ L

j = 1, . . . , n, l = 1, . . . ,m (34)

Remark 1: The formulae (28) and (33) are generalizations of
a similar result obtained in [31] for time invariant FIR systems.
Note that for m = 1, f1|k(i) = 1, ∀i, and for the rectangular
window w(i) = 1, i ∈ Ik, (28) reduces down to the formula
derived in [31].

B. Adaptive Regularization

As expected, the optimal regularization coefficients depend
on the true (unknown) hyperparameters. Therefore, to obtain
suboptimal but implementable adaptive estimation scheme, we
propose to replace the unknown quantities which appear in
(28) and (32)–(34), with their LBF estimates. Even though
optimization of regularization coefficients was carried out under
the assumption that regressors are orthogonal, the method seems
to work pretty well in the general correlated covariates case.

The LBF estimates of the coefficients bjl;m|k, l = 1, . . . ,m,

can be extracted from the the j-th subvector β̂
LBF

j;m|k(t) of the

vector α̂LBF
m|k (t).

The LBF estimate of ρ = σ2
e can be obtained from

ρ̂LBF
m|k (t) =

1

Lk

k∑
i=−k

wk(i)[y(t+ i)−ψT
m|k(t, i)α̂αα

LBF
m|k (t)]2

=
1

Lk
[ck(t)− pppTm|k(t)α̂αα

LBF
m|k (t)],

(35)

where ck(t) =
∑k

i=−k wk(i)y
2(t+ i) and

Lk =
k∑

i=−k

wk(i) (36)

denotes the effective width of the window {wk(i)}.
Finally, the local, exponentially weighted estimate of σ2

ϕ can
be obtained from

σ̂2
ϕ(t) =

rϕ(t)

ltm

rϕ(t) =
t−1∑
i=0

λi
0||ϕ(t− i)||2 = λ0rϕ(t− 1) + ||ϕ(t)||2,

(37)

where λ0, 0 < λ0 < 1, denotes the so-called forgetting constant
and lt =

∑t−1
i=0 λ

i
0 = λ0lt−1 + 1 denotes the effective width of

the exponential window.
The adaptive version of the RLBF estimator can be obtained

by replacing the matrix ΛΛΛm|k in (14) with its locally optimized

version

Λ̂m|k(t) = diag{λ̂11;m|k (t), . . . , λ̂1m;m|k(t), . . . ,

λ̂n1;m|k(t), . . . , λ̂nm;m|k(t)} (38)

where the quantities λ̂jl;m|k(t) are obtained from (28) or (32)-
(34) after replacing σ2

e , σ2
ϕ and bjl;m|k with ρ̂LBF

m|k (t), σ̂2
ϕ(t) and

b̂LBF
jl;m|k(t), respectively.

IV. ADAPTIVE SELECTION OF THE NUMBER OF BASIS

FUNCTIONS AND THE ANALYSIS WINDOW SIZE

The number of basis functions (m) and the size of the local
analysis window (k) are important design parameters. When m
is large and/or when k is small, the bias of the LBF estimates
decreases and their variability increases. The opposite effect is
observed when m is small and/or k is large [18]. Therefore, to
minimize the mean square parameter estimation error, which is
the sum of its bias and variance components, one should find
such values of k and m which guarantee good bias-variance
compromise. Such a trade-off can be reached using the parallel
estimation approach. In this framework several LBF algorithms,
corresponding to different values of m ∈ M and k ∈ K, are run
simultaneously and compared. At each time instant only one of
the competing estimates is selected, i.e., the estimated parameter

trajectory has the form θ̂
LBF

m̂(t)|̂k(t)(t) where

{m̂(t), k̂(t)} = arg min
m∈M
k∈K

Jm|k(t) (39)

and Jm|k(t) denotes the local decision statistic. We will use
for this purpose the localized version of the Akaike’s final
prediction error (FPE) measure. Denote by Ω̃k(t) = {ϕ̃(t+
i), ẽ(t+ i), i ∈ Ik} another realization of the input-output data,
independent of the set {Ωk(t) = {ϕ(t+ i), e(t+ i), i ∈ Ik}
that was used for identification purposes. The quantity

E
˜Ωk(t),Ωk(t)

[
ỹ(t)− ϕ̃T(t)θ̂

LBF

m|k (t)
]2

(40)

which can be called, after Akaike [41], [42], the final prediction
error, is a good measure of predictive capability of the LBF
estimator. According to [18], as an estimate of (40), one can use
the following statistic

FPEm|k(t) =
1 + n

Nm|k

1− n
Mm|k

ρ̂LBF
m|k (t), (41)

where

Nm|k =

{
k∑

i=−k

[wk(i)f
T
m|k(0)fm|k(i)]2

}−1

Mm|k =
Lk∑k

i=−k w
2
k(i)f

T
m|k(i)fm|k(i)

.

The selection rule can be obtained by setting Jm|k(t) =
FPEm|k(t).
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V. COMPUTATIONAL COMPLEXITY OF LBF AND RLBF
ALGORITHMS

Since LBF and RLBF estimates are evaluated in the sliding
window mode, i.e., computations are repeated for every new
location t of the analysis window Tk(t), the computational
burden is high. It can be lowered if the applied window wk(i)
and the vector of basis functions fm|k(i) are recursively com-
putable. As an example, consider the case where the window
is cosinusoidal (9) and the basis is made up of powers of
time (12). Note that the weight wk(i) can be expressed in
the form wk(i) = Re{vk(i)}, where vk(i) = ej

πi
2k denotes the

recursively computable complex-valued window

vk(i) = γkvk(i− 1), γk = ej
π

2k . (42)

Similarly, for the polynomial basis the vector fm|k(i) is recur-
sively computable

fm|k(i) = Γm|kfm|k(i− 1) (43)

whereΓm|k denotes them×m transition matrix. Taking advan-
tage of (42) and (43), one can easily derive recursive algorithms
for computation of the mn×mn generalized regression matrix
PPPm|k(t) and the m× 1 vector pppm|k(t) needed to evaluate LBF
and RLBF estimates – for more details see [18]. In this way
the computational cost of evaluation PPPm|k(t) and pppm|k(t) can
be lowered from O(m2n2 K) and O(mnK) multiply-add op-
erations per time update, to O(m2n2) and O(mn) operations,
respectively, i.e., it becomes independent of the window width
K = 2k + 1.

Note also that for a fixed value of k the generalized regression
matrices Pm1|k(t), . . . ,PmM−1|k(t) corresponding to different
values of m: m1 < m2 < . . . < mM−1 < mM are nested in
(are submatrices of) the matrix PmM |k(t), i.e., there is no need
to evaluate them separately. The same holds true for the vectors
pm1|k(t), . . . ,pmM |k(t).

Unfortunately, it is not possible to recursively update the ma-
tricesP−1

m|k(t) andR−1
m|k(t). The computational cost of inverting

Pm|k(t) and Rm|k(t) is roughly equal to O(m3n3) operations
per time update (it can be slightly decreased by exploiting
the special structure of both matrices/vectors) which in some
applications may be prohibitive.

Additionally, when the number of hypermodel coefficients,
equal to mn, becomes comparable with (is not significantly
smaller than) the window width K, the matrix Pm|k(t), inverted
at the first stage of identification, may become numerically
ill-conditioned. In the next section we will derive fast estimation
algorithms which, without compromising very good parameter
tracking capabilities of the LBF/RLBF scheme, significantly
reduce computational burden and are numerically robust.

VI. FAST LOCAL BASIS FUNCTION ESTIMATORS

A. Derivation

Derivation of the fast local basis function (fLBF) algo-
rithm will be based on the following approximation valid for

sufficiently large values of k (cf. (23))

α̂LBF
m|k (t) =

⎡⎢⎢⎣
β̂
LBF

1;m|k(t)
...

β̂
LBF

n;m|k(t)

⎤⎥⎥⎦ ∼= PPP
−1

m|kpm|k(t)

=

k∑
i=−k

wk(i)y(t+ i)[Φ−1
0 ⊗ Im][ϕ(t+ i)⊗ fm|k(i)]. (44)

Note that

β̂
LBF

j;m|k(t) = DT
j α̂

LBF
m|k (t), (45)

where

Dj = [Om, . . . ,Om︸ ︷︷ ︸
j−1

, Im,Om, . . . ,Om︸ ︷︷ ︸
n−j

]T = dT
j ⊗ Im

dj = [0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

]T. (46)

Combining (44) with (45) and (46), and using the iden-
tity (A⊗B)(C⊗D) = (AC)⊗ (BD) which holds for Kro-
necker products, one arrives at

β̂
LBF

j;m|k(t) ∼=
k∑

i=−k

wk(i)fm|k(i)dT
j Φ

−1
0 ϕ(t+ i)y(t+ i). (47)

Our next step will be based on the concept of preestimation.

Denote by θ̂
EWLS

(t) the exponentially weighted least squares
(EWLS) estimate of the parameter vector θ(t):

θ̂
EWLS

(t) = arg min
θ

t−1∑
i=0

λi
0[y(t− i)−ϕT(t− i)θ]2. (48)

The preestimate of θ(t) was defined in [19] in the form

θ∗(t) = ltθ̂
EWLS

(t)− λ0lt−1θ̂
EWLS

(t− 1) (49)

Note that for large values of t, when lt reaches its constant steady
state value l∞ = 1/(1− λ0), the relationship (49) can be put in
the following time invariant form

θ∗(t) =
1

1− λ0
[θ̂

EWLS
(t)− λ0θ̂

EWLS
(t− 1)]. (50)

and the preestimate can be interpreted as a result of inverse
filtering of the EWLS estimate.

The preestimate, which can be written down in the form

θ∗(t) = θ(t) + z(t) (51)

is a raw estimate ofθ(t): it is approximately unbiased (E[z(t)] ∼=
0) but has a very large variability. For this reason, to obtain
meaningful estimation results, it should be further processed
(postfiltered). As argued in [19], under typical operating condi-
tions the following approximation holds true

z(t) ∼= Φ−1
0 ϕ(t)e(t) = z0(t).

Note that under assumptions (A1)–(A2), {z0(t)} is a zero-mean
white noise with covariance matrix σ2

eΦ
−1
0 .



1672 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Fig. 1. Preestimated parameter trajectories of a nonstationary two-tap finite
impulse response system (SNR=15 dB). Preestimates (black lines) are super-
imposed on true parameter trajectories (red lines).

To illustrate the preestimation technique, consider the prob-
lem of identification of a time-varying two-tap FIR system
governed by

y(t) = θ1(t)u(t− 1) + θ2(t)u(t− 2) + e(t). (52)

where u(t) denotes the first order autoregressive input signal
u(t) = 0.8u(t− 1) + v(t), var[v(t)] = 1, and {v(t)} denotes
white noise independent of {e(t)}. The variance of the measure-
ment noise was set to σ2

e = 0.02 and system parameters were
modeled as a sinusoidal linear chirp [θ1(t)], and an inverted
triangular linear chirp [θ2(t)], respectively. The preestimates of
system parameters, obtained for λ0 = 0.9 (l∞ = 10), are shown
in Fig. 1. Note that preestimation allows one to “X-ray” the
structure of system parameter variation without making any
assumptions about its functional form, degree of smoothness,
etc. Under assumptions (A1)–(A3), for sufficiently large values

of lt it holds that θ̂
EWLS

(t) ∼= 1
lt
Φ−1

0

∑t−1
i=0 λ

i
0ϕ(t− i)y(t− i).

Substituting this result into (49), one arrives at the following
approximation

θ∗(t) ∼= Φ−1
0 ϕ(t)y(t). (53)

Combining (53) with (47) and noting that dT
j θ

∗(t) = θ∗j(t),
where θ∗j(t) is the preestimate of the j-th process coefficient
θj(t), one obtains

β̂
fLBF

j;m|k(t) =
k∑

i=−k

wk(i)fm|k(i)θ∗j(t+ i) ∼= β̂LBF

j;m|k(t)

j = 1, . . . , n.

(54)

The fLBF estimates of process coefficients θj(t), can be obtained
from

θ̂fLBF
j;m|k(t) = fTm|k(0)β̂

fLBF

j;m|k(t)

j = 1, . . . , n.
(55)

Figure 2 shows comparison of the LBF and fLBF estimates of
θ1(t) and θ2(t) for the system (52) in the case wherem = 10 and

Fig. 2. Comparison of LBF estimates (two upper plots) and fLBF estimates
(two lower plots) obtained for a nonstationary FIR system (k = 250, m = 10).
Estimated trajectories (black lines) are superimposed on true trajectories (red
lines).

k = 250. Note that the fLBF estimates (obtained by processing
preestimates shown in Fig. 1) are almost identical with LBF
estimates – in spite of the fact that the computational burden
of the fLBF algorithm is much smaller than that of the LBF
algorithm.

When the regression vector has the form (3), equation (1) de-
scribes a nonstationary autoregressive (AR) signal. Even though
all computational algorithms carry on to this case, analysis of
their properties along the lines presented above is not possible
simply because the covariance matrix of ϕ(t) depends on θ(t),
and hence on time. It is therefore quite surprising that, in spite of
the limitations mentioned above, the fLBF estimates evaluated
for nonstationary AR signals are almost indistinguishable from
the LBF estimates. This is illustrated in Fig. 3, which compares
LBF and fLBF estimates obtained for a second order AR signal
governed by

y(t) = θ1(t)y(t− 1) + θ2(t)y(t− 2) + e(t) (56)

subject to the same chirp-like parameter changes as those con-
sidered in our FIR example (52). Moreover, the observed close
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Fig. 3. Comparison of LBF estimates (two upper plots) and fLBF estimates
(two lower plots) obtained for a nonstationary AR signal (k = 250, m = 10).
Estimated trajectories (black lines) are superimposed on true trajectories (red
lines).

resemblance occurs despite the fact that the preestimates, evalu-
ated in the same way as before (λ0 = 0.9), do not look promising
since, unlike the FIR case, they hardly reveal the true nature of
parameter variation – see Fig. 4.

B. Statistical Reinterpretation of the Fast LBF Estimator

According to (51), the preestimated trajectory {θ∗j(t)} can be
regarded as a noisy version of the true trajectory

θ∗j(t) = θj(t) + zj(t), (57)

where zj(t) – the j-th component of z(t) – is a zero-mean
white noise with large variance σ2

zj
. Denoising of {θ∗j(t)} can

be carried out using the LBF approach. Assuming, at each
time instant t, that {θj(t)} can be locally modeled as a linear
combination of basis functions, i.e., adopting the hypermodel
(4), the local estimate of βj;m|k can be obtained in the form

β̃j;m|k(t)

= arg min
βj;m|k

k∑
i=−k

wk(i)[θ
∗
j(t+ i)− fTm|k(i)βj;m|k]

2. (58)

Fig. 4. Preestimated parameter trajectories of a nonstationary AR signal.
Preestimates (black lines) are superimposed on true parameter trajectories (red
lines).

It is straightforward to check that

β̃j;m|k(t) = β̂
fLBF

j;m|k(t). (59)

According to (59), the fLBF estimator, which was originally
derived as an approximate solution to the LBF-based output
fitting problem – minimization of the output modeling error
y(t)−ϕT(t)θ̂(t):

α̂LBF
m|k (t) =

⎡⎢⎢⎣
β̂
LBF

1;m|k(t)
...

β̂
LBF

n;m|k(t)

⎤⎥⎥⎦
= arg min

αααm|k

{ k∑
i=−k

wk(i)
[
y(t+ i)−ψT

m|k(t, i)αααm|k
]2}

,

(60)

can be also viewed as a solution to a direct parameter fitting
problem – minimization of the parameter modeling errorθ∗(t)−
θ̂(t). The second interpretation will be useful when designing
mechanisms for adaptive tuning of parameters m and k.

C. Selection of Design Parameters

Adaptive selection ofm andk can be done in the centralized or
decentralized way. In the centralized approach the same values of
m and k are adopted for all process coefficients θ1(t), . . . , θn(t).
Basically, the selection procedure does not differ from that
described in Section IV. The only modification that must be
introduced is replacement of the estimate α̂LBF

m|k (t) in (35) with

its approximate, computationally fast version α̂fLBF
m|k (t). Note

that in order to use (35), one has to update the vector pm|k(t).
In the decentralized approach, parametersm andk are individ-

ually adjusted for each component of the parameter vector θ(t).
This can be useful when different parameters vary at different
rates, as in the case illustrated in Fig. 1. A straightforward
consequence of (58)–(59) is that the fLBF estimator θ̂fLBF

j;m|k(t) =
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fT(0)β̂
fLBF

j;m|k(t) can be regarded as a result of smoothing the
preestimated parameter trajectory {θ∗j(t)} using a generalized
form of the Savitzky-Golay filter described in [43]. This also
means that the best fitting values of m and k for the j-th system
coefficient θj(t) can be selected using the following localized
FPE decision rule derived in [43]:

{m̂j(t), k̂j(t)} = arg min
m∈M
k∈K

FPEj;m|k(t), (61)

where

FPEj;m|k(t) =
1 + 1

Nm|k

1− 1
Mm|k

ρ̂fLBF
j;m|k(t) (62)

and ρ̂fLBF
j;m|k(t) denotes the local estimate of the noise variance

ρj = σ2
zj

ρ̂fLBF
j;m|k(t) =

1

Lk

k∑
i=−k

wk(i)
[
θ∗j(t+ i)− fTm|k(i)β̂

fLBF

j;m|k(t)
]2

=
1

Lk

k∑
i=−k

wk(i)[θ
∗
j(t+ i)]2 − 1

Lk
‖ β̂fLBF

j;m|k(t) ‖2 .

(63)

Note that the FPE statistic (62) has the same functional form as
(41).

Remark 2: If needed, the order n of the FIR model can be
selected adaptively at the preestimation stage using the modified
(localized) version of the Akaike’s FPE criterion designed for
finite memory causal estimation schemes [44].

D. Computational Complexity of the fLBF Algorithm

The computational cost of running the EWLS algorithm, used
to obtain preestimates, is of order O(n2) per time update (since
inverse of the associated regression matrix can be evaluated
recursively). Note that the same sequence of preestimates can
be used for different values of m and k.

Computation of α̂fLBF
m|k (t) is matrix-inversion-free and re-

quires O(mnK) operations per time update. It can be further
lowered to O(mn) operations if recursively computable basis
and window functions are used. In the latter case the computa-
tional cost does not depend on the window size K.

When identification can be carried in the off-line mode (rather
than with a constant delay, which is obligatory in almost real time
applications), the convolutions (54) can be efficiently evaluated
in the frequency domain using the FFT-based routine (for all
basis and window functions) – the associated computational
burden is of order O(mn logK).

Finally, we note that for a fixed value of k and any m1 < m2,
the basis vector fm1|k(t) is nested in fm2|k(t). Hence, if different
values of m : m1 < m2 < . . . < mM are considered for paral-
lel estimation purposes, all fLBF estimates α̂fLBF

mi|k (t), i < M,

are obtained in the course of evaluating α̂fLBF
mM |k(t). This means

that there is almost no computational overhead when the analy-
sis, carried out for a given window width, is extended from one
hypermodel to M hypermodels.

VII. FAST REGULARIZED LOCAL BASIS

FUNCTION ESTIMATORS

Based on the reinterpretation of the fLBF scheme presented
in the previous section, the fast regularized local basis function
(fRLBF) estimator can be defined as follows

β̂
fRLBF

j;m|k (t)

= arg min
βj;m|k

{ k∑
i=−k

wk(i)[θ
∗
j(t+ i)− fTm|k(i)βj;m|k]

2

+ βT
j;m|kΛj;m|kβj;m|k

}
(64)

It is straightforward to show that

β̂
fRLBF

j;m|k (t) = (Im +Λj;m|k)−1β̂
fLBF

j;m|k(t) (65)

which leads to

b̂fRLBF
jl;m|k (t) =

b̂fLBF
jl;m|k(t)

1 + λjl;m|k

l = 1, . . . ,m.

(66)

Since the denominator in (66) is greater than 1, the fRLBF esti-
mates can be obtained by “shrinking” the corresponding fLBF
estimates. Note that while in the classical ridge regression [22]
the regularization matrix has the form Λj;m|k = λIm, resulting
in uniform shrinkage of fLBF estimates, the proposed procedure
provides a more selective shrinkage, which can be considered a
“soft thresholding” variant of subset regression.

In order to optimize the shrinkage procedure, note that the
problem (64) is a simplified version of the problem (8) – it can be
obtained from (8) by setting n = 1 and replacing y(t),ϕ(t), σ2

ϕ,
e(t), σ2

e and ψm|k(t, i) with θ∗j(t), 1, 1, zj(t), σ2
zj

and fm|k(i),
respectively. Optimization of the regularization matrix results in
the formulas analogous to (28) and (32)-(34). In the first case,
one obtains

λopt
jl;m|k =

σ2
zj
ηl;m|k

b2jl;m|k
. (67)

In the second case, one arrives at

λopt
jl;m|k =

fl|k(0)

x̃opt
jl;m|k

− 1, l ∈ L (68)

where

x̃opt
j;m|k = [σ2

zj
H̃m|k + Ãj;m|k]−1Ãj;m|k f̃m|k(0)

=
β̃
T

j;m|k f̃m|k(0)

σ2
zj

+ β̃
T

j;m|kH̃
−1
m|kβ̃j;m|k

H̃−1
m|kβ̃j;m|k. (69)

Similar to the RLBF scheme, the fRLBF algorithm can be
obtained by replacing the regularization matrix in (65) with its
locally optimized version

Λ̂j;m|k(t) = diag{λ̂j1;m|k(t), . . . , λ̂jm;m|k(t)}. (70)
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TABLE I
SUMMARY OF THE RLBF ALGORITHM

TABLE II
SUMMARY OF THE fRLBF ALGORITHM

Finally, the fRLBF estimates of process coefficients θj(t),
j = 1, . . . , n, can be obtained from

θ̂fRLBF
j;m|k (t) = fTm|k(0)β̂

fRLBF

j;m|k (t) =
∑
l∈L

fl|k(0)̂bfRLBF
jl;m|k (t).

(71)

VIII. SUMMARY OF THE PROPOSED IDENTIFICATION

ALGORITHMS

The RLBF and fRLBF algorithms are summarized in Tables I
and II, respectively.

All steps are repeated for consecutive values of t (sliding
window approach). Estimation can be performed either in the
off-line mode or in the almost real time mode. In the latter case
the latency (estimation delay) is equal to kmax + 1 sampling
intervals, where kmax is the largest adopted value of k.

Note that regularization is applied only to the best fitting
LBF/fLBF estimates.

IX. COMPUTER SIMULATIONS

The first two simulation experiments were carried out for
artificially generated data, obtained using the models described
before: (52) in the case of a FIR system, and (56) in the case of
an AR signal. In both cases the chirp-like parameter trajectories,
shown in Figs. 1–4, were applied. To avoid boundary/transient
issues, data generation was started 1000 time instants prior to
t = 1 and was continued for 1000 time instants after t = Ts,
where Ts denotes simulation time. Experiments were performed
for three different speeds of parameter variation – fast (Ts =
5000), medium speed (Ts = 10 000), and slow (Ts = 20 000).
The fast/slow parameter trajectories were obtained by downsam-
pling/upsampling trajectories corresponding to medium speed
changes by the factor of 2.

The measurement/driving noise variance was set to σ2
e =

0.02. For the FIR system (52) this corresponds to SNR, measured
as E[(ϕT(t)θ(t))2]/σ2

e , approximately equal to 15 dB. In the
AR case, governed by (56), the analogously defined SNR is
time-varying and does not depend on σ2

e .
Identification was carried out using five algorithms: LBF,

fLBF, RLBF, fRLBF and the multi-scale wavelet (MW) algo-
rithm described in [16]. To compare the performance of the
aforementioned methods, we used the MSE index averaged
over time and over 100 independent realizations of the input
and/or noise sequences. For algorithms based on the local basis
function approach (polynomial basis, cosinusoidal window) the
width of the analysis window was set to K = 501 (k = 250).
The adaptive choice was confined to three estimators equipped
with m ∈ {5, 10, 20}. In all cases regularization was carried out
using Approach 1, after observing that the computationally more
involved Approach 2 yields almost identical results.

Following recommendations given in [17], the multi-scale
wavelet approach involved third, fourth and fifth order cardinal
B-splines and the resolution level was set to 3. The best subset
of 33 approximating wavelets was selected by the orthogonal
least squares algorithm and the number of wavelets – by the
well-known Akaike’s information criterion (AIC). The approx-
imation was carried out in intervals of length 501 using the
overlap-add approach (50 % overlap, Hann synthesis window).

Based on the simulation results, gathered in Table III, several
conclusions can be drawn. First, it can be seen that regularization
provides results that are almost always better than those ob-
tained for the corresponding algorithms without regularization.
Secondly, for both models the performance of the LBF/RLBF
algorithms and their fast versions fLBF/fRLBF is very similar
(which is quite surprising in the autoregressive case). As a matter
of fact, pretty often the fLBF/fRLBF methods yield results that
are better than those provided by the original LBF/RLBF algo-
rithms. Thirdly, the proposed adaptive approach yields results
that are almost always better than results provided by the best
algorithms with fixed settings. Finally, the proposed fRLBF
scheme in its adaptive version provides results that are almost
always better (often at least two times better in terms of MSE)
than those yielded by the MW approach – see e.g. Fig. 5.

Our second simulation experiment aimed at checking what
is the influence of the type of the applied functional basis on
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TABLE III
MEAN SQUARE PARAMETER ESTIMATION ERRORS OBTAINED FOR DIFFERENT IDENTIFICATION ALGORITHMS EQUIPPED WITH DIFFERENT NUMBER OF BASIS

FUNCTIONS (m) AND FOR AN ADAPTIVE CHOICE (A) OF THE NUMBER OF BASIS FUNCTIONS. MW DENOTES THE MULTI-SCALE WAVELET APPROACH. ALL

AVERAGES WERE COMPUTED FOR 100 PROCESS REALIZATIONS, TWO DIFFERENT PROCESS MODELS (FIR AND AR), AND THREE SPEEDS OF PARAMETER

VARIATION. THE BEST RESULTS IN EACH GROUP ARE SHOWN IN BOLDFACE

Fig. 5. Comparison of multi-scale wavelet estimates (two upper plots) and
adaptive fLBF estimates (two lower plots) obtained for a nonstationary AR signal
(k = 250, m = 10). Estimated trajectories (black lines) are superimposed on
true trajectories (red lines).

the estimation results. The experiment was conducted for the
polynomial basis (powers of time, m = 5, 10, 20), cosinusoidal
basis (m = 5, 10, 20) and prolate spheroidal basis [45] (Slepian
functions). In the latter case the basis set was enriched with a
constant function and the corresponding time half bandwidth
products were set to 2.5 (m = 4 + 1), 5 (m = 9 + 1) and 10
(m = 19 + 1), respectively.

The results obtained for order-adaptive versions of the
LBF/RLBF and fLBF/fRLBF algorithms fixed n and k, m̂(t) ∈
{5, 10, 20}) are presented in Table IV. It is clear that if the basis
is sufficiently “rich,” no matter which one is chosen the obtained
results are very similar and in all cases considerably better than
those yielded by the MW approach.

Remark 3: It should be stressed that for some choices of
the type and number of basis functions (e.g. polynomial ba-
sis and m ≥ 20) the appropriate implementation of identifica-
tion algorithms allows one to avoid excess numerical errors –
see [46] for a more detailed discussion of this important issue.
In our implementations we decided to use numerical procedures
based on Cholesky decomposition of the inverted matrices.
Slepian functions were generated using the MATLAB command
dpss.

The third simulation experiment was focused on an interesting
recent application – adaptive self-interference cancellation in
full-duplex (FD) underwater acoustic (UWA) communication
systems [38], [47]. FD UWA systems, designed to maximize
the limited capacity of acoustic links, simultaneously transmit
and receive data in the same frequency band. Due to the close
spacing of the transmit and receive antennas, the far-end sig-
nal is strongly contaminated by the so-called self-interference
introduced by the near-end transmitter. Self-interference is a
multipath propagation effect caused, among others, by multiple
reflections of the emitted signal from the water surface and/or
the bottom.



GAŃCZA et al.: REGULARIZED LOCAL BASIS FUNCTION APPROACH TO IDENTIFICATION OF NONSTATIONARY PROCESSES 1677

TABLE IV
MEAN SQUARE PARAMETER ESTIMATION ERRORS OBTAINED FOR DIFFERENT ORDER-ADAPTIVE IDENTIFICATION ALGORITHMS EQUIPPED WITH DIFFERENT SETS

OF BASIS FUNCTIONS: POLYNOMIAL (POWERS OF TIME), COSINUSOIDAL, AND SLEPIAN (PROLATE SPHEROIDAL). ALL AVERAGES WERE COMPUTED FOR 100
PROCESS REALIZATIONS, TWO DIFFERENT PROCESS MODELS (FIR AND AR), AND THREE SPEEDS OF PARAMETER VARIATION. THE BEST RESULTS IN EACH

COLUMN ARE SHOWN IN BOLDFACE

Following [47], the signal y(t) measured by the receive an-
tenna was modeled as the output of the 50-tap FIR filter

y(t) =

50∑
j=1

θj(t)u(t− j + 1) + e(t)

where u(t) denotes the emitted (near-end) signal and e(t) de-
notes a mixture of the far-end signal and the channel noise.
For simplicity, all signals and parameters were assumed to be
real-valued (extension to the complex-valued case is straightfor-
ward). Time variation of channel coefficients is caused by the
transmitter/receiver motion and/or by the changes in the propa-
gation medium. Note that in the case of FD UWA communication
the underlying goal of identification is not channel inversion
(since the signal {u(t)} is known), but extraction of the signal
{e(t)} from {y(t)}. This can be easily achieved if the instan-
taneous impulse response of the channel {θj(t), j = 1, . . . , 50}
is known or can be estimated with sufficient accuracy.

An interesting feature of this application is that it allows one
to work with a decision delay, which means that estimation of
channel parameters can be based not only on past signal samples
but also on a certain number of “future” (with respect to the
moment of interest) ones. Hence, channel identification can be
carried out using noncausal estimation algorithms, such as the
ones described in this paper.

In accordance with [47], channel coefficients were modeled
as lowpass signals

θj(t) = cjζj(t), j = 1, . . . , 50

where {ζj(t)}, j = 1, . . . , 50, denote mutually independent
unity-variance signals obtained by passing white noise through
a lowpass filter with cutoff frequency fmax = 0.001. Under
1 kHz sampling the corresponding bandwidth of channel coef-
ficient variation is 1 Hz, which can be regarded as fast changes
in the UWA case. The mutually independent random scaling
coefficients cj , j = 1, . . . , 50 were normally distributed cj ∼
N (0, σ2

j ), with decreasing variance profile σ2
j = (0.69)j−1

which reflects the decaying power delay profile caused by the
spreading and absorbtion loss; under such settings the ratio
between the variance of the latest arrival (j = 50) and that of

Fig. 6. Trajectories of the first, eleventh and twenty first parameter of the
simulated underwater acoustic channel.

the first arrival (j = 1) is equal to 80 dB. Fig. 6 shows typical
trajectories of selected impulse response coefficients (for a fixed
pattern of scaling coefficients) and Fig. 7 displays a typical
realization of the instantaneous impulse response (for fixed t).

The generated input signal was white binary u(t) = ±1 and
the signal e(t) was zero-mean white Gaussian with variance
σ2
e equal to 0.3, 0.03, 0.003 and 0.0003, which corresponds

to the signal-to-noise ratio equal to 10 dB, 20 dB, 30 dB and
40 dB, respectively. Identification was carried out using the
LBF, fLBF, RLBF and fRLBF algorithms (polynomial basis,
rectangular window) and their order-adaptive versions. The es-
timation design parameters were set to k = 250, m ∈ {1, 3, 5}
and λ0 = 0.96.

Performance was evaluated in terms of the normalized root
mean squared error measure of fit used in [24]

FIT(t) = 100

⎛⎝1−
[∑50

j=1 |θj(t)− θ̂j(t)|2∑50
j=1 |θj(t)− θ̄(t)|2

]1/2⎞⎠ (72)
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Fig. 7. A snapshot of the time-varying impulse response of the simulated
underwater communication channel.

TABLE V
FIT[%] SCORES OBTAINED FOR 4 SIGNAL-TO-NOISE RATIOS (SNR) AND

DIFFERENT NUMBER OF BASIS FUNCTIONS (m) FOR THE ALGORITHMS

DESCRIBED IN THE TEXT AND FOR THEIR ORDER-ADAPTIVE VERSIONS (A)

where θ̄(t) = 1
50

∑50
j=1 θj(t). The maximum value of FIT,

equal to 100, corresponds to the perfect match between the true
and estimated impulse response. The final scores were obtained
by combined time averaging (10 000 time steps) and ensemble
averaging (20 randomly drawn sets of scaling coefficients).

According to the results summarized in in Table V, regu-
larization improves channel identification scores in all cases
considered. As expected, the largest performance improvements
are observed for small values of SNR. Figure 8 shows FIT scores
obtained for the order-adaptive algorithms (SNR=10 dB) for
all 20 realizations of scaling coefficients. Note that regularized
algorithms RLBF/fRLBF yield consistently better results than
their not regularized versions LBF/fLBF, i.e., better not only in
the mean sense but also for every process realization.

The times needed to execute a single identification step (single
time update) using a computer equipped with the Intel Core i7
2.2 GHz processor (4 cores) were equal to 3.6 ms, 0.24 ms,

Fig. 8. FIT scores obtained for all 20 process realizations.

4.5 ms and 0.26 ms for the order-adaptive versions of the
algorithms LBF, fLBF, RLBF and fRLBF, respectively.

X. CONCLUSION

It was shown that performance of the local basis function es-
timators of linear time-varying systems/signals can be improved
using the regularization technique. The proposed identification
scheme is two-stage. At the first stage estimation is carried
out using the standard basis function approach. At the second
stage the regularized estimates are evaluated after replacing
the unknown optimal regularization hyperparameters with their
estimates obtained at the first stage. Finally, the computationally
fast and numerically robust version of the regularized estimator
is derived. It is shown that the resulting fast regularized local
basis function algorithm, in spite of its simplicity, has very good
parameter tracking capabilities, comparable with those of the
original scheme. If some prior knowledge on the evolution of
process parameters is available, e.g. if the correlation matrix
E[θ(t)θT(t)] is constant and known, as in some underwater
communication applications, regularization can be carried out
in a more sophisticated way. Such an application-oriented ap-
proach seems to be a promising direction for future research.
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APPENDIX I
[OUTLINE OF DERIVATION OF (23)]

Let

Qm|k(t) = Pm|k(t)− E[Pm|k(t)] =

k∑
i=−k

wk(i)[ϕ(t+ i)ϕT(t+ i)]⊗ [fm|k(i)fTm|k(i)]−ΦΦΦ0 ⊗ IIIm

=

k∑
i=−k

wk(i)[ϕ(t+ i)ϕT(t+ i)−ΦΦΦ0]⊗ [fm|k(i)fTm|k(i)].

Consider any element of the matrix Qm|k(t), namely

qm|k(t) = [Qm|k(t)]n(j1−1)+k1,n(j2−1)+k2

=

k∑
i=−k

wk(i)fj1|k(i)fj2|k(i)×

× [u(t+ i− k1 + 1)u(t+ i− k2 + 1)− [ru(k1 − k2)],

where 1 ≤ k1, k2 ≤ n, 1 ≤ j1, j2 ≤ m and {ru(τ)} denotes the
autocorrelation function of {u(t)}.

According to the assumption (A2) there exist constants
c1 > 0 and ζ ∈ (0, 1) such that |ru(τ)| ≤ c1ζ

|τ |, ∀τ. Since for
any zero-mean jointly Gaussian variables x1, . . . , x4 it holds
that [40]

E[x1x2x3x4] = E[x1x2]E[x3x4] + E[x1x3]E[x2x4]

+ E[x1x4]E[x2x3],

one obtains

E[q2m|k(t)]

=

k∑
i1=−k

k∑
i2=−k

wk(i1)wk(i2)fj1|k(i1)fj2|k(i1)fj1|k(i2)fj2|k(i2)

× [r2u(i1 − i2)+ru(i1 − i2+k1 − k2)ru(i1 − i2 + k2 − k1)].

It can be shown that if the basis and window functions are
obtained by sampling their continuous-time prototypes, there
exist constants c2 > 0 and k0 ≥ 1 such that for every k ≥ k0
[19] ∣∣fj|k(i)∣∣ ≤ c2√

k
, ∀i, 1 ≤ j ≤ m.

Using this upper bound, one arrives at

E[q2m|k(t)] ≤
2c21c

4
2

k2

k∑
i1=−k

k∑
i2=−k

ζ2|i1−i2| = O(1/k), ∀k ≥ k0,

which means that qm|k(t) converges to zero in the mean square
sense (and hence also in probability) as k grows to infinity.
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