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Abstract—In this work, we propose a novel strategy of adaptive
sparse array beamformer design, referred to as regularized
complementary antenna switching (RCAS), to swiftly adapt both
array configuration and excitation weights in accordance to the
dynamic environment for enhancing interference suppression. In
order to achieve an implementable design of array reconfigu-
ration, the RCAS is conducted in the framework of regularized
antenna switching, whereby the full array aperture is collectively
divided into separate groups and only one antenna in each
group is switched on to connect with the processing channel.
A set of deterministic complementary sparse arrays with good
quiescent beampatterns is first designed by RCAS and full array
data is collected by switching among them while maintaining
resilient interference suppression. Subsequently, adaptive sparse
array tailored for the specific environment is calculated and
reconfigured based on the information extracted from the full
array data. The RCAS is devised as an exclusive cardinality-
constrained optimization, which is reformulated by introduc-
ing an auxiliary variable combined with a piece-wise linear
function to approximate the l0-norm function. A regularization
formulation is proposed to solve the problem iteratively and
eliminate the requirement of feasible initial search point. A
rigorous theoretical analysis is conducted, which proves that the
proposed algorithm is essentially an equivalent transformation
of the original cardinality-constrained optimization. Simulation
results validate the effectiveness of the proposed RCAS strategy.

Index Terms—Sparse array, Situation awareness, Adaptive
beamformer, Quiescent pattern, Regularized antenna switching

I. INTRODUCTION

A. Background

Antenna arrays have found extensive use for several decades
in diverse applications, such as radar, sonar, telescope and
communications to list a few [1]–[5]. Antenna arrays sample
signals in spatial domain and weight coefficients are then
assigned to the received signals to achieve spatial filtering,
which makes it possible to receive the desired signal from a
particular direction while simultaneously blocking the inter-
ferences from other directions [6]–[8]. Spatial filtering can be
generally classified into two types: deterministic and adaptive.
The former is also referred to as beampattern synthesis,
which focuses on synthesizing beampatterns with prescribed
mainlobe width and reduced sidelobe levels [9]–[14]. Adap-
tive beamforming extracts noise characteristics and intruding
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interference statistics from the received data and forms nulls
towards the interferences automatically [15]–[18]. It has been
demonstrated in [19], [20] that adjusting excitation weights
only is not adequate to combat mainlobe interferences. Array
configurations are important spatial degrees of freedom (DoFs)
for separating sources from interferences and its optimality
varies with environmental scenario. Driven by the importance
of array configurations, research into sparse array design tech-
niques tailored for different applications continue unabated.

Sparse arrays comprise a set of judiciously activated anten-
nas that maximizes the performance, while lowering system
overheads and reducing computational complexity. Compared
with uniformly spaced arrays, sparse arrays are capable of
either increasing spatial resolution by enlarging array aperture
given a fixed number of antennas or significantly reducing
the cost while maximally preserving the performance [19],
[21]–[25]. Sparse arrays designed in terms of beampattern
synthesis are termed as deterministic sparse arrays, the antenna
positions of which are fixed once calculated off-line. Although
deterministic sparse arrays are blind to the situation, they
possess resilient though average interference suppression per-
formance regardless of surrounding environment, and thus are
good choices when no environmental information is available.
Sparse arrays designed in terms of maximizing output signal-
to-interference-plus-noise-ratio (MaxSINR) are referred to as
adaptive sparse arrays, where a subset of different sensors
are adaptively switched on in accordance with changing en-
vironmental situations. Therefore, adaptive sparse arrays are
superior to deterministic arrays in the metric of interference
suppression thanks to their desirable situational awareness and
exclusive focus on strong interferences [20], [26]–[28].

B. Relevant Work on Sparse Array Design

Deterministic sparse array design has been extensively
investigated in the literature, which aims at synthesizing a
desired beampattern with the smallest number of antennas us-
ing sparsity-promoting algorithms, such as reweighted l1-norm
[9], Bayesian inference [10], soft-thresholding shrinkage [13],
and other compressive sensing methods [11], [29]. The opti-
mality of deterministic sparse arrays is beampattern-specific,
for example, optimal array configurations vary with the steer-
ing direction. Our previous work in [30], [31] inspected
the common deterministic sparse array design for multiple
switched beams in both cases of fully and partially-connected
radio frequency (RF) switch network. Fully-connected switch
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network can facilitate the inter-connection of any input port to
all output ports [32]. While partially-connected switch network
constrains regularized antenna switching, which divides the
full array into contiguous groups and precisely one antenna
is selected in each group to compose the sparse array. The
regularization of switched antennas is more practical in terms
of circuit routing, connectivity and array calibration [33]
and furthermore restricts the maximum inter-element spacing,
which, in turn, reduces the unwanted sidelobes. Other types
of deterministic sparse arrays, such as minimum redundancy
arrays (MRAs) and nested arrays [34], are designed to enable
the estimation of more sources than physical sensors. However,
they might exhibit significantly low array gain and are not
suitable for interference mitigation [34]–[36]. Nevertheless, no
work has examined the regularized splitting of a large array
into separate deterministic sparse arrays with complementary
configurations, while collectively spanning the full aperture,
and having at the same time well-controlled quiescent pat-
terns. The solution to this problem constitutes the first novel
contribution of this work.

Although adaptive sparse arrays exhibit advantages in terms
of interference suppression, their practical implementation
has been impeded by the stringent requirement of timely
update of environmental information sensed by all antennas.
To address this impediment, our previous work adopted a
two-step adaptive filtering strategy, where the sparse array
optimal for environmental sensing is first switched on and
a different sparse array for adaptive beamforming based on
the sensed information is reconfigured in the second step. The
work in [27] configured a fully-augmentable sparse array to
estimate the received data correlation matrix corresponding to
the full array aperture, and then reconfigured another sparse
array along with weights simultaneously for beamforming.
The subsequent work in [37] utilized matrix completion to
interpolate all missing spatial lags, whereas the accuracy of
matrix completion heavily affects the sparse array design. The
controversy of these strategies is that neither sparse arrays op-
timal for environmental sensing nor fully-augmentable sparse
arrays are good configurations for beamforming. Thereby, the
desired signal might get lost in the sensing stage and difficult
to recover it in the following stages. It is favoured that the
system could maintain acceptable interference suppression and
normal functionality even in the sensing stage and make swift
array reconfiguration upon situational changes. The solution
to this problem is the second novel contribution of this work.

C. Proposed RCAS Strategy

In this work, we investigate adaptive sparse array beam-
former design and propose a novel regularized complementary
antenna switching (RCAS) strategy. The difference between
the proposed RCAS and our previous work is that (1) It does
not require the assumption of known environmental infor-
mation by alternate switching among complementary sparse
arrays; (2) the filtering performance and normal functionality
of the system are guaranteed even in the sensing stage;
(3) regularized antenna switching is considered instead of
unrestricted antenna selection to address practical circuitry
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Fig. 1: The hardware schematic of RCAS strategy: N antennas
are divided into L groups and each group comprises M
antennas. Only one antenna in each group is switched on.
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Fig. 2: The workflow of the RCAS strategy: Complementary
sparse arrays are sequentially switched on for environmental
sensing, followed by adaptive sparse array design.

issues and limitation on inter-element spacing. The hardware
schematic of the RCAS is illustrated in Fig. 1. A large array
of N uniformly spaced antennas is divided into L groups and
each group contains M antennas. There is one front-end pro-
cessing channel in each group, and the RF switch can connect
any antenna in this group with the corresponding front-end
within a sufficiently small time. The signal processing unit is
responsible for spatial filtering and information extraction, and
data storage will be started when the system is working in the
sensing stage. Antenna selection unit calculates and determines
the optimal array configuration in the specific environment and
mandates the status change of the RF switches.

The proposed RCAS comprises two steps, deterministic
complementary sparse array (DCSA) design, addressed in
Section III, and regularized adaptive sparse array (RASA)
design, addressed in Section IV. In the first step, the full
array is divided into complementary sparse arrays by regu-
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larized antenna switching, all with good quiescent patterns
and collectively spanning the full aperture. In the second
step, the optimum sparse array for adaptive beamforming is
then calculated and reconfigured based on the information
sensed by all antennas. The workflow of the RCAS strategy
is depicted in Fig. 2. In the case of “cold start”, the set of
complementary deterministic sparse arrays are first sequen-
tially switched on for environmental sensing. The adaptive
sparse array that is optimum in the specific environment can
then be calculated and reconfigured, and spatial filtering is
conducted to suppress the interferences. When spatial filtering
experiences dramatic performance degradation (for example
output SINR has dropped by 3dB), the currently employed
adaptive sparse array loses its optimality for the specific en-
vironment. Complementary sparse arrays can be reconfigured
back again for sensing the environmental dynamics, and the
corresponding optimum adaptive sparse array needs to be re-
designed. Note that spatial filtering, addressed in Section II,
is continuously implemented on the configured sparse arrays
even in the sensing stage such that the target of interest is
always locked in focus.

In addition to the proposed RCAS strategy, we have made
contributions to the methodologies embedded in the strategy,
which are summarized as follows:
• We introduce an auxiliary boolean variable combined

with a piece-wise linear function to effectively approx-
imate the cardinality constraint.

• We derive an affine upper bound to iteratively relax the
non-convex constraints and a regularized formulation to
eliminate the requirement of feasible start search point;

• We conduct theoretical analysis and prove that the pro-
posed algorithm is an equivalent transformation of the
original cardinality-constrained optimization.

In addition to the three main sections highlighted in Fig.
2, the rest of the paper is organized as follows: Simulation
results, presented in section V, validate the effectiveness of
proposed strategy. Finally, concluding remarks are provided
in section VI.

II. REVIEW OF SPATIAL FILTERING TECHNIQUES

In this section, a full array is assumed and three beamform-
ing techniques are reviewed as follows.

A. Deterministic Beamforming

Assume a linear array with N antennas placed at the
positions of [x1, . . . , xN ] with an inter-element spacing of d.
Deterministic beamforming essentially focuses on synthesiz-
ing a desired beampattern, which can be formulated as,

min
w
‖wHAs − f‖22, s.t. wHa(θ0) = 1, (1)

where w ∈ CN is the N -dimensional weight coefficient vector
with C denoting the set of complex number and a(θ0) is the
steering vector towards the desired direction of θ0,

a(θ0) = [ejk0dx1 sin θ0 , . . . , ejk0dxN sin θ0 ]T , (2)

where wavenumber is defined as k0 = 2π/λ with λ denoting
wavelength and the steering direction θ0 is measured relative

to the array broadside. Also, As ∈ CN×K denotes the array
manifold matrix of sidelobe region Ωs = [θ1, . . . , θK ], and f ∈
C1×K represents the desired complex sidelobe beampattern,
which can be expressed as the element-wise product between
beampattern magnitude and phase. That is f = fd � fp, where
� denotes element-wise product. The beampattern phase fp
can be fully employed as additional DoFs to enhance the
beampattern synthesis and can be iteratively updated as,

f(k+1)
p = f(k) � |f(k)|, (3)

where the superscript (k) denotes the kth iteration and the
operator � denotes element-wise division. The complex beam-
pattern in the (k + 1)th iteration is updated as f(k+1) =
fd � f(k+1)

p . It was proved in [13] that this updating rule will
converge to a non-differential power pattern synthesis, i.e.,
min ‖|wHAs| − fd‖2. Note that the beampattern f is the only
row vector and others are all column vectors in this paper.

Define the following matrix and vector,

B =

[
ffH −fAHs
−AsfH AsAHs

]
, (4)

and w̃ = [1,wT ]T . Then Eq. (1) can be rewritten as,

min
w̃

w̃HBw̃, s.t. w̃HC = g, (5)

where C = [ã(θ0), e] with ã(θ0) = [−1, aT (θ0)]T is the
extended steering vector, e ∈ {0, 1}(N+1)×1 has a single one at
the first entry and other N entries being zero, and g = [0, 1]T .
The optimal weight vector can be obtained from Lagrangian
multiplier method, that is,

w̃o = B−1C(CHB−1C)−1g. (6)

Essentially, a weak interference is reckoned to come from
each angle in the sidelobe region by deterministic beamformer,
which attenuates all of them equally and simultaneously by a
factor of fd, while maintaining a unit directional gain towards
the desired signal [7], [8].

B. Adaptive Beamfoming

The well-known adaptive Capon beamformer aims to min-
imize the array output power while maintaining a unit gain
towards the look direction [7],

min
w

wHRw, s.t. wHa(θ0) = 1, (7)

where R ∈ CN×N is the covariance matrix of the received
data by the employed antenna array and can be theoretically
written as,

R = σ2
sa(θ0)aH(θ0) +

J∑
j=1

σ2
j a(θj)aH(θj) + σ2

nI, (8)

where J is the number of interferences, and σ2
s , σ2

j and σ2
n

denote the power of source, the jth interference and white
noise, respectively. The Capon beamformer weight vector is,

wo = ηR−1a(θ0), (9)

where η = 1/aH(θ0)R−1a(θ0). Capon beamformer empha-
sizes on the strong interferences in order to minimize the total
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output power, which, in turn, unavoidably lifts the sidelobe
level in other angular regions as a result of energy suppression
towards the interferences’ direction.

C. Combined Adaptive and Deterministic Beamforming

Although adaptive beamforming is superior to deterministic
beamforming in terms of MaxSINR, high sidelobes of adaptive
beamforming constitute a potential nuisance, especially, when
directional interferers are suddenly turned on. As such, it is
crucial to combine the merits of two types of sparse arrays,
those are MaxSINR and well-controlled sidelobes. Inspired
by our previous work in [38], a combined beamformer with a
regularized adaptive and deterministic objectives is formulated
as follows,

min
w

wHRw + β‖wHAs − f‖22, s.t. wHa(θ0) = 1, (10)

where the trade-off parameter β is adjusted to control the
relative emphasis between quiescent pattern and output power.
Combining Eqs. (5), (7) and (10) rewrites the formulation as,

min
w̃

w̃HRbw̃, s.t. w̃HC = g, (11)

where Rb = R̃ + βB with

R̃ =

[
0 0TN

0N R

]
. (12)

Here, 0N is a N-dimensional vector of all zeros. The optimal
weight vector is therefore,

w̃o = R−1
b C(CHR−1

b C)−1g. (13)

By comparing Eqs. (13) with (6), we can observe that com-
bined beamformer is capable of maintaining well-controlled
beampattern while suppressing the interferences by adjusting
the trade-off parameter β. When β is small, the combined
beamformer prioritizes strong interferences over white noise
for achieving MaxSINR. Otherwise, the minimization of white
noise gain, that is sidelobe level, becomes a superior task.

D. Sparse Array Beamformer Design

As mentioned in the Sect. I.A, sparse array beamformer
design techniques are generally divided into deterministic and
adaptive techniques. Deterministic sparse array design aims to
minimize the sidelobe level leveraging both array configuration
and beamforming weights. No environmental information is
required by the deterministic sparse array design, as it views all
the sidelobe angular region equally important. Thus, determin-
istic sparse array is capable of suppressing the interferences
from arbitrary directions, though the null depth may not be
sufficient for MaxSINR. In a nutshell, deterministic sparse
arrays possess resilient interference suppression performance
regardless of surrounding environment. While adaptive sparse
array is designed in terms of MaxSINR, which focuses on
nulling strong interferences and thus mandates timely environ-
mental information, such as the total number of interferences
J and their respective arrival angles θj , j = 1, . . . , J . The
environmental situation is usually unknown and needs to be
estimated periodically, especially in dynamic environment.

The lack of environmental information is regarded as an
impediment to the optimum design of adaptive sparse arrays,
which is solved by the proposed RCAS strategy in this work.

III. DETERMINISTIC COMPLEMENTARY SPARSE ARRAY
DESIGN

In the first step of the proposed RCAS strategy, the full
array is divided into separate complementary sparse arrays all
with good quiescent patterns, as a result, switching among
them can collect the data of full array while maintaining a
moderate interference suppression performance. Note that the
set of complementary sparse arrays are fixed once designed,
regardless of environmental dynamics. We delineate the design
of deterministic complementary sparse arrays in this section.

The N -antenna full array is split into M sparse arrays
by regularized antenna switching and each array consists
of L antennas. Note that these M complementary sparse
arrays do not have overlapping antennas and each array is
capable of synthesizing a well-controlled quiescent pattern.
The regularized array splitting can be formulated as,

min
w1,...,wM

M∑
m=1

‖wHmAs − f‖2 (14)

s.t. wHma(θ0) = 1,m = 1, . . . ,M,

‖Plwm‖0 ≤ 1, l = 1, . . . , L,m = 1, . . . ,M
M∑
m=1

‖qTi wm‖0 ≤ 1, i = 1, . . . , N

where f ∈ C1×K is a row vector of the desired beampattern in
the sidelobe angular region, and wm ∈ CN×1,m = 1, . . . ,M
is a sparse weight vector with only L non-zero coefficients
corresponding to L selected antennas of the mth sparse array.
The group selection matrix Pl ∈ {0, 1}M×N are all zeros
except those entries of Pl(1, 1 + (l − 1)M),Pl(2, 2 + (l −
1)M), . . . ,Pl(M, lM). The vector qi ∈ {0, 1}N×1 are all ze-
ros except for the ith entry being one. The last two constraints
of Eq. (14) are combined together to restrain that only one
antenna in each group is selected for each sparse array and no
overlapping antennas are selected for different sparse arrays.
For the split M sparse arrays, the same quiescent beampattern
is desired that the main beams be steered towards θ0 with the
prescribed sidelobes. For the sake of an easy exposition, we
mostly omit the intended angle θ0 in the rest of the paper,
unless we specifically refer to a particular angle.

Put the M beamforming weight vectors into a matrix W =
[w1, . . . ,wM ] ∈ CN×M . Equivalently, problem in Eq. (14)
can be rewritten as,

(P0) min
W

‖WHAs − F‖F (15)

s.t. WHa = 1M ,
‖PlWcm‖0 ≤ 1, l = 1, . . . , L,m = 1, . . . ,M

‖qTi W‖0 ≤ 1, i = 1, . . . , N

where F = 1M f with 1M being a M -dimensional column
vector of all ones, ‖ • ‖F is the Frobenius norm of a matrix,
and cm ∈ {0, 1}M is a column selection vector with all entries
being zero except for the mth entry being one.
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Fig. 3: The derivation procedure of deterministic complemen-
tary sparse array design.

The notorious cardinality constraints in the third and fourth
lines of Eq. (15) render the problem difficult to solve. In the
following, we propose an algorithm to solve the cardinality-
constrained optimization according to the derivation procedure
illustrated in Fig. 3, where P0 → AP0: an auxiliary variable is
introduced to transform the complex-cardinality constraint to
the real domain; AP0 → APτ : a piece-wise linear function is
utilized to approximate the l0-norm; APτ → BPτ : an affine
upper bound is derived to iteratively relax the non-convex
constraints; BPτ → RPτ : a regularized penalty is formulated
to eliminate the requirement of feasible start search points.

A. Introduction of Auxiliary Variables

As the problem (P0) is formulated in the complex domain,
we first introduce an auxiliary variable Z ∈ RN×M+ to trans-
form the complex cardinality constraint to the real domain.
Here, R+ denotes the set of non-negative numbers. That is,

(AP0) min
W,Z

‖WHAs − F‖F (16a)

s.t. WHa = 1M ,
|W| ≤ Z, (16b)
‖PlZcm‖0 ≤ 1, (16c)
l = 1, . . . , L,m = 1, . . . ,M

1TMPlZcm = 1, (16d)
l = 1, . . . , L,m = 1, . . . ,M

Z1M = 1N , (16e)

where the inequality constraint in Eq. (16b) is element-wise,
i.e., the absolute value of each element of W is bounded by the
corresponding element of Z. Constraints in Eqs. (16c)-(16e)
combined to restrain that different antennas are selected by
the M sparse arrays in each group. Furthermore, we can infer
Z ∈ {0, 1}N×M from the constraints in Eqs. (16c) and (16d),
which implies that Z is an N ×M -dimensional matrix with
entries being either 0 or 1. To put it differently, the binary
property of the auxiliary variable Z is implicitly imposed in
the formulation (AP0). We can observe from problem (AP0)
that there is only one cardinality constraint left by introducing
the auxiliary variable Z.

Clearly, W solves (P0) if and only if (W,Z) solves (AP0)
with Z = sign(|W|), where sign(·) = 0 only when · = 0,
otherwise sign(·) = 1. The proof is as follows: (1) Suppose
that W solves (P0), then set Z = sign(|W|) and (W,Z) solves
(AP0) as well. (2) Suppose that (W,Z) solves (AP0). When
Zij = 1, Wij must be non-zero for minimizing the objective
function, whereas when Zij = 0, we must have Wij = 0 for
all i = 1, . . . , N, j = 1, . . . ,M . Therefore, W solves (P0) as
well. This proves the equivalence between (P0) and (AP0).

B. Approximation to Cardinality Constraints

As the l0-norm is a notorious cardinality constraint and the
problem involved is difficult to solve, we resort to a piece-wise
linear function to approximate it. Assume that b ∈ RM+ is a
M -dimensional non-negative real vector, and then the function
is defined as,

‖b‖0 ≈ φ(b, τ ) =

M∑
i=1

(1/τi)(bi − (bi − τi)+). (17)

where τ = [τ1, . . . , τM ]T > 0 is a threshold vector, and (bi−
τi)

+ = max{bi − τi, 0}. Regarding to the properties of the
approximation function φ(b, τ ), we have the following lemma.

Lemma 1:
(1) For any τ > 0, φ(b, τ ) is a piecewise linear under-

estimator of ‖b‖0, i.e. φ(b, τ ) ≤ ‖b‖0,∀b ∈ RM+ , and φ(b, τ )
is a non-increasing function of τ .

(2) For any fixed b ∈ RM+ , it holds that

lim
τ→0+

φ(b, τ ) = ‖b‖0. (18)

(3) The sub-gradient of the function φ(b, τ ) is g(b, τ ) =
∂φ(b,τ )
∂b = [∂φ(b,τ )

b1
, · · · , ∂φ(b,τ )

bM
]T , where

∂φ(b, τ )

bi
=


0, if bi > τi

[0, 1/τi], if bi = τi

1/τi, if bi < τi

(19)

and [0, 1/τi] denotes any number between 0 and 1/τi. The
proof of Lemma 1 is provided in Appendix A.

Utilizing the approximation function of the l0-norm in
Lemma 1, problem (AP0) in Eq. (16a) can be expressed as,

(APτ ) min
W,Z

‖WHAs − F‖F (20a)

s.t. WHa = 1M ,
|W| ≤ Z, (20b)
φ(PlZcm,PlΠcm) ≤ 1, (20c)
l = 1, . . . , L,m = 1, . . . ,M

1TMPlZcm = 1, (20d)
l = 1, . . . , L,m = 1, . . . ,M

Z1M = 1N . (20e)

Here, Π ∈ RN×M+ is the threshold matrix. The relationship
between (AP0) and (APτ ) is given in Theorem 1.

Theorem 1: When the threshold matrix Π < 1 (that is,
Πi,j < 1,∀i = 1, . . . , N, j = 1, . . . ,M ), the formulation
(APτ ) is equivalent to the formulation (AP0).

The proof of Theorem 1 is provided in Appendix B.

C. Affine Upper Bound

As proved in Lemma 1, the approximation function φ(b, τ )
is concave with respect to b, thus the relaxed cardinality
constraint in (APτ ) is still nonconvex. We then resort to the
following affine function to iteratively upper-bound φ(b, τ ),

φ(b, τ ) ≤ φ̄(b; b0, τ ) = φ(b0, τ ) + gT (b0, τ )(b− b0), (21)
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where g(b0, τ ) = [ ∂φ∂b1 , . . . ,
∂φ
∂bM

]T
∣∣
b0

denotes the sub-gradient
of function φ(b, τ ) evaluated at the point b0 and its definition
is provided in the Lemma 1(3). Tracing back to problem
(APτ ), the subgradient of the function φ(PlZcm,PlΠcm) with
respect to the variable Z is,

∂φ(PlZcm,PlΠcm)

∂Z
= PTl r̃m,lcTm, (22)

where r̃m,l =
∑M
i=1 g(bi, τi)ri with bi = rTi PlZcm and τi =

rTi PlΠcm, and ri ∈ {0, 1}M×1 is a row selection vector with
all entries being zero except for the ith entry. The proof of
Eq. (22) is provided in Appendix VII-C.

Substituting b = PlZcm and b0 = PlZ0cm into Eq. (21)
and utilizing the gradient in Eq. (22), we have that

φ(PlZcm,PlΠcm) ≤ φ̄(PlZcm; PlZ0cm,PlΠcm),(23)
= φ(PlZ0cm,PlΠcm)

+ tr{(cmr̃Tm,lPl)(Z− Z0)}.

Here, the variable changes from the vector b to the matrix Z,
thus the trace operator tr(·) is utilized instead of inner product.

Utilizing the upper bound in Eq. (23) to Eq. (20c) yields,

(BPτ ) min
W,Z

‖WHAs − F‖F (24)

s.t. WHa = 1M ,
|W| ≤ Z,
φ(PlZ0cm,PlΠcm)

+tr{(cmr̃Tm,lPl)(Z− Z0)} ≤ 1,

l = 1, . . . , L,m = 1, . . . ,M

1TMPlZcm = 1, l = 1, . . . , L,m = 1, . . . ,M

Z1M = 1N ,

The following proposition proves that the problem (BPτ )
is equivalent to problem (APτ ).

Proposition 1: When the initial search point Z(0) for solving
(BPτ ) is feasible for (APτ ), the problem (BPτ ) will converge
to the problem (APτ ) iteratively.

The proof of Proposition 1 is shown in Appendix D.

D. Penalty Regularization

The main drawback of the formulation (BPτ ) is that the
initial search point is required to be feasible to (APτ ). We
next formulate an extension of (BPτ ), which is capable of
removing the requirement of an feasible start point. We add
a penalty regularization by removing the upper bound of the
piece-wise linear approximation function in the fourth line of
Eq. (24) to the objective function, that is,

(RPτ ) min
W,Z
‖WHAs − F‖F + ρ

L∑
l=1

M∑
m=1

tr{(cmr̃Tm,lPl)Z}

s.t. WHa = 1M , (25)
|W| ≤ Z,
1TMPlZcm = 1, l = 1, . . . , L,m = 1, . . . ,M

Z1M = 1N ,

where ρ is a predetermined parameter. Note that the regular-
ized penalty in the objective of (RPτ ) removes the constant
terms φ(PlZ0cm, τ )−tr{(cmr̃Tm,lPl)Z0} in the third constraint
of (BPτ ). Observe that for sufficiently large ρ, the second term
in the objective function of (RPτ ) becomes hard constraints
and the two problems (RPτ ) and (BPτ ) are equivalent [39].
Assume that Z(k) is the returned solution to (RPτ ) in the kth
iteration, and Z(k) is infeasible to (APτ ). That is,

φ̄(Z(k); Z(k),Π) = φ(Z(k),Π) > 1. (26)

Since φ̄(Z; Z(k),Π) is decreasing iteratively for sufficiently
large ρ, i.e.,

φ̄(Z(k+1); Z(k),Π) ≤ φ̄(Z(k); Z(k),Π). (27)

The concavity of the function φ implies that

φ(Z,Π) ≤ φ̄(Z; Z(k),Π). (28)

Combining Eqs.(27) and (28), we obtain that,

φ(Z(k+1),Π) ≤ φ(Z(k),Π). (29)

We can argue from Eq. (29) that the approximated cardinality
function is decreasing iteratively. When φ(Z(k),Π) decreases
to 1, Z(k) becomes feasible to (APτ ), the problem (RPτ ) will
converge to the problem (APτ ) according to Proposition 1.

Algorithm 1: Deterministic Complementary Sparse
Array (DCSA) Design

Input : Parameter κ = 0.5, ζ = 0.001, k=0, trade-off
parameter ρ and desired beampattern
F = Fd � Fp with Fp = 1 and Fd specifies
desired sidelobe level.

Output: A set of complementary sparse arrays
denoted by Z.

1 Initialize the selection matrix Z(0) ∈ [0, 1]N×M ,
2 repeat
3 (1) Calculate the threshold matrix Π,

Πi,j =

{
Z

(k)
i,j − ζ, if Z(k)

i,j ≥ κ,
Z

(k)
i,j + ζ, if Z(k)

i,j < κ,
(30)

for i = 1, . . . , N and j = 1, . . . ,M .
4 (2) Calculate r̃m,l,m = 1, . . . ,M, l = 1, . . . , L

according to the following formula,

r̃m,l =

M∑
i=1

g(zi, τi)ri,

where zi = rTi PlZ(k)cm, τi = rTi PlΠcm and,

g(zi, τi) =

{
0 if zi > τi,

1/τi if zi ≤ τi.

(3) Solve problem (RPτ ) based on Z(k) to get
(W(k+1),Z(k+1)), set iteration number k = k+1,

5 (4) Update Fp = (W(k+1)HAs)� |W(k+1)HAs|
and F = Fd � Fp.

6 until ‖W(k+1) −W(k)‖F is sufficiently small;
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We then propose deterministic complementary sparse array
design in Algorithm 1, which successively solves the problem
(BPτ ) and generates a sequence of {W(k),Z(k)}. Proceeding
from Eq. (3), the updating formula of desired beampattern F
is Fp = (W(k+1)HAs)� |W(k+1)HAs| and F = Fd � Fp. To
better approximate the l0-norm, the threshold Π ∈ RN×M+ is
updated iteratively according to Z in the previous iteration, per
Eq. (30) in line 3. The upper bound of the approximated cardi-
nality constraints in (BPτ ) is tight only in the neighbourhood
of the initial point Z0, which renders the proposed algorithm
a local heuristic [40], and thus, the final solution depends on
the choice of the initial point. We can therefore initialize the
algorithm with different initial points Z(0) randomly from the
range [0, 1] and take the one with the lowest objective value
over different runs as the final solution.

IV. REGULARIZED ADAPTIVE SPARSE ARRAY DESIGN

In the second step of the RCAS, the adaptive sparse array
beamformer for the specific environment can then be calcu-
lated and reconfigured. The received data of the full array can
be obtained by switching between the set of complementary
sparse arrays designed in Sect. III. Specifically, when each
sparse array is switched on, a length of T samples are obtained
and stored. After MT sampling intervals, the data of the full
array is obtained and stacked into a matrix Y ∈ CN×T . The
covariance of the full array is then Rf = (1/T )YYH . Based
on the covariance, the optimum sparse array for combined
beamforming as revisited in Sect. II-C can be obtained by,

min
w

wHRfw + β‖wHAs − f‖22, (31)

s.t. wHa(θ0) = 1, ‖Plw‖0 ≤ 1, l ≤ 1, . . . , L,

where the second constraint is imposed to guarantee only one
antenna is switched on in each group. Utilizing the same
derivation procedure shown in Fig. 3, the problem is first
transformed into the following formulation by introducing an
auxiliary variable z,

min
w,z

wHRfw + β‖wHAs − f‖22, (32)

s.t. wHa(θ0) = 1, |w| ≤ z,
1TMPlz = 1, l = 1, . . . , L,

‖Plz‖0 ≤ 1, l = 1, . . . , L,

where z ∈ {0, 1}N is the selection vector and bounds the
absolute value of w. Utilizing the piece-wise linear function
to approximate the l0-norm and upper-bounding the concave
approximation function iteratively yield,

min
w,z

wHRfw + β‖wHAs − f‖22, (33)

s.t. wHa(θ0) = 1, |w| ≤ z,
1TMPlz = 1, l = 1, . . . , L,

φ(Plz(k),Plτ ) + gT (Plz(k),Plτ )Pl(z− z(k)) ≤ 1,

l = 1, . . . , L

where g(Plz(k),Plτ ) is the gradient vector as defined in
Lemma 1(3) and τ ∈ RN+ is an N -dimensional threshold

vector. Similar to (RPτ ), we remove the third set of constraints
as regularized penalties to the objective as follows,

min
w,z

wHRfw + β‖wHAs − f‖22 + ρgT (z(k), τ )z

s.t. wHa(θ0) = 1, |w| ≤ z,
1TMPlz = 1, l = 1, . . . , L, (34)

where
∑L
l=1 gT (Plz(k),Plτ )Plz = gT (z(k), τ )z utilizing the

definition of the matrix Pl, l = 1, . . . , L. As complementary
sparse arrays are deterministic design, it is acceptable to try
different initial search points to secure the final optimum. For
the design of adaptive sparse array, a good initial search point
should be selected because of the requirement of real-time
reconfiguration. The selection variable z can be initialized by
a reweighted l1-norm minimization [41]. The optimization in
the kth iteration is formulated as,

min
w,̄z

wHRfw + β‖wHAs − f‖22 + ρcT (z̄(k))z̄

s.t. wHa(θ0) = 1, |w| ≤ z̄, (35)

where z̄ ∈ {0, 1}N is the antenna selection vector and
c(z̄(k)) = 1N � (z̄(k) + γ) with γ a small value for preventing
explosion. Though formulation in Eq. (35) is robust against
the choice of initial search point by initializing c = 1N , it
fails to control the cardinality of the selection vector. The
detailed implementation procedure of regularized adaptive
sparse array (RASA) design is presented in Algorithm 2.
When the iterative minimization of Eq. (35) converges, the
obtained selection vector z̄(k+1) can be used as an initial point
of Eq. (33). Though z̄(k+1) does not satisfy the regularized
antenna positions, the iterative optimization of Eq. (34) will
still converge as proved by Proposition 1.

V. SIMULATIONS

Extensive simulation results are presented in this section
to validate the proposed strategy for adaptive sparse array
beamformer design. We first demonstrate the effectiveness
of proposed DCSA algorithm for solving the cardinality-
constrained optimization problem, followed by RCAS strategy
validation in both static and dynamic environment.

A. Algorithm Validation

First, we utilize a small array to validate the effectiveness of
our proposed algorithm for solving the cardinality-constrained
optimization problem. Assume a uniform linear array (ULA)
comprising 16 antennas with an inter-element spacing of a
quarter wavelength. This linear array is divided into 8 groups
and each group contains two consecutive antennas. There are
totally 8 front-ends installed and each front-end is responsible
to connect with the two adjacent antennas in one group. We
split this linear array into two sparse arrays through regularized
antenna switching and each sparse array comprises 8 elements.
The array is steered towards the broadside direction and the
sidelobe angular region is defined as [−90◦,−12◦]∪ [12◦, 90◦]
and the desired sidelobe level is −15dB. It is desirable that
both split sparse arrays exhibit good quiescent beampatterns.
As there are 128 different splitting (resulting in 128 pairs of
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Algorithm 2: Regularized Adaptive Sparse Array
(RASA) Design

Input : A set of complementary sparse arrays Z
designed by DCSA and parameter β.

Output: Optimum adaptive sparse array z.
1 for m = 1, . . . ,M do

• Switch on the mth quiescent sparse array;
• Implement spatial filtering per Eq. (13);
• Collect T samples and store in the matrix Y;

2 end
3 Calculate the covariance Rf = (1/T )YYH ;
4 Set iteration number k = 0 and initialize z̄(k) = 1;
5 repeat
6 Calculate c(z̄(k)) = 1N � (z̄(k) + γ);
7 Solve Eq. (35) to get z̄(k+1) and k = k + 1;
8 until ‖z̄(k+1) − z̄(k)‖2 is sufficiently small;
9 Set iteration number k = 0 and z(k) = z̄(k+1);

10 repeat
11 Update τ according to

τn =

{
z

(k)
n − ζ, if z(k)

n ≥ κ,
z

(k)
n + ζ, if z(k)

n < κ,
(36)

Calculate g(z(k), τ ) per Eq. (19);
12 Solve Eq. (34) to get z(k+1) and k = k + 1;
13 until ‖z(k+1) − z(k)‖2 is sufficiently small;

complementary sparse arrays) in total, we enumerate the peak
sidelobe levels (PSLs) of each pair among these 128 pairs for
the lowest one. The optimum pair of sparse arrays, named as
array 1 and 2, are shown in the upper plot of Fig. 4, followed
by the worst pair of splitting. Clearly, arrays 1 and 2 are the
same except of a reversal antenna placement. We then run
Algorithm 1, and the finally converged splitting is shown in
the lower plot of Fig. 4. The quiescent beampatterns of these
four sparse arrays are depicted in Fig. 5, where the worst pair
of splitting is plotted as well. We can see that the PSL of the
first pair returned by enumeration is -15dB, while that of the
second pair returned by Algorithm 1 is slightly larger than -
15dB. Although inferior to the global optimum splitting, the
proposed cardinality-constrained optimization algorithm could
seek a sub-optimal solution with an acceptable performance.

We continue to investigate the convergence performance of
the proposed algorithm. The trade-off parameter in (RPτ ) is
first set as ρ = 1 in this considered example. We plot two parts
of the objective function in (RPτ ), those are ‖WHAs − F‖F
and ‖Z(k+1)−Z(k)‖F, versus the iteration number. The results
are plotted in Fig. 6. We can see that the auxiliary variable
Z requires maximally three iterations to converge, while the
beamforming weight matrix W requires more iterations. The
reason is explained as that the iterative updating of the
beampattern phase Fp will further decrease the beampattern
deviation after the sparse array is designed. We then change the
value of the trade-off parameter ρ discretely to four different
values of 0.1, 1, 2, 20. The curves of two parts of the objective
function versus the iteration number are plotted in Fig. 6

0 2 4 6 8 10 12 14 16
array 1 and array 2

0 2 4 6 8 10 12 14 16
adaptive sparse array 5

0 2 4 6 8 10 12 14 16
The worst pairs of sparse arrays

0 2 4 6 8 10 12 14 16
array 3 and array 4

Fig. 4: The obtained optimum and worst array splitting by
enumeration (upper plot) and Algorithm 1 (middle plot). The
marker “circle” denotes one array and “triangle” denotes the
other. The bottom plot is the adaptive sparse array, where
“circle” denotes selected and “cross” denotes discarded.
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Fig. 5: The quiescent beampatterns of four sparse arrays 1-4
shown in Fig. 4 and the worst pair of sparse arrays.

as well. We can see that when ρ ≥ 1, the effect of ρ on
the convergence rate and synthesized beampattern shape is
diminished and negligible.

B. Static Environment

As explained in our previous work [19], array configuration
plays a very sensitive and viral role in the scenario of closely-
spaced mainlobe interferences, whereby the importance of
sparse arrays is amplified. Hence, we intentionally consider
such cases in this work. Assume that four interferences are
coming from the directions of −28◦,−12◦, 10◦, 25◦ with
an interference-to-noise ratio (INR) of 20dB. The proposed
RCAS is conducted, where two quiescent sparse arrays 3 and
4 are first sequentially switched on to collect the data of
the full array, and then the optimum adaptive sparse array
is configured according to Algorithm 2 with the desired SLL
setting as −5dB. The structure of the adaptive sparse array is
shown in the bottom plot of Fig. 4. The beampatterns of three
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Fig. 6: Convergence performance: ‖WHAs − F‖F and
‖Z(k+1) − Z(k)‖F versus iteration number in four cases of
different ρ.

TABLE I: Output SINR of five sparse arrays in Fig. 4.

H
HHHB

A 1 2 3 4 5

Adaptive 4.28dB 4.28dB 3.84dB 4.28dB 6.52dB
Combined -4.44dB -4.44dB -6.58dB -6.2dB 3.92dB

“B” denotes beamforming method and “A” denotes array num-
bering. The unit is in dB.

sparse arrays (3)-(5) using both adaptive beamforming in Eq.
(9) and combined beamforming in Eq. (13) are presented in
Fig. 7. We can observe that (1) Adaptive beamforming, though
excellent in suppressing interferences, exhibits catastrophic
grating lobes except for the sparse array 5. This inadvertently
manifests the superiority of the designed sparse array 5,
irrespective of no explicit sidelobe constraints imposed in
adaptive beamforming. (2) Combined beamforming is capable
of controlling the sidelobe level with the sacrifice of shallow
nulls towards the unwanted interferences; (3) Arrays 3 and 4
with combined beamforming cannot form nulls towards the
two closely-spaced interferences from −18◦ and −12◦. The
output SINR of five sparse arrays are listed in Table I. We can
obtain the corresponding results with Fig. 7, that is array 5 is
supreme in terms of the output SINR regardless of beamform-
ing methods, while arrays 1(2) and 3(4) exhibit much worse
performance especially for combined beamforming.

To thoroughly examine the performance of the proposed
RCAS strategy, we proceed to enlarge the array size to a ULA
with 32 antennas. This linear array is divided into 16 groups
and each group contains two consecutive antennas. In the first
step of RCAS, we design a set of complementary sparse arrays,
which are obtained by the extended Algorithm 1 and shown in
the upper plot of Fig. 8. The sidelobe angular region is defined
as [−90◦,−7◦]∪ [7◦, 90◦] and the desired sidelobe level is set
as −5dB for combined beamforming. Six interferences are im-
pinging on the array from −18◦,−12◦,−6◦, 5◦, 10◦, 25◦ with
an INR of 20dB. The configuration of adaptive sparse array is
shown in the lower plot of Fig. 8. The adaptive and combined
beampatterns of three arrays 6-8 are compared in Fig. 9 and 10,

TABLE II: Output SINR of three sparse arrays in Fig. 8.
`````````Beamforming

Array 6 7 8

Adaptive 6.8dB 6.99dB 8.44dB
Combined -1.78dB -2.95dB 7.44dB

respectively. Again, adaptive beamforming avoidably produces
very high sidelobes (even grating lobes in a severe condition),
which adversely affect the output performance in the dynamic
environment where an unintentional interference is suddenly
switched on. We can see that array 8 produces the deepest nulls
towards the interferences, in turn yielding the highest SINR.
Comparatively, the output SINR of sparse arrays 6-8 are listed
in Table II for both adaptive and combined beamforming.

C. Dynamic Environment

Different from the proposed RCAS strategy, the environ-
mental information is obtained from the augmented covariance
matrix of a virtual full co-array [27], [34], [37] and is referred
to as coarray strategy. To give a brief explanation, the covari-
ance matrix R of the physical array is first vectorized and then
reordered according to the spatial lags. Both spatial smoothing
and Toepliz matrix augmentation can then be utilized to obtain
the full covariance matrix of the virtual co-array. It would be
intriguing to compare the difference of array configuration and
filtering performance based on the knowledge acquired from
the two strategies. As it is impossible to construct a fully-
augmentable sparse array under the constraint of regularized
antenna switching, a nested array in Fig. 11 is deliberately
employed for situational sensing and performance comparison.

We first examine the effect of snapshot number on both
strategies. The simulation scenario remains the same as that
of the above small array. We choose the sparse arrays 3
and 5 as the benchmark and compare the output SINR of
optimized sparse arrays using two strategies. The snapshot
number is changing from 10 to 1910 in a step of 100 and
1000 Monte Carlo simulations are run in each case. For each
number, we collect the data of corresponding length either
switching between sparse arrays 3 and 4 or using the nested
array and augmenting the covariance. For more details on
covariance augmentation, the readers can refer to [27], [34]
and reference therein. It is worth noting that the estimation
accuracy of the full array covariance matrix significantly
affect the selection of switched antennas. Hence, for different
numbers of snapshots, Algorithm 2 is utilized to calculate the
optimum adaptive sparse array with the input of estimated full
array covariance. The curves of output SINR versus snapshot
number in two cases of uncorrelated and correlated interfering
signals are depicted in Fig. 12 and 13, respectively. For
the latter, the correlation among different interferences are
generated randomly. The proposed RCAS strategy can return
the optimum sparse array that is array 5 when the snapshot
number increases. Although the configuration of nested array
is not restricted to regularized antenna positions, its output
SINR does not exhibit superiority over sparse array 5. The
sparse array configured based on the environmental infor-
mation obtained from augmented covariance matrix does not
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Fig. 7: The beampatterns of three sparse arrays (1)-(5) using both adaptive beamforming and combined beamforming: (a) Array
1 and 2 (b) Array 3 (c) Array 4 (d) Array 5.
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Fig. 8: Configurations of sparse arrays 6-8: arrays 6 and 7 are
quiescent complementary and array 8 is adaptive.
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Fig. 9: Adaptive beamforming of sparse arrays 6, 7 and 8.
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Fig. 10: Combined beamforming of sparse arrays 6, 7 and 8.
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nested array employed for estimating augmented covariance

Fig. 11: The nested array deliberately used for augmented full
covariance estimation.
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Fig. 12: Output SINR versus snapshot number in the case of
uncorrelated interfering signals.

exhibit satisfactory performance especially when the snapshot
number is small and the impinging interferences are correlated.
This attributes to the fact that coarray-based signal processing
usually requires a large number of snapshots and is restricted
to dealing with uncorrelated signals.

We continue to examine an example of dynamic environ-
ment, which is described in Fig. 14. The total observing time
is set as 100T sampling intervals with T = 500. Suppose
that the target is coming from broadside, and there are two
interferences coming from −28◦ and 25◦ in the first period of
the observing time. At the time instant of 30T, the scenario
has changed to that of four interferences coming from −31◦,
−12◦, 10◦ and 50◦. At the time instant of 60T, the scenario has
changed again and four interferences are coming from −28◦,
−12◦, 10◦ and 25◦, respectively. The INR of all interferences
is 20dB. We consider three strategies, those are fixed-array
strategy, the proposed RCAS strategy and coarray strategy.



11

0 200 400 600 800 1000 1200 1400 1600 1800 2000

snapshot number

-3

-2

-1

0

1

2

3

4

5

6
ou

tp
ut

 S
IN

R
(d

B
)

sparse array 5
sparse array from RCAS
sparse array 3
nested array
sparse array from coarray strategy
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correlated interfering signals.
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3 & 4
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Array
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Array

Data Collect & 
Reconfiguration

Data Collect & 
Reconfiguration

100T sampling intervals

60T30T

Fig. 14: Three strategies in dynamic environment and the an-
tenna positions of arrays utilized in each strategy are indicated.

In the first strategy, a fixed sparse array, that is the optimal
sparse array configured for combined beamforming in scenario
1 using Eq. (35), is employed during the observing period. In
the proposed RCAS strategy, complementary sparse arrays 3
and 4 are utilized for environment sensing and data collection,
and adaptive sparse arrays are then configured based on the
full array covariance, as indicated in the middle row of Fig.
14. In the coarray strategy, the full array covariance is obtained
by augmenting the spatial lags of the nested array shown in
Fig. 11, according to the structure of Toeplitz matrix. The
two adaptive sparse arrays are optimized based on the virtual
covariance, as indicated in the bottom row of Fig. 14. We can
see from Fig. 15 that the fixed sparse array experiences per-
formance degradation at two durations of scenario changing.
Though the nested array performs better than complementary
sparse arrays during the second sensing stage, its configuration
does not follow the rule of regularized antenna switching. The
proposed RCAS strategy exhibits the best performance after
adaptive sparse array reconfiguration and modest output SINR
during the two environment sensing stages.

VI. CONCLUSIONS

A complementary sparse array switching (RCAS) strat-
egy was proposed in this work for adaptive sparse array
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Fig. 15: Comparison of three strategies in dynamic environ-
ment. The environment has changed twice during the observa-
tion time as indicated by black arrows. The periods highlighted
by black circles are stages for environmental sensing, data
collection and array reconfiguration.

beamformer design, which aimed to swiftly adapt intertwined
array configuration and excitation weights in accordance to
dynamic environment. Our previous work usually assumed
either known or estimated environmental information, which
was regarded as an impediment to practical implementation.
The RCAS works in two steps. First, a set of deterministic
complementary sparse arrays, all with good quiescent beam-
patterns, was designed and a full data collection was conducted
by switching among them. Then, the adaptive sparse array
was configured for the specific environment, based on the
data collected in the first step. Deterministic and adaptive
sparse arrays in both design steps were restricted to regularized
antenna switching for increased practicability. The RCAS was
devised as an exclusive cardinality-constrained optimization
and an iterative algorithm was proposed to solve it effectively.
We conducted a rigorous theoretical analysis and proved that
the proposed algorithm is an equivalent transformation to the
original cardinality-constrained optimization. Extensive simu-
lation results validated the effectiveness of proposed RCAS
strategy. It would be desirable that the adaptive sparse array
design would eliminate the requirement of either environmen-
tal information or full array covariance. The solution to this
problem will be investigated in the near future.

VII. APPENDIX

A. Proof of Lemma 1

(1) The cardinality of a vector b ∈ RM+ is expressed as,

‖b‖0 = 1TM sign(b), (37)

where the sign function is defined as

sign(·) =

{
1, if · > 0

0. if · = 0
(38)
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According to the definition of φ(b, τ ), it is separable and can
be rewritten as

φ(b, τ ) =

M∑
i=1

φ(bi, τi), (39)

where φ(bi, τi) = (1/τi)(bi − (bi − τi)+) and thus

φ(bi, τi) =

{
1 if bi > τi,

bi/τi if bi ≤ τi,
(40)

Here, (bi − τi)
+ = max{bi − τi, 0}. Comparing the sign

function in Eq. (38) with the function φ(bi, τi) in Eq. (40),
we obtain that, ∀ bi ≥ 0

0 ≤ φ(bi, τi) ≤ sign(bi) ≤ 1. (41)

Combining Eqs. (37), (39) and (41) yields φ(b, τ ) ≤ ‖b‖0,
that is φ(b, τ ) is a piecewise linear under-estimator of ‖b‖0.
Moreover, function φ(b, τ) is obviously a non-increasing func-
tion of τ , that is,

φ(b, τ1) ≥ φ(b, τ2), if τ1 ≤ τ2 (42)

Therefore, for any given vector b, we have that φ(b, τ2) ≤
φ(b, τ1) from Eq. (39), given that τ1 ≤ τ2. Here, τ1 ≤ τ2

implies that τ1,i ≤ τ2,i,∀i = 1, . . . ,M . Thus, φ(b, τ ) is a
non-increasing function of τ .

(2) Comparing Eqs. (38) with (40), we also have that

lim
τ→0+

φ(·, τ) = sign(·), (43)

Thus, utilizing Eqs. (37) and (39), we have that

lim
τ→0+

φ(b, τ ) = ‖b‖0. (44)

(3) For arbitrary two points b1 and b2. we have that ∀ 0 ≤
α ≤ 1,

αφ(b1, τ ) + (1−α)φ(b2, τ ) ≤ φ[αb1 + (1−α)b2, τ ]. (45)

This proves that the piece-wise linear function φ(b, τ ) is a
concave function with respect to the variable b. The definition
of sub-gradient is that for any g(b0, τ ) = ∂φ(b,τ )

∂b |b0
such that

∀ b, we have the following,

φ(b, τ ) ≤ φ(b0, τ ) + g(b0, τ )T (b− b0). (46)

When bi > τi, the function φ(bi, τi) is differentiable and the
gradient is zero. When 0 ≤ bi < τi, the function φ(bi, τi) is
also differentiable and the gradient is 1/τi. When bi = τi, the
function φ(bi, τi) is non-differentiable, and the sub-gradient
can be any number between [0, 1/τi] according to Eq. (46).

B. Proof of Theorem 1
By utilizing the implicit binary constraint of the auxiliary

variable Z ∈ {0, 1}N×M , the complementary sparse array
design in Eq. (16a) can be rewritten as follows,

(APb) min
W,Z

‖WHAs − F‖F (47)

s.t. WHa = 1M ,
|W| ≤ Z,
Z ∈ {0, 1}N×M ,
1TMPlZcm = 1, l = 1, . . . , L,m = 1, . . . ,M

Z1M = 1N .

By comparing the two problems in Eqs. (20a) and (47), we
can observe that though the third constraint exhibits difference,
the two formulations are essentially the same.

Let us define a set Ω = {Z ≥ 0 : Z1M = 1N , 1TMPlZcm =
1, l = 1, . . . , L,m = 1, . . . ,M}, then the domain of
problem (APτ ) can be expressed as Ω̂τ = {Z : Z ∈
Ω, φ(PlZcm,PlΠcm) ≤ 1, l = 1, . . . , L,m = 1, . . . ,M}.
Similarly, the domain of the problem (APb) is same as that
of (AP0), that is Ω̂0 = {Z : Z ∈ Ω,Z ∈ {0, 1}N×M}. Then,
we are going to prove that Ω̂τ = Ω̂0.

Suppose that there exists some Z such that Z ∈ Ω̂τ and
Z 6∈ Ω̂0. First, Z ∈ Ω̂τ implies that ∀l ∈ {1, . . . , L} and
∀m ∈ {1, . . . ,M} such that,

1TMPlZcm = 1, (48)

and
φ(PlZcm,PlΠcm) ≤ 1. (49)

Since Z 6∈ Ω̂0, it implies that ∃l ∈ {1, . . . , L} and ∃m ∈
{1, . . . ,M}, such that PlZcm /∈ {0, 1}M , i.e. it does not have
a single entry equal to one and others being zero.

Set b = PlZcm and τ = PlΠcm, we consider the following
three cases:
(1) When there are more than one entries of b greater than τ ,
then φ(b, τ ) > 1, violating Eq. (49).
(2) When there are multiple entries of b, all smaller than τ ,
according to the definition of the approximation function, we
have that,

φ(b, τ ) =

M∑
i=1

bi/τi. (50)

According to Eqs. (48) and (49), we have that

φ(b, τ ) ≤ 1TMb/τmin = 1/τmin ≤ 1⇒ τmin ≥ 1. (51)

where τmin = min τi, i = 1, . . . ,M . Contradiction to τ < 1.
(3) When there is only one entry of b greater than the cor-
responding entry of τ , we assume bk > τk, k ∈ {1, . . . ,M}.
Utilizing Eq. (48), we have that

M∑
i=1,i6=k

bi = 1− bk. (52)

According to the definition of the approximation function and
Eq. (49), we further have that

φ(b, τ ) = 1 + (1− bk)/τk ≤ 1⇒ bk ≥ 1. (53)

Combining with Eq. (48), we further obtain that bk = 1 and
bi = 0,∀i 6= k. Contradiction to the assumption of PlZcm /∈
{0, 1}M , or equivalently the assumption of Z 6∈ Ω̂0. Thereby,
Z ∈ Ω̂τ ⇒ Z ∈ Ω̂0, i.e., Ω̂τ ⊆ Ω̂0.

Assume that there exists some Z such that Z ∈ Ω̂b. That
means there exists only one entry p ∈ {1+(l−1)M, . . . , lM}
for each l ∈ {1, . . . , L} and m ∈ {1, . . . ,M} such that Zpm =
1 and Zim = 0,∀i ∈ {1 + (l − 1)M, . . . , lM} and i 6= p.
According to the property of the approximation function in
Lemma 1, we have that

φ(Zim) =

{
1 i = p,

0 i 6= p,
(54)
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Thus, φ(PlZcm,PlΠcm) = 1, l = 1, . . . , L,m = 1, . . . ,M .
That implies that Z ∈ Ω̂0 → Z ∈ Ω̂τ , i.e., Ω̂0 ⊆ Ω̂τ . Thereby,
we prove that Ω̂0 = Ω̂τ . In a nutshell, the problem (APτ ) is
equivalent to the problem (AP0).

C. The proof of Eq. (22)

Define b = PlZcm and τ = PlΠcm. Based on Eq. (17),
φ(b, τ ) is defined as,

φ(b, τ ) =

M∑
i=1

φ(bi, τ) =

M∑
i=1

1

τi
[bi − (bi − τi)+],

where bi = rTi PlZcm and τi = rTi PlΠcm. Proceeding from
Eq. (55) and utilizing Lemma 1(3) and the chain rule, we have
that,

∂φ(b, τ )

∂Z
=

M∑
i=1

∂φ(bi, τi)

∂Z
, (55)

=

M∑
i=1

∂φ(bi, τi)

∂bi
· ∂bi
∂Z

,

=

M∑
i=1

g(bi, τi)(PTl ricTm),

= PTl r̃m,lcTm,

where r̃m,l =
∑M
i=1 g(rTi PlZcm, rTi PlΠcm)ri �.

D. Proof of Proposition 1

Assume that Z(k) ∈ Ω̂τ is a feasible point for (APτ ), that
is,

φ(PlZ(k)cm,PlΠcm) ≤ 1, l = 1, . . . , L,m = 1, . . . ,M

1TMPlZ(k)cm = 1, l = 1, . . . , L,m = 1, . . . ,M

Z(k)1M = 1N . (56)

Proceeding from the third constraint of (BPτ ), we can obtain
that

tr{(cmr̃Tm,lPl)(Z− Z(k))} ≤ 0, l = 1, . . . , L,m = 1, . . . ,M.
(57)

From Eq. (22), we can see that r̃m,l is relevant to the gradient
of the approximation function φ(PlZ(k)cm,PlΠcm). Accord-
ing to Lemma 1, the gradients corresponding to the “one”
entries of Z(k) are 0, while the gradients corresponding to the
“zero” entries of Z(k) are 1/τ . In order to satisfy Eq. (57),
variable Z has to keep the “zero” entries of Z(k). This implies
that φ(PlZcm,PlΠcm) ≤ 1, l = 1, . . . , L,m = 1, . . . ,M and
the obtained solution Z(k+1) is a feasible point for (APτ ).
Therefore, once the initial search point Z(0) is chosen feasible,
all iterates are feasible and the problem (BPτ ) will converge
to the problem (APτ ).

REFERENCES

[1] L. Brennan and L. Reed, “Theory of adaptive radar,” IEEE Trans. on
Aerospace and Electronic Systems, vol. AES-9, pp. 237–252, Mar 1973.

[2] R. Compton, “An adaptive array in a spread-spectrum communication
system,” Proceedings of the IEEE, vol. 66, no. 3, pp. 289–298, 1978.

[3] A. Gershman, V. Turchin, and V. Zverev, “Experimental results of
localization of moving underwater signal by adaptive beamforming,”
IEEE Trans. on Signal Processing, vol. 43, pp. 2249–2257, Oct 1995.

[4] A. J. van der Veen, A. Leshem, and A. J. Boonstra, “Signal processing
for radio astronomical arrays,” in Sensor Array and Multichannel Signal
Processing Workshop Proceedings, 2004, July 2004.

[5] X. Wang, C. P. Tan, F. Wu, and J. Wang, “Fault-tolerant attitude
control for rigid spacecraft without angular velocity measurements,”
IEEE Transactions on Cybernetics, vol. 51, no. 3, pp. 1216–1229, 2021.

[6] S. U. Pillai, Array signal processing. Springer Science & Business
Media, 2012.

[7] H. L. Van Trees, Detection, estimation, and modulation theory, optimum
array processing. John Wiley & Sons, 2004.

[8] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,” IEEE Signal Processing Magazine,
vol. 13, no. 4, pp. 67–94, 1996.

[9] S. Nai, W. Ser, Y. Z.L, and H. Chen, “Beampattern synthesis for linear
and planar arrays with antenna selection by convex optimization,” IEEE
Trans. on Antennas and Propagation, vol. 58, no. 12, pp. 3923–3930,
2010.

[10] A. Massa and G. Oliveri, “Bayesian compressive sampling for pattern
synthesis with maximally sparse non-uniform linear arrays,” IEEE Trans.
on Antennas and Propagation, vol. 59, no. 2, pp. 467–481, 2011.

[11] B. Fuchs, “Synthesis of sparse arrays with focused or shaped beampat-
tern via sequential convex optimizations,” IEEE Trans. on Antennas and
Propagation, vol. 60, no. 7, pp. 3499–3503, 2012.

[12] L. Poli, P. Rocca, M. Salucci, and A. Massa, “Reconfigurable thinning
for the adaptive control of linear arrays,” IEEE Trans. on Antennas and
Propagation, vol. 61, pp. 5068–5077, Oct 2013.

[13] X. Wang, E. Aboutanios, and M. Amin, “Thinned array beampattern
synthesis by iterative soft-thresholding-based optimization algorithms,”
IEEE Trans. on Antennas and Propagation, vol. 62, no. 12, pp. 6102–
6113, 2014.

[14] X. Wang, C. Pin Tan, Y. Wang, and Z. Zhang, “Active fault tolerant
control based on adaptive interval observer for uncertain systems with
sensor faults,” International Journal of Robust and Nonlinear Control,
2021.

[15] S. H. Talisa, K. W. O’Haver, T. M. Comberiate, M. D. Sharp, and O. F.
Somerlock, “Benefits of digital phased array radars,” Proceedings of the
IEEE, vol. 104, no. 3, pp. 530–543, 2016.

[16] J. Li and P. Stoica, Robust adaptive beamforming. Wiley Online Library,
2006.

[17] L. Lei, J. P. Lie, A. B. Gershman, and C. M. S. See, “Robust adaptive
beamforming in partly calibrated sparse sensor arrays,” IEEE Trans. on
Signal Processing, vol. 58, pp. 1661–1667, March 2010.

[18] J. F. de Andrade, M. L. R. de Campos, and J. A. Apolinário, “L1-
constrained normalized LMS algorithms for adaptive beamforming,”
IEEE Trans. on Signal Processing, vol. 63, no. 24, pp. 6524–6539, 2015.

[19] X. Wang, E. Aboutanios, M. Trinkle, and M. G. Amin, “Reconfigurable
adaptive array beamforming by antenna selection,” IEEE Trans. on
Signal Processing, vol. 62, no. 9, pp. 2385–2396, 2014.

[20] X. Wang, M. Amin, and X. Cao, “Analysis and design of optimum sparse
array configurations for adaptive beamforming,” IEEE Trans. on Signal
Processing, vol. 66, no. 2, pp. 340–351, 2018.

[21] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Trans. on Signal Processing, vol. 57, pp. 451–462, Feb 2009.

[22] C. Fulton, M. Yeary, D. Thompson, J. Lake, and A. Mitchell, “Digital
phased arrays: Challenges and opportunities,” Proceedings of the IEEE,
vol. 104, no. 3, pp. 487–503, 2016.

[23] M. G. Amin, X. Wang, Y. D. Zhang, F. Ahmad, and E. Aboutanios,
“Sparse arrays and sampling for interference mitigation and DOA
estimation in GNSS,” Proceedings of the IEEE, vol. 104, pp. 1302–
1317, June 2016.
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