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Abstract—In this study, we propose a novel extended target
tracking algorithm which is capable of representing the extent
of dynamic objects as an ellipsoid with a time-varying orientation
angle. A diagonal positive semi-definite matrix is defined to model
objects’ extent within the random matrix framework where the
diagonal elements have inverse-Gamma priors. The resulting
measurement equation is non-linear in the state variables, and it
is not possible to find a closed-form analytical expression for the
true posterior because of the absence of conjugacy. We use the
variational Bayes technique to perform approximate inference,
where the Kullback-Leibler divergence between the true and the
approximate posterior is minimized by performing fixed-point
iterations. The update equations are easy to implement, and
the algorithm can be used in real-time tracking applications.
We illustrate the performance of the method in simulations and
experiments with real data. The proposed method outperforms
the state-of-the-art methods when compared with respect to
accuracy and robustness.

Index Terms—Target tracking, extended target tracking, ran-
dom matrix model, orientation, variational Bayes

I. INTRODUCTION

EXTENDED target tracking (ETT) problem involves pro-
cessing multiple measurements that belong to a single

target at each scan. In contrast to conventional tracking algo-
rithms, which rely on point target assumption, ETT algorithms
aim at estimating the target extent, which can be defined as the
target-specific region that generates multiple measurements.
Previous studies in the ETT literature can be broadly catego-
rized into four groups:
• Simple shape models
• Random matrix (RM) based models
• Random hyper-surface (RHS) based models
• Mixture models

A simple approach to ETT involves assuming a predefined
shape for the extent/contour of the object such as a circle, a
rectangle, or a line [1]–[3]. The most common approaches in
the literature utilize RM models, where the target extent is
represented by an ellipse [4]–[7]. Alternatively, RHS models
are suggested in [8], [9]. More recently, Gaussian Process (GP)
based models are proposed for extended target tracking [10]–
[12]. Another fold of studies focuses on modeling the target
extent with multiple ellipses [13]–[16].

RM models represent the elliptical extent of a target by
an unknown positive semi-definite matrix (PSDM). In the
Bayesian framework, inverse-Wishart (IW) distribution defines
a conjugate prior for PSDMs. In RM based ETT models, the
overall target state is composed of a Gaussian kinematic state
vector and an IW distributed extent matrix. Several algorithms
are proposed to approximate or compute the posterior of
this augmented state. In [4], exact inference is performed by
neglecting the measurement noise and exploiting the resulting
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conjugacy. This model is restrictive in the sense that the
kinematic state vector has to be composed of the target’s
position and higher-order spatial components such as velocity
and acceleration. Koch’s RM model is later improved in
[5] to account for the measurement noise in the updates at
the expense of exact inference. The update equations in [5]
are intuitive, but the approximations are difficult to quantify
theoretically. This problem is later addressed by [6], where
the variational Bayes technique is used to obtain approximate
posteriors.

None of the aforementioned RM models is capable of
tracking the heading angle of an extended target. They instead
rely on a forgetting factor to forget the sufficient statistics
of the unknown extent matrix in time to account for the
changes in the orientation of the target. Such an approach
is problematic as it aims to discard the information collected
in the past and try to explain the change in the orientation as
the change in the target shape. There are earlier studies that
aim at estimating the orientation angle of elliptical objects
[17]–[20]. In [20], the orientation of the target is estimated by
using the information that is obtained from the trajectory of the
target. The methods that are proposed in [17]–[19] express the
unknown extent parametrically and perform inference using
extended Kalman filters together with pseudo-measurements.
In these approaches, an explicit nonlinear measurement equa-
tion is derived where the kinematic and shape parameters are
related to measurements by multiplicative random variables.
The inference in [19] involves second-order Taylor series
approximation to approximate the pseudo-measurement co-
variance matrix. In [18], the authors improved the algorithm
in [19] further and eliminated the need for computing Hessian
matrices. Instead, they showed that the expectation and the co-
variance of the pseudo-measurements could be approximated
from the original measurement covariance matrix. In [17],
the predicted measurement covariance matrix approximation
is calculated more precisely.

There are several drawbacks of the methods in [17]–[19].
The models used in these methods involve a multiplicative
noise term, which introduces additional non-linearity in the
problem, and it makes performing inference more difficult.
The methods require a pseudo-measurement, which must
be constructed from the original measurements to update
kinematic and extent states separately. The measurements
collected at one time instant must be processed sequentially.
Changing the order of the measurements causes minor changes
in the performance [17]. The state variables corresponding to
the semi-axes lengths, which are positive by definition, are
distributed with Gaussian distributions whose support covers
both positive and negative real line. In some cases, it can
be challenging to reflect available information into the priors
defined in [17], which may cause a collapse in the extent
estimates in the subsequent measurement updates.

In this work, we propose a novel RM model that defines a
Gaussian prior for the heading angle and an inverse Gamma
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prior for the extent parameters, which guarantee positive semi-
definiteness. It is not possible to find a closed-form expression
for the resulting posterior hence we utilize the variational
Bayes technique to perform approximate inference. The vari-
ational Bayes technique is successfully applied to complex
filtering problems in the literature to obtain approximate
posteriors [6], [21]–[25].

The contributions of this manuscript can be listed as follows.

• We provide a novel solution that can track the orientation
of a target and estimate its extent jointly.

• The proposed solution utilizes appropriate priors, which
are defined over non-negative real numbers, for the un-
known extent parameters.

• The problem formulation does not rely on multiplicative
noise terms or pseudo-measurements.

• The measurement update can be performed by processing
multiple measurements as a batch. The update does not
depend on the order of the measurements.

• The uncertainty in the orientation and shape parameters
can be expressed separately.

• The inference is performed via the well-known variational
Bayes technique.

The paper is organized as follows. In Section II, we for-
mulate the problem of joint shape estimation and tracking
of elliptical objects with time-varying orientation. In the
subsequent sections, we present the inference method. The
measurement update is derived in Section III. Time update is
given in Section IV. A closer look at a single measurement
update and its comparison with the state-of-the-art extended
Kalman filter (EKF) algorithm is given in Section V. Lastly,
the results are presented and discussed in Section VI.

TABLE I: NOTATIONS

• Set of real matrices of size m× n is represented with Rm×n.
• Set of symmetric positive definite and semi-definite matrices of size n×n

is represented with Sn++ and Sn+, respectively.
• N (x;µ,Σ) represents the multivariate Gaussian distributions with mean

vector µ ∈ Rnx and covariance matrix Σ ∈ Snx++,
• IG(σ;α, β) represents the inverse Gamma distribution over the scalar σ ∈

R+ with shape and scale parameters α ∈ R+ and β ∈ R+ respectively,

IG(σ;α, β) =
βα

Γ(α)
σ−α−1 exp

(
−
β

σ

)
,

• The number of measurements at time k is represented by mk ∈ Z+.
• For given measurement number of mk , Yk represents the measurement set
{y1
k, . . . ,y

mk
k } at time k.

• For any number a ∈ Z+, Zk represents the variable set {z1k, . . . , z
a
k} at

time k.
• rk represent the vector [r1k, . . . , r

a
k ]T with size a ∈ Z+.

• KL denotes the Kullback-Leibler divergence between two distributions q(x)
and p(x),

KL
(
q(x)||p(x)

)
,
∫
q(x) log

(
q(x)

p(x)

)
dx.

• det(A) denotes the determinant of matrix A.
• Tr

[
A
]

=
∑n
i=1 aii where aii is the ith diagonal element of A ∈ Rn×n.

• Ep denotes the expectation operator, and p emphasizes the underlying
probability distribution(s).

• diag(a1, a2, . . . , an) returns the diagonal matrix whose diagonal elements
are a1, a2, . . . , an.

• blkdiag(A1, A2, . . . , AN ) returns the block diagonal square matrix
whose main-diagonal blocks are the input matrices A1, A2, . . . , AN .

• h.o.t. stands for higher-order terms.

Fig. 1: An illustration of the target extent model with ellipsoids
corresponding to the covariance matrices Xk (dashed line),
TθkXkT

T
θk

(solid line) and sTθkXkT
T
θk

+ R (dotted line),
respectively.

II. PROBLEM DEFINITION

Consider a single target from which multiple measurements
are generated in a single scan. Assume that the state of the ex-
tended target consists of the kinematic state xk ∈ Rnx , the ori-
entation angle θk ∈ R, and the diagonal positive definite target
extent matrix Xk ∈ Rny×ny , Xk , diag

(
σ1
k, σ

2
k, . . . , σ

ny
k

)
,

where nx and ny represent the dimensions of the kinematic
target state and the measurements, respectively. Given xk, Xk

and θk, the measurements generated by the target are assumed
to be independent and identically distributed,

p(yjk
∣∣xk, Xk, θk) ∼ N

(
yjk;Hxk, sTθkXkT

T
θk

+R
)
, (1)

where
• yjk ∈ Rny is the jth measurement at time k,
• H ∈ Rny×nx is the measurement matrix,
• R ∈ Rny×ny is the positive definite measurement noise

covariance matrix,
• s ∈ R+ is the scaling parameter,
• Tθk ∈ Rny×ny is the rotation matrix which performs a

rotation around the center of the target by the orientation
angle θk. Tθk satisfies the well known properties of the
rotation matrices such as T−1θk

= TTθk , and det(Tθk) = 1.
In 2D, it is defined as,

Tθk ,

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

]
. (2)

Note that the measurement likelihood in (1) can be interpreted
as a measurement model with two additive Gaussian terms;
one with time-varying, unknown but state-dependent statis-
tics, vIk(Xk, θk) ∼ N (0, sTθkXkT

T
θk

), and one with known
statistics, vIIk ∼ N (0, R).

yk = Hxk + vIk(Xk, θk) + vIIk (3)

The effective covariance matrix in likelihood (3) is unknown,
time-varying, and state-dependent, which casts the main dif-
ficulty in the ETT problem together with the absence of
conjugacy1. An illustration of the resulting extent model is
depicted in Figure 1. Similar elliptical models are frequently
used in target tracking applications for tracking vehicles,
vessels, pedestrians, animals, or groups of objects [26]–[30].

In the Bayesian filtering framework, we aim at estimating
the unknown variables xk, θk, and Xk given the measurements
collected up to and including time k. To achieve this, we define

1A family of prior distributions is conjugate to a particular likelihood
function if the posterior distribution belongs to the same family as the prior.
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appropriate priors for the unknowns and try to compute their
posteriors in a recursive manner. This is generally performed
by repeating two recursive steps:
• Time Update (Prediction): At any time step k, the

predictive distribution p(xk, Xk, θk|Y1:k−1) is computed
according to Chapman-Kolmogorov equation by using
the posterior from the previous time step k − 1, and the
transition density induced by the system dynamics.

• Measurement Update (Correction): When the new
measurements Yk are available, the posterior distri-
bution p(xk, Xk, θk|Y1:k) is computed by using the
Bayes’ rule. In this step, the predictive distribution
p(xk, Xk, θk|Y1:k−1) is used as the prior.

Unfortunately, it is not possible to obtain a closed form
expression for the posterior in our problem. Therefore, we will
look for an approximate analytical solution using a variational
approximation.

Before introducing the details of this approximation, we will
first define the prior distributions of the unknown variables.
The joint prior distribution of the kinematic state, the extent,
and the orientation is specified as

p(x0, X0, θ0) = N (x0; x̂0, P0)×
ny∏
i=1

IG
(
σi0;αi0, β

i
0

)
×N

(
θ0; θ̂0,Θ0

)
, (4)

where X0 , diag
(
σ1
0 , σ

2
0 , . . . , σ

ny
0

)
, and IG

(
σi0;αi0, β

i
0

)
denotes the inverse Gamma distribution. Here, x̂0 and P0

are the prior mean and covariance matrix of the Gaussian
kinematic state vector x̂0, respectively. The prior mean and
covariance matrix of the orientation angle θ0 are denoted by
θ̂0 and Θ0, respectively. Please see Table I for the complete
list of the notations.
In the following sections, we will describe the Measurement
Update and Time Update steps of the proposed method in
detail.

III. MEASUREMENT UPDATE

Suppose at time k, we have the following conditional
predicted density for the kinematic, orientation, and extent
states:

p(xk, Xk, θk|Y1:k−1) = N (xk; x̂k|k−1, Pk|k−1)

×
ny∏
i=1

IG(σik|k−1;αik|k−1, β
i
k|k−1)

×N
(
θk; θ̂k|k−1,Θk|k−1

)
. (5)

The left-hand side of the above expression is conditioned on
the measurements up to and including time instant k− 1. The
predicted mean and covariance of the Gaussian state vector is
represented by x̂k|k−1 and Pk|k−1, respectively. The shape and
the scale variables for the ith diagonal element of the inverse
Gamma distributed extent state Xk are αik|k−1 and βik|k−1.
When the measurements Yk are available at time k, the
posterior distribution can be computed using Bayes’ rule

p(xk, Xk, θk|Y1:k)

=
p(Yk|xk, Xk, θk)p(xk, Xk, θk|Y1:k−1)

p(Yk|Y1:k−1)
. (6)

By assuming conditional independence of the measurements
at time k, the measurement likelihood can be factorized as

p(Yk|xk, Xk, θk) =

mk∏
j=1

p(yjk|xk, Xk, θk)

=

mk∏
j=1

N (yjk;Hxk, sTθkXkT
T
θk

+R). (7)

In the following, we will describe a variational inference
based approximation method to estimate the posterior distri-
bution using the likelihood function in (7).

A. Variational Inference
An approximate analytical solution for the posterior density

in (6) can be obtained as a product of factorized probability
density functions (PDFs) using a variational approximation.
Before we present the details, we need to define additional
instrumental variables to address the absence of conjugacy
caused by the additive measurement noise covariance term
R in the likelihood. We will call these variables noise-free
measurements [6], and denote them with Zk = {zjk}

mk
j=1. By

using Zk, the measurement likelihood in (7) can be expressed
as

N (yjk;Hxk, sTθkXkT
T
θk

+R) =∫
N (yjk;zjk, R)N (zjk;Hxk, sTθkXkT

T
θk

)dzjk (8)

for a single measurement. Note that the measurement likeli-
hood is the marginal of the following joint density

p(yjk, z
j
k|xk, Xk) = N (yjk; zjk, R)

×N (zjk;Hxk, sTθkXkT
T
θk

). (9)

Let us include the instrumental variable Zk in the posterior.
Later, it will be marginalized out to obtain the posterior of the
states

p(xk, Xk, θk,Zk|Y1:k) ≈ qx(xk)qX(Xk)qθ(θk)qZ(Zk).
(10)

Here, qZ(Zk) denotes the approximate density of the instru-
mental variable Zk. The idea of variational approximation
is to seek factorized densities whose product minimizes the
following cost function.

q̂x, q̂X , q̂θ, q̂Z = arg min
qx,qX ,qθ,qZ

KL
(
qx(xk)qX(Xk)qθ(θk)qZ(Zk)

||p(xk, Xk, θk,Zk|Y1:k)
)
. (11)

The solution of the optimization problem (11) satisfies the
following equation [31, Ch. 10]:

log q̂φ(φk) =E\φ
[
log p(xk, Xk, θk,Zk,Yk|Y1:k−1)

]
+ c\φ

(12)

where φ ∈ {xk, Xk, θk,Zk}, and \φ is the set of all elements
except φ, e.g., E\xk will denote expectation with respect
to variables Xk, θk, Zk. The constant term with respect
to variable φ will be denoted by c\φ. The joint density
p(xk, Xk, θk,Zk,Yk|Y1:k−1) in (12) can be written explicitly
as

p(xk, Xk, θk,Zk,Yk|,Y1:k−1)

=p(Yk|Zk)p(Zk|xk, Xk, θk)p(xk, Xk, θk|Y1:k−1)
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=

mk∏
j=1

N (yjk; zjk, R)

mk∏
j=1

N (zjk;Hxk, sTθkXkT
T
θk

)


×N (xk; x̂k|k−1, Pk|k−1)

ny∏
i=1

IG(σik|k−1;αik|k−1, β
i
k|k−1)

×N (θk; θ̂k|k−1,Θk|k−1). (13)

The optimization problem (11) can be solved by fixed-point
iterations [31, Ch. 10]. Each iteration is performed by updating
only one factorized density in (10) while keeping all other den-
sities fixed to their last estimated values. The update equations
of the approximate densities in the (` + 1)th iteration will be
given in the following subsections. To simplify the notations,
p
(
xk, Xk, θk,Zk,Yk|Y1:k−1) is denoted as P kx,X,θ,Z,Y in the

sequel.
1) Computation of q(`+1)

x (·): Substituting the previous es-
timates of the factorized densities into equation (12) yields

log q(`+1)
x

(
xk
)

= E\xk
[
logP kx,X,θ,Z,Y

]
+ c\xk . (14)

The expectation above can be simplified as

E\xk
[
logP kx,X,θ,Z,Y

]
= E\xk

[
logP

(
Zk|xk, Xk, θk

)]
+ logN (xk; x̂k|k−1, Pk|k−1) + c\xk (15a)

=

mk∑
j=1

−0.5 Tr

[(
zjk −Hxk

)(
zjk −Hxk

)T
× E

q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
] ]

+ logN (xk; x̂k|k−1, Pk|k−1) + c\xk (15b)

= −0.5 Tr

[
mk

(
zk −Hxk

)(
zk −Hxk

)T
× E

q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
] ]

+ logN (xk; x̂k|k−1, Pk|k−1) + c\xk (15c)

= logN (zk;Hxk,
E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]−1

mk
)

+ logN (xk; x̂k|k−1, Pk|k−1) + c\xk , (15d)

where zjk , E
q
(`)
Z

[zjk], and zk , 1
mk

∑mk
j=1 z

j
k. It can be seen

from (15d) that q(`+1)
x (xk) is a Gaussian PDF with mean

vector x̂(`+1)
k|k and covariance P (`+1)

k|k

q(`+1)
x (xk) = N (xk; x̂

(`+1)
k|k , P

(`+1)
k|k ), (16)

where

x̂
(`+1)

k|k = P
(`+1)

k|k (P−1
k|k−1x̂k|k−1

+mkH
TE

q
(`)
X
,q

(`)
θ

[
(sTθkXkT

T
θk )−1

]
z̄k), (17a)

P
(`+1)

k|k = (P−1
k|k−1 +mkH

TE
q
(`)
X
,q

(`)
θ

[
(sTθkXkT

T
θk )−1

]
H)−1.

(17b)

2) Computation of q(`+1)
X (·): Substituting the factorized

densities from the previous variational iteration into equation
(12) yields

log q
(`+1)
X

(
Xk

)
= E\Xk

[
logP kx,X,θ,Z,Y

]
+ c\Xk (18)

Substituting (13) into (18) and grouping the constant terms
with respect to Xk results in

E\Xk
[
logP kx,X,θ,Z,Y

]
= E\Xk

[
logP

(
Zk|xk, Xk, θk

)]
+

ny∑
i=1

log IG(σik|k−1;αik|k−1, β
i
k|k−1) + c\Xk (19a)

=
−mk

2
log |sXk|

− 1

2
Tr

[ mk∑
j=1

E\Xk
[
(zjk −Hxk)(zjk −Hxk)T

× (sTθkXkT
T
θk

)−1
]]

+

ny∑
i=1

log IG(σik|k−1;αik|k−1, β
i
k|k−1) + c\Xk . (19b)

Consequently, the approximate posterior density qX follows
an inverse-Gamma distribution

q
(`+1)
X (Xk) =

ny∏
i=1

IG(σ
i,(`+1)
k|k ;α

i,(`+1)
k|k , β

i,(`+1)
k|k ), (20)

where

α
i,(`+1)
k|k = αik|k−1 + 0.5mk, (21a)

β
i,(`+1)
k|k = βik|k−1 +

1

2s

mk∑
j=1

E
q
(`)
x ,q

(`)
θ ,q

(`)
Z

[z̃jk(z̃jk)T ]ii, (21b)

and z̃jk , TTθk(zjk −Hxk).
3) Computation of q(`+1)

Z (·): Substituting the factorized
densities from the previous variational iteration into equation
(12) yields

log q
(`+1)
Z

(
Zk
)

= E\Zk
[
logP kx,X,θ,Z,Y

]
+ c\Zk . (22)

The expectation above can be expressed as

E\Zk
[
logP kx,X,θ,Z,Y

]
= E\Zk

[
logP

(
Zk|xk, Xk, θk

)]
+

mk∑
j=1

logN (yjk; zjk, R) + c\Zk (23a)

=

mk∑
j=1

−1

2
Tr

[
(zjk −Hxk)(zjk −Hxk)T

× E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
] ]

+

mk∑
j=1

logN (yjk; zjk, R) + c\Zk , (23b)

where xk = E
q
(`)
x

[xk]. Update equations for the approximate
posterior density qZ in the (`+ 1)th iteration are given by

q
(`+1)
Z (Zk) =

mk∏
j=1

N (zjk; ẑ
j,(`+1)
k ,Σ

z,(`+1)
k ), (24)

where

ẑ
j,(`+1)
k = Σ

z,(`+1)
k

(
E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]
HE

q
(`)
x

[xk]
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+R−1yjk

)
, (25a)

Σ
z,(`+1)
k =

(
E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]

+R−1
)−1

. (25b)

4) Computation of q(`+1)
θ (·): The update equations for

q
(`+1)
θ (·) is obtained by substituting the factorized densities

from the previous variational iteration into equation (12)

log q
(`+1)
θ

(
θk
)

= E\θk
[
logP kx,X,θ,Z,Y

]
+ c\θk . (26)

Substituting (13) into (26) and grouping the constant terms
with respect to θk results in

E\θk
[
logP kx,X,θ,Z,Y

]
= E\θk

[
logP

(
Zk|xk, Xk, θk

)]
+ logN (θk; θ̂k|k−1,Θk|k−1) + c\θk (27a)

=
−1

2

mk∑
j=1

E\θk

[
Tr
[
(zjk −Hxk)(zjk −Hxk)T

× (sTθkXkT
T
θk

)−1
]]

+ logN (θk; θ̂k|k−1,Θk|k−1) + c\θk (27b)

Unfortunately, it is not possible to obtain an exact com-
pact form PDF for q(`+1)

θ

(
θk
)

because of the non-linearities
involved in (27b). To address this issue, we will make a
first order approximation of the non-linear function f(θk) ,
TTθk(zjk−Hxk) using its Taylor series expansion around θ̂(`)k|k,

f(θk) = f(θ̂
(`)
k|k) +∇f(θ̂

(`)
k|k)(θk − θ̂(`)k|k) + h.o.t., (28)

where ∇f(θ̂
(`)
k|k) ,

∂f

∂θk

∣∣∣∣
θk=θ̂

(`)

k|k

.

By plugging in the first order approximation of f(θk) into
(27b), the expectation term can be written as

E\θk
[
(a− bθk)T (sX)−1(a− bθk)

]
,

where

a ,
[
f(θ̂

(`)
k|k)−∇f(θ̂

(`)
k|k)θ̂

(`)
k|k
]
, (29)

b , −∇f(θ̂
(`)
k|k). (30)

Through algebraic manipulations, q(`+1)
θ (θk) can be ex-

pressed as a Gaussian PDF with mean vector θ̂
(`+1)
k|k and

covariance Θ
(`+1)
k|k ,

q
(`+1)
θ (θk) = N (θk; θ̂

(`+1)
k|k ,Θ

(`+1)
k|k ), (31)

where

θ̂
(`+1)
k|k = Θ

(`+1)
k|k

(
Θ−1k|k−1θ̂k|k−1 + δ

)
, (32a)

Θ
(`+1)
k|k =

(
Θ−1k|k−1 + ∆

)−1
, (32b)

δ =

mk∑
j=1

Tr

[
sX−1k (T ′

θ̂
(`)

k|k
)T
(
zjk −Hxk

)(
·
)T

(T ′
θ̂
(`)

k|k
)θ̂

(`)
k|k

]
− Tr

[
sX−1k TT

θ̂
(`)

k|k

(
zjk −Hxk

)(
·
)T

(T ′
θ̂
(`)

k|k
)

]
, (32c)

∆ =

mk∑
j=1

Tr

[
sX−1k (T ′

θ̂
(`)

k|k
)T
(
zjk −Hxk

)(
·
)T

(T ′
θ̂
(`)

k|k
)

]
,

(32d)

where sX−1k = E
q
(`)
X

[(sXk)−1],
(
zjk −Hxk

)(
·
)T

=

E
q
(`)
Z ,q

(`)
x

[
(
zjk −Hxk

)(
·
)T

], and T ′
θ̂
(`)

k|k
,

∂Tθk
∂θk

∣∣∣∣
θk=θ̂

(`)

k|k

.

The derivations of δ and ∆ are given in Appendix A.
By using the expressions derived so far, we can set up

variational iterations to find the approximate posteriors qx,
qX , qθ, and qZ. The noise-free measurement set Zk can be
marginalized out from the joint density, and an approximation
for p(xk, Xk, θk|,Y1:k) is obtained.

5) Expectation Calculations: The relevant expectations in
the variational iterations can be computed by using the fol-
lowing set of equations:

E
q
(`)
x

[xk] = x̂
(`)
k|k, (33a)

E
q
(`)
Z

[zjk] = ẑ
j,(`)
k , (33b)

E
q
(`)
X

[(sXk)−1] = diag

(
α1,`

sβ1,`
,
α2,`

sβ2,`
, . . . ,

αny,`

sβny,`

)
, (33c)

E
q
(`)
Z ,q

(`)
x

[
(
zjk −Hxk

)(
·
)T

] = HP
(`)
k|kH

T + Σ
z,(`)
k

+
(
ẑ
j,(`)
k −Hx̂

(`)
k|k

)(
ẑ
j,(`)
k −Hx̂

(`)
k|k

)T
, (33d)

E
q
(`)
x ,q

(`)
θ ,q

(`)
Z

[z̃jk(z̃jk)T ]

= E
q
(`)
θ

[
TTθk

((
ẑ
j,(`)
k −Hx̂

(`)
k|k

)(
ẑ
j,(`)
k −Hx̂

(`)
k|k

)T
+HP

(`)
k|kH

T + Σ
z,(`)
k

)
Tθk

]
, (33e)

where the expectation in (33e) can be calculated by using the
identity TTθk = T−θk and Lemma 1.

E
q
(`)
X

[(sXk)] =

diag

(
sβ1,`

(α1,` − 1)
,

sβ2,`

(α2,` − 1)
, . . . ,

sβny,`

(αny,` − 1)

)
(34)

The initial conditions for the quantities can be chosen as
ẑ
j,(0)
k = yjk, Σ

z,(0)
k = E

q
(0)
X

[(sXk)], x̂(0)
k|k = x̂k|k−1, P (0)

k|k =

Pk|k−1, α(0)
k|k = αk|k−1 and β(0)

k|k = βk|k−1.
6) Calculation of E

q
(`)
X ,q

(`)
θ

[
(TθkXkT

T
θk

)−1
]
: This expec-

tation can be calculated exactly, thanks to the factorized
distributions.

Lemma 1: Given

M−1 =

[
m11 m12

m21 m22

]
,

and q
(`)
θ (θk) = N (θk, θ̂

(`)
k|k,Θ

(`)
k|k), the entries of the matrix

E
q
(`)
θ

[
(TθkMTTθk)−1

]
can be computed as:

E
q
(`)
θ

[
(TθkMTTθk)−1

]
11

= [m11 m22 −(m12 +m21)]K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
,

(35a)

E
q
(`)
θ

[
(TθkMTTθk)−1

]
12

= [m12 −m21 m11 −m22]K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (35b)
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E
q
(`)
θ

[
(TθkMTTθk)−1

]
21

= [m21 −m12 m11 −m22]K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (35c)

E
q
(`)
θ

[
(TθkMTTθk)−1

]
22

= [m22 m11 m12 +m21]K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
, (35d)

where

K
(
θ̂
(`)
k|k,Θ

(`)
k|k

)
,


1 + cos(2θ̂

(`)
k|k) exp(−2Θ

(`)
k|k)

1− cos(2θ̂
(`)
k|k) exp(−2Θ

(`)
k|k)

sin(2θ̂
(`)
k|k) exp(−2Θ

(`)
k|k)

 . (35e)

The proof is given in Appendix B.
Corollary 1:

E
q
(`)
X ,q

(`)
θ

[
(sTθkXkT

T
θk

)−1
]

= (1− exp(−2Θ
(`)
k|k))

Tr(E
q
(`)
X

[(sXk)−1])

2
I2

+ exp(−2Θ
(`)
k|k)

(
T
θ̂
(`)

k|k
E
q
(`)
X

[(sXk)−1]TT
θ̂
(`)

k|k

)
, (36)

where I2 is 2x2 identity matrix. This expression is obtained
from Lemma 1 by exploiting the fact that the matrix Xk is
diagonal by definition.

A summary of the resulting iterative measurement update
procedure is given in Algorithm 1.

Algorithm 1 Variational measurement update

Given x̂k|k−1, Pk|k−1, {αik|k−1, β
i
k|k−1}

ny
i=1, θ̂k|k−1, Θk|k−1 and

Yk; calculate x̂k|k, Pk|k, {αik|k, βik|k}
ny
i=1, θ̂k|k, Θk|k as follows.

Initialization
x̂
(0)

k|k ← x̂k|k−1, P
(0)

k|k ← Pk|k−1,
θ̂
(0)

k|k ← θ̂k|k−1, Θ
(0)

k|k ← Θ̂k|k−1,
α
i,(0)

k|k ← αik|k−1, β
i,(0)

k|k ← βik|k−1 for i = 1, . . . , ny ,
z
j,(0)

k|k ← yjk for j = 1, . . . ,mk,
Σ
z,(0)
k ← E

q
(0)
X

[(sXk)] using (34)
Iterations:
for ` = 0, . . . , `max − 1 do

Calculate the expectations in (33), and (36)
Update x̂

(`+1)

k|k , and P (`+1)

k|k using (17)
Update θ̂(`+1)

k|k , and Θ
(`+1)

k|k using (32)
Update αi,(`+1)

k|k , and βi,(`+1)

k|k using (21) for i = 1, . . . , ny

Update ẑ
j,(`+1)
k , and Σ

z,(`+1)
k using (25) for j = 1, . . . ,mk

end for
Set final estimates:
x̂k|k = x̂

(`max)

k|k , Pk|k = P
(`max)

k|k ,
θ̂k|k = θ̂

(`max)

k|k , Θk|k = Θ
(`max)

k|k ,
αik|k = α

i,(`max)

k|k , βik|k = β
i,(`max)

k|k for i = 1, . . . , ny

IV. TIME UPDATE

Once the measurement update is performed, the sufficient
statistics of the posterior density must be propagated in time
in accordance with the target dynamics. An optimal time
update step requires the solution to the following Chapman-
Kolmogorov equation

p(xak, Xk|Y1:k−1) =

∫
p(xak, Xk|xak−1, Xk−1)

p(xak−1, Xk−1|Y1:k−1)dxak−1dXk−1,
(37)

where xak ,
[
xTk θk

]T
. Unfortunately, it is not possible to

obtain an exact compact form analytical expression for most
extended target tracking models. Therefore various indepen-
dence conditions are implied to perform time updates in the
literature [4], [5], [7], [20]. For a detailed analysis of possible
time update approaches, interested readers can refer to [20]
and the references therein.

In the random matrix framework, it is possible to assume
that the dynamical models of the kinematic state and the extent
state are independent [5],

p(xk, Xk|xk−1, Xk−1) = p(xk|xk−1)p(Xk|Xk−1). (38)

Consequently, the time update of the kinematic state and the
extent state can be decoupled for factorised posteriors. The
time update of the kinematic state follows the Kalman filter
prediction equations if the underlying dynamics are linear.
Consider the following state space model which describes the
dynamics of the augmented state vector xak,

xak = Fxak−1 + uk, uk ∼ N (0, Q). (39)

The prediction density N (xak|k−1; x̂ak|k−1, P
a
k|k−1) is obtained

by updating the sufficient statistics (mean and covariance)
of the Gaussian components in accordance with the system
dynamics

x̂ak|k−1 = F x̂ak−1|k−1, (40a)

P ak|k−1 = FP ak−1|k−1F
T +Q. (40b)

where P ak , blkdiag(Pk, Θk).
In most tracking applications, the exact dynamics of the

extent state is unknown. Even in the case where the dynamic
equations of the extent states are available, the transition
density induced by the known dynamics may not lead to a
prediction update that results in the same family of probability
distributions using (37). If the dynamics of the extent state
is slowly varying but unknown, it is possible to obtain the
maximum entropy prediction density of the extent states by
utilizing a forgetting factor [32, Theorem 1]. In that case,
the sufficient statistics of the inverse Gamma distribution is
updated as

αik|k−1 = γkα
i
k−1|k−1, (41a)

βik|k−1 = γkβ
i
k−1|k−1, for i = 1, . . . , ny (41b)

where γ is the forgetting factor. We prefer to use the maximum
entropy prediction density in the time update. However, it
is possible to perform alternative time updates within the
proposed framework.

V. A CLOSER LOOK TO A SINGLE MEASUREMENT UPDATE

In this section, we investigate the proposed measurement
update, here and after denoted as VB, in more detail and
illustrate its capabilities in comparison with a state-of-the-art
extended Kalman filter (EKF) algorithm [17]. For this purpose,
we initiate the prior mean and covariance of both approaches
the same; and we compare the posterior distribution of the
extent states. Consider the example given in Figure 2, where
the prior mean of the target’s location is [−20 − 20]T . The
measurements are shown with blue stars, and the posterior
means of the VB and EKF updates are shown with the solid
green and red lines, respectively. The median of the true
posterior, which is computed by using 1 million Monte Carlo
samples, is shown with the solid black line. The mean of the



7

-25 -20 -15 -10 -5 0 5 10

-25

-20

-15

-10

-5

0

5
Posterior

VB #2

VB #3

Fig. 2: A single measurement update for VB and the EKF
approach. The prior and posterior mean shape estimates are
represented by green dotted and solid lines for VB, respec-
tively. The red dashed line indicates the prior mean shape
estimate while the red solid line depicts the posterior mean
estimate for EKF approach. The VB #i denotes the ith

variational iteration shape estimate mean of the VB algorithm.

extent and kinematic state distributions at the end of each VB
iteration is denoted by VB #i where #i stands for the ith

variational iteration. A total of 10 iterations are performed
within the variational update. As shown in Figure 2, the
posterior found by the VB algorithm is closer to the true
posterior than the posterior computed by the EKF, thanks
to the iterative nature of the VB updates. Unlike EKF, the
VB algorithm performs multiple iterations in a single update
and performs multiple linearizations during the iterations by
taking all available measurements into account. The ability to
compute the posterior iteratively is the key concept to explain
the superior performance of VB in the experiments given in
Section VI.

Lastly, we compare the average computation time of the
algorithms. The simulations for the illustrative example are run
in Matlab(R) R2019b on a standard laptop with an Intel(R)
Core(TM) i7-6700HQ 2.60 GHz platform with 16 GB of
RAM. We compare naive implementations of the algorithms
without exploiting any code optimization methods. A single
measurement update (with 10 iterations) and a single varia-
tional iteration for VB takes 2.3 × 10−3 sec and 2.1 × 10−4

sec, respectively. On the other hand, it takes 8.6 × 10−4

sec to perform a measurement update for the EKF. The
relevant parameters of the illustrative example are given in
the Appendix-C.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method and compare it with relevant elliptical object tracking
algorithms in the literature. The comparison is performed
through both simulations and real data experiments. The
alternative models are selected as the state-of-the-art EKF
approach that is capable of tracking the orientation of elliptical
objects [17] and the widely used RM based ETT model [5].
In the sequel, we denote these algorithms as Algorithm-1 and
Algorithm-2, respectively. The simulation results are presented
in Section VI-A, and the results of the real-data experiment
are given in Section VI-B.

A. Simulations
In the simulations, we use the Gaussian Wasserstein (GW)

distance [33], [34] and root-mean-square-error (RMSE) for
performance evaluation and comparison,

GW(ma, Xa,mb, Xb)
2

, ‖ma −mb‖22︸ ︷︷ ︸
1st Term

+ Tr[Xa +Xb − 2(X
1
2
a XbX

1
2
a )

1
2 ].︸ ︷︷ ︸

2nd Term
(42)

Here, ma, mb and Xa, Xb stand for two different center
locations and elliptic extent matrices, respectively. The first
term in (42) corresponds to the error in the estimation of the
object’s center, and the second term corresponds to the error in
extent estimation. We report both terms in (42) in addition to
the overall GW distance to provide insight into the estimation
performance of the algorithms in detail. Furthermore, we
compare the RMSE of the orientation estimations which is
defined by

RMSE(θtrue, θ) =

√√√√ 1

N

N∑
k=1

(θk,true − θk)2, (43)

where N denotes the number of time steps in a single run.
1) Constant Velocity Model: In the first experiment, a

dynamic object is simulated, which moves according to the
nearly constant velocity model defined by the following pa-
rameters.

F =

[
1 T
0 1

]
⊗ I2, F = blkdiag(F , 1), (44a)

P0 = I5, x̂0 = [0 0 50 0 0]
T
, (44b)

Xtrue =

[
50 0
0 600

]
, Q = σ2

[
T 3

3
T 2

2
T 2

2 T

]
⊗ I2, (44c)

Q = blkdiag(Q, σθ), R = 5× I2, (44d)

where T = 0.1, σ = 1, and σθ = 0.01. In this simulation,
the parameters of the motion model are fully provided to the
tracking algorithms so that the error due to model-mismatch
does not affect the estimation performance. Throughout the
trajectory, the object generates an average of 10 measurements
per scan. We investigate two different cases separately; in the
first case, the measurements follow a Gaussian distribution,
and in the second case, they follow a uniform distribution.
All simulation experiments were performed 100 times with
different realizations of the process noise, measurement noise,
and measurement origin at each simulation. The presented
numbers are the average of these 100 Monte Carlo (MC) runs.
The algorithm specific initial shape variables for VB are set
to α1,2

0 = [2 2]T and β1,2
0 = [100 100]T . The number of

variational iterations is 10.
The shape variables are initialized for Algorithm-2 as

v0 = 4 and V0 = diag([100, 100]). The forgetting factor
is set to γ = 0.99 for both VB and Algorithm-2. To be
consistent with [17], we use the same notations for the
parameters of Algorithm-1. The prior mean and covariance
matrix of the shape variables of Algorithm-1 are selected to
be p̂0 = [0 10 10]T and Cp0 = diag([1, 20, 20]). The vector
p̂0 consists of [θ, l1, l2] where, θ, l1, and l2 are the orientation
and the semi-axis lengths, respectively. The process noise
covariance matrix for the shape variables for Algorithm-1 is
Cwp = diag([10−2, 0.1, 0.1]). The kinematic state transition
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TABLE II: The GW distance values for Gaussian measure-
ments.

GW Distance
1st Term [m2]

GW Distance
2nd Term [m2]

GW
Distance [m]
Mean Std.

Algorithm-1 4.78 8.54 3.18 0.24
Algorithm-2 5.22 56.63 6.86 1.68

VB 4.49 5.27 2.85 0.23

TABLE III: The GW distance values for uniformly distributed
measurements.

GW Distance
1st Term [m2]

GW Distance
2nd Term [m2]

GW
Distance [m]
Mean Std.

Algorithm-1 1.93 6.02 2.49 0.55
Algorithm-2 2.18 58.54 6.69 1.65

VB 1.92 4.54 2.28 0.41

matrix for Algorithm-1 is set to Ar = F (1 : 4, 1 : 4).
The initial mean of the kinematic state vector is the same
as VB, r̂0 = x̂0(1 : 4). The state transition matrix for
the shape variables is Ap = I3. The initial values of the
shape and kinematic variables are selected to make the prior
means of the algorithms the same. The algorithmic specific
parameters are hand-tuned to obtain the best performance
of each algorithm. We report the average GW distance and
the orientation RMSE for Gaussian and uniformly distributed
measurements in Table II and Table III, respectively. The
proposed algorithm performs better in terms of estimating
the extent of the target and outperforms the other algorithms
in terms of GW distance. Additionally, VB shows a better
performance in estimating the orientation of the target.

2) Experimental Trajectory: This experiment involves the
scenario studied in [5], [7], [17], [18]. In this simulation, the
trajectory composed of one 45° and two 90° turns pieced
together with straight paths. The object of interest has un-
known but fixed semi-axes lengths, and its orientation varies
in time. The object starts its motion from the origin with a
speed of 50 km/h, which is fixed throughout the trajectory.
The measurements are generated from a uniform distribution,
and the number of the measurements is drawn from a Poisson
distribution with an average of 20 measurements per scan. In
addition to simulations performed in [17], we will examine the
performance of the algorithms with Gaussian distributed mea-
surements. As in [17], the prior mean and covariance matrix
of the shape variables are selected to be p̂0 = [π, 200, 90]T

and Cp0 = diag([1, 702, 702]). The process noise co-
variance matrix for the shape variables and kinematics are
Cwp = diag([0.1, 1, 1]) and Cwr = diag([100, 100, 1, 1]),
respectively. The measurement noise covariance matrix is,
R = diag([400, 400]). In order to have a fair comparison,
the prior mean values of the kinematic and shape variables
for VB and Algorithm-2 are chosen to be the same as those
of Algorithm-1. The shape variables for VB are selected to be

TABLE IV: The heading angle RMSE values for Gaussian and
uniform measurements.

Gaussian
Measurements

Heading
Angle RMSE [°]

Uniform
Measurements

Heading
Angle RMSE [°]

Mean Std. Mean Std.
Algorithm-1 4.46 0.87 4.93 0.45
Algorithm-2 59.98 34.38 60.15 34.00

VB 3.93 0.41 4.00 0.43

TABLE V: The GW distance and heading angle RMSE values
of the scenario in Section VI-A2 when the measurements are
uniformly distributed.

GW Dist.
1st Term

[m2]

GW Dist.
2nd Term

[m2]

GW
Dist.
[m]

Heading
Angle
RMSE

[°]
Mean Std. Mean Std.

Alg.-1 281.38 280.54 20.84 0.94 3.89 0.26
Alg.-2 284.05 1436.05 32.94 082 82.61 5.21

VB 270.74 203.01 19.83 0.89 3.37 0.21

TABLE VI: The GW distance and heading angle RMSE values
of the scenario in Section VI-A2 when the measurements are
generated from a Gaussian distribution.

GW Dist.
1st Term

[m2]

GW Dist.
2nd Term

[m2]

GW
Dist.
[m]

Heading
Angle
RMSE

[°]
Mean Std. Mean Std.

Alg.-1 884.75 244.15 29.17 1.43 3.57 0.35
Alg.-2 826.32 1167.80 37.69 1.29 82.66 5.08

VB 822.15 145.31 27.36 1.39 2.94 0.20

α1,2
0 = [5 5] and β1,2

0 = [4002 1802]. The degrees of freedom
is v0 = 7 for Algorithm-2. The scale matrix is initialized as
V0 = diag([4002, 1802]). The initial mean of the kinematic
state is set to x̂0 = [100 100 5 − 8 π]T for VB. The
number of the variational iterations is 10. The initial mean
of the kinematic state for the Algorithm-1 and Algorithm-2 is
selected to be r̂0 = x̂0(1 : 4). We conducted 100 MC runs
for each measurement distribution type. The GW distance and
the orientation RMSE are presented in Table V and Table VI.
An example MC run is depicted in Fig 3. Algorithm-2 could
not perform well during the turns because the method does
not treat the orientation as a separate random variable and
compensates the changes in the orientation by updating the
extent estimate. However, VB and Algorithm-1 are able to
overcome this problem. The results show that the proposed
approach, VB, provides better orientation, center, and extent
estimates.

B. Real Data Experiment
In this section, the algorithms’ capabilities are illustrated

with real data. In addition to elliptical models, we compare the
performance of another well-known ETT algorithm, namely
the Gaussian process based extended target tracking (GP-ETT)
algorithm [10] to demonstrate the performance of the methods
that do not rely on elliptical extent assumption in the scenario.

The test data is collected in an urban area of Ankara.
The test scenario involves a commercial vehicle moving in a
parking lot while a steady aerial camera captures images of the
surveillance region every second, i.e., T = 1s. In the scenario,
a long sampling time is intentionally chosen to minimize the
computational power consumption, thereby prolonging the air-
time of the aerial camera in possible real-time applications.
The outline of the vehicle’s trajectory is shown in Figure 4.
The colored-line indicates the trajectory followed by the mid-
point of the vehicle. The scenario starts while the vehicle is
parked in the parking area, indicated by the dark blue color.
The vehicle leaves the parking area and follows the path shown
in blue until it is parked in the parking area, which is indicated
by the green color. Then the vehicle performs a similar motion
from the green-colored parking spot following the path to the
red-colored parking spot.
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Fig. 3: An example MC run of the scenario in Section VI-A2

Fig. 4: The outline of the movement of the vehicle during
the time-lapse. The vehicle starts from the dark blue colored
parking spot; and follows the colored path until the red colored
parking spot. In the figure, the last frame is shown.

Throughout the scenario, the captured images are processed
for measurement extraction. Various feature extraction algo-
rithms can be used to obtain measurements from the vehicle
such as Harris corner detection [35], Scale Invariant Feature
Transform (SIFT) [36], Speeded Up Robust Features (SURF)
[37] or similar. In order to demonstrate that the algorithm
can work with a wide range of feature extraction algorithms,
we present a more general case, where the measurements
are uniformly sampled from the vehicle’s visible surface. The
results obtained by using the features extracted by the Harris
corner detector are also consistent with the results presented
here, but they are not included in the manuscript because of
the page limitations.

As part of the image processing step, a segmentation is
performed in every frame in the HSV color band to separate
the yellow vehicle from the background. Following that, a

median filter is used to reduce the number of clutters. Finally,
the pixels that belong to the vehicle are sampled uniformly to
obtain the measurements. The initial position of the vehicle
is extracted from the first frame. The initial velocity, on
the other hand, is assumed to be unknown and assumed
to be zero. Hence, the initial mean of the kinematic state
vector is selected to be x̂0 = [450 245 0 0 π

2 ]T . The
initial parameters of the algorithms are selected to match
the prior means of the corresponding distributions. For this
purpose, the initial shape parameters for VB is selected to be
α1,2
0 = [2 2]T and β1,2

0 = [250 1000]T . The prior mean and
covariance matrix of the shape variables for Algorithm-1 is set
to p̂0 = [0 2500.5 10000.5]T and Cp0 = diag([1, 100, 100]),
respectively. The degrees of freedom value and the initial scale
matrix is set to v0 = 4 and V0 = diag([250, 1000]) for
Algorithm-2, respectively. The process noise covariance matrix
Q is similar to the previous simulations, however σ is taken as
4, and σθ is 0.1 for VB. The number of variational iterations is
10. The process noise covariance matrix for the shape variables
for Algorithm-1 is set to Cwp = diag([0.1, 10−3, 10−3]).
Finally, the measurement noise covariance matrix is taken as
R = diag([1, 1]). The parameters were optimized manually
to obtain the best performances of the algorithms.

The extent estimates corresponding to the frames
{2, 18, 24, 39, 45, 83} are given in Figure 5. These snapshots
were chosen for the sake of a clearer illustration of the
differences between the algorithms’ performances, starting
from the initial frames. At the beginning of the scenario,
the vehicle stays immobile, and the algorithms are able to
estimate the vehicle’s extent satisfactorily (see: Frame 2).

Before the vehicle starts its movement, the extent estimate
of the GP-ETT is more accurate and closer to the true
extent of the target. On the other hand, the random matrix
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Fig. 5: A representative MC run of the real data experiment. The extent estimates of VB, Algorithm-1, Algorithm-2, and
GP-ETT are shown in black, red, blue, and green lines, respectively. The measurements are represented with green dots.

approaches are significantly advantageous throughout this sce-
nario because they can fully exploit the prior information
that the target’s extent is close to an elliptical shape. GP-
ETT algorithm aims at estimating the contours of objects
having arbitrary shapes and its performance degrades when the
measurements are originating from the surface of objects and
the number of the surface measurements is low. The algorithm
is essentially trying to solve a harder problem because it has
more degrees of freedom to represent the unknown extent and
a greater uncertainty to resolve compared to the ellipsoidal
target tracking methods.

When the vehicle is moving in a straight path, such as
in Frame 18 and Frame 39, the performance of all random
matrix based algorithms are satisfactory. However, when the
vehicle performs a maneuver, as in Frame 24, Frame 45 and
Frame 83, VB shows superior performance in estimating the
orientation of the vehicle. During the maneuvers, Algorithm-
2 cannot estimate the extent accurately because it does not
treat the heading angle as a separate random variable, and it
tries to adapt to the changes in the orientation by updating the
extent states. Algorithm-1 also struggles to find the correct
orientation of the vehicle. However, VB can provide accurate
estimates of the extent thanks to its iterative updates. Note that
VB and Algorithm-1 use the same process noise variance for
the orientation. Since the vehicle is stable in the first couple of
frames and the algorithms are able to estimate the extent accu-
rately, increasing the variance values of the shape variables for
Algorithm-1 does not improve the performance of estimating
the extent further. Additionally, if the variance values are
increased too much, the extent estimates of Algorithm-1 tend
to collapse to zero. We encountered a similar problem while
tuning Algorithm-1 in the simulation scenarios. We report one
example of such behavior in a single measurement update in
Appendix D for interested readers.

VII. CONCLUSION AND DISCUSSION

ETT involves tracking objects that generate multiple mea-
surements per scan. In most ETT applications, the orientation
of the extended targets changes in time. In standard RM
based ETT methods, this phenomenon is addressed by a
forgetting factor, which aims at forgetting the accumulated

information. In this work, we proposed a novel approach
for extended target tracking that is capable of simultaneously
estimating the kinematic, extent, and orientation states of an
extended target. We use the variational Bayes technique for
inference and define appropriate priors for the unknown state
variables that can accurately model the changes in the extended
targets’ orientation. The performance and capabilities of the
algorithm are demonstrated through simulations and real data
experiments. Experimental results on simulations and real data
demonstrate that the proposed method significantly improves
the tracking performance, as well as the accuracy in estimating
the orientation and the shape of the object compared to the
state-of-the-art methods.

It is also worth mentioning that variational Bayes ap-
proaches resort to factorized distributions, which lose the
correlation structure in the posterior density. An algorithm
that does not neglect correlation terms may provide better
estimation performance than such variational methods. In our
experience (as illustrated in benchmark scenarios and real
data experiments in Sections V-VI), the iterative optimization
structure provided by the variational inference framework out-
performs the alternative solutions by overcoming the disadvan-
tages associated with the factorized approximation. However,
improved performance can be achieved by further exploiting
the correlation structure in the true posterior.

The model and the technique we use might also be applica-
ble to estimation problems other than extended target tracking
applications, which involve dynamic elliptical representations
or unknown covariance matrices with similarly structured
uncertainty. These problems may include, but are not limited
to, obtaining elliptical bounds in power systems [38], [39],
estimating ellipsoid sets containing target states over sensor
networks [40] or spectrum representation in speech processing
[41], [42].
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[16] S. F. Kara and E. Özkan, “Multi-ellipsoidal extended target tracking
using sequential Monte Carlo,” in 2018 21st International Conference
on Information Fusion (FUSION). IEEE, 2018, pp. 1–8.

[17] S. Yang and M. Baum, “Tracking the orientation and axes lengths of
an elliptical extended object,” IEEE Transactions on Signal Processing,
vol. 67, no. 18, pp. 4720–4729, Jul 2019.

[18] ——, “Extended Kalman filter for extended object tracking,” in 2017
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2017, pp. 4386–4390.

[19] ——, “Second-order extended Kalman filter for extended object and
group tracking,” in 2016 19th International Conference on Information
Fusion (FUSION). IEEE, 2016, pp. 1178–1184.

[20] K. Granström and U. Orguner, “New prediction for extended targets
with random matrices,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 50, no. 2, pp. 1577–1589, Apr. 2014.

[21] V. Smidl and A. Quinn, “Variational Bayesian filtering,” IEEE Transac-
tions on Signal Processing, vol. 56, no. 10, pp. 5020–5030, 2008.

[22] S. Sarkka and A. Nummenmaa, “Recursive noise adaptive Kalman
filtering by variational Bayesian approximations,” IEEE Transactions
on Automatic control, vol. 54, no. 3, pp. 596–600, 2009.

[23] H. Nurminen, T. Ardeshiri, R. Piché, and F. Gustafsson, “Skew-t filter
and smoother with improved covariance matrix approximation,” IEEE
Transactions on Signal Processing, vol. 66, no. 21, pp. 5618–5633, 2018.

[24] H. Nurminen, T. Ardeshiri, R. Piche, and F. Gustafsson, “Robust
inference for state-space models with skewed measurement noise,” IEEE
Signal Processing Letters, vol. 22, no. 11, pp. 1898–1902, 2015.

[25] Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, “A novel adaptive
Kalman filter with inaccurate process and measurement noise covariance
matrices,” IEEE Transactions on Automatic Control, vol. 63, no. 2, pp.
594–601, 2017.

[26] K. Granström, S. Renter, M. Fatemi, and L. Svensson, “Pedestrian
tracking using velodyne data—Stochastic optimization for extended
object tracking,” in 2017 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2017, pp. 39–46.

[27] L. Guerlin, B. Pannetier, M. Rombaut, and M. Derome, “Study on group
target tracking to counter swarms of drones,” in Signal Processing,
Sensor/Information Fusion, and Target Recognition XXIX, vol. 11423.
International Society for Optics and Photonics, 2020, p. 1142304.

[28] S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan, and
K. Granström, “Mono-camera 3D multi-object tracking using deep learn-

ing detections and pmbm filtering,” in 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018, pp. 433–440.
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APPENDIX A
CALCULATION OF δ AND ∆

In Section III-A4, we introduced the update formulas for
the orientation distribution as below.

θ̂
(`+1)
k|k = Θ

(`+1)
k|k

(
Θ−1k|k−1θ̂k|k−1 + δ

)
, (45)

Θ
(`+1)
k|k =

(
Θ−1k|k−1 + ∆

)−1
, (46)

Here, the variables δ and ∆ are derived from the expectation
in (47).
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b = −(T ′
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(`)
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)T (zjk −Hxk). (51)

When the a and b variables are substituted into (48) and (49),
we obtain the δ and ∆ variables as
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APPENDIX B
PROOF OF LEMMA 1

In this section we will give the proof of Lemma 1 to
calculate E

q
(`)
θ

[
(sTθkMTTθk)−1

]
. In the formulation, we first

multiply the matrices inside the expectation. Then, the expec-
tation of each entry of the resultant matrix is taken. First,
notice that, (

TθkMTTθk
)−1

= TθkM
−1TTθk . (54)

Given

M−1 =

[
m11 m12

m21 m22

]
,

the expression whose expectation has to be taken becomes

Λ = TθkM
−1TTθk

=

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

] [
m11 m12

m21 m22

]
×
[

cos(θk) sin(θk)
− sin(θk) cos(θk)

]
, (55a)

Λ(1, 1) = m11 cos2(θk) +m22 sin2(θk)

− (m12 +m21) cos(θk) sin(θk), (55b)
Λ(1, 2) = m12 cos2(θk)−m21 sin2(θk)

+ (m11 −m22) cos(θk) sin(θk), (55c)
Λ(2, 1) = m21 cos2(θk)−m12 sin2(θk)

+ (m11 −m22) cos(θk) sin(θk), (55d)
Λ(2, 2) = m22 cos2(θk) +m11 sin2(θk)

+ (m12 +m21) cos(θk) sin(θk). (55e)

Now the following trigonometric transformations are utilized
and the expectations are taken with respect to the resulting
expressions.
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By substituting the expressions in (55) with the corresponding
equalities given in (56) Lemma 1 is obtained.

APPENDIX C
THE PARAMETERS OF THE EXPERIMENT IN SECTION V
In this section, the parameters of the experiment given in

Section V are summarized. The prior shape estimate is apart
from the true center location of the target by (20, 20) units in
the 2D coordinate frame. The extent of the ground truth object
is parametrized as diag([6, 0.5]) with 0° orientation. The mean
of the prior extent ellipse parameters for both methods are
equal to the parameters of the ground truth extent. The prior
shape parameters of the proposed algorithm are selected to be
α1,2
0 = [101 101]T and β1,2

0 = [600 50]T . The prior mean
of the orientation variable is taken as θ̂0 = π

2 . To have a
reasonable comparison, the mean vector and the variance of
the shape parameters for the EKF approach are selected to
match with those of the VB algorithm. The prior kinematic
state covariance matrix is P0 = diag([300, 300, 1, 1, π

2 ]).
The measurement noise covariance matrix is R = diag([1, 1]).
In this experiment, the number of measurements is 10, and
the measurements are generated according to a Gaussian
distribution. However, the trials with the uniformly distributed
measurements yield similar results.

APPENDIX D
AN EXAMPLE FOR THE COLLAPSING EXTENT ESTIMATES

Here we repeated the simulation in Section V with the
following set of parameters:
For VB, the prior mean of the target’s kinematic state is
x̂0 = [−30 − 30 1 1 π

2 ]T . The prior kinematic state
covariance matrix is P0 = diag([300, 300, 1, 1, π

2 ]).
The shape parameters for VB is α1,2 = [11 11]T and
β1,2 = [600 50]T . For Algorithm-1, the prior mean vector
and covariance matrix of the kinematic state is r̂0 = x̂0(1 : 4)
and Cr0 = diag([300, 300, 1, 1]), respectively. The prior
mean and variance of the extent parameters are the same for
both algorithms. The number of measurements generated from
the target is 10. The measurement noise covariance matrix is
R = diag([1, 1]). A single measurement update of VB and
Algorithm-1 is visualized in Figure 6.
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Fig. 6: The visualization of the collapsing behavior of
Algorithm-1. Blue stars represent the measurements, the solid
green and red lines stand for the posterior means of the VB
and EKF updates, respectively. The solid black line indicates
the median of the true posterior, which is computed by using
1 million Monte Carlo samples.
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