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Abstract

Range profiling refers to the measurement of target response along the radar slant range. It plays

an important role in automatic target recognition. In this paper, we consider the design of transmit

waveform to improve the range profiling performance of radar systems. Two design metrics are adopted

for the waveform optimization problem: one is to maximize the mutual information between the received

signal and the target impulse response (TIR); the other is to minimize the minimum mean-square error for

estimating the TIR. In addition, practical constraints on the waveforms are considered, including an energy

constraint, a peak-to-average-power-ratio constraint, and a spectral constraint. Based on minorization-

maximization, we propose a unified optimization framework to tackle the constrained waveform design

problem. Numerical examples show the superiority of the waveforms synthesized by the proposed

algorithms.
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I. INTRODUCTION

Radar range profiling refers to the generation of high resolution range profiles (HRRP) by processing

the target returns. The generated HRRP can be used for image formation [1] and automatic target recog-

nition [2] in radar systems. Conventional wideband radar systems usually transmit high-range-resolution

waveforms (e.g., the linear frequency-modulated (LFM) waveforms, also called chirp waveforms) and use

matched filtering (MF) to obtain range profiles. However, the optimality of transmitting such waveforms

is not guaranteed. Moreover, it is well-known that the MF is optimal only in the sense of maximizing

signal-to-noise-ratio (SNR) for point-like target detection in the presence of white noise.

Essentially, radar range profiling is a process of extracting information from target echoes. It can also

be viewed as a parameter estimation problem, where the target impulse response (TIR) is the parameter of

interest. Therefore, estimators other than the MF can be used to improve the range profiling performance.

Well-known data-independent estimators include mismatched filter (MMF) and least-square (LS) estimator

(see, e.g., [3]–[5] and the references therein). The MMF improves the signal-to-clutter-plus-noise ratio

(SCNR) but suffers some SNR loss. In [6], the authors pointed out that, an improper selection of the

processing window for the LS estimator degraded the range profiling performance. To overcome the

limitation of the LS estimator, they proposed a data adaptive approach, called adaptive pulse compression

(APC). The APC algorithm achieved low estimation errors and was capable of unmasking weak targets.

In [7], this algorithm was tested on measured data and showed the superiority over the conventional MF.

Moreover, if the TIR is sparse (i.e., the number of non-zero component of the TIR is small), algorithms

based on sparse reconstruction can be applied to estimate the TIR (see, e.g., [8] and the references

therein).

In addition to deriving estimators (in the receiver), there are also considerable interests in designing

waveforms (in the transmitter) in recent years (see, e.g., [9]–[11] and the references therein). In [12],

[13], the authors proposed several computational approaches to minimize the integrated sidelobe level

(ISL) of the transmit waveforms. Indeed, if MF is used in the receiver, waveforms with low ISL are

useful to suppress clutter from the neighborhood range bins. Alternatively, if MMF is used, the detection

performance of radar systems can be further enhanced by jointly designing the transmit waveform and

receive filter (see, e.g. [14]–[18] and the references therein). However, waveforms designed for enhancing

the target detection performance might not be suitable for range profiling.

For the range profiling problem, a widely used metric for designing waveforms is to maximize the

mutual information between the TIR and the received signal (see, e.g., [19]–[25] and the references

therein). In [19], the author derived the optimal “estimation” waveform maximizing the mutual informa-
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tion. Results showed that the optimal estimation waveforms admitted a water-filling solution. In [20], the

authors extended the work in [19], and proposed a waveform design algorithm for estimating multiple

extended targets with a phased-array radar. In [21], the waveform design problem in the presence of

signal-dependent interference was considered. In [22]–[24], radar waveform design for spectrum sharing

with communication systems was addressed. However, the waveforms synthesized by the algorithms in

these works are not constant-modulus, which makes them difficult to implement in practical radar systems.

In this paper, we consider the design of practically constrained waveform for range profiling with single-

input-single-output (SISO) radars (which means that we extend the point-target formulation to distributed

targets). Given that range profiling is a parameter estimation problem, we first consider the widely used

mutual information criterion (i.e., designing waveforms based on maximizing the mutual information

between the received signal and the TIR). Different from the approaches in [19]–[21], which optimized

the (continuous) spectrum of the waveforms, we consider the optimization of the discrete-time waveforms.

This facilitates enforcing practical constraints on the waveform. To investigate the estimation performance

of the waveform designed based on mutual information maximization, we then consider the waveform

design based on minimizing MMSE, and compare their performance. We develop a unified optimization

framework based on minorization-maximization (MM) to tackle the encountered (non-convex) waveform

design problems. Numerical examples show that the waveforms synthesized by the proposed algorithms

outperform their counterparts.

The rest of this paper is organized as follows. Section II establishes the signal model and formulates

the waveform design problem. Section III proposes an MM-based algorithm framework to tackle the

non-convex waveform design problem. Section IV gives methods to efficiently tackle the quadratic

programming problem encountered at each iteration of the proposed MM algorithms. Section V analyzes

the convergence and the computational complexity of the proposed algorithms. Section VI provides

numerical examples to demonstrate the performance of the proposed algorithms. Finally, we conclude

the paper in Section VII.

Notations: Throughout this paper, matrices are denoted by bold uppercase letters and vectors are

denoted by bold lowercase letters. Cm×n and Ck are the sets of m× n matrices and k × 1 vectors with

complex-valued entries. I, 1, and 0 denote the identity matrix, the matrix of ones, and the matrix of

zeros, with the size determined by the subscript or from the context. Superscripts (·)T , (·)∗, and (·)†

denote the transpose, the conjugate, and the conjugate transpose. The symbols det(·) and tr(·) indicate

the determinant and the trace of a square matrix. ‖ · ‖2 and ‖ · ‖∞ denote the Euclidean norm and

the `∞-norm of a vector argument. ‖ · ‖F denotes the Frobenius norm of a matrix argument. ⊗ and ~

represent the Kronecker product and the operator of convolution. vec(X) indicates the vector obtained by
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column-wise stacking of the entries of X. Re(X) denotes the real part of the matrix X (element-wise).

arg(x) represents the argument of x. bxc denotes the nearest integer less than or equal to x. The notation

A � B (A � B) means that A − B is positive definite (semi-definite). x ∼ CN (m,R) means that

x obeys a circularly symmetric complex Gaussian distribution with mean m and covariance matrix R.

Finally, E(x) denotes the expectation of the random variable x.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Signal Model

Waveform design Waveform generator

Range profile 
statistics

MMSE estimator

Design Metric

Waveform constraint

s s(t)

y(t)hMMSE

Rh

Interference statistics

Rn

Fig. 1. Illustration of the radar system architecture.

As illustrated in Fig. 1, we consider a wideband radar system with s(t) being its baseband transmit

waveform. Let h(t) denote the TIR. Then the down-converted received signal can be written as

y(t) =

∫ τ2

τ1

s(τ)h(t− τ)dτ + n(t), (1)

where τ1 and τ2 denotes the minimum and maximum two-way propagation delays, respectively, and n(t)

denotes the disturbance in the receiver (accounting for possible jamming signals and receiver noise). To

facilitate the following discussions, we consider the discretized signal model. Let s = [s1, s2, · · · , sL]T ∈

CL denote the (discrete-time) waveform (associated with s(t)), and h ∈ CP denote the target response

vector (associated with h(t)), where L is the code length, and P is the number of range cells with target

signals 1. Then the digital received signal, denoted by y, can be written as

y = h ~ s + n, (2)

where n ∈ CL0 denotes the samples corresponding to n(t), and L0 = L+ P − 1.

1P ≈ B(τ2 − τ1), where B is the bandwidth of the signal.
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Define

S =



s1 0 · · · 0

s2 s1
. . . 0

...
. . . . . . 0

sL sL−1 · · · 0

0 sL
. . . 0

...
...

...
...

0 · · · · · · sL


∈ CL0×P . (3)

Then y can be rewritten as

y = Sh + n. (4)

Note that similar signal models are considered in [14], [15], [26], [27]. In these papers, the authors

assumed that the TIR is known a priori or partially known. The assumption is justified if a template

library containing TIR at all relevant target aspect angles is available, or the radar system is cognitive,

i.e., the radar system can obtain the prior knowledge of the TIR from the previous estimates (see, e.g.,

[24], [28]–[30] and the references therein for a recent discussion). Different from [14], [15], [26], [27],

which used a deterministic TIR model, we employ a stochastic TIR model. Specifically, we assume

that h ∼ CN (µh,Rh), where µh indicates the prior knowledge of the target response and Rh accounts

for the uncertainty in the prior knowledge (Rh can be estimated based on multiple previous estimates,

or specified by the user). In addition, we assume that the disturbance n obeys a Gaussian distribution

with zero mean and covariance matrix Rn (estimated based on target-free samples). Based on the two

assumptions, we have y ∼ CN (Sµh,Rs), where Rs = SRhS
† + Rn.

Next we present two metrics for designing waveforms to improve the range profiling performance.

B. Waveform Design Based on Maximizing Mutual Information

The mutual information between y and h is given by

I(y; h) = H(y)− H(y|h)

= log det(SRhS
† + Rn)− log det(Rn)

= log det(R−1n SRhS
† + I), (5)
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where H(y) denotes the differential entropy of y, and H(y|h) denotes the conditional differential entropy

of y given h [31]. Thus, the waveform design problem based on maximizing mutual information can be

formulated as follows:

max
s

fI(s) = log det(R−1n SRhS
† + I)

s.t. s ∈ S, (6)

where S denotes the feasibility region of s, and is determined by the constraints on the waveforms

(detailed in Subsection II-D).

C. Waveform Design Based on Minimizing MMSE

Given the signal model in (4), the MMSE estimator of h is given by [32]

hMMSE = µh + RhS
†(SRhS

† + Rn)−1(y − Sµh). (7)

The associated MMSE is

MMSE = E(‖h− hMMSE‖22)

= tr[(R−1h + S†R−1n S)−1]

= tr(Rh −RhS
†(SRhS

† + Rn)−1SRh), (8)

where the third equality is derived using the matrix inversion lemma [33]. Thus, the waveform design

problem based on minimizing MMSE is equivalent to

max
s

fE(s) = tr(RhS
†(SRhS

† + Rn)−1SRh)

s.t. s ∈ S. (9)

D. Waveform Constraints

In this paper, we consider the following constraints:

• Energy constraint. In practical radar systems, the available transmit energy for the waveform is

limited. Thus, we impose the following constraint:

s†s ≤ et, (10)

where et is the total available transmit energy. It can be proved that the mutual information is

increasing and the MMSE is decreasing with respect to (w.r.t.) the waveform energy (see Appendix
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A for a proof). Thus, the optimal waveform maximizing the mutual information and the optimal

waveform minimizing the MMSE must satisfy

s†s = et. (11)

• PAPR constraint. To improve the efficiency of the radio frequency amplifier and avoid the nonlinear

effect in the transmitter, waveforms with low PAPR is desired [34]–[40]. To control the PAPR of

the waveform, we consider the following constraint:

s†s = et,PAPR(s) ≤ ρ, (12)

where 1 ≤ ρ ≤ L, and

PAPR(s) =
maxl |s(l)|2

1
L

∑L
l=1 |s(l)|2

. (13)

If ρ = 1, the PAPR constraint becomes the constant-modulus constraint, i.e., the constraint in (12)

can be expressed as

|s(l)| = as, l = 1, · · · , L, (14)

where as =
√
et/L. If ρ = L, the constraint PAPR(s) ≤ ρ is redundant and the PAPR constraint

becomes the energy constraint.

• Spectral constraint. The increasing demand of a larger bandwidth for radar and communication

systems results in a crowded spectrum and mutual interference [29], [39], [41]–[44]. To improve the

performance and reduce the interference for a radar operating in spectrally crowded environments,

we enforce a spectral constraint on the waveform (see a similar constraint in [39], [43], [45], [46]):

s†s = et, s
†RIs ≤ EI, (15)

where EI is the maximum allowed interference that can be tolerated by the communication systems,

RI =
∑Krad

k=1wkRI,k, Krad is the number of nearby communication systems, wk is the weight

corresponding to the kth communication system (which is a user-defined parameter and represents

different emphasis on various communication systems),

RI,k(m,n) =

f
k
2 − fk1 , m = n

ej2πf
k
2 (m−n)−ej2πfk1 (m−n)

j2π(m−n) m 6= n,

fk2 and fk1 are the upper and the lower normalized frequencies of the kth communication system,

respectively. Note that fk2 and fk1 can be obtained from spectral regulations, or by spectrum sensing

(e.g., by a cognitive radar [29], [43]).
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III. MINORIZER CONSTRUCTION

Note that the optimization problems in (6) and (9) are in general non-convex. To tackle the non-

convex optimization problems, we develop a unified optimization framework in this section. Specifically,

the framework is based on MM (see, e.g., [47], [48] for a tutorial introduction to the MM algorithms).

The key idea of the proposed framework is to derive minorizers for fI(s) and fE(s). In precise, the

derived minorizers (denoted by gO(s; sk)) should satisfy that

gO(s; sk) ≤ fO(s), (16a)

gO(sk; sk) = fO(sk), (16b)

where O = I or E.

A. Minorizer for fI(s)

Note that the objective function in (6) can be rewritten as

fI(s) = log det(R
1

2

h S†R−1n SR
1

2

h + I), (17)

where we have used the fact that det(I + AB) = det(I + BA) [33]. Using the matrix inversion lemma

yields [33]

(R
1

2

h S†R−1n SR
1

2

h + I)−1 = I−R
1

2

h S†R−1s SR
1

2

h

= (KM−1K†)−1, (18)

where K = [IP ,0P×L0
], and

M =

 I R
1

2

h S†

SR
1

2

h Rs

 . (19)

Thus, we have

fI(s) = log det(KM−1K†). (20)

It follows from Lemma 1 of [49] that log det(KM−1K†) is a convex function of M. Since convex

functions are minorized by their supporting hyperplanes [50], we have

log det(KM−1K†) ≥ log det(KM−1
k K†) + tr(Gk(M−Mk)),

where

Gk = −M−1
k K†(KM−1

k K†)−1KM−1
k (21)
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is the gradient of log det(KM−1K†) at Mk (which can be verified by using the results from [51]),

Mk =

 I R
1

2

h S†k

SkR
1

2

h Rs,k

 , (22)

Rs,k = SkRhS
†
k + Rn, and Sk is formed by sk ∈ S (which is the waveform at the kth iteration).

Let us partition Gk as

Gk =

G11
k G12

k

G21
k G22

k

 , (23)

where G11
k ∈ CP×P , G12

k = (G21
k )† ∈ CP×L0 , and G22

k ∈ CL0×L0 . Define L = [0L0×P , IL0
]. Then we

have

G11
k = KGkK

† = −(R
1

2

h S†kR
−1
n SkR

1

2

h + I), (24)

G21
k = LGkK

† = −R−1n SkR
1

2

h , (25)

G22
k = LGkL

† = −G21
k (KM−1

k K†)−1G12
k . (26)

Using the matrix inversion lemma and after some algebraic manipulations, G22
k can be simplified into

G22
k = R−1s,k −R−1n . (27)

Using the partition of Gk in (23), we have

tr(GkM) =tr(G11
k ) + tr(G22

k Rn) + 2Re(tr(S†G21
k R

1

2

h ))

+ tr(G22
k SRhS

†). (28)

Thus, fI(s) is minorized by

gI(s; sk) = cI + 2Re(tr(SR
1

2

h G12
k )) + tr(G22

k SRhS
†), (29)

where cI = tr(G11
k ) + tr(G22

k Rn) + log det(KM−1
k K†)− tr(GkMk).

Proposition 1: Define E = [ET
1 ,E

T
2 , · · · ,ET

P ]T , Ep = [0L×(p−1), IL,0L×(P−p)]
T ∈ CL0×L, p =

1, · · · , P , then we have

gI(s; sk) = cI + 2Re(s†aI,k) + s†AI,ks, (30)

where aI,k = E†vec(G21
k R

1

2

h ), AI,k = E†(R∗h ⊗G22
k )E.

Proof: See Appendix B.

According to Proposition 1, the mutual information maximization problem of an MM algorithm based

on (29) (at the (k + 1)th iteration) can be reformulated as

max
s

gI(s; sk) = cI + 2Re(s†aI,k) + s†AI,ks

s.t. s ∈ S. (31)
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B. Minorizer for fE(s)

Lemma 1: Assume that B � 0. Then ψ(A,B) = tr(A†B−1A) is jointly convex w.r.t. A and B, and

is minorized by

tr(A†B−1A) ≥ 2Re(tr(A†kB
−1
k A))− tr(B−1k AkA

†
kB
−1
k B). (32)

Proof: See Appendix C.

Note that SRhS
†+ Rn � 0. Using Lemma 1 (by substituting A with SRh and B with SRhS

†+ Rn),

we obtain

tr(RhS
†(SRhS

† + Rn)−1SRh) ≥2Re(tr(H†kS)− tr(Tk(SRhS
† + Rn)),

where Hk = R−1s,kSkR
2
h , and Tk = R−1s,kSkR

2
hS
†
kR
−1
s,k. Therefore, fE(s) is minorized by

gE(s; sk) = cE + 2Re(tr(HkS))− tr(TkSRhS
†), (33)

where cE = −tr(TkRn). Similar to that in Proposition 1, gE(s; sk) can be rewritten as

gE(s; sk) = cE + 2Re(s†aE,k) + s†AE,ks, (34)

where aE,k = E†vec(Hk), and AE,k = −E†(R∗h ⊗Tk)E.

Therefore, the MMSE minimization problem of an MM algorithm based on (34) (at the (k + 1)th

iteration) is equivalent to

max
s

gE(s; sk) = cE + 2Re(s†aE,k) + s†AE,ks

s.t. s ∈ S. (35)

IV. SOLVING THE QUADRATIC PROGRAMMING PROBLEM

In this section, we propose algorithms to solve the following minorized problem (which is a constrained

quadratic programming problem) at the (k + 1)th iteration:

max
s

gO(s; sk) = cO + 2Re(s†aO,k) + s†AO,ks

s.t. s ∈ S, (36)

where O = I or O = E.

March 19, 2021 DRAFT
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A. Energy Constraint

The minorized problem under the energy constraint can be formulated as follows:

max
s

2Re(s†aO,k) + s†AO,ks

s.t. s†s ≤ et. (37)

Note that AO,k � 0 (We refer to Appendix D for the proof). Thus, the optimization problem in (37) is

convex, meaning that its globally optimal solution can be found with polynomial time (e.g., via interior

point method). In addition, we can derive a semi-closed-form expression of the optimal solution by using

the method of Lagrange multipliers. To this end, let the Lagrangian associated with (37) be

F (s, µ) = −s†AO,ks− 2Re(s†aO,k) + µ(s†s− et), (38)

where µ ≥ 0 is the Lagrange multiplier associated with the energy constraint. According to the Karush-

Kuhn-Tucker (KKT) conditions [50], the optimal solution of (37) satisfies

(µkI−AO,k)s = aO,k,

µk(s
†s− et) = 0. (39)

if µk 6= 0, then

s = (µkI−AO,k)
−1aO,k, (40)

where µk can be obtained by solving a†O,k(µkI −AO,k)
−2aO,k = et. Otherwise, the optimal solution is

given by s = −A−1O,kaO,k.

B. PAPR Constraint

The minorized problem under the PAPR constraint is equivalent to

max
s

2Re(s†aO,k) + s†AO,ks

s.t. s†s = et,PAPR(s) ≤ ρ. (41)

We can also tackle the problem in (41) by MM. To this end, we note that

s†AO,ks ≥ 2Re(s†Apos,ksj) + constj , (42)

where Apos,k = AO,k−λmin(AO,k)I, λmin(AO,k) is the smallest eigenvalue of AO,k, constj = 2λmin(AO,k)et−

s†jAO,ksj , and sj is the solution at the jth (inner) iteration. As a result, the objective function in (41) is

minorized by

2Re(s†tk,j) + constj , (43)

March 19, 2021 DRAFT
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where tk,j = aO,k + Apos,ksj . Thus, the maximization problem of an MM algorithm based on (43) is

max
s

2Re(s†tk,j)

s.t. s†s = et,PAPR(s) ≤ ρ. (44)

The above optimization problem can be solved by Algorithm 2 in [52]. In particular, if ρ = 1, a closed-

form expression for the optimal solution can be derived as

sl = as exp(jφt,l), (45)

where φt,l = arg(tl), and tl is the lth element of tk,j .

Algorithm 1 summarizes the procedure to tackle the PAPR-constrained optimization problem in (41).

Algorithm 1: Optimization algorithm for (41).

Input: AO,k,aO,k, λmin(AO,k), ρ.

Output: sk+1.

1 Initialize: j = 0, sk,j = sk, Apos,k = AO,k − λmin(AO,k)I.

2 repeat

3 tk,j = aO,k + Apos,ksj

4 Update sk,j+1 by solving the optimization problem in (44)

5 j = j + 1

6 until convergence;

7 sk+1 = sk,j

C. Spectral Constraint

The minorized problem under the spectral constraint is given by

max
s

2Re(s†aO,k) + s†AO,ks

s.t. s†s = et, s
†RIs ≤ EI. (46)

The optimization problem in (46) is hidden-convex. Thus, it can be solved by semi-definite relaxation

followed by a rank-one decomposition [53]. However, the computational complexity of solving a semi-

definite programming problem is high (O(L4.5), given that the primal-dual path following method is

used). We propose using the alternating direction method of multipliers (ADMM) [54] to reduce the

computational complexity (As shown in Table I, the proposed ADMM has a complexity of O(L3)). To
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PREPRINT 13

apply the ADMM algorithm to this problem, we use the variable splitting trick and introduce an auxiliary

variable u as follows:

min
s,u

2Re(s†āO,k) + s†ĀO,ks

s.t. s†s = et,u
†RIu ≤ EI, s = u, (47)

where ĀO,k = −AO,k, and āO,k = −aO,k. The augmented Lagrangian associated with the optimization

problem in (47) can be written as

L%(s,u,λ) =s†ĀO,ks + 2Re(s†āO,k) + 2Re(λ†(s− u))

+ %‖s− u‖22, (48)

where λ is the Lagrange multiplier, and % is the penalty parameter. The ADMM method consists of the

following iterations:

sj+1 = arg min
s
L%(s,uj ,λj), (49a)

uj+1 = arg min
u
L%(sj+1,u,λj), (49b)

λj+1 = λj + %(s− u). (49c)

The optimization problem in (49a) can be rewritten as

min
s

s†(ĀO,k + %I)s + 2Re(s†bO,k)

s.t. s†s = et, (50)

where bO,k = āO,k + λj − %uj . The optimal solution of (50) can be obtained similarly to that in (37):

sj+1 = (ĀO,k + (%+ α1)I)−1bO,k, (51)

where α1 is a scalar making s†j+1sj+1 = et.

The optimization problem in (49b) is equivalent to

min
u
‖u− dj‖22

s.t. u†RIu ≤ EI, (52)

where dj = sj+1 + λj/%. Its solution is given by (see [55] for more details):

uj+1 =

dj , if d†jRIdj ≤ EI,

(I + α2RI)
−1dj , if d†jRIdj > EI,

(53)

where α2 can be obtained by solving d†jTIdj = EI, and TI = (I + α2RI)
−1RI(I + α2RI)

−1.
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Algorithm 2 summarizes the proposed ADMM algorithm for (46), where we terminate the ADMM

algorithm if both the (Euclidian) norm of the primal residual rj and the dual residual dj are sufficiently

small, where rj = sj − uj , and dj = %(sj − sj+1).

Algorithm 2: Optimization algorithm for (46).
Input: AO,k,aO,k, et, EI.

Output: sk+1.

1 Initialize: %, u = 0, λ = 0, j = 0, sk,j = sk.

2 repeat

3 Update sk,j+1 by (51)

4 dk,j = sk,j+1 + λj/%

5 Update uk,j+1 by (53)

6 λj+1 = λj + %(sk,j+1 − uk,j+1)

7 j = j + 1

8 until convergence;

9 sk+1 = sk,j

V. ALGORITHM SUMMARY AND SOME DISCUSSIONS

A. Algorithm Summary and Convergence

We summarize the proposed algorithm framework in Algorithm 3. Note that in some applications, to

control the shape of the ambiguity function or achieve some desired property, one needs to enforce a

similarity constraint on the waveform [56], which can be written as

s†s = et, ‖s− s0‖22 ≤ ε2, (54)

where s0 denotes a reference waveform possessing certain desirable property, s†0s0 = et, and ε2 is a user

specified similarity parameter (0 ≤ ε2 ≤ 2et). One can also enforce both constant-modulus and similarity

constraints on the waveform [34], [39]. The associated constraints are given by

|sl| = as, l = 1, · · · , L, ‖s− s0‖∞ ≤ ε∞, (55)

where the reference waveform s0 is constant-modulus, and ε∞ denotes a similarity parameter (0 ≤ ε∞ ≤

2as). It can be verified that the proposed framework can be applied to deal with both the constraints in

(54) and (55). Nevertheless, we omit the details here due to space limitations.
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Algorithm 3: Waveform optimization algorithm for radar range profiling.
Input: Rh,Rn.

Output: s.

1 Initialize: k = 0, sk.

2 repeat

3 switch Design metric do

4 case Maximizing mutual information do

5 Compute G22
k using (27) and G21

k using (25)

6 Compute AI,k and aI,k

7 AO,k = AI,k, aO,k = aI,k

8 case Minimizing MMSE do

9 Compute Hk and Tk

10 Compute AE,k and aE,k

11 AO,k = AE,k, aO,k = aE,k

12 end

13 end

14 switch Constraint do

15 case Energy constraint do

16 Update sk+1 by (40)

17 case PAPR constraint do

18 Update sk+1 by Algorithm 1

19 case Spectral constraint do

20 Update sk+1 by Algorithm 2

21 end

22 end

23 k = k + 1

24 until convergence;
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TABLE I

COMPUTATIONAL COMPLEXITY ANALYSIS

Computation Complexity Computation Complexity

Mutual information maximization MMSE minimization

G22
k O(L3

0) Hk O(L3
0 + L2

0P + L0P
2)

G21
k O(L2

0P + L0P
2) Tk O(L2

0P
2)

AI,k O(L2
0P

2) AE,k O(L2
0P

2)

aI,k O(L2
0P

2) aE,k -

Solving the quadratic programming problem

Energy constraint O(L3)

PAPR constraint O(NpaprL
2)

Spectral constraint O(NspectralL
3)

Next we analyze the convergence of the proposed algorithm. Note that fO(sk+1) ≥ gO(sk+1; sk) and

fO(sk) = gO(sk; sk). Thus, if gO(sk+1; sk) ≥ gO(sk; sk), then fO(sk+1) ≥ fO(sk), and the convergence of

the sequence of the objective values is guaranteed. For the energy constraint, gO(sk+1; sk) ≥ gO(sk; sk)

owing to the optimality of sk+1 given sk; for the PAPR constraint, if sk is used as the starting point of

the proposed MM method, the improvement of gO(sk+1; sk) over gO(sk; sk) can be verified by using the

ascent property of the MM method; for the spectral constraint, if sk+1 is obtained by the SDR and rank-one

decomposition, sk+1 is the optimal solution given sk, and it can be checked that gO(sk+1; sk) ≥ gO(sk; sk).

Otherwise, if sk+1 is obtained by the proposed ADMM method, it is non-trivial to prove the optimality

of sk+1. However, for the proposed ADMM algorithm, we do not encounter any convergence problem

during the numerical simulations (possibly because of the hidden convexity of the problem in (46)).

B. Computational Complexity

Table I summarizes the per-iteration computational complexity of the proposed algorithms, where Npapr

is the number of (inner) iterations needed to reach convergence under the PAPR constraint, and Nspectral

is the number of (inner) iterations needed to reach convergence under the spectral constraint. Note that

we have ignored the computational complexity that can be performed offline (e.g., the calculation of

R−1n ). In addition, we ignore the computational complexity involving the multiplication of E, since it

can be done by addition.
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C. Connection with ZCZ Waveforms

Suppose that Rn = σ20I (e.g., the disturbance is dominated by the white noise) and Rh = Λh (i.e., the

uncertainty of each element of the target impulse response vector is independent). Then the waveform

design problem based on maximizing mutual information can be rewritten as

max
s

fI(s) = log det(σ−20 S†S + Λ−1h )

s.t. s ∈ S. (56)

Note that

S†S = et


1 r∗1 · · · r∗P−1

r1 1 · · · r∗P−2
...

...
. . .

...

rP−1 rP−2 · · · 1

 , (57)

where rp = 1
et

∑L−p
k=1 s

∗
ksk+p is the aperiodic correlation function of s. In addition, according to Hadamard’s

inequality [33],

det(σ−20 S†S + Λ−1h ) ≤
P∏
p=1

(σ−20 et + λ−1h,p), (58)

where λh,p is the pth diagonal element of Λh, and the equality holds if and only if S†S is diagonal.

Thus, to maximize the mutual information, the correlation function of s should satisfy that rp ≈ 0, p =

1, · · · , P − 1. The corresponding waveform is called zero-correlation zone (ZCZ) waveform [57].

Under the same assumption, the waveform design problem based on minimizing MMSE can be

reformulated by

min
s

tr
([

Λ−1h + σ−20 S†S
]−1)

s.t. s ∈ S. (59)

Note that [58]

tr
([

Λ−1h + σ−20 S†S
]−1)

≥
P∑
p=1

1

λ−1h,p + σ−20 et
, (60)

where the equality holds if and only if S†S is diagonal. Thus, in this situation, the ZCZ waveform also

minimizes the MMSE.
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D. Mutual Information, MMSE, and SNR

If P = 1 (i.e., a point-like target), the mutual information in (5) can be written as

log det(R−1n SRhS
† + I) = log(1 + λhs

†R−1n s)

= log(1 + λhSNR), (61)

where we define SNR = s†R−1n s. On the other hand, note that the MMSE for this case is given by

MMSE =
1

λ−1h + s†R−1n s
=

1

λ−1h + SNR
. (62)

Thus, the minimization of MMSE, the maximization of mutual information, and the maximization of

SNR are equivalent for the case of P = 1.

For the more general case that P > 1 and µh = 0, if λmax(R−1n SRhS
†) � 1 (corresponding to the

case that SNR is low), where λmax(R−1n SRhS
†) is the largest eigenvalue of R−1n SRhS

†, the mutual

information in (5) can be approximated by

log det(R−1n SRhS
† + I) ≈ tr(R−1n SRhS

†)

= s†E†(R∗h ⊗R−1n )Es. (63)

By using the low SNR assumption, it can be checked that we can obtain the globally optimal solutions

to both the energy-constrained and the spectrally constrained waveform design problems.

VI. NUMERICAL EXAMPLES

In this section, we provide several numerical examples to demonstrate the performance of the proposed

algorithms. Unless otherwise stated, the code length of the waveform is L = 100. The target occupies

P = 10 range bins. The mean of the target impulse response is µh = [5, 5, · · · , 5]T and the covariance

matrix is IP . We model the disturbance covariance matrix like that in [36], [37]:

Rn = σ2J RJ + σ2I, (64)

where σ2J = 1000 and σ2 = 1 are the jamming and noise powers, respectively, the (m,n)th element of

the jamming covariance matrix RJ is given by qm−n (m ≥ n), [q0, q1, · · · , qL0−1, q
∗
L0−1, · · · , q

∗
1]T can be

obtained by the inverse discrete Fourier transform (IDFT) of {ηp}2L0−1
p=1 , and {ηp} denotes the jamming

power spectrum at the frequency (p− 1)/(2L0 − 1), p = 1, 2, · · · , 2L0 − 1. For simplicity, we consider

a barrage jamming whose power spectrum is given by

ηp =

1 b(2L0 − 1)f1,Jc ≤ p ≤ b(2L0 − 1)f2,Jc,

0 otherwise,
(65)

March 19, 2021 DRAFT



PREPRINT 19

where f1,J = 0.1, and f1,J = 0.3. The available transmit energy is et = L. We terminate the proposed

algorithms if |fO(sk+1)− fO(sk)|/fO(sk+1) ≤ ε, where ε = 10−4. Finally, all the analysis is carried out

on a standard laptop with Intel Core i7-8550U and 8 GB RAM.

A. Constant-modulus Constraint

In this subsection, we analyze the performance of the synthesized constant-modulus waveforms. Fig.

2 shows the objective values (including mutual information in Fig. 2(a) and MMSE in Fig. 2(b)) of the

waveforms synthesized by the proposed algorithms versus CPU time, where we initialize the proposed

algorithms with the LFM waveform (i.e., the kth element of the waveform is given by
√
et/L exp(jπ(k−

1)2/L)). Moreover, we plot the objective values associated with the energy-constrained waveforms as

a benchmark. Note that the curves associated with the objective values (mutual information or MMSE)

have monotonically (increasing/decreasing) behaviors. In addition, the objective values of the synthesized

constant-modulus waveforms at convergence are close to those of the energy-constrained waveforms. In

Fig. 3, we plot the (normalized) energy spectral density (ESD) of the constant-modulus waveforms

synthesized by the proposed algorithms. Interestingly, we can observe that the ESDs of the synthesized

waveforms form a notch in the frequency band where the barrage jamming exists (shaded in light gray).

However, the relationship of the notch depth in this frequency band with the jamming power is unknown.
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Fig. 2. Convergence of the objective values versus CPU time. PAPR constraint. ρ = 1. (a) Mutual information. (b) MMSE.

To analyze the impact of starting points on the performance of the proposed algorithms, we use the same

parameters as Fig. 2 and conduct 50 independent Monte Carlo runs using random-phase waveforms as

starting points for s. Specifically, the magnitude of the random-phase waveforms is as, and the phases are

independent random variables uniformly distributed in [0, 2π]. Fig. 4 shows the objective values (mutual

information or MMSE) at convergence for different starting points, and plots the values of the synthesized
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Fig. 3. The ESD of the synthesized constant-modulus waveform at convergence. (a) Mutual information. (b) MMSE.

waveforms in Fig. 2 (which is initialized by LFM). We notice that for all the runs, the objective values at

convergence are almost identical to that of the synthesized waveforms in Fig. 2. Therefore, the proposed

algorithms are insensitive to the starting points.
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Fig. 4. The impact of starting points on the performance of the synthesized waveforms. (a) Mutual information. (b) MMSE.

Next we compare the performance of the constant-modulus waveforms synthesized by the proposed

algorithms with that of the LFM waveform as well as the waveform designed based on maximizing the

signal to interference-plus-noise ratio (SINR) (see, e.g., [14], [15], [35], [36] for extensive discussions

on this topic). We use a similar method to that in [14] to synthesize the waveform maximizing the SINR.

Note that the algorithm in [14] cannot deal with the constant-modulus constraint. To adapt the algorithm

in [14] to tackle the constant-modulus waveform design problem, we resort to Algorithm 1 proposed

in Section IV-B. Fig. 5 shows the performance of different waveforms versus the code length. For each

waveform, the available transmit energy is et = L (i.e., the transmit energy is the same for different

waveforms but varies with the code length). We can observe that the performance of the waveforms
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designed based on maximizing SINR is poor. Note that such waveforms are designed to enhance the

detection performance of the radar systems, but not for range profiling. Thus, it is important to adapt

the transmit waveform according to the radar tasks. In addition, the waveforms based on maximizing

mutual information achieve the largest mutual information and the waveforms based on minimizing the

MMSE achieve the smallest MSE. Interestingly, although different criteria are used, the performance

of the waveforms designed based on maximizing mutual information is close to that of the waveforms

based on minimizing MMSE. Moreover, both kinds of waveforms outperform the conventional LFM

waveforms.
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Fig. 5. The performance of the synthesized constant-modulus waveforms versus code length. et = L. (a) Mutual information.

(b) MMSE.

B. Spectral Constraint

In this subsection, we analyze the performance of the spectrally constrained waveforms synthesized

by the proposed algorithms. Fig. 6 shows the objective values of the synthesized waveforms versus CPU

time, where a licensed communication system operates in the (normalized) frequency band [0.7, 0.8], the

maximum allowed interference on the communication band is EI = 0.05, and we initialize the proposed

algorithms with the scaled eigenvector associated with the smallest eigenvalue of RI. To tackle the

spectrally constrained quadratic programming problem in (46), we apply the ADMM algorithm proposed

in Subsection IV-C and compare it with the FPP-SCA algorithm proposed in [38]. In the ADMM

algorithm, we set % = 1. In the FPP-SCA algorithm, the penalty parameter is 10. In addition, we plot the

objective values associated with the energy-constrained waveform as a benchmark. We can observe the

convergence of the objective values for all the cases. Moreover, compared with the energy-constrained

waveforms, the additional spectral constraint on the waveform results in insignificant performance loss.

Furthermore, the application of the proposed ADMM algorithm results in much faster convergence than
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that of the FPP-SCA algorithm. This is due to the lower per-iteration computational complexity of the

ADMM algorithm (O(L3)) than that of the FPP-SCA algorithm (O(L3.5)). Fig. 7 shows the ESDs of the

synthesized spectral-constrained waveforms at convergence. Note the spectral notch in the communication

band (shaded in light gray) and that the interference energy in this band can be controlled (≤ EI).

Thus, the waveforms synthesized by the proposed algorithms enable better compatability with the nearby

communication systems.
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Fig. 6. Convergence of the objective values versus the number of iterations. Spectral constraint. EI = 0.05. (a) Mutual

information. (b) MMSE.
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Fig. 7. The ESD of the synthesized spectrally constrained waveform at convergence. EI = 0.05. (a) Mutual information. (b)

MMSE.

Fig. 8 compared the MSE of the spectrally constrained waveforms with that of the LFM waveforms for

different code lengths, where et = L, and EI = 0.05. The results indicate that both kinds of waveforms not

only have better spectral compatability than the LFM waveforms, but also achieve smaller MSE. Moreover,

for large code length, the performance of the waveform based on maximizing mutual information is almost

identical to that the waveform based on minimizing MMSE.
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Fig. 8. The performance of the synthesized spectrally constrained waveforms versus code length. EI = 0.05. (a) Mutual

information. (b) MMSE.

C. ZCZ Waveforms

Finally, we show that if the interference in the received signal is dominated by the white noise, and the

target covariance matrix is diagonal, the waveforms synthesized by the proposed algorithms will exhibit

ZCZ properties. To this end, we set Rh = 0.1I and Rn = I. The convergence of mutual information and

MMSE of the constant-modulus waveforms synthesized by the proposed algorithms are shown in Fig.

9(a) and Fig. 9(b), respectively, where we initialize the proposed algorithms by using the LFM waveform,

and we set ε = 10−20. The curves in Fig. 9 demonstrate that the objective values converge to the optimal

values. Fig. 10 plots the (normalized) auto-correlation function (ACF) of the waveforms synthesized by

the proposed algorithms. We can observe that the waveform based on maximizing mutual information has

very low correlation sidelobes (lower than about −130 dB) from r1 to rP−1. For waveform design based

on minimizing MMSE, the proposed algorithm converges faster and achieves a lower sidelobe (lower

than about −150 dB). Therefore, the synthesized waveforms in this situation have ZCZ properties. In

other words, the ZCZ waveforms maximize the mutual information and minimize the MMSE.

VII. CONCLUSION

This paper considered the design of practically constrained waveforms for radar range profiling. Two

design metrics were used, i.e., mutual information maximization and MMSE minimization. To tackle the

non-convex waveform design problem, we developed an optimization framework based on MM. Due to

the ascent property of MM, the proposed algorithms had guaranteed convergence of objective values.

Finally, numerical examples demonstrated that the waveforms synthesized by the proposed algorithms

were superior to the counterparts.
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Fig. 9. Convergence of the objective values versus the number of iterations. ρ = 1. Rh = 0.1I. Rn = I. (a) Mutual information.

(b) MMSE.
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Fig. 10. The ACF of the synthesized constant-modulus waveforms. Rh = 0.1I. Rn = I. (a) Mutual information. (b) MMSE.

Possible future research track might concern the extension of the proposed algorithms to design

waveforms for radar imaging. In addition, the design of practically constrained waveforms for target

recognition/classification might be important (see, e.g., [59], for a recent progress on this topic). Fur-

thermore, the application of the proposed algorithms to polarimetric radar (see, e.g., [14], [15] for some

discussions) is left for future work.

APPENDIX A

THE MONOTONICITY OF THE DESIGN METRIC W.R.T. THE TRANSMIT ENERGY

In this appendix, we show that the mutual information is increasing with the waveform energy and

the MMSE is decreasing with the waveform energy. To this end, we first prove fI(αs) ≥ fI(s), where

α ≥ 1.
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We note that

fI(αs)− fI(s) = log det(α2SRhS
† + Rn)− log det(SRhS

† + Rn).

Since α2SRhS
† � SRhS

† and log det(A) is an increasing function of A � 0, we have fI(αs)−fI(s) ≥ 0.

Next we prove that the MMSE is decreasing with the waveform energy. To this end, we rewrite the

MMSE as

tr(Rh −RhS
†(SRhS

† + Rn)−1SRh)

= tr
(

(R−1h + S†R−1n S)−1
)
. (66)

Since α2S†R−1n S � S†R−1n S and tr(A−1) is an decreasing function of A � 0, we can verify that the

MMSE decreases with the transmit energy.

APPENDIX B

PROOF OF PROPOSITION 1

First, it can be checked that the pth column of S can be written as Eps. Thus,

vec(S) = [(E1s)T , · · · , (EP s)T ]T

= [ET
1 , · · · ,ET

P ]T s

= Es. (67)

Using the fact that tr(AHB) = vec†(A)vec(B) [60], we have

tr(S†G21
k R

1

2

h ) = vec†(S)vec(G21
k R

1

2

h )

= s†E†vec(G21
k R

1

2

h )

= s†aI,k. (68)

In addition, noting that tr(ABCD) = vecT (D)(A⊗CT )vec(BT ) [60], we can obtain

tr(G22
k SRhS

†) = tr(RhS
†G22

k S)

= vecT (S)(Rh ⊗ (G22
k )T )vec(S∗)

= sTET (Rh ⊗ (G22
k )T )E∗s∗

= s†E†(R∗h ⊗G22
k )Es

= s†AI,ks, (69)

where the first line holds because tr(AB) = tr(BA), the fourth line follows from that G22
k and SRhS

†

are both Hermitian, and tr(G22
k SRhS

†) is real-valued.

Combing (68) and (69), we complete the proof.
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APPENDIX C

PROOF OF LEMMA 1

According to [50], the epigraph of ψ(A,B) is defined by

epi(ψ) =
{

(A,B, t)|tr(A†B−1A) ≤ t
}
. (70)

Note that tr(A†B−1A) ≤ t is equivalent to {tr(Y) ≤ t,A†B−1A � Y,Y � 0}. Thus, epi(ψ) can be

rewritten as

epi(ψ) =

(A,B, t)|∃Y � 0,

B A

A† Y

 � 0, tr(Y) ≤ t

 .

It is easy to check that epi(ψ) is convex. Therefore, ψ(A,B) is a convex function of the matrix pair

(A,B) (namely, jointly convex). Using the fact that convex functions are minorized by their supporting

hyperplanes, we have

tr(A†B−1A) ≥ tr(A†kB
−1
k Ak) + 2Re(tr(A†kB

−1
k (A−Ak)))

− tr(B−1k AkA
†
kB
−1
k (B−Bk))

= 2Re(tr(A†kB
−1
k A))− tr(B−1k AkA

†
kB
−1
k B),

where (A†kB
−1
k ,−B−1k AkA

†
kB
−1
k ) is the gradient of ψ(A,B) at (Ak,Bk) (which can be shown using

the results from [51], [61]).

An alternative proof without using convexity is by noting that (since B � 0)

(B−1A−B−1k Ak)
†B(B−1A−B−1k Ak) � 0. (71)

Thus,

tr[(B−1A−B−1k Ak)
†B(B−1A−B−1k Ak)] ≥ 0. (72)

After some algebraic manipulations, we complete the proof.

APPENDIX D

PROOF OF NEGATIVE SEMI-DEFINITENESS OF AI,k AND AE,k

To prove that AI,k is negative semi-definite, it is sufficient to prove that R∗h ⊗G22
k is negative semi-

definite. Note that Rh � 0. In addition, since Rs,k � Rn, we have G22
k = R−1s,k − R−1n � 0. Thus,

R∗h ⊗G22
k � 0. Similarly, to identify the negative semi-definiteness of AE,k, it is sufficient to prove that

R∗h ⊗Tk � 0. Note that Tk = R−1s,kSkR
2
hS
†
kR
−1
s,k � 0. Thus, AE,k is negative semi-definite.
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[24] R. Palamá, H. Griffiths, and F. Watson, “Joint dynamic spectrum access and target-matched illumination for cognitive

radar,” IET Radar, Sonar & Navigation, vol. 13, no. 5, pp. 750–759, 2019.

[25] B. Tang and J. Li, “Spectrally constrained MIMO radar waveform design based on mutual information,” IEEE Trans.

Signal Process., vol. 67, no. 3, pp. 821–834, 2019.

[26] S. M. Karbasi, A. Aubry, A. De Maio, and M. H. Bastani, “Robust transmit code and receive filter design for extended

targets in clutter,” IEEE Trans. Signal Process., vol. 63, no. 8, pp. 1965–1976, 2015.

[27] B. Tang and J. Tang, “Robust waveform design of wideband cognitive radar for extended target detection,” in IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, Conference Proceedings, pp. 3096–

3100.

[28] S. Z. Gurbuz, H. D. Griffiths, A. Charlish, M. Rangaswamy, M. S. Greco, and K. Bell, “An overview of cognitive radar:

Past, present, and future,” IEEE Aerosp. Electron. Syst. Mag., vol. 34, no. 12, pp. 6–18, 2019.

[29] C. P. Horne, A. M. Jones, G. E. Smith, and H. D. Griffiths, “Fast fully adaptive signalling for target matching,” IEEE

Aerosp. Electron. Syst. Mag., vol. 35, no. 6, pp. 46–62, 2020.

[30] G. E. Smith, Z. Cammenga, A. Mitchell, K. L. Bell, J. Johnson, M. Rangaswamy, and C. Baker, “Experiments with

cognitive radar,” IEEE Aerosp. Electron. Syst. Mag., vol. 31, no. 12, pp. 34–46, 2016.

[31] T. M. Cover and J. A. Thomas, Elements of information theory. New Jersey: John Wiley & Sons, 2012.

[32] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice Hall, 1993.

[33] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge: Cambridge University Press, 1990.

[34] A. De Maio, S. De Nicola, Y. Huang, Z.-Q. Luo, and S. Zhang, “Design of phase codes for radar performance optimization

with a similarity constraint,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 610–621, 2009.

[35] A. De Maio, Y. Huang, M. Piezzo, S. Zhang, and A. Farina, “Design of optimized radar codes with a peak to average

power ratio constraint,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2683–2697, 2011.

[36] P. Stoica, H. He, and J. Li, “Optimization of the receive filter and transmit sequence for active sensing,” IEEE Trans.

Signal Process., vol. 60, no. 4, pp. 1730–1740, 2012.

[37] M. Soltanalian, B. Tang, J. Li, and P. Stoica, “Joint design of the receive filter and transmit sequence for active sensing,”

IEEE Signal Processing Letters, vol. 20, no. 5, pp. 423–426, 2013.

[38] L. Wu, P. Babu, and D. P. Palomar, “Transmit waveform/receive filter design for MIMO radar with multiple waveform

constraints,” IEEE Trans. Signal Process., vol. 66, no. 6, pp. 1526–1540, 2018.

[39] A. Aubry, A. D. Maio, M. A. Govoni, and L. Martino, “On the design of multi-spectrally constrained constant modulus

radar signals,” IEEE Trans. Signal Process., vol. 68, pp. 2231–2243, 2020.

[40] B. Tang and P. Stoica, “Information-theoretic waveform design for MIMO radar detection in range-spread clutter,” Signal

Processing, vol. 182, p. 107961, 2021.

[41] H. Griffiths, L. Cohen, S. Watts, E. Mokole, C. Baker, M. Wicks, and S. Blunt, “Radar spectrum engineering and

management: technical and regulatory issues,” Proceedings of the IEEE, vol. 103, no. 1, pp. 85–102, 2015.

March 19, 2021 DRAFT



PREPRINT 29

[42] M. Bockmair, C. Fischer, M. Letsche-Nuesseler, C. Neumann, M. Schikorr, and M. Steck, “Cognitive radar principles for

defence and security applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 34, no. 12, pp. 20–29, 2019.

[43] V. Carotenuto, A. Aubry, A. D. Maio, N. Pasquino, and A. Farina, “Assessing agile spectrum management for cognitive

radar on measured data,” IEEE Aerosp. Electron. Syst. Mag., vol. 35, no. 6, pp. 20–32, 2020.

[44] J. Yang, A. Aubry, A. De Maio, X. Yu, and G. Cui, “Design of constant modulus discrete phase radar waveforms subject

to multi-spectral constraints,” IEEE Signal Processing Letters, vol. 27, pp. 875–879, 2020.

[45] A. Aubry, A. De Maio, M. Piezzo, and A. Farina, “Radar waveform design in a spectrally crowded environment via

nonconvex quadratic optimization,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1138–1152, 2014.

[46] A. Aubry, V. Carotenuto, A. De Maio, A. Farina, and L. Pallotta, “Optimization theory-based radar waveform design for

spectrally dense environments,” IEEE Aerosp. Electron. Syst. Mag., vol. 31, no. 12, pp. 14–25, 2016.

[47] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[48] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and

machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, 2017.

[49] B. Tang, Y. Zhang, and J. Tang, “An efficient minorization maximization approach for MIMO radar waveform optimization

via relative entropy,” IEEE Trans. Signal Process., vol. 66, no. 2, pp. 400–411, 2018.

[50] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge: Cambridge University Press, 2004.

[51] A. Hjorungnes and D. Gesbert, “Complex-valued matrix differentiation: Techniques and key results,” IEEE Trans. Signal

Process., vol. 55, no. 6, pp. 2740–2746, 2007.

[52] J. A. Tropp, I. S. Dhillon, R. W. Heath, and T. Strohmer, “Designing structured tight frames via an alternating projection

method,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 188–209, 2005.

[53] W. Ai, Y. Huang, and S. Zhang, “New results on hermitian matrix rank-one decomposition,” Mathematical programming,

vol. 128, no. 1-2, pp. 253–283, 2011.

[54] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating

direction method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[55] B. Tang, J. Li, and J. Liang, “Alternating direction method of multipliers for radar waveform design in spectrally crowded

environments,” Signal Processing, vol. 142, pp. 398–402, 2018.

[56] J. Li, J. R. Guerci, and L. Xu, “Signal waveform’s optimal-under-restriction design for active sensing,” IEEE Signal

Processing Letters, vol. 13, no. 9, pp. 565–568, 2006.

[57] P. Z. Fan, N. Suehiro, N. Kuroyanagi, and X. M. Deng, “Class of binary sequences with zero correlation zone,” Electronics

Letters, vol. 35, no. 10, pp. 777–779, 1999.

[58] Y. Yang and R. S. Blum, “MIMO radar waveform design based on mutual information and minimum mean-square error

estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 1, pp. 330–343, 2007.

[59] Y. Gu and N. A. Goodman, “Information-theoretic waveform design for Gaussian mixture radar target profiling,” IEEE

Trans. Aerosp. Electron. Syst., vol. 55, no. 3, pp. 1528–1536, 2019.

[60] D. S. Bernstein, Matrix mathematics: theory, facts, and formulas. Princeton University Press, 2009.

[61] J. V. Burke and T. Hoheisel, “Matrix support functionals for inverse problems, regularization, and learning,” SIAM Journal

on Optimization, vol. 25, no. 2, pp. 1135–1159, 2015.

March 19, 2021 DRAFT


	I Introduction
	II Signal Model and Problem Formulation
	II-A Signal Model
	II-B Waveform Design Based on Maximizing Mutual Information
	II-C Waveform Design Based on Minimizing MMSE
	II-D Waveform Constraints

	III Minorizer Construction
	III-A Minorizer for fI(s)
	III-B Minorizer for fE(s)

	IV Solving the Quadratic Programming Problem
	IV-A Energy Constraint
	IV-B PAPR Constraint
	IV-C Spectral Constraint

	V Algorithm Summary and Some Discussions
	V-A Algorithm Summary and Convergence
	V-B Computational Complexity
	V-C Connection with ZCZ Waveforms
	V-D Mutual Information, MMSE, and SNR

	VI Numerical Examples
	VI-A Constant-modulus Constraint
	VI-B Spectral Constraint
	VI-C ZCZ Waveforms

	VII Conclusion
	Appendix A: The Monotonicity of the design metric w.r.t. the transmit energy
	Appendix B: Proof of Proposition 1
	Appendix C: Proof of Lemma 1
	Appendix D: Proof of negative semi-definiteness of AI,k and AE,k
	References

