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SPARSE PHASE RETRIEVAL VIA PHASELIFTOFF

YU XIA AND ZHIQIANG XU

Abstract. The aim of sparse phase retrieval is to recover a k-sparse signal x0 ∈ Cd from qua-
dratic measurements |〈ai,x0〉|2 where ai ∈ Cd, i = 1, . . . , m. Noting |〈ai,x0〉|2 = Tr(AiX0) with
Ai = aia

∗

i
∈ Cd×d,X0 = x0x

∗

0 ∈ Cd×d, one can recast sparse phase retrieval as a problem of recov-
ering a rank-one sparse matrix from linear measurements. Yin and Xin introduced PhaseLiftOff

which presents a proxy of rank-one condition via the difference of trace and Frobenius norm. By
adding sparsity penalty to PhaseLiftOff, in this paper, we present a novel model to recover sparse
signals from quadratic measurements. Theoretical analysis shows that the solution to our model
provides the stable recovery of x0 under almost optimal sampling complexity m = O(k log(d/k)).
The computation of our model is carried out by the difference of convex function algorithm (DCA).
Numerical experiments demonstrate that our algorithm outperforms other state-of-the-art algo-
rithms used for solving sparse phase retrieval.

1. Introduction

1.1. Phase retrieval. We assume that x0 ∈ Fd is a target signal, where F ∈ {R,C}. The aim
of phase retrieval is to recover x0 ∈ F

d from |〈aj ,x0〉|2 + wj , j = 1, . . . ,m, up to a unimodular
constant where aj ∈ Fd are known measurement vectors and w := (w1, . . . , wm)T ∈ Rm is a noise
vector. Phase retrieval is raised in many areas, such as X-ray crystallography, astronomy, quantum
tomography, optics and microscopy. For convenience, let A : Fd×d → Rm be a linear map which is
defined as

(1.1) A(X) = (a∗1Xa1, . . . , a
∗
mXam),

where X ∈ Fd×d, aj ∈ Fd, j = 1, . . . ,m. We abuse the notation and set

A(x) := A(xx∗) = (|〈a1,x〉|2, . . . , |〈am,x〉|2),
where x ∈ Fd. With these notations, we can formulate the aim of phase retrieval as follows: To
estimate the matrix X0 = x0x

∗
0 ∈ Cd×d from A(x0) +w ∈ Rm.

For the noiseless case, to guarantee the solution A(x) = A(x0) is unique for all x0 ∈ Cd, it is
shown in [20] that the measurement number m ≥ 4d − 2 − 2αd is necessary where αd denotes the
number of 1’s in the binary of expansion of d− 1. The authors in [8] proved that m ≥ 4d− 4 generic
measurement vectors aj ∈ Cd, j = 1, . . . ,m, are enough to guarantee the uniqueness of the solution.
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In [5, 6, 7], the phase retrieval was recasted as a semi-definite programming problem, i.e., the
PhaseLift problem:

(1.2) min
X∈Fd×d

Tr(X) s.t. A(X) = A(X0), X � 0.

In [6], it is shown that the solution to (1.2) is X0 with high probability provided aj is Gaussian ran-
dom vector and m = O(d log d), which was reduced to m = O(d) in [5]. For the aim of computation,
the regularized trace-norm minimization is suggested in [6, 7]:

(1.3) min
X�0,X∈Fd×d

1

2
‖A(X)− b‖22 + λTr(X).

Noting that Tr(X) − ‖X‖F ≥ 0 and the equality holds iff rank(X) = 1, Yin and Xin suggested
the following regularization problem [23], which is called as PhaseLiftOff:

(1.4) min
X�0,X∈Fd×d

1

2
‖A(X)− b‖22 + λ(Tr(X)− ‖X‖F ).

The numerical experiments in [23] showed that PhaseLiftOff outperforms PhaseLift.

1.2. Sparse phase retrieval. In many areas, one also requires ‖x0‖0 ≤ k, i.e., the number of
nonzero entries of x0 less than or equal to k [13, 19, 12]. The aim of sparse phase retrieval is to
recover the k-sparse signal x0 from |〈aj ,x0〉|2 = bj, j = 1, . . . ,m.

For convenience, we set ΣF

k := {x ∈ Fd : ‖x‖0 ≤ k}. It was shown in [19] that, for F = C and
x0 ∈ ΣF

k, if m ≥ 4k − 2 (resp. m ≥ 2k for F = R) and a1, . . . , am are generic vectors in Cd (resp.
Rd) then the solution to A(x) = A(x0) with x ∈ ΣF

k is unique up to a unimodular constant.

The ℓ1-minimization is a commonly used method for recovering sparse signals. Naturally, one
is also interested in employing ℓ1-minimization for solving sparse phase retrieval. For F = R, the
following model was considered in [17]:

(1.5) min
x∈Rd×d

‖x‖1 s.t. A(x) = A(x0).

Particularly, it is proved that the solution to (1.5) is ±x0 with high probability if m & k log d and
aj , j = 1, . . . ,m, are independent Gaussian random vectors. In [22], the authors extended this result
to the case where F = C.

In [10], the following convex model was considered

(1.6) min
X∈Rd×d

‖X‖1 + λTr(X), s.t. A(X) = A(x0), X � 0.

The objective function in (1.6) is the summation of the trace and the ℓ1 norm, which is also a convex
model. To guarantee the solution to (1.6) is x0x

∗
0, one has to require the number of measurements

m & k2 log d, which is quadratic about the sparse level k [10].

Beyond the convex model, one also develops many nonconvex algorithms for solving sparse phase
retrieval, such as Sparse Truncated Amplitude flow (SPARTA) [18], Thresholded Wirtinger Flow
(ThWF) [4], Sparse Wirtinger Flow (SWF) [25], Sparse Phase Retrieval via Smoothing Function
(SPRSF) [11]. These algorithms include two stages: (i) Recover the support of the underlying sparse
signal under some analytical rule, and construct an initialization near the ground truth signal x0;
(ii) Refine the initialization by gradient-type iterations and extra truncation procedure by hard
thresholding. However, to guarantee the algorithms converge to the true signal, the algorithms
mentioned above require the sample complexity is m = O(k2 log d).
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1.3. Our contribution. A natural model for sparse phase retrieval is to use ℓ1-regularization meth-
ods, i.e.,

(1.7) min
X∈Cd×d

µ‖X‖1 +
1

2
‖A(X)− b‖22, s.t. X � 0, rank(X) = 1,

where ‖X‖1 =
∑d

l=1

∑d
j=1|xj,l| and xj,l are the entries of X . Motivated by the notable PhaseLiftOff

[23], we reformulate (1.7) as the following regularization problem:

(1.8) min
X∈Cd×d

λ(Tr(X)− ‖X‖F ) + µ‖X‖1 +
1

2
‖A(X)− b‖22 s.t. X � 0.

For convenience, we call (1.8) Sparse PhaseLiftOff model. Note that the object function in (1.8) is
the difference of convex functions and hence it can be solved by the difference of convex functions
algorithm (DCA).

To study the performance of (1.8), we first establish the equivalence between (1.8) and (1.7) under
some mild conditions about λ, µ and ‖w‖2:
Lemma 1.1. Assume that b = A(x0x

∗
0) +w where x0 ∈ Cd, and w ∈ Rm is the noise term. Let

X# be the global minimizer of (1.8). If 1
2‖b‖22 > µ‖x0‖21 + 1

2‖w‖22, µ ≥ 0 and

(1.9) λ >
µd+ ‖A‖(√2µ‖x0‖1 + ‖w‖2)√

2− 1
,

then rank(X#) = 1.

As said before, Tr(X) − ‖X‖F = 0 provided rank(X) = 1. Under the conditions of Lemma 1.1,
X# is also the minimizer of (1.7). Hence, we turn to study the performance of (1.7). To do that,
we require A satisfies restricted isometry property over low-rank and sparse matrices:

Definition 1.1. [22] We say that the map A : Hd×d → Rm satisfies the restricted isometry property
of order (r, s) if there exist positive constants c and C such that the inequality

(1.10) c‖X‖F ≤ 1

m
‖A(X)‖1 ≤ C‖X‖F

holds for all X ∈ Hd×d with rank(X) ≤ r and ‖X‖0,2 ≤ s.

Then, we have the following theorem.

Theorem 1.2. Let b = A(x0x
∗
0) +w, where x0 ∈ Cd, and w ∈ Rm is the noise term. Assume that

A(·) satisfy the RIP condition of order (2, 2ak) with RIP constant c, C > 0, and a ≥ 1 with

(1.11) c− 4
√
2C√
a

− C

a
> 0.

Set α :=
1+ 1

a+ 4
√

2√
a

c−C
a − 4

√
2C√
a

. Assume that µ > 0. For any k-sparse signals x0 ∈ Cd, the solution to (1.7)

X# := x#(x#)∗ satisfies
(1.12)

‖x#(x#)∗ − x0x
∗
0‖F ≤ (2Cα+ 2)

‖w‖2√
µak

(
‖x0‖1 +

‖w‖2√
µ

)
+

‖w‖22
2µak

+ α · µak
2C

(
C‖w‖2
µak

+
1√
m

)2

.

Combing Lemma 1.1, Theorem 1.2 and Theorem 2.1, we have the following corollary:
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Corollary 1.3. Assume that aj , j = 1, . . . ,m are independently complex Gaussian random vectors,
i.e., aj ∼ N (0, 1

2Id) +N (0, 1
2Id)i. Assume that b = A(x0x

∗
0) +w where w ∈ Rm is a noise vector

and x0 ∈ Cd with ‖x0‖0 ≤ k. Assume that m & k log(ed/k). Let X# be the global minimizer of
model (1.8). The following holds with probability at least 1−exp(−cm): If 1

2‖b‖22 > µ‖x0‖21+ 1
2‖w‖22,

µ > 0 and

λ >
µd+ ‖A‖(√2µ‖x0‖1 + ‖w‖2)√

2− 1
,

then rank(X#) = 1, and X# = x#(x#)∗ satisfies

‖x#(x#)∗ − x0x
∗
0‖F .

‖w‖2√
µk

(
‖x0‖1 +

‖w‖2√
µ

)
+

‖w‖22
2µk

+ µk

(‖w‖2
µk

+
1√
m

)2

.

Remark 1.4. According to Corollary 1.3, the parameter λ depends on ‖A‖. We next show ‖A‖ =

O((m + d)
√
d). We assume that the singular value decomposition of X ∈ Cd×d with ‖X‖F = 1

is X =
∑d

j=1 σjujv
∗
j . Here,

∑d
j=1 σ

2
j = 1. We claim that ‖A(ujv

∗
j )‖1 = O(m + d) holds with

probability at least 1− exp(−m). Then we have

‖A(X)‖2 ≤ ‖A(X)‖1 ≤
∑

j

σj‖A(ujv
∗
j )‖1 = O((m + d)

√
d).

Note that

‖A(ujv
∗
j )‖1 =

∑

i

|〈ai,uj〉〈ai,vj〉| ≤
√∑

j

|〈ai,uj〉|2
√∑

j

|〈ai,vj〉|2 ≤ (
√
m+

√
d+ t)2

holds with probability larger than 1− exp(−t2/2). Here, the last inequality follows from the singular

values of Gaussian random matrices [16, Corrollary 5.35]. By taking t =
√
m +

√
d, we have

‖A(ujv
∗
j )‖1 = O(m+ d).

Remark 1.5. If we take ‖w‖2 = 0 in Corollary 1.3 then the following holds with high probability:

‖x#(x#)∗ − x0x
∗
0‖2 .

µk

m

provided

λ >
µd+ ‖A‖(√2µ‖x0‖1)√

2− 1
.

1.4. Notations. We use Hd×d to denote the set of all d × d Hermitian matrices. For any X,Y ∈
Hd×d, set 〈X,Y 〉 := Tr(X∗Y ). For x ∈ C, we use R(x) and I (x) to denote the real and complex
parts of x, respectively. For X ∈ C

d×d, we use Xi,: and X:,j to denote the i-th row and j-th
column of X , respectively. For S, T ⊂ {1, . . . , d}, we use XS,T to denote a submatrix of X with the

rows indexed in S and columns indexed in T . We also set ‖X‖1 :=
∑

i,j

√
R(Xi,j)2 + I (Xi,j)2,

‖X‖F :=
√∑

i,j(R(Xi,j)2 + I (Xi,j)2), and ‖X‖1,2 :=
∑

j ‖X:,j‖2. We use ‖X‖0,2 to denote the

number of non-zero columns in X and use vec(X) ∈ Cd2

to denote the vectorization of X ∈ Cd×d.

1.5. Organization. The paper is organized as follows. After introducing some useful lemmas in
Section 2, we present the proof of Theorem 1.2 in Section 3. The proof of Lemma 1.1 is presented in
Section 4. In Section 5, we make a lot of numerical experiments, which show our method has better
performance over the other known algorithms for sparse phase retrieval.
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2. Preliminaries and Lemmas

The following theorem shows that complex Gaussian random quadratic map A satisfies RIP of
order (2, s) with high probability provided m & s log(d/s).

Theorem 2.1. [22] Assume that the linear measurement A(·) is defined as

A(X) = (a∗1Xa1, . . . , a
∗
mXam),

where aj are independently complex Gaussian random vectors, i.e., aj ∼ N (0, 1
2In×n)+N (0, 1

2In×n)i.
If

m & s log(d/s),

under the probability at least 1 − 2 exp(−c0m), the linear map A satisfies the restricted isometry
property of order (2, s), i.e.

0.12‖X‖F ≤ 1

m
‖A(X)‖1 ≤ 2.45‖X‖F ,

for all X ∈ Hn×n with rank(X) ≤ 2 and ‖X‖0,2 ≤ s (also ‖X∗‖0,2 ≤ s).

We also need the following lemma.

Lemma 2.2. [22] If x,y ∈ Cd, and 〈x,y〉 ≥ 0. Then

‖xx∗ − yy∗‖2F ≥ 1

2
‖x‖22‖x− y‖22.

The following lemma follows from the proof of Theorem 3.1 in [23]. We include a proof here for
completeness.

Lemma 2.3. Suppose that 〈X,Y 〉 = 0, where X,Y � 0. If rank(X) = r ≥ 1, then

(2.1)

∥∥∥∥λ
(
I− X

‖X‖F

)
− Y

∥∥∥∥
F

≥ λ(
√
r − 1).

Here λ is a non-negative constant.

Proof. First of all, we have

(2.2)

∥∥∥∥λ
(
I− X

‖X‖F

)
− Y

∥∥∥∥
F

≥ ‖λI− Y ‖F − λ

∥∥∥∥
X

‖X‖F

∥∥∥∥
F

= ‖λI− Y ‖F − λ,

Then we estimate the lower bound of ‖λI− Y ‖F . Suppose that the singular value decomposition of
X is in the form of

X =

r∑

i=1

σiuiu
∗
i ,

where U1 = (u1, . . . ,ur) ∈ C
d×r, and σi > 0, for i = 1, . . . , r. Construct U2 ∈ C

d×(d−r), which
satisfies I = U1U

∗
1 + U2U

∗
2 and U∗

1U2 = 0. Then we have

(2.3)

‖λI− Y ‖2F = ‖λ(U1U
∗
1 + U2U

∗
2 )− Y ‖2F = ‖λU1U

∗
1 + (λU2U

∗
2 − Y )‖2F

= ‖λU1U
∗
1 ‖2F + ‖λU2U

∗
2 − Y ‖2F + 2λ〈U1U

∗
1 , λU2U

∗
2 − Y 〉

= ‖λU1U
∗
1 ‖2F + ‖λU2U

∗
2 − Y ‖2F − 2λ〈U1U

∗
1 , Y 〉.

The last line follows from U∗
1U2 = 0. Since σi > 0 and Y � 0, the condition 〈X,Y 〉 = 0 implies that

0 = 〈X,Y 〉 =
r∑

i=1

σi〈uiu
∗
i , Y 〉 =

r∑

i=1

σiTr(u
∗
i Y ui),
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which leads to 〈uiu
∗
i , Y 〉 = 0, i = 1, . . . , r. Therefore, it obtain that

(2.4) 〈U1U
∗
1 , Y 〉 =

r∑

i=1

〈uiu
∗
i , Y 〉 = 0,

and (2.3) becomes

(2.5) ‖λI − Y ‖2F = ‖λU1U
∗
1 ‖2F + ‖λU2U

∗
2 − Y ‖2F ≥ ‖λU1U

∗
1 ‖2F = λ2r.

Combining (2.2) and (2.5), we have
∥∥∥∥λ
(
I− X

‖X‖F

)
− Y

∥∥∥∥
F

≥ ‖λI− Y ‖F − λ ≥ λ(
√
r − 1).

�

3. Proof of Theorem 1.2

The aim of this section is to present the proof of Theorem 1.2.

Proof of Theorem 1.2. Set

(3.1) x# := argmin
x∈Cd

µ‖x‖21 +
1

2

m∑

i=1

(|〈ai,x〉|2 − bi)
2.

Noting exp(iθ)x# is also a solution to (3.1) for any θ ∈ R, without loss of generality, we can assume
that

〈x#,x0〉 ∈ R and 〈x#,x0〉 ≥ 0.

Then a simple observation is that X# is the solution to (1.7) if and only if X# = x#(x#)∗.

Set X0 := x0x
∗
0 and

H := X# −X0 = x#(x#)∗ − x0x
∗
0.

To prove the conlusion, it is enough to consider the upper bound of ‖H‖F . Set T0 := supp(x0). Set

T1 as the index set which contains the indices of the ak largest elements of x#
T c
0
in magnitude, and T2

contains the indices of the next ak largest elements, and so on. For simplicity, we set T01 := T0 ∪ T1

and H̄ := HT01,T01
. Note that

‖H‖F ≤ ‖H̄‖F +
∑

i≥2,j≥2

‖HTi,Tj‖F + 2
∑

j≥2,i=0,1

‖HTi,Tj‖F .

So, it is enough to present upper bounds for

‖H̄‖F ,
∑

i≥2,j≥2

‖HTi,Tj‖F , and
∑

j≥2,i=0,1

‖HTi,Tj‖F .

We first consider
∑

i≥2,j≥2 ‖HTi,Tj‖F . According to

µ‖X#‖1 +
1

2
‖A(X#)− b‖22 ≤ µ‖X0‖1 +

1

2
‖A(X0)− b‖22,

we can obtain that

(3.2) µ‖H −HT0,T0
‖1 ≤ µ‖HT0,T0

‖1 + ‖w‖2‖A(H)‖2 −
1

2
‖A(H)‖22.

Here, we use

‖X0‖1 = ‖HT0,T0
−X#

T0,T0
‖1 ≤ ‖HT0,T0

‖1 + ‖X#
T0,T0

‖1,
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and

‖X#‖1 − ‖X#
T0,T0

‖1 = ‖X# −X#
T0,T0

‖1 = ‖H −HT0,T0
‖1.

Therefore, we have

(3.3)

∑

i≥2,j≥2

‖HTi,Tj‖F =
∑

i≥2,j≥2

‖x#
Ti
‖2 · ‖x#

Tj
‖2 =




∑

i≥2

‖x#
Ti
‖2




2

≤ 1

ak
‖x#

T c
0
‖21 =

1

ak
‖HT c

0
,T c

0
‖1 ≤ 1

ak
‖H −HT0,T0

‖1

≤ 1

ak
‖HT0,T0

‖1 +
‖w‖2
µak

‖A(H)‖2 −
1

2µak
‖A(H)‖22

≤ 1

a
‖HT0,T0

‖F +
‖w‖2
µak

‖A(H)‖2 −
1

2µak
‖A(H)‖22

≤ 1

a
‖H̄‖F +

‖w‖2
µak

‖A(H)‖2 −
1

2µak
‖A(H)‖22.

The second line based on ‖x#
Tj
‖2 ≤ ‖x#

Tj−1
‖1/

√
ak, and the third line follows from (3.2).

Second, we consider
∑

j≥2,i=0,1 ‖HTi,Tj‖F . Applying that ‖x#
Tj
‖2 ≤ ‖x#

Tj−1
‖1/

√
ak, we have

(3.4)

∑

j≥2

‖HTi,Tj‖F = ‖x#
Ti
‖2 ·

∑

j≥2

‖x#
Tj
‖2 ≤

1√
ak

‖x#
T c
0
‖1‖x#

Ti
‖2

≤ 1√
a
‖x#

T01
− x0‖2‖x#

Ti
‖2 +

‖w‖2√
2µak

‖x#
Ti
‖2

≤
√
2√
a
‖x#

T01
(x#

T01
)∗ − x0x

∗
0‖F +

‖w‖2√
2µak

‖x#
Ti
‖2

=

√
2√
a
‖H̄‖F +

‖w‖2√
2µak

‖x#
Ti
‖2,

where i ∈ {0, 1}. Here, the third line follows from Lemma 2.2 and the second line follows from

(3.5) ‖x#
T c
0
‖1 ≤

√
k‖x#

T0
− x0‖2 +

‖w‖2√
2µ

.

Indeed, noting that

µ‖x#(x#)∗‖1 +
1

2
‖A(x#(x#)∗)− b‖22 ≤ µ‖x0x

∗
0‖1 +

1

2
‖A(x0(x0)

∗)− b‖22,

we obtain that

µ‖x#‖21 +
1

2
‖A(x#(x#)∗)− b‖22 ≤ µ‖x0‖21 +

1

2
‖A(x0(x0)

∗)− b‖22
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which implies
(3.6)

‖x#‖1 ≤
√
‖x0‖21 +

1

2µ
‖A(x0(x0)∗)− b‖22 −

1

2µ
‖A(x#(x#)∗)− b‖22

=

√
‖x0‖21 +

1

2µ
‖A(x0(x0)∗)− b‖22 −

1

2µ
‖A(x#(x#)∗)−A(x0(x0)∗) +A(x0(x0)∗)− b‖22

=

√
‖x0‖21 −

1

2µ
‖A(x0(x0)∗ − x#(x#)∗)‖22 −

1

µ
〈A(x0(x0)∗ − x#(x#)∗),A(x0(x0)∗)− b〉

≤
√
‖x0‖21 +

1

µ
‖A(H)‖2‖A(x0(x0)∗)− b‖2 −

1

2µ
‖A(H)‖22

=

√

‖x0‖21 +
‖w‖2
µ

‖A(H)‖2 −
1

2µ
‖A(H)‖22

≤ ‖x0‖1 +
√

max{0, ‖w‖2
µ

‖A(H)‖2 −
1

2µ
‖A(H)‖22}

≤ ‖x0‖1 +
‖w‖2√

2µ
.

Therefore, we have

‖x#
T c
0
‖1 ≤ −‖x#

T0
‖1 + ‖x0‖1 +

‖w‖2√
2µ

≤ ‖x#
T0

− x0‖1 +
‖w‖2√

2µ
≤

√
k‖x#

T0
− x0‖2 +

‖w‖2√
2µ

,

which implies (3.5). Combing (3.3) and (3.4), we have

(3.7)

∑

i≥2,j≥2

‖HTi,Tj‖F + 2
∑

j≥2,i=0,1

‖HTi,Tj‖F

≤
(
1

a
+

4
√
2√
a

)
‖H̄‖F +

2‖w‖2√
µak

‖x#
T01

‖2 +
‖w‖2
µak

‖A(H)‖2 −
1

2µak
‖A(H)‖22

≤
(
1

a
+

4
√
2√
a

)
‖H̄‖F +

2‖w‖2√
µak

‖x#
T01

‖2 +
‖w‖22
2µak

.

Third, we claim that

(3.8) ‖H̄‖F ≤ 1

c− C
a − 4

√
2C√
a

(
2C

‖w‖2√
µak

‖x#
T01

‖2 +
µak

2C

(
C‖w‖2
µak

+
1√
m

)2
)
.

Combining (3.7) and (3.8), we obtain that

‖H‖F ≤ ‖H̄‖F +
∑

i≥2,j≥2

‖HTi,Tj‖F + 2
∑

j≥2,i=0,1

‖HTi,Tj‖F

≤
(
1 +

1

a
+

4
√
2√
a

)
‖H̄‖F +

2‖w‖2√
µak

‖x#
T01

‖2 +
‖w‖22
2µak

≤ (2Cα+ 2)
‖w‖2√
µak

‖x#
T01

‖2 +
‖w‖22
2µak

+ α · µak
2C

(
C‖w‖2
µak

+
1√
m

)2

≤ (2Cα+ 2)
‖w‖2√
µak

(
‖x0‖1 +

‖w‖2√
2µ

)
+

‖w‖22
2µak

+ α · µak
2C

(
C‖w‖2
µak

+
1√
m

)2

,
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which leads to the conclusion. Here, the fourth line is based on

‖x#
T01

‖2 ≤ ‖x#
T01

‖1 ≤ ‖x#‖1 ≤ ‖x0‖1 +
‖w‖2√

2µ
,

where the last inequality follows from (3.6).

We remain to prove (3.8). Note that

1√
m
‖A(H)‖2 ≥ 1

m
‖A(H)‖1 ≥ 1

m
‖A(H̄)‖1 −

1

m
‖A(H − H̄)‖1,

which implies

(3.9)
1

m
‖A(H̄)‖1 ≤ 1

m
‖A(H − H̄)‖1 +

1√
m
‖A(H)‖2.

Here we can see that

1

m
‖A(H − H̄)‖1 ≤

∑

i=0,1

1

m
‖A(HTi,T c

01
+HT c

01
,Ti)‖1 +

1

m
‖A(HT c

01
,T c

01
)‖1.

For i = 0, 1, since A(·) satisfy the RIP condition of order (2, 2ak) with upper RIP constant C, we
have

1

m
‖A(HTi,T c

01
+HT c

01
,Ti)‖1 =

1

m

∥∥∥∥∥∥

∑

j≥2

A(HTi,Tj +HTj ,Ti)

∥∥∥∥∥∥
1

≤ 1

m

∑

j≥2

‖A(HTi,Tj +HTj ,Ti)‖1 =
1

m

∑

j≥2

‖A(x#
Ti
(x#

Tj
)∗ + x

#
Tj
(x#

Ti
)∗)‖1

≤ 2C
∑

j≥2

‖x#
Ti
‖2‖x#

Tj
‖2 ≤ 2C√

ak
‖x#

T c
0
‖1‖x#

Ti
‖2

≤ 2C√
a
‖H̄‖F +

2C‖w‖2√
2µak

‖x#
Ti
‖2.

(3.10)

Here, the last line follows from (3.4). On the other hand, based on (3.3), we have

1

m
‖A(HT c

01
,T c

01
)‖1 ≤ 1

m

∥∥∥∥∥∥

∑

i,j≥2,i6=j

A(HTi,Tj +HTj ,Ti)

∥∥∥∥∥∥
1

+
1

m

∥∥∥∥∥∥

∑

i≥2

A(HTi,Ti)

∥∥∥∥∥∥
1

≤ C
∑

i≥2,j≥2

‖HTi,Tj‖F ≤ C

a
‖H̄‖F +

C‖w‖2
µak

‖A(H)‖2 −
C

2µak
‖A(H)‖22.

(3.11)
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As A(·) satisfy the RIP condition of order (2, 2ak) with lower RIP constant c > 0, combining (3.9),
(3.10) and (3.11), we obtain that
(3.12)

c‖H̄‖F ≤ 1

m
‖A(H̄)‖1 ≤ 1√

m
‖A(H)‖2 +

1

m
‖A(H − H̄)‖1

≤ 1√
m
‖A(H)‖2 +

∑

i=0,1

1

m
‖A(HTi,T c

01
+HT c

01
,Ti)‖1 +

1

m
‖A(HT c

01
,T c

01
)‖1

≤ 1√
m
‖A(H)‖2 + 2C

‖w‖2√
µak

(‖x#
T0
‖2 + ‖x#

T1
‖2) +

(
C

a
+

4
√
2C√
a

)
‖H̄‖F +

C‖w‖2
µak

‖A(H)‖2 −
C

2µak
‖A(H)‖22

≤ 1√
m
‖A(H)‖2 + 2C

‖w‖2√
µak

‖x#
T01

‖2 +
(
C

a
+

4
√
2C√
a

)
‖H̄‖F +

C‖w‖2
µak

‖A(H)‖2 −
C

2µak
‖A(H)‖22,

which implies
(
c− C

a
− 4

√
2C√
a

)
‖H̄‖F ≤ 2C

‖w‖2√
µak

‖x#
T01

‖2 +
(
C‖w‖2
µak

+
1√
m

)
‖A(H)‖2 −

C

2µak
‖A(H)‖22

≤ 2C
‖w‖2√
µak

‖x#
T01

‖2 +
µak

2C

(
C‖w‖2
µak

+
1√
m

)2

.

It leads to the inequality (3.8). �

4. Proof of Lemma 1.1

Denote Rd×d
sym as the set of symmetric real d× d matrices, and R

d×d
skew as the set of skew-symmetric

real d× d matrices. If X ∈ Hd×d, then X can be written as X = X1 + iX2, where X1 ∈ Rd×d
sym and

X2 ∈ R
d×d
skew are the real and imaginary parts of X . Thus the set {X ∈ Hd×d : X � 0} corresponds

to

H
d×d
+ :=

{[
X1

X2

]
: (X1, X2) ∈ R

d×d
sym × R

d×d
skew, zT1 X1z1 + zT2 X1z2 + zT2 X2z1 − zT1 X2z2 ≥ 0 for all z1, z2 ∈ R

d

}
.

Let Ã : R2d×d → Rm be defined by

(4.1)

[
X1

X2

]
7→ (R(ai)

TX1R(ai) + I (ai)
TX1I (ai) + I (ai)

TX2R(ai)− R(ai)
TX2I (ai))

m
i=1.

Then A(X) = Ã

([
X1

X2

])
. By a simple calculation, its conjugate map Ã∗ : Rm → R2d×d is given by

(4.2) (bi)
m
i=1 7→

[∑m
i=1 bi

(
R(ai)R(ai)

T + I (ai)I (ai)
T
)

∑m
i=1 bi

(
I (ai)R(ai)

T − R(ai)I (ai)
T
)
]
.

For X = X1 + iX2 ∈ Cd×d, ‖X‖1 and ‖X‖F can also be written as

‖X‖1 =
∥∥∥∥
[
vec(X1)
vec(X2)

]∥∥∥∥
1,2

=
∑

i,j

√
[X1]2i,j + [X2]2i,j , and ‖X‖F =

∥∥∥∥
[
X1

X2

]∥∥∥∥
F

.

Using the notations above, we recast the model (1.8) as follows.
(4.3)

min
X1,X2

λ

(
Tr(X1)−

∥∥∥∥
[
X1

X2

]∥∥∥∥
F

)
+ µ

∥∥∥∥
[
vec(X1)
vec(X2)

]∥∥∥∥
1,2

+
1

2

∥∥∥∥Ã
([

X1

X2

])
− b

∥∥∥∥
2

2

s.t.

[
X1

X2

]
∈ H

d×d
+ .
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If (X#
1 , X#

2 ) is a minimizer of (4.3), then the optimal solution X# of (1.8) satisfiesX# = X#
1 +iX#

2 .

In order to prove Lemma 1.1, we first introduce some technical lemmas in convex optimization
and matrix theory. Assume that Ω ⊂ Rn. We use TΩ(x

#) and TΩ(x
#)∗ to denote the tangent cone

of Ω at x# ∈ Ω and its dual cone, respectively. Particularly, we have

Proposition 4.1. If Ω is a convex cone in Rn and x# ∈ Ω, then

TΩ(x
#)∗ = {y ∈ R

n : 〈y,x〉 ≤ 0 for all x ∈ Ω, and 〈y,x#〉 = 0}.

Proof. According to Proposition 4.6.3 in [2], we have

(4.4) TΩ(x
#)∗ = {y ∈ R

n : 〈y,x − x#〉 ≤ 0 for all x ∈ Ω}.
Assume that y ∈ TΩ(x

#)∗. Then 〈y,x − x#〉 ≤ 0 for all x ∈ Ω. Since Ω is a cone, we have
x#/2, 2x# ∈ Ω. Taking x = 2x#, we obtain 〈y,x#〉 ≤ 0. Similarly, taking x = x#/2, we have
〈y,x#〉 ≥ 0. We arrive at 〈y,x#〉 = 0, which leads to 〈y,x〉 ≤ 0 for all x ∈ Ω. �

The following theorem provides some properties of local minimum on constrained model.

Proposition 4.2. [2, Proposition 4.7.3] Let x# be a local minimizer of the model:

min
x∈Ω

f1(x) + f2(x),

where f1 is convex and f2 is smooth over a subset Ω of Rn. Assume that the tangent cone TΩ(x
#)

is convex. Then
−∇f2(x

#) ∈ ∂f1(x
#) + TΩ(x

#)∗.

We next present the sub-gradient set of ∂(‖X‖1):
Proposition 4.3. ([1]) Assume that X = X1 + iX2 with X1, X2 ∈ Rd×d. Then the subgradient set
of ‖X‖1 in real space is

∂

(∥∥∥∥
[
vec(X1)
vec(X2)

]∥∥∥∥
1,2

)
:=

{[
G1

G2

]
, G1, G2 ∈ R

d×d : [G1]
2
i1,i2 + [G2]

2
i1,i2 ≤ 1, if [X1]i1,i2 = [X2]i1,i2 = 0;

([G1]i1,i2 , [G2]i1,i2) =
([X1]i1,i2 , [X2]i1,i2)√
[X1]2i1,i2 + [X2]2i1,i2

, otherwise

}

(4.5)

Combining Proposition 4.1, Proposition 4.2 with Proposition 4.3, we have

Lemma 4.4. Assume that (X#
1 , X#

2 ) is a local minimizer of model (4.3). Then there exist

[
Λ1

Λ2

]
∈

H
d×d
+ and

[
G1

G2

]
∈ ∂

(∥∥∥∥
[
vec(X#

1 )

vec(X#
2 )

]∥∥∥∥
1,2

)
such that the followings hold:

(i) Stationary condition:

(4.6) λ

([
I

0

]
−
[
X#

1

X#
2

]/∥∥∥∥
[
X#

1

X#
2

]∥∥∥∥
F

)
+ µ

[
G1

G2

]
+ Ã∗

(
Ã
([

X#
1

X#
2

])
− b

)
−
[
Λ1

Λ2

]
= 0;

(ii) Complementary slackness condition:

(4.7)

〈[
Λ1

Λ2

]
,

[
X#

1

X#
2

]〉
= 0.
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Proof. Set

f1(X1, X2) := µ

∥∥∥∥
[
vec(X1)
vec(X2)

]∥∥∥∥
1,2

,

f2(X1, X2) := λ

(
Tr(X1)−

∥∥∥∥
[
X1

X2

]∥∥∥∥
F

)
+

1

2

∥∥∥∥Ã
([

X1

X2

])
− b

∥∥∥∥
2

2

,

and Ω := H
d×d
+ . Then f1 is convex and f2 is smooth. Since Ω is convex, we obtain that TΩ

([
X#

1

X#
2

])
is

convex by Proposition 4.6.2 in [2]. According to Proposition 4.2, there exists −
[
Λ1

Λ2

]
∈ TΩ

([
X#

1

X#
2

])∗

such that the stationary condition (4.6) holds. Furthermore, we can use Proposition 4.1 to obtain
the complementary slackness condition (4.7).

We remain to prove

[
Λ1

Λ2

]
∈ H

d×d
+ . Take T1 = t1t

T
1 + t2t

T
2 and T2 = t2t

T
1 − t1t

T
2 for any fixed

t1, t2 ∈ Rd. Then

[
T1

T2

]
∈ Ω. By the definition of TΩ

([
X#

1

X#
2

])∗

and Proposition 4.2, we obtain that

〈
−
[
Λ1

Λ2

]
,

[
T1

T2

]〉
≤ 0,

which implies

(4.8) tT1 Λ1t1 + tT2 Λ1t2 + tT2 Λ2t1 − tT1 Λ2t2 ≥ 0 for any t1, t2 ∈ R
d.

If (Λ1,Λ2) ∈ Rd×d
sym × R

d×d
skew, then we arrive at the conclusion. Otherwise, we can replace Λ1 and

Λ2 by

Λ̃1 :=
Λ1 + ΛT

1

2
and Λ̃2 :=

Λ2 − ΛT
2

2
.

Noting that (Λ̃1, Λ̃2) ∈ Rd×d
sym × R

d×d
skew and

〈
−
[
Λ̃1

Λ̃2

]
,

[
T1

T2

]〉
=

〈
−
[
Λ1

Λ2

]
,

[
T1

T2

]〉
≤ 0,

we obtain that

[
Λ̃1

Λ̃2

]
∈ H

d×d
+ . After a simple calculation, we also have

λ

([
I

0

]
−
[
X#

1

X#
2

]/∥∥∥∥
[
X#

1

X#
2

]∥∥∥∥
F

)
+ µ

[
G̃1

G̃2

]
+ Ã∗

(
Ã
([

X#
1

X#
2

])
− b

)
−
[
Λ̃1

Λ̃2

]
= 0,

and 〈[
Λ̃1

Λ̃2

]
,

[
X#

1

X#
2

]〉
=

〈[
Λ1

Λ2

]
,

[
X#

1

X#
2

]〉
= 0,

where G̃1 :=
G1+GT

1

2 , G̃2 :=
G2−GT

2

2 and
[
G̃1

G̃2

]
∈ ∂

(∥∥∥∥
[
vec(X#

1 )

vec(X#
2 )

]∥∥∥∥
1,2

)
.
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Therefore, the stationary condition (4.6) and complementary slackness condition (4.7) also hold for[
Λ1

Λ2

]
:=

[
Λ̃1

Λ̃2

]
. �

We next present the proof of Lemma 1.1.

Proof of Lemma 1.1. Since 1
2‖b‖22 > µ‖x0‖21 + 1

2‖w‖22, we obtain that X# 6= 0.

We next consider the equivalent model (4.3) with global minimizer (X#
1 , X#

2 ). According to

Lemma 4.4, there exist

[
Λ1

Λ2

]
∈ H

d×d
+ and

[
G1

G2

]
∈ ∂

(∥∥∥∥
[
vec(X#

1 )

vec(X#
2 )

]∥∥∥∥
1,2

)
such that the following

holds:

(4.9) λ

([
I

0

]
−
[
X#

1

X#
2

]/∥∥∥∥
[
X#

1

X#
2

]∥∥∥∥
F

)
+ µ

[
G1

G2

]
+ Ã∗

(
Ã
([

X#
1

X#
2

])
− b

)
−
[
Λ1

Λ2

]
= 0;

and

(4.10)

〈[
Λ1

Λ2

]
,

[
X#

1

X#
2

]〉
= 0.

According to (4.9), we obtain that

(4.11)

∥∥∥∥Ã∗
(
Ã
([

X#
1

X#
2

])
− b

)
+ µ

[
G1

G2

]∥∥∥∥
F

=

∥∥∥∥∥λ
([

I

0

]
−
[
X#

1

X#
2

]/∥∥∥∥
[
X#

1

X#
2

]∥∥∥∥
F

)
−
[
Λ1

Λ2

]∥∥∥∥∥
F

=

∥∥∥∥λ
(
I− X#

‖X#‖F

)
− Λ

∥∥∥∥
F

≥ λ(
√
r − 1),

where Λ := Λ1 + iΛ2 ∈ Cd×d and r := rank(X#). The last inequality in (4.11) follows from (4.10)
and Lemma 2.3.

On the other hand, we have

(4.12)

∥∥∥∥Ã∗
(
Ã
([

X#
1

X#
2

])
− b

)
+ µ

[
G1

G2

]∥∥∥∥
F

≤
∥∥∥∥Ã∗

(
Ã
([

X#
1

X#
2

])
− b

)∥∥∥∥
F

+ µ

∥∥∥∥
[
G1

G2

]∥∥∥∥
F

≤ ‖A‖
∥∥∥∥Ã
([

X#
1

X#
2

])
− b

∥∥∥∥
2

+ µd

= ‖A‖‖A(X#)− b‖2 + µd

≤ ‖A‖
√
2µ‖x0‖21 + ‖w‖22 + µd

≤ ‖A‖(
√
2µ‖x0‖1 + ‖w‖2) + µd.

Here, the second inequality follows from Proposition 4.3 and [G1]
2
i1,i2

+ [G1]
2
i1,i2

≤ 1 for any i1, i2 ∈
{1, ..., d}. Combing (4.11) and (4.12), we obtain that

λ(
√
r − 1) ≤ µd+ ‖A‖(

√
2µ‖x0‖1 + ‖w‖2).

By the assumption on λ in (1.9) as

λ >
µd+ ‖A‖(√2µ‖x0‖1 + ‖w‖2)√

2− 1
,
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Algorithm 1 The DCA Algorithm for solving model (1.8)

1: Input: the map A, the vector b, the tolerance error tol ≥ 0, the parameters λ, µ and MAXiter.
2: Output: A matrix X#.
3: Initial: X0 = 0.
4: Loop: for k = 0 to MAXiter

Y k =

{
Xk

‖Xk‖F
if Xk 6= 0

0 if Xk = 0

(5.1) Xk+1 = argmin
X�0

{1
2
‖A(X)− b‖22 + λTr(X)− λ〈X,Y k〉+ µ‖X‖1

}

If
‖Xk−Xk−1‖F

max{‖Xk‖F ,1} ≤ tol then break

5: X# = Xk.

we have √
r − 1√
2− 1

(
µd+ ‖A‖(

√
2µ‖x0‖1 + ‖w‖2)

)
≤ µd+ ‖A‖(

√
2µ‖x0‖1 + ‖w‖2).

Thus the only proper choice of r is r = 1. �

5. Algorithms for solving Sparse PhaseLiftOff

5.1. The DCA algorithm. In this section, we establish an algorithm to solve the Sparse PhaseLiftOff
model (1.8), which is stated in Algorithm 1. Our algorithm is based on DCA, which is a descent
method introduced by Tao and An [14, 15]. DCA is also studied in compressed sensing, and in
matrix recovery problem (see [21, 23, 24]).

The step 6 of Algorithm 1 is to solve a subproblem (5.1). We suggest employing ADMM method
[3] to solve it, which is shown in Algorithm 2. The convergence rate of ADMM was established in
[9]. To derive ADMM, we rewrite (5.1) as

(5.2) min
X3�0,X3=X1,X3=X2

1

2
‖A(X1)− b‖22 + λTr(X1)− λ〈X1, Y

k〉+ µ‖X2‖1.

The problem (5.2) is called global consensus problem [3, Equation (7.2)] with local variables X1 and
X2 and a common global variable X3. The augmented Lagrangian function corresponding to (5.2)
is

Lδ(X1, X2, X3, Y1, Y2) =
1

2
‖A(X1)− b‖22 + 〈X1, λ(I− Y k)〉+ µ‖X2‖1 + g�(X3)

+ 〈Y1, X1 −X3〉+ 〈Y2, X2 −X3〉+
δ

2
‖X1 −X3‖2F +

δ

2
‖X2 −X3‖2F ,

where Y1, Y2 are dual variables, δ is augmented Lagrangian parameter and

g�0(Z) =

{
0 if Z � 0,

∞ otherwise.

We can employ the standard ADMM to solve

(5.3) min
X1,X2,X3,Y1,Y2

Lδ(X1, X2, X3, Y1, Y2),
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Algorithm 2 ADMM for solving the subproblem (5.1)

1: Input: the map A, the vector b, k, W = λ(I− Y k), the parameters λ, µ, δ and MAXiter.
2: Output: A matrix Xk+1.
3: Initial: X0

1 = X0
2 = X0

3 = Y 0
1 = Y 0

2 = 0.
4: Loop: for l = 0 to MAXiter

X l+1
1 = (A∗A+ δI)−1(A∗(b)−W + δX l

3 − Y l
1 )

X l+1
2 = Sµ/δ(X

l
3 − 1

δY
l
2 )

X l+1
3 = P�

(
1
2 (X

l+1
1 +X l+1

2 ) + 1
2δ (Y

l
1 + Y l

2 )
)

Y l+1
1 = Y l

1 + δ(X l+1
1 −X l+1

3 )

Y l+1
2 = Y l

2 + δ(X l+1
2 −X l+1

3 )
5: Xk+1 = X l

3.

which consists of updating on both the primal and dual variables [3, Equation (7.3)-Equation (7.5)]:

(5.4)






X l+1
1 = argminX1

Lδ(X1, X
l
2, X

l
3, Y

l
1 , Y

l
2 )

X l+1
2 = argminX2

Lδ(X
l+1
1 , X2, X

l
3, Y

l
1 , Y

l
2 )

X l+1
3 = argminX3

Lδ(X
l+1
1 , X l+1

2 , X3, Y
l
1 , Y

l
2 )

Y l+1
1 = Y l

1 + δ(X l+1
1 −X l+1

3 )

Y l+1
2 = Y l

2 + δ(X l+1
2 −X l+1

3 )

According to [3], δ can be fixed or adaptively updated following the rules below:

δl+1 =






2δl if ‖Rl‖F > 10‖Sl‖F
δl/2 if ‖Rl‖F < 1

10‖Sl‖F
δl otherwise

,

where ‖Rl‖2F = ‖X l
1 −X l

3‖2F + ‖X l
2 −X l

3‖2F , and ‖Sl‖2F = 2(δl)2‖X l
3 −X l−1

3 ‖2F .
More explicitly, we state ADMM algorithm for solving (5.4) in Algorithm 2. In Algorithm 2, we

use Sλ : Cn×n → Cn×n to denote the soft-thresholding operator on each elements of the matrix, i.e.,

[Sλ(Z)]i,j =

{
(|Zi,j | − λ)

Zi,j

|Zi,j | |Zi,j| ≥ λ,

0 otherwise.

We use P� : Hn×n → Hn×n to denote the projection on the the positive semidefinite cone, i.e.,

P�(X) = U max{Σ,0}U∗,

where X = UΣU∗ is the eigenvalue decomposition of X .

5.2. The Convergence property of Algorithm 1. The aim of this subsection is to study the
convergence property of Algorithm 1. Motivated by the techniques developed in [23] and [24], we
will show that Algorithm 1 converges to a stationary point. For convenience, we set

F (X) := λ(Tr(X)− ‖X‖F ) + µ‖X‖1 +
1

2
‖A(X)− b‖22.

We first show that {F (Xk)}k≥1 generated by Algorithm 1 is a monotonically decreasing sequence.

Lemma 5.1. If {Xk}k≥1 is a sequence generated by Algorithm 1, then we have

F (Xk)− F (Xk+1) ≥ 0, for all k ≥ 0.
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Proof. We consider the kth iteration of Algorithm 1. Recall that Xk+1 is the solution to (5.1) in

Algorithm 1. Set Xk+1 := Xk+1
1 + iXk+1

2 and Y k := Y k
1 + iY k

2 where Xk+1
1 , Xk+1

2 , Y k
1 , Y

k
2 ∈ R

d×d.
Take

f1(X1, X2) := µ

∥∥∥∥
[
vec(X1)
vec(X2)

]∥∥∥∥
1,2

,

f2(X1, X2) := λ

(
Tr(X1)−

〈[
Y k
1

Y k
2

]
,

[
X1

X2

]〉)
+

1

2

∥∥∥∥Ã
([

X1

X2

])
− b

∥∥∥∥
2

2

,

and Ω := H
d×d
+ . Then f1 is convex, f2 is smooth, and TΩ

([
Xk+1

1

Xk+1
2

])
is convex. According to

Proposition 4.2, we have

(5.5) λ

([
I

0

]
−
[
Y k
1

Y k
2

])
+ µ

[
Gk+1

1

Gk+1
2

]
+ Ã∗

(
Ã
([

Xk+1
1

Xk+1
2

])
− b

)
=

[
Λk+1
1

Λk+1
2

]
,

and

(5.6)

〈[
Λk+1
1

Λk+1
2

]
,

[
Xk+1

1

Xk+1
2

]〉
= 0,

for some Λk+1 = Λk+1
1 + iΛk+1

2 with

[
Λk+1
1

Λk+1
2

]
∈ H

d×d
+ , and Gk+1 = Gk+1

1 + iGk+1
2 with

[
Gk+1

1

Gk+1
2

]
∈

∂

(∥∥∥∥
[
vec(Xk+1

1 )

vec(Xk+1
2 )

]∥∥∥∥
1,2

)
. According to Proposition 4.3, we have




[Gk+1

1 ]2i1,i2 + [Gk+1
2 ]2i1,i2 ≤ 1, if [Xk+1

1 ]i1,i2 = [Xk+1
2 ]i1,i2 = 0;

([Gk+1
1 ]i1,i2 , [G

k+1
2 ]i1,i2) =

([Xk+1

1
]i1,i2 ,[X

k+1

2
]i1,i2 )

√

[Xk+1

1
]2i1,i2

+[Xk+1

2
]2i1,i2

, otherwise.

Using a similar method for proving Lemma 4.4, we can obtain (5.6). According to (5.5), we have

(5.7)

〈[
Xk

1 −Xk+1

1

Xk

2
−Xk+1

2

]
, λ

([
I

0

]
−

[
Y k

1

Y k

2

])
+ µ

[
Gk+1

1

Gk+1

2

]
+ Ã∗

(
Ã

([
Xk+1

1

Xk+1

2

])
− b

)〉
=

〈[
Xk

1 −Xk+1

1

Xk

2
−Xk+1

2

]
,

[
Λk+1

1

Λk+1

2

]〉
.

Combining (5.7) and
〈[

Xk+1
1

Xk+1
2

]
,

[
Gk+1

1

Gk+1
2

]〉
= ‖Xk+1‖1,

〈[
Xk

1

Xk
2

]
,

[
Y k
1

Y k
2

]〉
= ‖Xk‖F ,

〈[
Λk+1
1

Λk+1
2

]
,

[
Xk+1

1

Xk+1
2

]〉
= 0,

we obtain that

〈Xk,Λk+1〉 =λTr(Xk −Xk+1)− λ‖Xk‖F + λ〈Xk+1, Y k〉
+ µ〈Xk, Gk+1〉 − µ‖Xk+1‖1 + 〈A(Xk −Xk+1),A(Xk+1)− b〉,

(5.8)

since Ã
([

Xk+1
1

Xk+1
2

])
= A(Xk+1) and Ã

([
Xk

1 −Xk+1
1

Xk
2 −Xk+1

2

])
= A(Xk − Xk+1) with Xk = Xk

1 + iXk
2

and Xk+1 = Xk+1
1 + iXk+1

2 . Combining

F (Xk)− F (Xk+1) =
1

2
‖A(Xk+1 −Xk)‖22 + 〈A(Xk −Xk+1),A(Xk+1)− b〉

+ µ(‖Xk‖1 − ‖Xk+1‖1) + λ(Tr(Xk −Xk+1)− ‖Xk‖F + ‖Xk+1‖F ),
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and (5.8), we arrive at

F (Xk)− F (Xk+1) =
1

2
‖A(Xk+1 −Xk)‖22 + µ(‖Xk‖1 − 〈Xk, Gk+1〉) + 〈Xk,Λk+1〉

+ λ(‖Xk+1‖F − 〈Xk+1, Y k〉)
≥0.

(5.9)

Here, the last inequality follows from ‖Xk‖1 − 〈Xk, Gk+1〉 ≥ 0, ‖Xk+1‖F − 〈Xk+1, Y k〉 ≥ 0, and
〈Xk,Λk+1〉 ≥ 0 since ‖Gk+1‖∞ ≤ 1, ‖Y k‖F ≤ 1, and Λk+1 � 0. �

We next show the convergence property of Algorithm 1.

Theorem 5.2. Assume that {Xk}k≥1 is a sequence generated by Algorithm 1. We have

(1) {Xk}k≥1 is a bounded sequence;

(2) limk→∞ ‖Xk+1 −Xk‖F = 0;

(3) Assume that X̃ = X̃1 + iX̃2 is an accumulation point of {Xk}k≥1. Then X̃ satisfies:

(i) Stationary condition:

(5.10) λ

([
I

0

]
−
[
X̃1

X̃2

]/∥∥∥∥∥

[
X̃1

X̃2

]∥∥∥∥∥
F

)
+ µ

[
G̃1

G̃2

]
+ Ã∗

(
Ã
([

X̃1

X̃2

])
− b

)
−
[
Λ̃1

Λ̃2

]
= 0;

(ii) Complementary slackness condition:

(5.11)

〈[
Λ̃1

Λ̃2

]
,

[
X̃1

X̃2

]〉
= 0,

for some

[
Λ̃1

Λ̃2

]
∈ H

d×d
+ and

(5.12)

[
G̃1

G̃2

]
∈ ∂



∥∥∥∥∥

[
vec(X̃1)

vec(X̃2)

]∥∥∥∥∥
1,2


 ,

where ∂




∥∥∥∥∥

[
vec(X̃1)

vec(X̃2)

]∥∥∥∥∥
1,2



 is given in (4.5).

Proof. (1) The definition of F implies µ‖Xk+1‖1 ≤ F (Xk+1) and hence ‖Xk+1‖1 ≤ F (Xk+1)/µ ≤
F (X0)/µ for k ≥ 1. Here we use Lemma 5.1, i.e., {F (Xk)}k≥1 is monotonically decreasing. Hence,
{Xk}k≥1 is a bounded sequence.

(2) We first consider the case where X1 = 0. A simple calculation shows that Xk = 0 for k ≥ 2
provided that X1 = 0, and we arrive at the conclusion immediately. So, we next just consider the
case on X1 6= 0. Taking k = 0 in (5.9), we obtain that

F (X0)− F (X1) = F (0)− F (X1) =
1

2
‖A(X1)‖22 + λ‖X1‖F ≥ λ‖X1‖F > 0

as Y k = 0. It implies F (Xk) ≤ F (X1) < F (0) for any k ≥ 2. Hence, we obtain that Xk 6= 0 for all
k ≥ 1. By (5.9), we obtain that

F (Xk)− F (Xk+1) ≥ 1

2
‖A(Xk+1 −Xk)‖22 + λ(‖Xk+1‖F − 〈Xk+1, Y k〉).
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Noting that {F (Xk)}k≥1 is a convergent sequence and ‖Xk+1‖F − 〈Xk+1, Y k〉 ≥ 0, we have

(5.13) lim
k→∞

‖A(Xk −Xk+1)‖2 = 0

and

(5.14) lim
k→∞

(‖Xk+1‖F − 〈Xk+1, Y k〉) = lim
k→∞

(
‖Xk+1‖F −

〈
Xk+1,

Xk

‖Xk‖F

〉)
= 0.

The following argument is similar with that in Proposition 3.1 (b) in [24]. We put it here for

completeness. Set ck := 〈Xk,Xk+1〉
‖Xk‖2

F
and Ek := Xk+1 − ckX

k. It suffices to prove that Ek → 0 and

ck → 1. According to (5.14) and boundness of {Xk}k≥1, we have

‖Ek‖2F = ‖Xk+1‖2F − 〈Xk, Xk+1〉2
‖Xk‖2F

=

(
‖Xk+1‖F − 〈Xk, Xk+1〉

‖Xk‖2F

)(
‖Xk+1‖F +

〈Xk, Xk+1〉
‖Xk‖2F

)
→ 0,

Then we have

0 = lim
k→∞

‖A(Xk −Xk+1)‖2 = lim
k→∞

‖A((ck − 1)Xk − Ek)‖2 = lim
k→∞

|ck − 1|‖A(Xk)‖2.

If limk→∞ ck 6= 1, then there exists a subsequence {Xkj} such that ‖A(Xkj )‖2 → 0. Therefore, we
can obtain that

lim
kj→∞

F (Xkj ) ≥ lim
kj→∞

1

2
‖A(Xkj )− b‖22 =

1

2
‖b‖22 = F (X0),

which leads to a contradiction to the fact that

F (Xkj ) ≤ F (X1) < F (X0).

Thus we can get ck → 1, Ek → 0, and thus Xk+1 −Xk → 0, when k → ∞.

(3) Assume that {Xkj}j≥1 ⊂ {Xk}k≥1 is a subsequence satisfying limj→∞ Xkj = X̃ = X̃1+iX̃2 6=
0. For simplicity, we abuse the notation and denote {Xkj} as {Xj}. Replacing k by j − 1 in (5.5)
and (5.6), we have

(5.15) λ

([
I

0

]
−
[
Y j−1
1

Y j−1
2

])
+ µ

[
Gj

1

Gj
2

]
+ Ã∗

(
Ã
([

Xj
1

Xj
2

])
− b

)
=

[
Λj
1

Λj
2

]
,

and

(5.16)

〈[
Λj
1

Λj
2

]
,

[
Xj

1

Xj
2

]〉
= 0,

for some Λj = Λj
1 + iΛj

2 with

[
Λj
1

Λj
2

]
∈ H

d×d
+ , and Gj = Gj

1 + iGj
2 with

(5.17)

[
Gj

1

Gj
2

]
∈ ∂

(∥∥∥∥
[
vec(Xj

1)

vec(Xj
2)

]∥∥∥∥
1,2

)
.

Note that (5.15) is equivalent to

(5.18) λ

([
I

0

]
−
[
Y j−1
1

Y j−1
2

])
+ Ã∗

(
Ã
([

Xj
1

Xj
2

])
− b

)
=

[
Λj
1

Λj
2

]
− µ

[
Gj

1

Gj
2

]
.

Noting that

lim
j→∞

[
Y j−1
1

Y j−1
2

]
=

[
X̃1

X̃2

]/∥∥∥∥∥

[
X̃1

X̃2

]∥∥∥∥∥
F

,
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we obtain that the left hand side of (5.18) converges to
(5.19)

lim
j→∞

λ

([
I

0

]
−
[
Y j−1
1

Y j−1
2

])
+Ã∗

(
Ã
([

Xj
1

Xj
2

])
− b

)
= λ

([
I

0

]
−
[
X̃1

X̃2

]/∥∥∥∥∥

[
X̃1

X̃2

]∥∥∥∥∥
F

)
+Ã∗

(
Ã
([

X̃1

X̃2

])
− b

)
.

For convenience, we set

P j :=

[
Λj
1

Λj
2

]
and Qj := −µ

[
Gj

1

Gj
2

]
.

According to (5.17) and Proposition 4.3, we have ‖Gj
1‖∞ ≤ 1 and ‖Gj

2‖∞ ≤ 1. Combining (5.18)
and the boundedness of {Xj}j≥1, we obtain that {P j}j≥1 and {Qj}j≥1 are also bounded sequences,

which can belong to some compact sets S ⊂ H
d×d
+ and T , respectively.

We assume that {jl}l≥1 is a subsequence of {j}j≥1 such that liml→∞ Pjl = P̃ and liml→∞ Qjl = Q̃

for some P̃ ∈ S, Q̃ ∈ T . More concretely, we have

lim
l→∞

P jl = lim
l→∞

[
Λjl
1

Λjl
2

]
=

[
Λ̃1

Λ̃2

]
, and lim

l→∞
Qjl = lim

l→∞
−µ

[
Gjl

1

Gjl
2

]
= −µ

[
G̃1

G̃2

]

for some [
Λ̃1

Λ̃2

]
∈ S ⊂ H

d×d
+ .

According to (5.18), we have

λ

([
I

0

]
−
[
X̃1

X̃2

]/∥∥∥∥∥

[
X̃1

X̃2

]∥∥∥∥∥
F

)
+ Ã∗

(
Ã
([

X̃1

X̃2

])
− b

)
=

[
Λ̃1

Λ̃2

]
− µ

[
G̃1

G̃2

]
,

which implies the stationary condition (5.10). The complementary slackness condition (5.11) is
obtained by 〈[

Λ̃1

Λ̃2

]
,

[
X̃1

X̃2

]〉
= lim

l→∞

〈[
Λjl
1

Λjl
2

]
,

[
Xjl

1

Xjl
2

]〉
= 0.

Here, we use (5.16).

We remain to prove (5.12). For sufficiently large jl, we have supp(X̃) ⊂ supp(Xjl). If (i1, i2) ∈
supp(X̃), then

lim
l→∞

([Gjl
1 ]i1,i2 , [G

jl
2 ]i1,i2) =

([X̃1]i1,i2 , [X̃2]i1,i2)√
[X̃1]2i1,i2 + [X̃2]2i1,i2

.

If (i1, i2) /∈ supp(X̃), we have

([Gjl
1 ]i1,i2)

2 + ([Gjl
2 ]i1,i2)

2 ≤ 1

and hence

([G̃1]i1,i2)
2 + ([G̃2]i1,i2)

2 ≤ 1.

Thus

lim
l→∞

[
Gjl

1

Gjl
2

]
=

[
G̃1

G̃2

]
∈ ∂



∥∥∥∥∥

[
vec(X̃1)

vec(X̃2)

]∥∥∥∥∥
1,2


 ,

which leads to (5.12). �
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6. Numerical experiments

The purpose of numerical experiments is to compare the performance of (1.8) with that of
SPARTA [18], of SWF [25] and of SPRSF [11]. We choose the parameters of those algorithms
as in [18, 25, 11]. In this section, we use the relative error

relative error :=
dr(z,x0)

‖x0‖2
,

where dr(z,x0) = min ‖z±x0‖2 for the real case and dr(z,x) = minθ∈[0,2π) ‖ exp(−iθ)z−x‖2 for the
complex case. In our numerical experiments, we assume that the sampling vectors aj , j = 1, . . . ,m
are Gaussian random vector, i.e., aj ∼ N (0, Id) for real case and aj ∼ N (0, 1

2Id) + iN (0, 1
2Id) for

complex case.

For each fixed k, the support of a k-sparse signal x0 is drawn from the uniform distribution over
the set of all subsets of [1,m]∩Z of size k. The non-zero entries of the real (resp. complex) k-sparse
signal x0 have Gaussian distribution N (0, 1) (resp. N (0, 1)+iN (0, 1)). In order to reduce dimension
effect, we normalize x0 into ‖x0‖2 = 1. All experiments are carried out on Matlab 2017 with a 3.7
GHz Intel Core i7-8700K and 64 GB memory.

Example 6.1. The aim of this numerical experiment is to test the success rate of Algorithm 1
against the measurement number m. In this example, we take k = 5 and d = 50. The ratio between
m and d is varied from 0.1 to 4, with stepsize 0.1. We choose µ = 0.001 and λ = µk√

2−1
in Algorithm

1. We classify a recovery as a success if the relative error is less than 10−3. For each fixed m, we
repeat the experiments for 40 trails and and calculate the success rate.

Figure 1 depicts the empirical probability of successful recovery against the measurement number
m. The numerical results show that Algorithm 1 outperform other algorithms.
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Figure 1. Comparison of different algorithms for fixed k = 5 with differentm/n ra-
tio: (A) Noiseless real-valued Gaussian model; (B) Noiseless complex-valued Gauss-
ian model.
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Example 6.2. In this example, we test the success rate of Algorithm 1 against the sparsity level k.
We take d = 50 and m = 2d. The parameters in Algorithm 1 are taken as µ = 0.001 and λ = µk√

2−1
.

Figure 2 depicts the numerical results. It shows that Algorithm 1 is superior to the SPRSF, SWF
and SPARTA for both real and complex cases. Furthermore, we can see that Algorithm 1 can make
good performance even under large level of sparsity.
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Figure 2. Comparison of different algorithms for different sparsity level k: (A)
Noiseless real-valued Gaussian model; (B) Noiseless complex-valued Gaussian
model.

Example 6.3. In this example, we test the robustness of Algorithm 1. We take d = 50, m = 2d
and k = 5 for both real and complex cases, followed by adding white Gaussian noise by MATLAB

function awgn(A(x0),snr), i.e., bj = |〈aj ,x0〉|2+wj , j = 1, . . . ,m with w ∼
√

‖A(x0)‖2
2
/m

10snr/10 N (0, Im).

Since other algorithms do not make 100% recovery under this setting, we only show the robustness
performance on Algorithm 1. The SNR value varies from 10dB to 50dB, with step-size 5dB. The
SNR in each noise level is averaged over 20 independent trials. According to Theorem 1.2, we choose
µ = max{0.5‖w‖2, 0.001} and λ = µk√

2−1
. We compute the signal-to noise ratio of reconstruction in

dB as −20 log10(relative error). In Figure 3, it shows that Algorithm 1 yields robust recovery with
respect to different noise level. In addition, the recovery error is a bitter larger for complex case.
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