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Spectrally Sparse Signal Recovery via Hankel

Matrix Completion with Prior Information
Xu Zhang, Yulong Liu and Wei Cui

Abstract—This paper studies the problem of reconstructing
spectrally sparse signals from a small random subset of time
domain samples via low-rank Hankel matrix completion with the
aid of prior information. By leveraging the low-rank structure of
spectrally sparse signals in the lifting domain and the similarity
between the signals and their prior information, we propose a
convex method to recover the undersampled spectrally sparse
signals. The proposed approach integrates the inner product of
the desired signal and its prior information in the lift domain into
vanilla Hankel matrix completion, which maximizes the correla-
tion between the signals and their prior information. Theoretical
analysis indicates that when the prior information is reliable, the

proposed method has a better performance than vanilla Hankel
matrix completion, which reduces the number of measurements
by a logarithmic factor. We also develop an ADMM algorithm to
solve the corresponding optimization problem. Numerical results
are provided to verify the performance of proposed method and
corresponding algorithm.

Index Terms—Maximizing correlation, Hankel matrix comple-
tion, spectrally sparse signals, prior information.

I. INTRODUCTION

Spectrally sparse signal recovery refers to recovering a

spectrally sparse signal from a small number of time do-

main samples, which is fundamental in various applications,

such as medical imaging [1], radar imaging [2], analog-to-

digital conversion [3] and channel estimation [4]. Let x =
[x0, . . . , xn−1]

T ∈ Cn denote the one-dimensional spectrally

sparse signal to be estimated. Each entry of the desired signal

x is a weighted superposition of r complex sinusoids

xk =

r∑

l=1

wle
i2πkfl ,

where k = 0, . . . , n−1, {f1, . . . , fr} and {w1, . . . , wr} denote

the normalized frequencies and amplitudes for the r sinusoids,

respectively, and fl ∈ [0, 1) for l = 1, . . . , r.

In many practical applications, we only have access to a

small subset of signal samples. For example, in the field of

computed tomography (CT), only part of the desired signals

can be observed to protect the patients from high-dose radia-

tion [5]; in wideband signal sampling, it’s challenging to build

analog-to-digital converter according to Shannon sampling

theorem, and hence only a small number of samples of

the wideband signals can be acquired for reconstruction [3].
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Therefore, we have to figure out a way to recover the original

signal x from its random undersampled observations

PΩ(x) =
∑

k∈Ω

xkek,

where Ω ∈ {0, . . . , n− 1} denote the index set of the entries

we observe, ek denotes the k-th canonical basis of Rn, and

PΩ(·) denotes the projection operator on the sampling index

set Ω, i.e., PΩ(z) =
∑

k∈Ω 〈z, ek〉 ek for z ∈ C
n.

In order to reconstruct x, structured low-rank completion

methods have been proposed by using the low-rank Hankel

structure of the spectrally sparse signals in the lifting domain

min
z

Rank(H(z))

s.t. PΩ(z) = PΩ(x),
(1)

where Rank(·) returns the rank of matrix, and H : Cn →
C

n1×n2 is a linear lifting operator to generate the Han-

kel low-rank structure. In particular, for a vector x =
[x0, x1, . . . , xn−1]

T ∈ Cn, the Hankel matrix H(x) is defined

as

H(x) ,




x0 x1 . . . xd−1

x1 x2 . . . xd

...
...

. . .
...

xn−d xn−d+1 . . . xn−1


 ,

where d denotes the matrix pencil parameter, n1 = n− d+1
and n2 = d.

By using Vandermonde decomposition, the Hankel matrix

H(x) can be decomposed as

H(x) =
r∑

l=1

wlylz
H
l ,

where yl = [1, ei2πfl , . . . , ei2π(n1−1)fl ]T and zl =
[1, ei2πfl , . . . , ei2π(n2−1)fl ]T , l = 1, . . . , r. When the frequen-

cies are all distinct and r ≪ min{n1, n2}, H(x) is a low-rank

matrix with Rank(H(x)) ≤ r.

Since Eq. (1) is a non-convex problem and solving it is

NP-hard, an alternative approach based on convex relaxation

is proposed to complete the low rank matrix, that is, Hankel

matrix completion program [6], [7]

min
z

‖H(z)‖∗
s.t. PΩ(z) = PΩ(x),

(2)

where ‖·‖∗ denotes the nuclear norm. Theoretical analysis was

given to show that O(r log4 n) samples are enough to recover

the desired signal with high probability [6].
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Apart from the sparsity constraint in the spectral domain,

a reference signal φ that is similar to the original signal x

sometimes is available to us. There are two main sources

of this kind of prior information. The first source comes

from natural (non-self-constructed) signals. In high resolution

MRI [8]–[10], adjacent slices show good similarity with each

other; in multiple-contrast MRI [11]–[13], different contrasts

in the same scan are similar in structure; in dynamic CT

[14], the scans for the same slice in different time have

similar characteristics. The second source comes from self-

constructed signals. One way is to use classical method to

construct a similar signal. For example, filtered backprojection

reconstruction algorithm from the dynamic scans was used to

construct the prior information in dynamic CT [15]; smooth

method was used to generate prior information in sparse-view

CT [16]; the standard spectrum of dot object was used as the

prior information in radar imaging [17]. The other way is to

use machine learning to generate a similar signal. In [18],

the authors generated the reference image by using a CNN

network; similarly, other algorithms from deep learning can

be used to create reference signals, see e.g. in [19], [20].

In this paper, we propose a convex approach to integrate

prior information into the reconstruction of spectrally sparse

signals by maximizing the correlation between signal z and

prior information φ in the lifting domain

min
z

‖H(z)‖∗ − 2λRe (〈G(φ),H(z)〉)
s.t. PΩ(z) = PΩ(x),

(3)

where λ > 0 is a tradeoff parameter, G(·) = F(H(·)) is a

composition operator, 〈X,Y 〉 = (vec(Y ))Hvec(X) is the

inner product and Re(·) returns the real part of a complex

number. Here, F : Cn1×n2 → Cn1×n2 is a suitable operator

to be designed in the sequel. Theoretical guarantees are

provided to show that our method has better performance than

vanilla Hankel matrix completion when the prior information

is reliable. In addition, we propose an Alternating Direction

Method of Multipliers (ADMM)-based optimization algorithm

for efficient reconstruction of the desired signals.

A. Related Literature

Recovery of spectrally sparse signals has attracted great

attentions in the past years. Conventional compressed sensing

[21], [22] was used to estimate the spectrally sparse signals

when the frequencies are located on a grid. In many practical

applications, however, the frequencies lie off the grid, leading

to the mismatch for conventional compressed sensing.

To recover the signals with off-the-grid frequencies, two

kinds of methods are proposed: atomic norm minimization

and low-rank structured matrix completion. By promoting the

sparsity in a continuous frequency domain, atomic norm min-

imization [23], [24] demonstrated that r log(r) log(n) random

samples are sufficient to recover the desired signals exactly

with high probability when the frequencies are well separated.

Due to the fact that the sparsity in frequency domain leads

to the low-rankness in the lifting time domain, low rank

structured matrix completion [6], [7] was proposed to promote

the low-rank structure in the lifting time domain. Their results

showed that O(r log4(n)) random samples are enough to

correctly estimate the original signals with high probability

when some incoherence conditions are satisfied.

Besides the sparse prior knowledge, other kinds of prior

information are used to further improve the recovery perfor-

mance. By using the similarity between original signal and

reference signal, an adaptive weighted compressed sensing

approach was considered in [25], which presented a better

performance than conventional approach. Assuming that some

frequency intervals or likelihood of each frequency of the

desired signal is known a priori, a weighted atomic norm

method was studied in [26], [27], which outperforms standard

atomic norm approach.

While the above work considered spectrally sparse sig-

nal recovery with prior information based on conventional

compressed sensing or atomic norm minimization, little work

incorporates the prior information into low-rank structured

matrix completion.

Recently, we proposed a novel method to recover structured

signals by using the prior information via maximizing corre-

lation [28], [29]. By introducing a negative inner product of

the prior information and the desired signal into the objective

function, theoretical guarantees and numerical results illus-

trated that the matrix completion approach proposed in [29]

outperforms standard matrix completion procedure in [30]–

[33] when the prior information is reliable.

Inspired by [29], this paper leverages the transform low-rank

information in the lifting domain to recover the undersampled

spectrally sparse signals with the help of the prior information.

Different from [29], this paper studies the low-rank property in

the lifting domain while the previous approach studies the low-

rank property in original domain, leading to the change of the

desired matrix from random matrix to Hankel random matrix.

Accordingly, the sampling operator changes from sampling

random entries to sampling random skew-diagonal. Therefore,

different theoretical guarantees should be given to analyze the

proposed approach. The analysis also should be extended from

real number domain to complex number domain since the

spectrally sparse signals are complex.

B. Paper Organization

The structures of this paper are arranged as follows. Pre-

liminaries are provided in Section II. Performance guarantees

are given in Section III. An extension to multi-dimensional

models is provided in Section IV. The ADMM optimization

algorithm is presented in Section V. Simulations are included

in Section VI, and the conclusion is drawn in Section VII.

II. PRELIMINARIES

In this section, we introduce some important notation and

definitions, which will be used in the sequel.

Let {Ak}n−1
k=0 ∈ Cn1×n2 be an orthonormal basis of Hankel

matrices [7], [34], which is defined as

Ak =
1√
wk

H(ek), k ∈ {0, . . . , n− 1}



where

wk = |{(i, j)|i+ j = k, 0 ≤ i ≤ n1 − 1, 0 ≤ j ≤ n2 − 1}|,

and |S| returns the cardinality of the set S. Then H(x) can

be expressed as

H(x) =

n−1∑

k=0

Ak(H(x)) =

n−1∑

k=0

〈H(x),Ak〉Ak, (4)

where Ak(X) , 〈X,Ak〉Ak for X ∈ Cn1×n2 .

Let H(x) = UΣV H denote the compact singular value

decomposition (SVD) of H(x) with U ∈ C
n1×r, Σ ∈ R

r×r

and V ∈ Cr×n2 . Let the subspace T denote the support of

H(x) and T ⊥ be its orthogonal complement. Let sgn(X̃) =

Ũ Ṽ H denote the sign matrix of X̃ , where X̃ = ŨΣ̃Ṽ H

denotes the compact SVD of X̃ .

In order to analyses the matrix completion problem theoreti-

cally, we need to introduce the standard incoherence condition

as follows

max
1≤i≤n1

∥∥UHei
∥∥2
2
≤ µr

n1
,

max
1≤i≤n2

∥∥V Hej
∥∥2
2
≤ µr

n2
.

(5)

We also need to introduce the following norms which, re-

spectively, measure the largest spectral norm among matrices

{Ak(X)}nk=1 and the ℓ2 norm of {‖Ak(X)‖}nk=1 [6], [7]

‖X‖A,∞ , max
1≤k≤n

|〈X,Ak〉| ‖Ak‖ , (6)

and

‖X‖A,2 ,

(
n∑

k=1

|〈X,Ak〉|2 ‖Ak‖2
)1/2

. (7)

III. THEORETICAL GUARANTEES

In this section, we start by giving the theoretical guarantees

for the proposed method. Then we extend the analysis to

noisy circumstance. Our main result shows that when the

prior information is reliable, the proposed approach (3) can

outperform previous approach (2) by a logarithmic factor.

Theorem 1. Let H(x) be a rank-r matrix and satisfy the

standard incoherence condition in Eq. (5) with parameter

µ. Consider a multi-set Ω = {j1, . . . , jm} whose indicies

{jk}mi=1 are i.i.d. and follow the uniform distribution on

{0, . . . , n− 1}. If the sample size satisfies

m ≥ max{∆2, 1} cµcsr log3 nmax {log (7n ‖F0‖F ) , 1} ,

and the prior information satisfies

‖PT ⊥(λG(φ))‖ <
1

2
,

where c > 0 is an absolute constant,

cs , max

{
n

n1
,
n

n2

}
, F0 , PT (sgn[H(x)]− λG(φ)) ,

and

∆ ,
4(‖F0‖A,2 + ‖F0‖A,∞)

1− 2 ‖PT ⊥(λG(φ))‖ ,

then x is the unique minimizer for the approach (3) with high

probability.

Remark 1 (Comparison with [7, Theorem 1]). When there is

no prior information or no reliable prior information, φ is set

to be 0 and the program (3) would reduce to (2). However,

when the prior information is reliable, the proposed approach

can reduce the sampling size by O(log n) compared with the

results [7, Theorem 1].

Remark 2 (The choice of operator F ). It should be noted that

the choice of operator F will influence the performance of the

proposed program. According to the definition of F0, it’s not

hard to see that F(·) = sgn(·) is a suitable choice to improve

the sampling bound. In this case, the value of ‖F0‖F will be

very small when the subspace information of H(φ) is very

similar to that of H(x) and λ = 1. Accordingly, the program

becomes

min
z

‖H(z)‖∗ − 2λRe (〈sgn(H(φ)),H(z)〉)
s.t. PΩ(z) = PΩ(x).

Remark 3 (The choice of weight λ). Note that the sampling

lower bound is determined by the value of ‖F0‖F and the best

choice of λ is the one that minimizes ‖F0‖F . The expression

of ‖F0‖2F can be rewritten as

‖F0‖2F = λ2 ‖PT (G(φ))‖2F + ‖PT (sgn[H(x)])‖2F
− 2λRe(〈PT (sgn[H(x)]),G(φ)〉).

So the optimal weight is

λ⋆ =
Re (〈PT (sgn[H(x)]),G(φ)〉)

‖PT (G(φ))‖2F
.

Let G(φ) = sgn(H(φ)) as Remark 2. When the prior

information is close to the desired signal, λ should be around

1. On the contrary, when the prior information is extremely

different from the desired signal, λ should be around 0.

Remark 4 (The wrap-around operator). When H (·) is replaced

with the following operator Hc(·) with the wrap-around prop-

erty

Hc(x) ,




x0 x1 . . . xd−1

x1 x2 . . . xd

...
...

. . .
...

xn−d xn−d+1 . . . xn−1

xn−d+1 xn−d+2 . . . x0

...
...

. . .
...

xn−1 x0 . . . xd−2




,

where Hc(x) ∈ Cn×d, it is straightforward to obtain the lower

bound for sample size by following the proof in [7]

m ≥ max{∆2, 1} cµcsr lognmax {log (7n ‖F0‖F ) , 1} .

In this case, O(r log n) samples are enough to exactly re-

construct the original signals when the prior information is

reliable, which outperforms the atomic norm minimization in

[23], [24].



Hd

(

X d

)

=











Hd−1
(

X d−1(0)
)

Hd−1
(

X d−1(1)
)

· · · Hd−1
(

X d−1 (nd − 1)
)

Hd−1
(

X d−1(1)
)

Hd−1
(

X d−1(2)
)

· · · Hd−1
(

X d−1 (nd)
)

.

.

.
.
.
.

. . .
.
.
.

Hd−1
(

X d−1 (Nd − nd)
)

Hd−1
(

X d−1 (Nd − nd + 1)
)

· · · Hd−1
(

X d−1(Nd − 1)
)











(8)

By straightly following [35, Theorem 7], an extension to the

noisy version with bounded noise can be shown as follows.

Corollary 1. Let H(x) be a rank-r matrix and satisfy the

standard incoherence condition in Eq. (5) with parameter

µ. Consider a multi-set Ω = {j1, . . . , jm} whose indicies

{jk}mi=1 are i.i.d. and follow the uniform distribution on

{0, . . . , n − 1}. Suppose the noisy observation y = x + n,

where n denotes bounded noise. Let x† be the solution of the

noisy version program

min
z

‖H(z)‖∗ − 2λRe (〈G(φ),H(z)〉)
s.t. ‖PΩ(z) − PΩ(y)‖2 ≤ δ.

If the sample size satisfies

m ≥ max{∆2, 1}µcsr log3 nmax {log (7n ‖F0‖F ) , 1} ,
and the prior information satisfies

‖PT ⊥(λG(φ))‖ <
1

2
,

then the solution x† satisfies that

∥∥H(x)−H(x†)
∥∥
F
≤ cδ

(
n2 + n

3

2 ‖λG(φ)‖F
)

with high probability.

IV. EXTENSIONS TO MULTI-DIMENSIONAL MODELS

In this section, we extend the analysis from one-dimensional

signal to multi-dimensional signal. Consider a d-way tensor

X d ∈ CN1×...×Nd , each of whose entries can be denoted as

X d(k1, . . . , kd) =

r∑

l=1

wle
j2π

∑
d
j=1

kjfj,l ,

for (k1, . . . , kd) ∈ {1, . . . , N1} × . . . × {1, . . . , Nd}. Denote

fl = (f1,l, . . . , fd,l) ∈ [0, 1)d as the frequency vector for l =
1, . . . , r.

Similar to the one-dimensional case, we use multi-level

Hankel operator to lift X d to a low-rank matrix. See Eq.

(8), where X d−1(i) = X d(:, . . . , :, i), i = 0, . . . ,max{nd −
1, Nd − nd}. When d = 1, the above operator degrades to

normal Hankel operator. According to [6], the rank of the

lifted matrix satisfies Rank(Hd
(
X d
)
) ≤ r by using high-

dimensional Vandermonde decomposition. Let Φd denote the

prior information of X d. We can complete the d-way tensor

by using the following nuclear norm minimization

min
Zd

∥∥Hd(Zd)
∥∥
∗
− 2λRe

(〈
G(Φd),Hd(Zd)

〉)

s.t. PΩ(Zd) = PΩ(X d),
(9)

where Ω = {(k1, . . . , kd) ∈ {0, . . . , N1 − 1} × . . . ×
{0, . . . , Nd − 1}} denotes the index set of known entries of

X d and
〈
X d,Yd

〉
= (vec(Yd))Hvec(X d) denotes the inner

product of the d-way tensors.

Let E(k1, . . . , kd) be the canonical basis in the domain

CN1×...×Nd , and define the following orthonormal basis,

A(k1, . . . , kd) =
1√

w(k1, . . . , kd)
H(E(k1, . . . , kd)),

where

w(k1, . . . , kd) =

d∏

l=1

wl

and

wl = |{(il, jl)|il + jl = kl, 0 ≤ il ≤ nl − 1,

0 ≤ jl ≤ Nl − nl + 1}|.
So each d-way tensor X d can be rewritten as

H(X d)

=

N1−1∑

k1=0

. . .

Nd−1∑

kd=0

〈
H(X d),A(k1, . . . , kd)

〉
A(k1, . . . , kd).

It’s straightforward to extend the theoretical guarantee from

one-dimensional case to multi-dimensional case.

Theorem 2. Let Ω = {j1, . . . , jm} be a multi-set consisting of

random indices where {jk}mk=1 ∈ Rd are i.i.d. and follow the

uniform distribution on [N1]×. . .×[Nd]. Suppose, furthermore,

that H(x) is of rank-r and satisfies the standard incoherence

condition in (5) with parameter µ. Then there exists an

absolute constant c1 such that x is the unique minimizer to

(3) with high probability, provided that

m ≥ max{∆2, 1} cµcsr logα
(

d∏

k=1

Nk

)

·max

{
log

(
7

d∏

k=1

Nk ‖F0‖F

)
, 1

}
,

and

‖PT ⊥(λG(φ))‖ <
1

2
,

where

cs , max

{
d∏

k=1

Nk

nk
,

d∏

k=1

Nk

Nk − nk + 1

}
,

F0 , PT (sgn[H(x⋆)]− λG(φ)) ,
and

∆ ,
4(‖F0‖A,2 + ‖F0‖A,∞)

1− 2 ‖PT ⊥(λG(φ))‖ .

Here, α = 1 if the lifting operator has the wrap-around

property; α = 3 if the lifting operator doesn’t have the wrap-

around property.



V. OPTIMIZATION ALGORITHM

Due to the high computational complexity of low rank

methods, we decide to use the non-convex method to solve

the problem. First we use matrix factorization to decompose

H(z) to two low complexity matrices, i.e. H(z) = UV H

with U ∈ C
n1×r and V ∈ C

n2×r. Then we use Alternating

Direction Method of Multipliers (ADMM) [36] to solve the

problem.

First of all, we denote the nuclear norm as follows [37,

Lemma 8]

‖H(z)‖∗ = min
U ,V :H(z)=UV H

1

2
(‖U‖2F + ‖V ‖2F ). (10)

Incorporating (10) into the problem (3) yields

min
z,U ,V

1

2
(‖U‖2F + ‖V ‖2F )− λRe

(〈
G(φ),UV H

〉)

s.t. PΩ(z) = PΩ(x), H(z) = UV H .

Then, we start ADMM by the following argumented La-

grange function

L(U ,V , z,Λ) = Π(z) − 2λRe
(〈
G(φ),UV H

〉)

+
1

2
(‖U‖2F + ‖V ‖2F ) +

µ

2

∥∥H(z) −UV H +Λ
∥∥2
F
, (11)

where µ > 0 is an absolute constant, and Π(z) is an indicator

function

Π(z) =

{
0, if PΩ(z) = PΩ(x),

∞, otherwise.

Next, we decompose (11) into three subproblems to get

z(n+1), U (n+1) and V (n+1)

z(n+1) = argmin
z

Π(z) +
µ

2

∥∥∥H(z)−U (n)V (n)H +Λ
(n)
∥∥∥
2

F

U (n+1) = argmin
U

1

2
‖U‖2F − 2λRe

(〈
G(φ),UV (n)H

〉)

+
µ

2

∥∥∥H(z(n+1))−UV (n)H +Λ
(n)
∥∥∥
2

F

V (n+1) = argmin
V

1

2
‖V ‖2F − 2λRe

(〈
G(φ),U (n+1)V H

〉)

+
µ

2

∥∥∥H(z(n+1))−U (n+1)V H +Λ
(n)
∥∥∥
2

F

and the Lagrangian update is

Λ
(n+1) = H(z(n+1))−U (n+1)V (n+1)H +Λ

(n).

By simple calculations, we can obtain

z(n+1) = PΩcH†(U (n)V (n)H −Λ
(n)) + PΩ(x),

where PΩc denotes the projection operator on Ωc and H†(·)
denotes the Penrose-Moore pseudo-inverse mapping corre-

sponding to H(·).
Then, by taking the derivative of the other two problems

and setting them to zero, we can otain

U (n+1) =
[
µ
(
H(z(n+1)) +Λ

(n)
)
+ λG(φ)

]

· V (n)(I + µV (n)HV (n))−1

Algorithm 1 Reference-based Structured Matrix Completion

Input: Sampling index set Ω, measurements PΩ(x), prior

information φ

Output: Estimated result z

1: Initialize k = 0, ε, tol, and K

2: if ‖PΩ(x− φ)‖ ≤ ε then

3: [U(r),Σ(r),V(r)] = r-SVD(H(φ)); Λ(0) = 0; U0 =
U(r)Σ(r); V0 = V(r); G(φ) = U(r) ∗ V H

(r)

4: else

5: [U0,V0] = LMaFit (H,PΩ(x)) ; Λ
(0) = 0; G(φ) = 0

6: end if

7: repeat

8: k = k + 1
9: zk = PΩcH†(Uk−1V

H
k−1 −Λk−1) + PΩ(x)

10: Uk = [µ (H(zk) +Λk−1) + λG(φ)] · Vk−1 · (I +
µV H

k−1Vk−1)
−1

11: Vk = [µ (H(zk) +Λk−1) + λG(φ)]H · Uk · (I +
µUH

k Uk)
−1

12: Λk = H(zk)−UkV
H
k +Λk−1

13: until k > K or ‖zk − zk−1‖F < tol

and

V (n+1) =
[
µ
(
H(z(n+1)) +Λ

(n)
)
+ λG(φ)

]H

·U (n+1)(I + µU (n+1)HU (n+1))−1.

The last question is how to initialize U and V . In order to

converge quickly, the authors in [38] uses an algorithm named

LMaFit [39], which is

min
U ,V ,Z

1

2

∥∥UV H −Z
∥∥2
F

s.t. PΩ(H†(Z)) = PΩ(x). (12)

However, LMaFit only uses the undersampled measure-

ments and cannot guarantee that Z has the lifting matrix

structure. Instead, we can take advantage of the reference

image to initialize U and V by using truncated SVD when

the reference image is reliable. Here, we use the value of

‖PΩ(x− φ)‖ as a criterion to choose the suitable initialization

strategy.

Then we can give the corresponding algorithm in Algorithm

1. Here, r-SVD(·) returns the results of truncated SVD. And

LMaFit(H,PΩ(x)) denotes the algorithm in (12).

VI. SIMULATIONS

In this section, we carry on numerical simulations to show

the improvement of the proposed method (3) compared to

standard Hankel matrix completion (2). Besides, we compare

the performance under two different solvers: CVX solver and

ADMM-solver. Here, we use CVX package [40], [41] to get

the convex results and use Algorithm 1 to get the ADMM

results.

A. Simulations for 1-D signals

We begin by giving the numerical results for one-

dimensional signals.
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Fig. 1: Performance Comparisons for one-dimensional signals when n = 32, r = 3 and m = 10. (a) Hankel matrix completion;

(b) Proposed method (CVX); (c) Proposed method (ADMM).
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Fig. 2: Rate of successful reconstruction v.s. sampling prob-

ability for Hankel matrix completion and reference based

Hankel matrix completion.

Consider a one-dimensional spectrally sparse signal x⋆ ∈
Cn and the signal is a weighted superposition of r complex

sinusoids with unit amplitudes. The reference signal is created

by φ = x⋆+σn ∈ Cn, where the entries of the real and imag-

inary part of n follow i.i.d. standard Gaussian distribution, i.e.,

Re(ni), Im(ni) ∼ N (0, 1) for i = 1, . . . , n.

We first show the reconstruction results for standard Hankel

matrix completion, the proposed method with CVX solver and

the proposed method with ADMM solver. We set n = 32,

r = 3, m = 10 and σ = 0.5. The matrix pencil method

is used to estimate the location and amplitude of frequencies

[42]. The frequency estimation results are shown in Fig. 1.

As expected, with the reliable reference signal, the proposed

scheme with different solvers exactly reconstructs the original

signal,which has a better performance than standard Hankel

matrix completion.

We next provide the successful reconstruction rate as a func-

tion of sampling probability standard Hankel matrix comple-

tion, the proposed method with CVX solver and the proposed

method with ADMM solver. We set n = 32, r = 3, σ = 0.1.

We set η = 10−4 for CVX solver and η = 10−2 for ADMM

solver since CVX solver gets the exact solution while ADMM

solver has performance degradation due to finite iteration. For

each sampling probability, we sample the desired signals in

TABLE I: Running time comparison for 1-D signals

Methods 16 64 96

Proposed-CVX 0.483s 3.185s 21.456s
Proposed-ADMM 0.003s 0.017s 0.028s

time domain randomly and the results are averaged over 300

independent trials. Then we count the number of successful

trials, and calculate the related probability. Here, we claim a

trial as a successful trial if the solution x† satisfies
∥∥x⋆ − x†

∥∥
2

‖x⋆‖2
< η.

The results are presented in Fig. 2. The results indicate that

the proposed approach (3) outperforms the standard Hankel

matrix completion with reliable reference.

We then compare the running time for the proposed method

with different solvers when the dimension of signals is 16,64

and 96. The numerical simulations are carried on an Intel

desktop with 2.5 GHz CPU and 8 GB RAM. The results in

Table I show that ADMM solver can dramatically improve

the running time. Besides, the proposed scheme with ADMM

solver has a much better performance compared with the

standard Hankel matrix completion.

B. Simulations for 2-D signals

We proceed by giving the numerical results for two-

dimensional signals.

Consider a two-dimensional spectrally sparse signal X⋆ ∈
RN1×N2 and the signal is a weighted superposition of r

complex sinusoids with unit amplitudes. The reference sig-

nal is created by Φ = X⋆ + σN , where the entries of

the real and imaginary part of N follow i.i.d. standard

Gaussian distribution, i.e., Re(Nij), Im(Nij) ∼ N (0, 1) for

i = 1, . . . , N1, j = 1, . . . , N2.

We first show the recovery results for the proposed method

and standard Hankel matrix completion. We set N1 =
10, N2 = 10, r = 3,m = 20 and σ = 0.1. 2D-MUSIC is

applied to obtain the location and amplitude of frequencies

[43]. The results are presented in Fig. 3. The results show that
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Fig. 3: Performance Comparisons for two-dimensional signals when N1 = 10, N2 = 10, r = 3,m = 20. (a) Hankel matrix

completion; (b) Proposed method (CVX); (c) Proposed method (ADMM).
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Fig. 4: Phase transitions for Hankel matrix completion and

reference based Hankel matrix completion.

TABLE II: Running time comparison for 2-D signals

Methods 8× 8 10× 10 12× 12

Proposed-CVX 1.420s 3.449s 12.847s
Proposed-ADMM 0.399s 0.529s 0.786s

the proposed method with different solvers can exactly recover

the desired signals while Hankel matrix cannot.

We next present the successful reconstruction rate as a func-

tion of sampling probability standard Hankel matrix comple-

tion, the proposed method with CVX solver and the proposed

method with ADMM solver. We set N1 = 10, N2 = 10, r = 3
and σ = 0.1. We increase the number of samples m from 1

to 100. We Fig. 4 gives the simulation results. As expected,

the proposed scheme with the CVX solver performs the best,

followed by the proposed scheme with ADMM solver and

standard Hankel matrix completion.

Finally, Table II compares the running time for the proposed

method with different solvers when N1 = N2 = 8, N1 =
N2 = 10 and N1 = N2 = 12. The results present that the

proposed scheme with ADMM solver has smaller running time

than that with CVX solver, especially when the dimension of

signals is large.

VII. CONCLUSION

In this paper, we have integrated prior information to

improve the performance of spectrally sparse signal recovery

via structured matrix completion problem and have provided

the related performance guarantees. Furthermore, we have

designed corresponding ADMM algorithm to reduce the com-

putational complexity. Both the theoretical and experimental

results show that the proposed scheme outperforms standard

Hankel matrix completion.

APPENDIX A

PROOF OF THEOREM 1

Dual certification is used to deviate the theoretical results.

In particular, we use the golfing method from [33] to proceed

the process. And we adjust the methods from [6], [7] to suit

our model.

Recall the definition of the operator Ak : Cn1×n2 →
Cn1×n2 by

Ak(X) = 〈X,Ak〉Ak, k = 1, . . . , n.

Then each Ak is an orthogonal projection onto the one-

dimensional subspace spanned by Ak. The orthogonal pro-

jection onto the subspace spanned by {Ak}nk=1 is given as

A =
∑n

k=1 Ak. Let A⊥ denote the orthogonal complement

of A. The summation of the rank-1 projection operators in

{Ak}k∈Ω is denoted by AΩ, i.e., AΩ ,
∑

k∈Ω Ak. Since Ω
is a multi-set and there may exist repetitions in Ω, AΩ may be

not a projection operator. The summation of distinct elements

in {Ak}k∈Ω is denoted by A′
Ω, which is a valid orthogonal

projection.

Before proving the theorem, let’s review the proposed

program

min
z

‖H(z)‖∗ − 2λRe (〈G(φ),H(z)〉)
s.t. PΩ(z) = PΩ(x).

We begin by presenting two lemmas, which are necessary

for the proof.



Lemma 1 ( [7, Lemma 19] & [6, Lemma 3]). Suppose that

n2∑

j=1

(
n1∑

i=1

|[Ak]i,j |
)2

= 1, and

n1∑

i=1




n2∑

j=1

|[Ak]i,j |




2

= 1.

So we have

max
1≤k≤n

∥∥UHAk

∥∥2
F
≤ µr

n1
,

max
1≤k≤n

∥∥V HAH
k

∥∥2
F
≤ µr

n2
.

(13)

Then for any small constant 0 < ǫ ≤ 1
2 , one has

∥∥∥PT APT − n

m
PT AΩPT

∥∥∥ ≤ ǫ (14)

with probability exceeding 1 − n−4, provided that m >

cµcsr logn for some universal constant c > 0 and cs ,

max{ n
n1

, n
n2

}.

Lemma 2. Consider a multi-set Ω that contains m random

indices. Suppose that the sampling operator AΩ obeys
∥∥∥PT APT − n

m
PT AΩPT

∥∥∥ ≤ 1

2
. (15)

If there exists a matrix W satisfying

A′
Ω⊥ (W ) = 0, (16)

‖PT (sgn[H(x⋆)]−W − λG(φ))‖F ≤ 1

7n
, (17)

and

‖PT ⊥ (W + λG(φ))‖ ≤ 1

2
, (18)

then the program (3) can achieve exact recovery, i.e., x is the

unique minimizer.

Proof: See Appendix B.

As shown in [6], we generate j0 independent random multi-

sets {Ωi}j0i=1 and each set contains m
j0

entries. Note that the

distribution of Ω and ∪j0
i=1Ωi is the same. Then we construct

of a dual certificate W via the golfing scheme:

1) Define F0 , PT (sgn[H(x)]− λG(φ));
2) For every i (1 ≤ i ≤ j0), set

Fi , PT

(
A− nj0

m
AΩi

)
PT (Fi−1) ;

3) Define W ,
∑j0

i=1

(
nj0
m AΩi

+A⊥
)
(Fi−1).

By the construction, it’s easy to see that W is in the range

space of AΩ ∪ A⊥, then

A′
Ω⊥ (W ) = 0. (19)

By recursive calculation as [6, Eq. (40)], we can obtain

− PT (W − F0) = PT (Fj0) . (20)

Using Lemma 1 yields

‖PT (W − F0)‖F = ‖PT (Fj0)‖F

≤
∥∥∥∥PT

(
A− nj0

m
AΩi

)
PT

∥∥∥∥
j0

‖F0‖F

≤ ǫj0 ‖F0‖F ≤ 1

2j0
‖F0‖F . (21)

Let

j0 = max {log (7n ‖F0‖F ) , 1} , (22)

then we have

‖PT (W − sgn[H(x⋆)] + λG(φ))‖F ≤ 1

7n
(23)

except with a probability at most j0n
−4 = o(n−3), as long as

m > cµcsr lognmax {log (7n ‖F0‖F ) , 1} .

For the last condition, using triangle’s inequality yields

‖PT ⊥ (W + λG(φ))‖ ≤ ‖PT ⊥(W )‖ + ‖PT ⊥(λG(φ))‖ .

According to the result of [6, VI. E], we have

‖PT ⊥(W )‖

≤
j0∑

l=1

∥∥∥∥PT ⊥

(
nj0

m
AΩl

+A⊥

)
PT (Fl−1)

∥∥∥∥

≤
j0∑

l=1

(
1

2

)l−1
(√

nj0 logn

m
‖F0‖A,2 +

nj0 logn

m
‖F0‖A,∞

)

<
2

∆
(‖F0‖A,2 + ‖F0‖A,∞),

as long as

m ≥ cmax{µcs, ν}
·max{∆2, 1} r lognmax {log (7n ‖F0‖F ) , 1} ,

where ν = o(µcs log
2 n) from [7, Appendix E]. Set

∆ =
4(‖F0‖A,2 + ‖F0‖A,∞)

1− 2 ‖PT ⊥(λG(φ))‖ .

If ‖PT ⊥(λG(φ))‖ < 1
2 , we have

‖PT⊥ (W + λG(φ))‖ ≤ 1

2
.

Therefore, we conclude, if

m ≥ max{∆2, 1} cµcsr log3 nmax {log (7n ‖F0‖F ) , 1} ,

then with high probability, we can achieve the unique mini-

mum.

Remark 5. Form the operator Hc(x) with wrap-around prop-

erty, ν = o(µcs) according to [7, Appendix E]. Therefore, we

can get the following bound of sample size

m ≥ max{∆2, 1} cµcsr lognmax {log (7n ‖F0‖F ) , 1} .

APPENDIX B

PROOF OF LEMMA 2

Let z = x + h be the minimizer to (3). We will show

that H(h) = 0. Then by the injectivity of the operator H, we

achieve h = 0, so we have z = x.

According to case 2 in the proof of [7, Lemma 20],

‖PT (H(h))‖F ≥ 3n ‖PT ⊥(H(h))‖F leads to H(h) = 0.

So we only need to prove that when

‖PT (H(h))‖F ≤ 3n ‖PT ⊥(H(h))‖F , (24)



we also have H(h) = 0. In the subsequent analysis, we assume

that the condition (24) is correct.

According to the definition of nuclear norm, there exists B

such that 〈B,PT ⊥(H(h))〉 = ‖PT ⊥(H(h))‖∗ and ‖B‖ ≤ 1.

Then sgn(H(x)) + PT ⊥(B) is a sub-gradient of the nuclear

norm at H(x). Then it follows that

‖H(x) +H(h)‖∗ − 2λRe (〈G(φ),H(x) +H(h)〉)
≥ ‖H(x)‖∗ − 2λRe (〈G(φ),H(x)〉)
+ 2Re (〈sgn[H(x)] + PT ⊥(B)− λG(φ),H(h)〉)

= ‖H(x)‖∗ − 2λRe (〈G(φ),H(x)〉) + 2Re (〈W ,H(h)〉)
+ 2Re (〈sgn[H(x)] + PT ⊥(B)− λG(φ) −W ,H(h)〉) .

(25)

We can get Re (〈W ,H(h)〉) = 0 as shown in [7, A.33-A.34].

In addition, we have

〈PT ⊥(B), H(h)〉 = 〈PT ⊥(B), PT ⊥(H(h))〉
= ‖PT ⊥(H(h))‖∗ .

Then the inequality (25) becomes

‖H(x) +H(h)‖∗ − 2λRe (〈G(φ),H(x) +H(h)〉)
≥ ‖H(x)‖∗ − 2λRe (〈G(φ),H(x)〉) + 2 ‖PT ⊥(H(h))‖∗

− 2Re (〈W − sgn[H(x)] + λG(φ),H(h)〉) . (26)

Next, we are going to derive

‖PT ⊥(H(h))‖∗
− Re (〈W − sgn[H(x)] + λG(φ),H(h)〉) ≥ 0.

Noting that Re (x) ≤ |x| for x ∈ C, it’s enough to prove

‖PT ⊥(H(h))‖∗ − | 〈W − sgn[H(x)] + λG(φ),H(h)〉 | ≥ 0.

By using the triangle inequality, we have

‖PT ⊥(H(h))‖∗ − | 〈W − sgn[H(x)] + λG(φ),H(h)〉 |
≥ ‖PT ⊥(H(h))‖∗ − |〈PT ⊥(W + λG(φ)),H(h)〉|

− |〈PT (W − sgn[H(x)] + λG(φ)),H(h)〉|. (27)

Using Holder’s inequality and the properties of W (Eqs. (17)

and (18)) yields

‖PT ⊥(H(h))‖∗ − | 〈W − sgn[H(x)] + λG(φ),H(h)〉 |
≥ ‖PT ⊥(H(h))‖∗ − ‖PT ⊥(W + λG(φ))‖ ‖PT ⊥(H(h))‖∗

− ‖PT (W − sgn[H(x)] + λG(φ))‖F ‖PT (H(h))‖F
≥ ‖PT ⊥(H(h))‖∗ −

1

2
‖PT ⊥(H(h))‖∗ −

1

7n
‖PT (H(h))‖F

≥ 1

2
‖PT ⊥(H(h))‖∗ −

1

7n
‖PT (H(h))‖F . (28)

By using Eq. (24), we obtain

‖PT ⊥(H(h))‖∗ − | 〈W − sgn[H(x)] + λG(φ),H(h)〉 |

≥ 1

2
‖PT ⊥(H(h))‖∗ −

3

7
‖PT ⊥(H(h))‖∗

=
1

14
‖PT ⊥(H(h))‖∗ ≥ 0. (29)

Therefore, we get

‖H(x) +H(h)‖∗ − 2λRe (〈G(φ),H(x) +H(h)〉)

≥ ‖H(x)‖∗ − 2λRe (〈G(φ),H(x)〉) + 1

14
‖PT ⊥(H(h))‖∗ .

(30)

Since z = x+ h be the minimizer to (3), we also have

‖H(x) +H(h)‖∗ − 2λRe (〈G(φ),H(x) +H(h)〉)
≤ ‖H(x)‖∗ − 2λRe (〈G(φ),H(x)〉) . (31)

Combining Eqs. (30) and (31), we get PT ⊥(H(h)) = 0.

By using (24), we also have PT (H(h)) = 0. So we conclude

H(h) = 0 and h = 0.
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