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SR2CNN: Zero-Shot Learning for Signal
Recognition

Yihong Dong, Xiaohan Jiang, Huaji Zhou, Yun Lin, and Qingjiang Shi

Abstract—Signal recognition is one of the significant and
challenging tasks in the signal processing and communications
field. It is often a common situation that there’s no training
data accessible for some signal classes to perform a recognition
task. Hence, as widely-used in image processing field, zero-shot
learning (ZSL) is also very important for signal recognition.
Unfortunately, ZSL regarding this field has hardly been studied
due to inexplicable signal semantics. This paper proposes a ZSL
framework, signal recognition and reconstruction convolutional
neural networks (SR2CNN), to address relevant problems in
this situation. The key idea behind SR2CNN is to learn the
representation of signal semantic feature space by introducing
a proper combination of cross entropy loss, center loss and
reconstruction loss, as well as adopting a suitable distance metric
space such that semantic features have greater minimal inter-
class distance than maximal intra-class distance. The proposed
SR2CNN can discriminate signals even if no training data is
available for some signal class. Moreover, SR2CNN can gradually
improve itself in the aid of signal detection, because of constantly
refined class center vectors in semantic feature space. These
merits are all verified by extensive experiments with ablation
studies.

Index Terms—Zero-Shot Learning, Signal Recognition, CNN,
Autoencoder, Deep Learning.

I. INTRODUCTION

NOWADAYS, developments in deep convolutional neural
networks (CNNs) have made remarkable achievement in

the area of signal recognition, improving the state of the art
significantly, such as [1], [2], [3], [4], [5] and so on. Generally,
a vast majority of existing learning methods follow a closed-
set assumption [6], that is, all of the test classes are assumed
to be the same as the training classes. However, in the real-
world applications, new signal categories often appear while
the model is only trained for the current dataset with some
limited known classes. It is open-set learning [7], [8], [9],
[10] that was proposed to partially tackle this issue (i.e., test
samples could be from unknown classes). The goal of an
open-set recognition system is to reject test samples from
unknown classes while maintaining the performance on known
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classes. However, in some cases, the learned model should
be able to not only differentiate the unknown classes from
known classes, but also distinguish among different unknown
classes. Zero-shot learning (ZSL) [11], [12], [13] is one way to
address the above challenges and has been applied in image
tasks. For images, it is easy for us to extract some human-
specified high-level descriptions as semantic attributes. For
example, from a picture of zebra, we can extract the following
semantic attributes 1) color: white and black, 2) stripes: yes,
3) size: medium, 4) shape: horse, 5) land: yes. However, for
a real-world signal it is almost impossible to have a high-
level description due to obscure signal semantics. Therefore,
although ZSL has been widely used in image tasks, to the
best of our knowledge it has not yet been studied for signal
recognition.1

Fig. 1. Overview of SR2CNN. In SR2CNN, a pre-processing (top left)
transforms signal data to input x. A deep net (right) is trained to provide
semantic feature z within known classes while maintaining the performance
on decoder and classifier according to reconstruction x̃ and prediction y.
A zero-shot learning classifier, which consists of a known classifier and an
unknown classifier, exploits z for discriminator.

In this paper, unlike the conventional signal recognition task
where a classifier is learned to distinguish only known classes
(i.e., the labels of test data and training data are all within the
same set of classes), we aim to propose a learning framework
that can not only classify known classes but also unknown
classes without annotations. To do so, a key issue that needs
to be addressed is to automatically learn a representation

1A closely related work is [14] which proposed a ZSL method for
fault diagnosis based on vibration signal. Notice that fault diagnosis is a
binary classification problem, which is different from the multi-class signal
recognition. More importantly, the ZSL definition in this paper is standard
and quite different from the ZSL definition of [14], where ZSL refers to fault
diagnosis with unknown motor loads and speeds, which is essentially domain
adaptation, while in our paper, ZSL refers to recognition of unknown classes
of the signal.
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Fig. 2. The architecture of feature extractor (F ), classifier (C) and decoder (D). F takes any input signal x and produces a latent semantic feature z. z is
used by C and D to predict class label and to reconstruct the signal x̃, respectively. The Lce, Lct and Lr are calculated on training these networks.

of semantic attribute space of signals. In our scheme, CNN
combined with autoencoder is exploited to extract the semantic
attribute features. Afterwards, semantic attribute features are
well-classified using a suitably defined distance metric. The
overview of proposed scheme is illustrated in Fig. 1.

In addition, to make a self-evolution learning model, incre-
mental learning needs to be considered when the algorithm is
executed continuously. The goal of incremental learning is to
dynamically adapt the model to new knowledge from newly
coming data without forgetting the already learned one. Based
on incremental learning, the obtained model will gradually
improve its performance over time.

In summary, the main contribution of this paper is threefold:
• First, we propose a deep CNN-based zero-shot learning

framework, called SR2CNN, for open-set signal recog-
nition. SR2CNN is trained to extract semantic feature
z while maintaining the performance on decoder and
classifier. Afterwards, the semantic feature z is exploited
to discriminate signal classes.

• Second, extensive experiments on various signal datasets
show that the proposed SR2CNN can discriminate not
only known classes but also unknown classes and it can
gradually improve itself.

• Last but not least, we provide a new signal dataset
SIGNAL-202002 including eight digital and three analog
modulation classes.

II. RELATED WORK

In recent years, signal recognition via deep learning has
achieved a series of successes. O’Shea et al. [15] proposed the
convolutional radio modulation recognition networks, which
can adapt itself to the complex temporal radio signal domain,

and also works well at low signal-to-noise ratios (SNRs).
The work [1] used residual neural network [16] to perform
the signal recognition tasks across a range of configurations
and channel impairments, offering referable statistics. Peng
et al. [3] used two convolutional neural networks, AlexNet
and GoogLeNet, to address modulation classification tasks,
demonstrating the significant advantage of deep learning based
approach in this field. The authors in [17] presented a deep
learning based big data processing architecture for end-to-end
signal processing task, seeking to obtain important information
from radio signals. The work presented in [18] evaluated
the adversarial evasion attacks that causes the misclassifica-
tion in the context of wireless communications. In [19], the
authors proposed an automatic multiple multicarrier wave-
forms classification and used the principal component analysis
to suppress the additive white Gaussian noise and reduce
the input dimensions of CNNs. Additionally, the work [20]
proposed a specific emitter identification using CNN-Based
inphase/quadrature (I/Q) imbalance estimators. The work [21]
proposed a compressive convolutional neural network for
automatic modulation classification. In [22], the authors used
unsynchronized off-the-shelf software-defined radios to build
up a complete communications system which is solely com-
posed of deep neural networks, demonstrating that over-the-air
transmissions are possible.

Moreover, the work [23] proposed an LPI radar wave-
form recognition technique based on a single-shot multi-
box detector and a supplementary classifier. The work [24]
proposed a more flexible network architecture with an aug-
mented hierarchical-leveled training techniques to decently
classify a total of 29 signals. O’Shea et al. [25] used both the
auto-encoder-based communications system and the feature
learning-based radio signal sensor to emulate the optimization
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procedure directly on real-world data samples and distri-
butions. Baldini et al. [26] utilized various techniques to
transform the time series derived from the radio frequency to
images, then applied a deep CNN to conduct the identification
task, finally outperforming those conventional dissimilarity-
based methods. The work [27] trained a convolutional neural
network on time and stockwell channeled images for radio
modulation classification tasks, performing superior to those
networks trained on just raw I-Q time series samples or
time-frequency images. The authors for [28] demonstrated the
generality of the effectiveness of deep learning at the inter-
ference source identification task, while using band selection,
SNR selection and sample selection to optimize training time.
The work [29] presented a novel system based on CNNs to
“fingerprint” a unique radio from a large pool of devices by
deep-learning the fine-grained hardware impairments imposed
by radio circuitry on physical-layer I/Q samples. The work
[30] proposed a DNN based power control method that aims
at solving the non-convex optimization problem of maximizing
the sum rate of a fading multi-user interference channel. Chen
et al. [31] proposed adaptive transmission scheme and gener-
alized data representation scheme to address the limited data
rate issue. In [32], the authors proposed the radio frequency
(RF) adversarial learning framework for building a robust
system to identify rogue RF transmitters by designing and
implementing a generative adversarial net. The work [33]
presented an intelligent duty-cycle medium access control
protocol to realize the effective and fair spectrum sharing
between LTE and WiFi systems without requiring signalling
exchanges.

For semi-supervised learning, the work [34] proposed a
generative adversarial networks-based automatic modulation
recognition for cognitive radio networks. Besides, when it
comes to unsupervised learning, the authors in [35] provided
a comprehensive survey of the applications of unsupervised
learning in the domain of networking, offering certain instruc-
tions. The work [36] built an automatic modulation recognition
architecture, based on stack convolution autoencoder, using
the reconfigurability of field-programmable gate arrays. These
experiments basically follow closed-set assumption, namely,
their deep models are expected to, whilst are only capable to
distinguish among already-known signal classes.

All the above works cannot handle the case with unknown
signal classes. When considering the recognition task of those
unknown signal classes, some traditional machine learning
methods like anomaly (also called outlier or novelty) de-
tection can more or less provide some guidance. Isolation
Forest [37] constructs a binary search tree to preferentially
isolate those anomalies. Elliptic Envelope [38], fits an ellipse
for enveloping these central data points, while rejecting the
outsiders. One-class SVM [39], an extension of SVM, finds a
decision hyperplane to separate the positive samples and the
outliers. Local Outlier Factor [40], uses distance and density to
determine whether a data point is abnormal or not. The work
[41] proposed a classification-reconstruction learning for open-
set recognition method that utilizes latent representations for
reconstruction and enables robust unknown detection without
harming the known-class classification accuracy. Geng et

al. [42] provided a comprehensive survey of existing open
set recognition techniques covering various aspects ranging
from related definitions, representations of models, datasets,
evaluation criteria, and algorithm comparisons. The work [43]
proposed a multitask deep learning method that simultaneously
conducts classification and reconstruction in the open world
where unknown classes may exist. Moreover, the work [44]
proposed a generative adversarial networks based technique to
address an open-set problem, which is to identify rogue RF
transmitters and classify trusted ones. The work [45] presented
spectrum anomaly detector with interpretable features, which
is an adversarial autoencoder based unsupervised model for
wireless spectrum anomaly detection. The above open-set
learning methods can indeed identify known samples (positive
samples) and detect unknown ones (outliers). However, a
common and inevitable defect of these methods are that they
can never carry out any further classification tasks for the
unknown signal classes.

Zero-shot learning is well-known to be able to classify
unknown classes and it has already been widely used in image
tasks. For example, the work [11] proposed a ZSL framework
that can predict unknown classes omitted from a training set
by leveraging a semantic knowledge base. Another paper [12]
proposed a novel model for jointly doing standard and ZSL
classification based on deeply learned word and image rep-
resentations. The efficiency of ZSL in image processing field
majorly profits from the perspicuous semantic attributes which
can be manually defined by high-level descriptions. However,
it is almost impossible to give any high-level descriptions re-
garding signals and thus the corresponding semantic attributes
cannot be easily acquired beforehand. This may be the main
reason why ZSL has not yet been studied in signal recognition.

III. PROBLEM DEFINITION

We begin by formalizing the problem. Let X , Y be the
signal input space and output space. The set Y is partitioned
into K and U , denoting the collection of known class labels
and unknown labels, respectively.

Given training data {(x1, y1), . . . , (xn, yn)} ⊂ X ×K, the
task is to extrapolate and recognize signal class that belongs to
Y . Specifically, when we obtain the signal input data x ∈ X ,
the proposed learning framework, elaborated in the sequel, can
rightly predict the label y. Notice that our learning framework
differs from open-set learning in that we not only classify the
x into either K or U , but also predict the label y ∈ Y . Note
that Y includes both known classes K and unknown classes
U .

We restrict our attention to ZSL that uses semantic knowl-
edge to recognize K and extrapolate to U . To this end, we
first map from X into the semantic space Z, and then map
this semantic encoding to a class label. Mathematically, we
can use nonlinear mapping to describe our scheme as follows.
H is the composition of two other functions, F and P defined
below, such that:

H = P (F (·))
F : X → Z

P : Z → Y

(1)
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(a) Max unpooling (b) Average unpooling (c) Deconvolution

Fig. 3. The diagrams of max unpooling, average unpooling and deconvolution. (a) Max unpooling with grid of 2 × 2, where the stride and padding are 2
and 0. (b) Average unpooling with grid of 2 × 2, where the stride and padding are 2 and 0. (c) Deconvolution with kernel of 3 × 3, where the stride and
padding are 1 and 0 respectively.

Therefore, our task is left to find proper F and P to build
up a learning framework that can identify both known signal
classes and unknown signal classes.

IV. PROPOSED APPROACH

This section formally presents a non-annotation zero-shot
learning framework for signal recognition. Overall, the pro-
posed framework is mainly composed of the following four
modules:

1) Feature Extractor (F )
2) Classifier (C)
3) Decoder (D)
4) Discriminator (P )
Our approach consists of two main steps. In the first step, we

build a semantic space for signals through F , C and D. Fig. 2
shows the architecture of F , C and D. F is modeled by a CNN
architecture that projects the input signal onto a latent semantic
space representation. C, modeled by a fully-connected neural
network, takes the latent semantic space representation as input
and determines the label of data. D, modeled by another CNN
architecture, aims to produce the reconstructed signal which
is expected to be as similar as possible to the input signal.
In the second step, we find a proper distance metric for the
trained semantic space and use the distance to discriminate the
signal classes. P is devised to discriminate among all classes
including both known and unknown.

A. Feature Extractor, Classifier and Decoder

Signal is a special data type, which is very different from
image. While it is easy to give a description of semantic at-
tributes of images in terms of visual information, extracting se-
mantic features of signals without relying on any computation
is almost impossible. Hence, a natural way to automatically
extract the semantic information of signal data is using feature
extractor networks F . Considering about the unique features of
signals, the input shape of F should be a rectangle matrix with
2 rows rather than square matrix. In our scheme, F consists
of four convolutional layers and two fully connected layers.

Generally, F can be represented by a mapping from the
input space X to the latent semantic space Z. In order to
minimize the intra-class variations in space Z while keeping
the inter-classes’ semantic features well separated, center loss
[46] is used. Let xi ∈ X and yi be the label of xi, then

zi = F (xi) ∈ Z. Assuming that batch size is N , the center
loss is expressed as follows:

Lct =
1

2N

N∑
i=1

||F (xi)− cyi ||22 (2)

where cyi denotes the semantic center vector of class yi in
Z and the cyi needs to be updated as the semantic features
of class yi changed. Ideally, entire training dataset should be
taken into account and the features of each class need to be
averaged in every iterations. In practice, cyi can be updated
for each batch according to cyi ← cyi − α∆cyi

, where α is
the learning rate and ∆cyi

is computed via
∆cyi

= 0, if

N∑
j=1

δ(yj = yi) = 0,

∆cyi
=

∑N
j=1 δ(yj = yi)(cyi − F (xi))∑N

j=1 δ(yj = yi)
, otherwise.

(3)
where δ(·) = 1 if the condition inside () holds true, and δ(·) =
0 otherwise.

The classifier C will discriminate the label of samples based
on semantic features. It consists of several fully connected
layers. Furthermore, cross entropy loss Lce is utilized to
control the error of classifier C, which is defined as

Lce = − 1

N

N∑
i=1

yi log(C(F (xi))) (4)

where C(F (xi)) is the prediction of xi.
Further, auto-encoder [47], [48], [49] is used in order to

retain the effective semantic information in Z. As shown in the
right part of Fig 2, decoder D is used to reconstruct X from Z.
It is made up of deconvolution, unpooling and fully connected
layers. Among them, unpooling is the reverse of pooling and
deconvolution is the reverse of convolution. Specifically, max
unpooling keeps the maximum position information during
max pooling, and then it restores the maximum values to the
corresponding positions and set zeros to the rest positions as
shown in Fig. 3(a). Analogously, average unpooling expands
the feature map in the way of copying it as shown in Fig. 3(b).

The deconvolution is also called transpose convolution to
recover the shape of input from output, as shown in Fig. 3(c).
See appendix A for the detailed convolution and deconvolution
Operation, as well as toy examples.
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In addition, reconstruction loss is utilized to evaluate the
difference between original signal data and reconstructed
signal data.

Lr =
1

2N

N∑
i=1

||D(F (xi))− xi||22 (5)

where D(F (xi)) is the reconstruction of signal xi. Intuitively,
the more complete signal is reconstructed, the more valid
information is carried within Z. Thus, the auto-encoder greatly
helps the model to generate appropriate semantic features.

As a result, the total loss function combines cross entropy
loss, center loss and reconstruction loss as

Lt = Lce + λctLct + λrLr (6)

where the weights λct and λr are used to balance the three loss
functions. We have carefully designed the total loss function.
The cross entropy loss is used to learn information from
labels. And center loss minimizes the intra-class variations in
the semantic space while keeping the inter-classes’ semantic
features well separated, which also helps unknown classes
to separate. Reconstruction loss makes model learn more
information about signal data, because of well-reconstructed
data. Ablation study in Section V also validates the above
points. The whole learning process with loss Lt is summarized
in Algorithm 1, where θF , θC , θD denote the model parameters
of the feature extractor F , the classifier C and the decoder D,
respectively.

Algorithm 1 Pseudocode for SR2CNN Update
Require: Labeled input and output set {(xi, yi)} and hyper-

parameters N, η, α, λct, λr.
Ensure: Parameters θF , θC , θD and {cj}.

Initial parameters θF , θC , θD.
Initial parameter {cj |j ∈ K}.
repeat

for each batch with size N do
Update cj for each j : cj ← cj − α∆cj

Calculate Lct via Eq. (2).
Calculate Lce via Eq. (4).
Calculate Lr via Eq. (5).
Lt = Lce + λctLct + λrLr.
Update θF : θF ← θF − η∇θFLt.
Update θC : θC ← θC − η∇θCLt.
Update θD : θD ← θD − η∇θDLt.

end for
until convergence

B. Discriminator

The discriminator P is the tail but the core of the pro-
posed framework. It discriminates among known and unknown
classes based on the latent semantic space Z. For each known
class k, the feature extractor F extracts and computes the
corresponding semantic center vector Sk as:

Sk =

∑m
j=1 δ(yj = k)F (xj)∑m

j=1 δ(yj = k)
(7)

where m is the number of all training samples. When a
test signal I appears and F (I) is obtained, the difference
between the vector F (I) and Sk can be measured for each
k. Specifically, the generalized distance between F (I) and Sk
is used, which is defined as follows:

d(F (I), Sk) =
√

(F (I)− Sk)TA−1
k (F (I)− Sk) (8)

where Ak is the transformation matrix associated with class
k and A−1

k denotes the inverse of matrix Ak. When Ak is
the covariance matrix Σ of semantic features of signals of
class k, d(·, ·) is called Mahalanobis distance. When Ak is
the identity matrix2 I , d(·, ·) is reduced to Euclidean distance.
Ak also can be Λ and σ2I where Λ is a diagonal matrix formed
by taking diagonal elements of Σ and σ2 , trace(Σ)

t with t
being the dimension of Sk. The corresponding distance based
on Ak = Λ and Ak = σ2I are called the second distance
and third distance. Note that when the Mahalanobis distance,
second distance and third distance are applied, the covariance
matrix of each known class needs to be computed in advance.

With the above distance metric, we can establish our
discriminant model which is divided into two steps. Firstly,
distinguish between known and unknown classes. Secondly,
discriminate which known classes or unknown classes the test
signal belongs to. The first step is done by comparing the
threshold Θ1 with the minimal distance d1 given by

d1 = min
Sk∈S

d(F (I), Sk) (9)

where S is the set of known semantic center vectors. Let us
denote by yI the prediction of I. If d1 < Θ1, yI ∈ K, oth-
erwise yI ∈ U . Owing to utilizing the center loss in training,
the semantic features of signals of class k are assumed to obey
multivariate Gaussian distribution. Inspired by the three-sigma
rule [50], we set Θ1 as follows

Θ1 = λ1 × 3
√
t (10)

where λ1 is a control parameter referred to as the discrimina-
tion coefficient.

Two remarks are made as follows to explain the Gaussian
distribution assumption and the choice of Θ1, respectively.

Remark 1: In our loss function, we have the center loss
component which aims to minimize (2) with respect to the
semantic layer. It is not difficult to show that

arg min
θF

Lct = arg max
θF
−Lct

= arg max
θF
− 1

2N

N∑
i=1

||F (xi)− cyi ||22

= arg max
θF
− 1

2N

N∑
i=1

(F (xi)− cyi)T (F (xi)− cyi)

(11)

2This is also the only possible choice in the case when the covariance
matrix Σ is not available, which happens for example when the signal set of
some class is singleton.
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Because of the monotonicity of exponential function, we have

arg max
θF
− 1

2N

N∑
i=1

(F (xi)− cyi)T (F (xi)− cyi)

= arg max
θF

e
1
N

N∏
i=1

e−
(F (xi)−cyi

)T (F (xi)−cyi
)

2

= arg max
θF

e
1
N

N∏
i=1

e−
(F (xi)−cyi

)T I−1(F (xi)−cyi
)

2

= arg max
θF

e
1
N (2π)

t
2 |I| 12

N∏
i=1

1

(2π)
t
2

1

|I| 12
e−

(F (xi)−cyi
)T I−1(F (xi)−cyi

)

2

(12)

where t denotes the dimension of Gaussian distribution
and I denotes the identity matrix. Let β , e

1
N (2π)

t
2 |I| 12

and P (F (xi)|yi) = 1

(2π)
t
2

1

|I|
1
2
e−

(F (xi)−cyi
)T I−1(F (xi)−cyi

)

2 , the

above equation can be equivalently written as

arg max
θF

β

N∏
i=1

P (F (xi)|yi) (13)

where P (F (xi)|yi) = N (cyi , I). This indicates that very
likely the output of the semantic layer follows the Gaussian
distribution.3

Remark 2: The choice of Θ1 in (10) is made due to
the following two considerations. First, the well-known three-
sigma rule of thumb is often used for identification of outliers
[51]. It is shown in [51] that this rule should be properly
generalized due to the impact of the dimension in the mult-
dimensional case. We here present a natural generalization to
the t-dimensional case by simply averaging the Mahalanobis
distance over

√
t, so as to remove the impact of the dimension

on the choice of Θ1. The above explains why we have the term
3
√
t in (10). Second, a control parameter λ1 is incorporated to

make the choice of Θ1 more sophisticated so that it can work
well for complex recognition tasks. Our numerical experiments
later validate the effectiveness of the choice of Θ1.

The second step is more complicated. If I belongs to the
known classes, its label yI can be easily obtained via

yI = arg min
k
d(F (I), Sk). (14)

Obviously the main difficulty lies in dealing with the case
when I is classified as unknown in the first step. To illustrate,
let us denote by R the recorded unknown classes and define
SR to be the set of the semantic center vectors of R. In this
difficult case with R ⊆ ∅, a new signal label R1 is added
to R and F (I) is set to be the semantic center vector SR1 .
The unknown signal I is saved in set GR1

and let yI = R1.
While in the difficult case with R 6⊆ ∅, the threshold Θ2 is
compared to the minimal distance d2 which is defined by

d2 = min
SRu∈SR

d(F (I), Ru) (15)

3Note that, however, due to the existence of the other two component loss
functions, we propose using a general covariance matrix to describe the output
of the semantic layer, as shown in (8).

Intuitively, a good choice of Θ2 may be made based on the
distance between F (x) and Sk’s. d1 is the minimum distance
which is firstly used in our test of choice of Θ2. Actually,
we test a set of choices of Θ2 and numerically find that
unknown classes can be often correctly identified when Θ2 is
set between d1 and dmed, where dmed is the median distance
between F (x) and each Sk. Therefore, the threshold Θ2 is
finally set as

Θ2 =
d1 + λ2 × dmed

1 + λ2
(16)

where λ2 is used to balance the two distances d1 and dmed.
To proceed, let nR denote the number of recorded signal

labels in R. Then, if d2 > Θ2, a new signal label RnR+1 is
added to R and set yI = nR + 1. Note that we don’t impose
any prior restrictions on the value of nR (the size of set R),
i.e., our model can never know the number of the unknown
classes pending to be discriminated. Then if d2 ≤ Θ2, we set

yI = arg min
Ru

d(F (I), SRu
). (17)

and save the signal I in GyI . Accordingly, SyI is updated via

SyI =

∑
k∈GyI

F (k)

#(GyI )
(18)

where #(GyI ) denotes the number of signals in set GyI . As
a result, with the increase of the number of predictions for
unknown signals, the model will gradually improve itself by
way of refining SRu

’s.

Algorithm 2 Pseudocode for Discriminator P
Require: Test input {(I)}, transformation matrices
{Ak, ARu

}, sets S,R, SR, D and hyperparametes Θ1,
Θ2.

Ensure: yI .
Calculate F (I).
Calculate d1 via Eq. (9).
Calculate d2 via Eq. (15).
if d1 < Θ1 then

Calculate yI via Eq. (14).
else if d1 ≥ Θ1 and R ⊆ ∅ then

Add R1 to R.
yI = R1 .

else if d1 ≥ Θ1, R 6⊆ ∅ and d2 > Θ2 then
Add RnR+1 to R.
yI = RnR+1.

else
Calculate yI via Eq. (17)

end if
Save I in GyI .
update SyI via Eq. (18).

To summarize, we present the whole procedure of the
discriminator in Algorithm 2. We emphasize that our SR2CNN
is different from the common open-set recognition methods.
Assuming that there are n known classes and an uncertain
number of unknown classes, the traditional open-set recogni-
tion method will only distinguish the test samples into n+ 1
classes, while SR2CNN will distinguish the test samples into
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TABLE I
STANDARD METADATA OF DATASET 2016.10A. FOR A LARGER VERSION, 2016.10B, THE CLASS ”AM-SSB” IS REMOVED, WHILE THE NUMBER OF

SAMPLES FOR EACH CLASS IS SIXFOLD (120000). FOR A SMALLER ONE, 2016.04C, ALL 11 CLASSES IS INCLUDED, BUT THE NUMBER OF SAMPLES FOR
EACH CLASS IS DISPARATE (RANGE FROM 4120 TO 24940).

total samples # of samples each class # of samples each SNR feature dimension classes (modulations)
220000 20000 1000 2× 128 11

modulation types
8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, WBFM

# of SNR values SNR values
20 -20,-18,-16,-14,-12,-10,-8,-6,-4,-2,0,2,4,6,8,10,12,14,16,18

Fig. 4. In-training statistics on three datasets. The accuracy is based on the known test set.

n + nR classes via Algorithm 2, where nR is the number of
unknown classes recognized by the discriminator. Specifically,
for the case when a test sample belongs to an unknown class,
we determine whether it belongs to an existing unknown class
or a new unknown class by comparing d2 with threshold Θ2.
Hence, the notable advantage of SR2CNN over the common
open-set recognition method lies in that SR2CNN can roughly
distinguish how many unknown classes there are in the test
set, not just label the test sample as unknown.

V. EXPERIMENTS AND RESULTS

In this section, we demonstrate the effectiveness of the
proposed SR2CNN approach by conducting extensive exper-
iments with the dataset 2016.10A, as well as its two coun-
terparts, 2016.10B and 2016.04C [15]. The data description is

presented in Table I. All 11 types of modulations are numbered
with class labels from left to right.

Sieve samples. Samples with SNR less than 16 are firstly
filtered out, only leaving a purer and higher-quality portion
(one-tenth of origin) to serve as the overall datasets in our
experiments.

Choose unknown classes. Empirically, a class whose fea-
tures are hard to learn is an arduous challenge for a standard
supervised learning model, let alone when it plays an unknown
role in our ZSL scenario (especially when no prior knowledge
about the number of the unknown classes is given, as we men-
tioned in the Subsection 4.2). Hence, necessarily, a completely
supervised learning stage is carried out beforehand, to help us
nominate suitable unknown classes. If the prediction accuracy
of the full supervision method is rather low for certain class,
it is reasonable to exclude this class in ZSL, because ZSL



8

TABLE II
CONTRAST BETWEEN SUPERVISED LEARNING AND OUR ZSL LEARNING SCENARIO ON THREE DATASETS. DASH LINES IN THE ZSL COLUMN SPECIFY

THE BOUNDARY BETWEEN KNOWN AND UNKNOWN CLASSES. BOLD: ACCURACY FOR A CERTAIN UNKNOWN CLASS. Italic: ACCURACY COMPUTED ONLY
TO HELP DRAW A TRANSVERSE COMPARISON. ITEMS SPLIT BY SLASH ”/” LIKE ”75.9%/8.4%” DENOTE THE ACCURACY RESPECTIVELY FOR TWO

ISOTOPIC CLASSES. “-” DENOTES NO CORRESPONDING RESULT FOR SUCH CASE.

indicator
scenario 2016.10A 2016.10B 2016.04C

supervised ZSL supervised ZSL supervised ZSL

accuracy

8PSK (1) 85.0% 85.5% 95.5% 86.7% 74.9% 69.3%
AM-DSB (2) 100.0% 73.5% 100.0% 41.3% 100.0% 91.1%

BPSK (4) 99.0% 95.0% 99.8% 96.5% 99.8% 97.6%
PAM4 (7) 98.5% 94.5% 97.6% 93.4% 99.6% 96.8%

QAM16 (8) 41.6% 49.3% 56.8% 40.0% 97.6% 98.4%
QAM64 (9) 60.6% 44.0% 47.5% 49.6% 94.0% 97.6%
QPSK (10) 95.0% 90.5% 98.9% 90.6% 86.8% 81.5%
WBFM (11) 38.2% 32.0% 39.6% 50.4% 88.8% 86.9%
CPFSK (5) 100.0% 99.0% 100.0% 75.9%/8.4% 100.0% 96.2%
GFSK (6) 100.0% 99.0% 100.0% 95.6%/2.3% 100.0% 82.0%

AM-SSB (3) 100.0% 100.0% - - 100.0% 100.0%
total accuracy 83.5% 78.4% 83.6% 72.0% 94.7% 91.5%

average known accuracy 79.8% 73.7% 79.5% 68.5% 93.5% 91.6%
true known rate - 95.9% - 86.9% - 97.0%

true unknown rate - 99.5% - 91.1% - 90.0%

Fig. 5. Correlation between true known/unknown accuracy and discrimination coefficient (λ1) on three datasets.

will definitely not yield a good performance for this class. In
our experiments, unknown classes are randomly selected from
a set of classes for which the accuracy of full supervision is
higher than 50%. As shown in Table II, the ultimate candidates
fall on AM-SSB(3) and GFSK(6) for 2016.10A and 2016.04C,
while CPFSK(5) and GFSK(6) for 2016.10B.

Split training, validation and test data. 70% of the
samples from the known classes make up the overall training
set while 15% makes up the known validation set and the rest
15% makes up the known test set. For the unknown classes,
there’s only a test set needed, which consists of 15% of the
unknown samples.

Due to the three preprocessing steps, we get a small copy
of, e.g., dataset 2016.10A, which contains a training set of
12600 samples, a known validation set of 2700 samples, a
known test set of 2700 samples and an unknown test set of
600 samples.

All of the networks in SR2CNN are computed on a single
GTX Titan X graphic processor and implemented in Python,
and trained using the Adam optimizer with learning rate
η = 0.001 and batch size N = 256. Generally, we allow our
model to learn and update itself maximally for 250 epochs.

In addition, the grid search is applied to the validation set to
determine the hyperparameters.

A. In-training Views
Basically, the average softmax accuracy of the known test

set will converge roughly to 80% on both 2016.10A and
2016.10B, while to 94% on 2016.04C, as indicated in Fig.
4. Note that there’s almost no perceptible loss on the accuracy
when using the clustering approach (i.e., the distance measure-
based classification method described in Section IV) to predict
instead of softmax, meaning that the semantic feature space
established by our SR2CNN functions very well. For ease of
exposition, we will refer to the known cluster accuracy as
upbound (UB).

During the training course, the cross entropy loss under-
goes sharp and violent oscillations. This phenomenon makes
sense, since the extra center loss and reconstruction loss will
intermittently shift the learning focus of the SR2CNN.

B. Critical Results
The most critical results are presented in Table II. To better

illustrate it, we will firstly make a few definitions in analogy
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TABLE III
ABLATION STUDY ABOUT THE DISCRIMINATION TASK VIA P ON 2016.10A IN TEST. BOLD: PERFORMANCE OF THE ORIGINAL SR2CNN MODEL. F1

SCORE DENOTES 2× accuracy × precision/(accuracy + precision)

indicator
modification SR2CNN without Cross Entropy Loss without Center Loss without Reconstruction Loss L1 Loss

accuracy AM-SSB(3) 100.0% 100.0% 99.5% 100.0% 100.0%
GFSK(6) 99.5% 98.5% 61.0% 94.8% 95.8%

average known accuracy 73.7% 72.1% 69.0% 72.3% 70.4%

precision known 76.8% 75.3% 79.1% 74.5% 82.8%
unknown 96.1% 95.2% 82.4% 94.5% 86.1%

F1 score known 75.3% 73.6% 73.7% 73.3% 76.1%
unknown 98.0% 97.2% 81.3% 95.9% 91.6%

to the binary classification problem. By superseding the binary
condition positive and negative with known and unknown
respectively, we can similarly elicit true known (TK), true
unknown (TU), false known (FK) and false unknown (FU).
Subsequently, we get two important indicators as follows:

true known rate (TKR) =
TK

K
=

TK

TK + FU

true unknown rate (TUR) =
TU

U
=

TU

TU + FK

Furthermore, we define precision likewise as follows:

known precision (KP ) =
Scorrect

TK + FK

unknown precision (UP ) =
Udominantly correct

TU + FU

where Scorrect denotes the total number of known samples
that are classified to their exact known classes correctly.
Udominantly correct denotes the total number of unknown sam-
ples that are classified to their exact newly-identified unknown
classes correctly. For evaluation, the real label of a certain
newly-recorded unknown class is determined as the label of
the most signal samples in that class. Note that sometimes
unexpectedly, our SR2CNN may classify a small portion of
signals into different unknown classes but their real labels are
actually identical and correspond to one certain unknown class
(we name these unknown classes as isotopic classes). In this
rare case, we only count the identified unknown class with the
highest accuracy in calculating Udominantly correct.

For ZSL, we test our SR2CNN with several different combi-
nations of aforementioned parameters λ1 and λ2, hopefully to
snatch a certain satisfying result out of multiple trials. Fixing
λ2 to 1 simply leads to fair performance, though still, we
adjust λ1 in a range between 0.05 and 1.0. Here, the pre-
defined indicators above play an indispensable part to help us
sift the results. Generally, a well-chosen result is supposed
to meet the following requirements: 1. the weighted true
rate (WTR): 0.4×TKR+0.6×TUR is as great as possible;
2. KP> 0.95×UB, where UB is the upbound defined as the
known cluster accuracy; 3. #j

isotopic <=2 for all possible
j, where #j

isotopic denotes the number of isotopic classes
corresponding to a certain unknown class j.

In order to better make a transverse comparision, we com-
pute two extra indicators, average total accuracy in ZSL sce-
nario and also average known accuracy in completely super-
vised learning, shown as italics in Table II. On the whole, the

Fig. 6. Ablation study about the known accuracy on 2016.10A in training.

results are promising and excellent. However, we have to admit
that ZSL learning somewhat incurs a little bit performance
loss as compared with the fully supervised model. Looking
vertically, among all modulations, the performance loss espe-
cially occurs in the class AM-DSB. While looking horizontally
among all datasets, the performance loss especially occurs
in dataset 2016.10B. After all, when losing sight of the two
unknown classes, SR2CNN can only acquire a segment of the
intact knowledge that shall be totally learned in a supervised
case. It is this imperfection that presumably leads to an ap-
parent variation on each class’s accuracy when compared with
supervised learning. Among these classes, the poorest victim
is always AM-DSB, with considerable portion of its samples
rejected as unknown ones. Besides, the features, especially
those of the unknown classes, among these three datasets are
not exactly in the same difficulty levels of learning. Some
unknown features may even be similar to those known ones,
which can consequently cause confusions in the discrimination
tasks. It is no doubt that these uncertainties and differences in
the feature domain matter a lot. Take 2016.10B, compared
with its two counterparts, it emanates the greatest loss (more
than 10%) on average accuracy (both total and known), and
also a pair of inferior true rates. Moreover, it is indeed the
single case, where both two unknown classes are separately



10

TABLE IV
PERFORMANCE AMONG DIFFERENT SET OF CHOSEN UNKNOWN CLASSES ON 2016.10A. BOLD: RECALL RATE. ITEM SPLIT BY SLASH ”/” LIKE

”87.8%/9.0%” AND ”-” BASICALLY ARE OF THE SAME MEANINGS WITH TABLE II.

indicator
training config unknown classes

AM-SSB and GFSK CPFSK and GFSK AM-SSB and CPFSK AM-SSB, CPFSK and GFSK

accuracy
AM-SSB(3) 100.0% - 100.0% 100.0%
CPFSK(5) - 71.0% 87.8%/9.0% 65.5%
GFSK(6) 99.5% 100.0% - 90.5%

average known accuracy 73.7% 68.3% 75.6% 69.6%
true known rate 95.9% 89.6% 96.2% 90.9%

true unknown rate 99.8% 85.5% 98.4% 85.4%

precision known 76.8% 73.6% 78.3% 74.0%
unknown 96.1% 89.2% 91.9% 90.4%

Fig. 7. Effect of center loss. The presence of center loss is distinguished
by line shape(solid or dash). Interviewees(known or unknown accuracy) are
distinguished by line color(blue or green).

identified into two isotopic classes.

It is obvious that average accuracy strongly depends on the
weighted true rate (WTR). Since the clearer for the discrim-
ination between known and unknown, the more accurate for
the further classification and identification. Therefore, to better
study this discrimination ability, we depict Fig. 5 to elucidate
its variation trends regarding discrimination coefficient (λ1).
At the same time, we introduce a new concept discrimination
interval as an interval where the weighted true rate is always
greater than 80%. The width of the above interval is used to
help quantify this discrimination ability.

Apparently, the curves for the primary two kinds of true
rate are monotonic, increasing for the known while decreasing
for the unknown. The maximum points of these weighted
true rate curves for each dataset, are about 0.4, 0.2, and 0.4
respectively. These points exactly correspond to the results
shown in Table II. Besides, the width of the discrimination
interval of 2016.10B is only approximately one third of those
of 2016.10A and 2016.04C. This implies that the features of
2016.10B are more difficult to learn, and just accounts for its
relatively poor performance.

C. Ablation Study

In this subsection, we explain the necessity of each of the
three loss functions. Relevant experiments are mainly based
on 2016.10A.

Fig. 6 presents the known accuracy in absence of cross
entropy loss, center loss and reconstruction loss respectively
during training. In general, we found that the best performance
in training will be degraded when any one of these three
loss functions is excluded. It can be observed that both cross
entropy loss and reconstruction loss make a positive impact on
the known accuracy, boosting about 3% to 5%, while center
loss seems slightly weaker.

Analyzing Table III, we can easily discern the effect of
these three loss functions in the test course, especially the
center loss. Results show that the F1 score in absence of cross
entropy loss, center loss and reconstruction loss decreases by
1.8%, 1.7% and 2.0% respectively for the known classes.
For the unknown classes, the minimum degradation in F1
score is 0.8% after removing cross entropy loss, while the
maximum degradation in F1 score is 16.7% after removing
center loss. Actually, Fig. 7 indicates that the usage of center
loss on 2016.10A indeed helps our model to discriminate
more distinctly, resulting in a notably broader discrimination
interval. Besides, we have also made an attempt at applying
L1 loss [52] to calculate center loss (Eq. (2) in Section IV)
and reconstruction loss (Eq. (5) in Section IV). Those related
results are presented in the last column of Table III. It is seen
that L1 loss can indeed slightly increase the F1 score of known
classes by 0.8%, however, at the cost of a decrease in the F1
score of unknown classes by 6.4%.

In sum, the three loss functions, though not exactly promot-
ing our SR2CNN in the same way and in the same fields, are
indeed useful.

D. Other Extensions

We tentatively change several unknown classes on
2016.10A, seeking to excavate more in the feature domain
of data. As shown in Table IV, both known precision (KP)
and unknown precision (UP) are insensitive to the change
of unknown classes, proving that the classification ability of
SR2CNN are consistent and well-preserved for the considered
dataset. Nevertheless, obviously, the unknown class CPFSK is
always the hardest obstacle in the course of discrimination.
Since accuracy of CPFSK is always the lowest as well as
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TABLE V
COMPARISON BETWEEN OUR SR2CNN MODEL AND SEVERAL TRADITIONAL OPEN-SET MODEL AND OUTLIER DETECTORS ON 2016.10A. BOLD:

PERFORMANCE OF THE DOMINANT SR2CNN MODEL. Italic: PERFORMANCE OF THESE TRADITIONAL METHODS WHEN TRUE KNOWN RATES REACH THE
HIGHEST. VERTICAL BAR ”|” IS USED TO SPLIT THE STANDARD RESULTS AND THE ITALIC ONES.

indicator
detector SR2CNN IsolationForest [37] EllipticEnvelope [38] OneClassSVM [39] LocalOutlierFactor [40] OpenMax [8] MDL4OW [43]

AM-SSB(3) 100.0% 72.3% | 00.0% 100.0% | 100.0% 96.3% | 26.0% 100.0% 100.0% 99.3%
GFSK(6) 99.5% 01.3% | 00.0% 90.0% | 00.0% 00.0% | 00.0% 00.0% 00.0% 26.5%

true known rate 95.9% 81.3% | 99.9% 46.1% | 97.6% 85.5% | 92.0% 96.7% 98.1% 79.4%
true unknown rate 99.8% 36.8% | 00.0% 95.0% | 50.0% 48.1% | 13.0% 50.0% 50.0% 62.9%

TABLE VI
CONTRAST BETWEEN SUPERVISED LEARNING AND OUR ZSL LEARNING SCENARIO ON DATASET SIGNAL-202002. DASH LINES IN THE ZSL COLUMN

SPECIFY THE BOUNDARY BETWEEN KNOWN AND UNKNOWN CLASSES. BOLD: ACCURACY FOR A CERTAIN UNKNOWN CLASS. Italic: ACCURACY
COMPUTED ONLY TO HELP DRAW A TRANSVERSE COMPARISION. ”-” BASICALLY IS OF THE SAME MEANINGS WITH TABLE II.

indicator
scenario SIGNAL-202002

supervised learning zero-shot learning

accuracy

BPSK (1) 84.3% 70.8%
QPSK (2) 86.5% 67.8%
8PSK (3) 67.8% 70.3%

16QAM (4) 99.5% 96.8%
64QAM (5) 95.5% 84.8%
PAM4 (6) 97.0% 89.0%
GFSK (7) 56.3% 38.3%

AM-DSB (10) 63.8% 67.3%
AM-SSB (11) 44.3% 62.0%
CPFSK (8) 100.0% 81.0%
B-FM (9) 93.5% 74.5%

average total accuracy 80.8% 73.0%
average known accuracy 77.3% 71.9%

true known rate - 82.3%
true unknown rate - 84.9%

precision known - 87.4%
unknown - 91.6%

some isotopic classes are observed in this case. Especially,
when class CPFSK and GFSK simultaneously show up in
the unknown roles, the performance loss (on both TKR and
TUR) is quite striking. We speculate that the unknown CPFSK
and GFSK may share a considerable number of similari-
ties with some known classes, which will unluckily mislead
SR2CNN about the further discrimination task.

To justify SR2CNN’s superiority, we compare it with a
couple of traditional methods prevailing in the field of out-
lier detection, as well as two open-set recognition methods,
i.e., OpenMax [8] and MDL4OW [43]. For outlier detection
methods, the detected outlier will be regarded as an unknown
sample. For OpenMax, an extra dimension is appended to the
output vector to indicate the probability of the current sample
being unknown. While for MDL4OW, the extreme value
theory is adopted to detect the unknown classes by modeling
the distribution of loss. The results are presented in Table V.
It is found that our SR2CNN significantly outperforms both
outlier detection methods and open-set recognition methods
in terms of the true unknown rate. Furthermore, we find
that most of the aforementioned methods cannot correctly
identify GFSK as unknown. For example, in our experiment,
OpenMax wrongly classifies all GFSK samples as known.
As for MDL4OW, it identifies a small percentage of GFSK
samples at the cost of true known rate. However, it can be
found from the experiment results that our SR2CNN can still
work very well for this open-set recognition task.

Note that there are no unknown classes identification tasks
launched, only discrimination tasks are considered. Hence,
here, for a certain unknown class j, we compute its unknown
rate, instead of accuracy, as #j

unknown

Nj
, where Nj denotes the

number of samples from unknown class j, while #j
unknown

denotes the number of samples from unknown class j, which
are discriminated as unknown ones.

In addition, relevant ROC curves for the above comparison
experiments are depicted in Fig. 8. It is observed that SR2CNN
has the largest AUC, indicating its superiority over other
methods. Besides, notably, there seems as if a steep ‘cliff
erecting’ where False Known Rate approximately equals to
0.5, particularly for EllipticEnvelope, LocalOutlierFactor, and
OpenMax. This means that almost half samples of unknown
classes are not easy to be correctly discriminated. Correspond-
ingly, according to Table V, we can speculate that these ‘hard’
samples all come from unknown class GFSK.

VI. DATASET SIGNAL-202002

We newly synthesize a dataset, denominated as SIGNAL-
202002, to hopefully be of great use for further researches
in signal recognition field. Basically, the dataset consists
of 11 modulation types, which are BPSK, QPSK, 8PSK,
16QAM, 64QAM, PAM4, GFSK, CPFSK, B-FM, AM-DSB
and AM-SSB. Each type is composed of 20000 frames. Data
is modulated at a rate of 8 samples per symbol, while 128
samples per frame. The channel impairments are modeled
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Fig. 8. ROC curves of SR2CNN, OpenMax and some other outlier detecors
on 2016.10A.

by a combination of additive white Gaussian noise, Rayleigh
fading, multipath channel and clock offset. We pass each
frame of our synthetic signals independently through the above
channel model, seeking to emulate the real-world case, which
shall consider translation, dilation and impulsive noise, etc.
The configuration is set as follows:

20000 samples per modulation type
2× 128 feature dimension
20 different SNRs, even values between [2dB, 40dB]

The complete dataset is stored as a python pickle file
which is about 450 MBytes in complex 32 bit floating
point type. Related code for the generation process is imple-
mented in MatLab and the SIGNAL-202002 dataset is avail-
able on the link: https://drive.google.com/file/d/1EDfKRNIk
txxyAyPCR7BEGs0BvEk3Bof/view.

We conduct zero-shot learning experiments on our newly-
generated dataset and report the results here. As mentioned
above, a supervised learning trial is similarly carried out to
help us get an overview of the regular performance for each
class of SIGNAL-202002. Unfortunately, as Table VI shows,
the original two candidates of 2016.10A, AM-SSB and GFSK,
both fail to keep on top. Therefore, here, we relocate the
unknown roles to another two modulations, CPFSK with the
highest accuracy overall, as well as B-FM, which stands out
in the three analogy modulation types (B-FM, AM-SSB and
AM-DSB).

According to Table VI, an apparent loss on the discrimina-
tion ability is observed, as both the TKR and the TUR just
slightly pass 80%. However, our SR2CNN still maintain its
classification ability, as the accuracy for each class remains
encouraging compared with the completely-supervised model.
A significant fact is that, the known precision (KP) is incred-
ibly high, even exceeding those KPs on 2016.10A by almost

10%, as shown in Table IV. To account for this, we speculate
that the absence of two unknown classes may unintentionally
allow SR2CNN to better focus on the features of the known
ones, which consequently, leads to a superior performance of
known classification task.

VII. CONCLUSION

In this paper, we have proposed a ZSL framework SR2CNN,
which can successfully extract precise semantic features of
signals and discriminate both known classes and unknown
classes. SR2CNN can works very well in the situation where
we have no sufficient training data for certain class. Moreover,
SR2CNN can generally improve itself in the way of updating
semantic center vectors. Extensive experiments demonstrate
the effectiveness of SR2CNN. In addition, we provide a new
signal dataset SIGNAL-202002 including eight digital and
three analog modulation classes for further research. Finally,
we would like to point out that, because we often have
I/Q signals, a possible direction for future research is using
complex neural networks [53] to establish the semantic space.

APPENDIX A
CONVOLUTION AND DECONVOLUTION OPERATION

Let a, b ∈ Rn denote the vectorized input and output
matrices. Then the convolution operation can be expressed as

b = Ma (19)

where M denotes the convolutional matrix, which is sparse.
With back propagation of convolution, ∂Loss∂b is obtained, thus

∂Loss

∂aj
=

∑
i

∂Loss

∂bi

bi
aj

=
∑
i

∂Loss

∂bi
Mi,j = MT

∗,j
∂Loss

∂b

(20)
where aj denotes the j-th element of a, bi denotes the i-th
element of b, Mi,j denotes the element in the i-th row and
j-th column of M, and M∗,j denotes the j-th column of M.
Hence,

∂Loss

∂a
=


∂Loss
∂a1
∂Loss
∂a2

...
∂Loss
∂an

 =


MT
∗,1

∂Loss
∂b

MT
∗,2

∂Loss
∂b

...
MT
∗,n

∂Loss
∂b

 = MT ∂Loss

∂b
. (21)

Similarly, the deconvolution operation can be notated as

a = M̃b (22)

where M̃ denotes a convolutional matrix that has the same
shape as MT , and it needs to be learned. Then the back
propagation of convolution can be formulated as follows:

∂Loss

∂b
= M̃T ∂Loss

∂a
. (23)

For example, the size of the input and output matrices is 4×
4 and 2×2 as shown in Fig. 3(c). Then a is a 16-dimensional
vector and b is a 4-dimensional vector. Define convolutional
kernel K as

K =

w00 w01 w02

w10 w11 w12

w20 w21 w22

 . (24)

https://drive.google.com/file/d/1EDfKRNIk_txxyAyPCR7BEGs0BvEk3Bof/view
https://drive.google.com/file/d/1EDfKRNIk_txxyAyPCR7BEGs0BvEk3Bof/view
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It is not hard to imagine that M is a 4×16 matrix, and it can
be represented as follows:

w00 w01 w02 0 . . . 0 0 0 0
0 w00 w01 w02 . . . 0 0 0 0
0 0 0 0 . . . w20 w21 w22 0
0 0 0 0 . . . 0 w20 w21 w22

 .
(25)

Hence, deconvolution is expressed as left-multiplying M̃ in
forward propagation, and left-multiplying M̃T in back propa-
gation.
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