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Directionally Weighted Wave Field Estimation
Exploiting Prior Information on Source Direction

Natsuki Ueno , Student Member, IEEE, Shoichi Koyama , Member, IEEE,
and Hiroshi Saruwatari , Member, IEEE

Abstract—A wave field estimation method exploiting prior infor-
mation on source direction is proposed. First, we formulate a wave
field estimation problem as regularized least squares, where the
norm of the wave field is used for a regularization term. The norm of
the wave field is defined on the basis of the weighting function that
reflects the prior information on the source direction. We derive
the closed-form solution using theories on Hilbert spaces. Results
of numerical experiments indicated that high estimation accuracy
can be achieved by using the proposed method in comparison with
other current methods that do not use any prior information.

Index Terms—Helmholtz equation, Hilbert space, inverse
problem, sensor array, wave field estimation.

I. INTRODUCTION

CAPTURING a three-dimensional wave field is an essential
technique for its analysis, visualization, and other related

applications. In the field of spatial audio, in particular, sound
field estimation techniques using multiple sensors (i.e., micro-
phones) have attracted considerable attention owing to their wide
variety of applications, such as the reproduction of a captured
sound field using loudspeakers [1]–[4] or headphones [5]–[7]
and the spatial active noise control [8]–[10].

Wave field estimation methods are classified on the basis of
whether wave sources are allowed to exist inside the target re-
gion [11]–[15] or not [2], [16]–[20]. In general, the former case is
much more difficult than the latter and often requires additional
assumptions, such as spatial sparsity of source distribution and
a reverberant-free condition. Here, we focus on the wave field
estimation inside a source-free target region as shown in Fig. 1.
Note that wave sources may exist outside the target region also
in this context.

There are a large number of wave field estimation methods
for source-free target regions, which can be further classified
on the basis of whether the linearity between the observed
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Fig. 1. Problem setting of wave field estimation.

signals and estimated wave fields at each frequency, i.e., the
linear time-invariant (LTI) property, holds. For example, many
methods based on the higher-order Ambisonics (HOA) approach
in spatial audio have the LTI property [2], [18]–[20]. In these
methods, the wave fields are expanded by spherical wavefunc-
tions up to a certain order, and their coefficients are estimated
linearly from the observed signals [2], [18], [20]. In our previous
work [19], the spherical wavefunction expansion is considered
up to infinite dimensions, which is essentially equivalent to the
expansion by infinite number of plane-wave functions [21]. This
makes the estimation process independent of the settings of
the expansion center and truncation order. Owing to the LTI
property, these methods allow a fast implementation using LTI
digital filters, which is preferable to non-LTI ones from the
viewpoint of computational efficiency and almost essential for
real-time systems (e.g., spatial active noise control).

On the other hand, sparsity-based methods [15], [22]–[24]
are typical examples of non-LTI approaches. In these methods,
wave fields are decomposed into sparse basis functions, and their
coefficients are determined by sparse optimization methods. In
contrast to the HOA approach, the plane-wave functions and
monopole functions (free-field Green’s functions) are often used
as the basis functions. These methods may improve estimation
accuracy in various practical situations since they exploit the
prior information on the target wave field, i.e., the sparsity
of the coefficients. However, these non-LTI methods require
iterative calculations for optimization, which makes a real-time
implementation difficult. In addition, the function space in which
we seek the solution has to be approximated by a finite number of
basis functions, e.g., by discretizing the directions of plane-wave
functions or the positions of monopole functions, which causes
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a tradeoff relationship between the approximation accuracy and
the computational cost. Therefore, an LTI method exploiting
some prior information on a target wave field is desired to
achieve both high estimation accuracy and low computational
cost.

In this paper, we present a wave field estimation method
exploiting prior information on source direction. Although it is
not always easy to obtain the exact source positions beforehand,
their rough estimates are available in many practical situations
(e.g., when the possible source position is limited within a certain
region owing to the physical constraint or when the source
position can be estimated by using some other sensors such as
image sensors). We formulate the wave field estimation problem
as the regularized least squares in a Hilbert space [25], where
the prior information is incorporated as a directional weighting
into the regularization term, and the closed-form solution can be
obtained using the representer theorem [26], [27]. In particular,
this method
� has the LTI property,
� incorporates prior information on source direction in a

flexible form (e.g., single direction, multiple directions,
and diffuse field), and

� does not require the finite-dimensional approximation of
the function space composed of wave fields as in our pre-
vious work [19], [28], which is made possible by utilizing
theories of functional analysis.

Note that the formulation in this paper includes those in our
previous works [19], [28] as special cases; the proposed method
can be regarded as their generalization. The proposed method
is also closely related to our other previous work [29], where
the kernel interpolation of two-dimensional sound fields based
on directional weighting is presented. Whereas only omnidirec-
tional sensors in two-dimensional wave fields are considered
in [29], the sensor directivity is extended to general cases and
three-dimensional wave fields are considered in this paper.

The rest of this paper is organized as follows. In Section II,
several notations and preliminaries are introduced. In Section III,
the proposed method is described. In Section IV, results of
several numerical experiments for comparison between the pro-
posed method and other LTI methods are reported. Finally, we
present our conclusions in Section V.

II. NOTATIONS AND PRELIMINARIES

First, we provide several basic notations and preliminaries
on the representation of wave fields and modeling of sensor
directivities.

A. Notations

The set of natural numbers including zero are denoted by
N, and the set of positive integers are denoted by N+. For any
integers m and n satisfying m ≤ n, [[m,n]] denotes the integer
interval between m and n inclusive.

The sets of real and complex numbers are denoted by R

and C, respectively. The imaginary unit is denoted by i, and
the complex conjugate of a complex number is denoted by
(·)∗. The unit sphere in R

3 is denoted by S2. The transpose

and Hermitian transpose of a matrix are denoted by (·)T and
(·)H, respectively. For any two vectors x := [x1, x2, x3]

T and
y := [y1, y2, y3]

T in S2, R3, or C3, the operator ◦ is defined as
x ◦ y := x1y1 + x2y2 + x3y3.

An integral of a measurable function f : S2 → C over the
sphere S2 (with respect to the natural measure) is denoted by∫
x∈S2 f(x) dχ. The set of square-integrable functions from S2

to C is denoted byL2(S2). According to conventions, we do not
distinguish functions inL2(S2) that are equal almost everywhere
on S2.

B. Representation of Wave Fields

Let Ω ⊆ R
3 be a simply connected open subset of R

3 and
u : Ω → C be a wave field in Ω at a fixed angular frequency
ω ∈ R, i.e., u(r) denotes a pressure at r ∈ Ω.1 If Ω does not
include any wave sources, u can be well modeled as a solution
of the following (homogeneous) Helmholtz equation [30]:

(Δ + k2)u = 0, (1)

where Δ denotes the Laplace operator and k := ω/c is the
wavenumber with c ∈ (0,∞) being the phase velocity, which is
assumed to be constant in Ω. A typical modeling of u satisfying
(1) is a superposition of plane-wave functions (also called the
Herglotz integral [31]) as follows:

u(r) =

∫
x∈S2

ũ(x) exp(−ikx ◦ r) dχ (r ∈ Ω). (2)

Here, ũ ∈ L2(S2) represents the complex amplitude of plane
waves arriving from each direction. Let A denote a transform of
functions from ũ to u defined as (2), and we define a function
space H as

H := {Aũ | ũ ∈ L2(S2)} . (3)

In what follows, the tilde symbol over a letter denotes the
inverse of A (e.g., ũ := A−1u).

Although H does not include all solutions of (1), any solution
of (1) can be approximated arbitrarily by functions in H in
the sense of the uniform convergence on compact sets (see
Appendix VII for a proof). Therefore, a wave field estimation
problem can be regarded practically as a process of determining
a function u within H on the basis of some criterion.

C. Modeling of Sensor Directivity

Suppose a single sensor with a certain directivity located at
r0 ∈ Ω in a wave field u ∈ H . Its directivity can be modeled
as the directional function γ ∈ L2(S2), i.e., γ(x) denotes the
sensor’s response to the plane wave arriving from the direction
x ∈ S2. For example, omnidirectional, bidirectional, and first-
order sensors are respectively modeled with constant parameters
y ∈ S2 and ζ ∈ [0, 1] as follows.

Omnidirectional:

γ(x) := 1 (x ∈ S2)

1Harmonic time dependence exp(−iωt) with t ∈ R denoting the time will
be assumed in this paper according to conventions [30].
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Bidirectional:

γ(x) := y ◦ x (x ∈ S2)

First-order:

γ(x) := ζ + (1− ζ)y ◦ x (x ∈ S2)

In many practical cases including the above examples, the
directivity γ can be well represented using finite-order spherical
harmonic functions as

γ(x)∗ =
N∑
ν,μ

cν,μYν,μ(x) (x ∈ S2), (4)

where N ∈ N is the maximum order,
∑N

ν,μ is the abbreviated

form of
∑N

ν=0

∑ν
μ=−ν , andYν,μ(·) : S2 → C denotes the spher-

ical harmonic function of order ν ∈ N and degree μ ∈ [[−ν, ν]]
(see [21] for the definition and [32] for an efficient computational
algorithm). Here, we consider the complex conjugate on the
right-hand side of (4) to simplify later discussion.

Since u can be expanded around r0 as

u(r) =

∫
x∈S2

ũ(x) exp(−ikx ◦ r0)

· exp(−ikx ◦ (r − r0)) dχ (r ∈ Ω), (5)

the observed signal s ∈ C of the sensor is given by

s =

∫
x∈S2

ũ(x) exp(−ikx ◦ r0)γ(x) dχ+ ε, (6)

where ε ∈ C is the observation noise. Hereafter, we use the
simplified notation as

s = Fu+ ε. (7)

Here, F : H → C is a functional defined as

Fu :=

∫
x∈S2

ũ(x) exp(−ikx ◦ r0)γ(x) dχ (u ∈ H ). (8)

In addition, we refer to F as an observation operator of the
sensor. Note that F is a linear functional on H , which means
the superposition principle in the observation.

III. PROPOSED METHOD

A. Formulation

Let M ∈ N+ sensors be located arbitrarily in Ω as shown
in Fig. 1. For each m ∈ [[1,M ]], the position, directivity, and
observed signal of the mth sensor are denoted respectively by
rm ∈ Ω, γm ∈ L2(S2), and sm ∈ C, and they are assumed to be
given. In this case, the observation operator of the mth sensor,
denoted by Fm, is given for each m ∈ [[1,M ]] by

Fmu :=

∫
x∈S2

ũ(x) exp(−ikx ◦ rm)γm(x) dχ (u ∈ H ).

(9)
We consider the following formulation of wave field estima-

tion problems:

minimize
u∈H

Q(u) :=

M∑
m=1

1

σ2
m

|Fmu− sm|2 + λ‖u‖2H , (10)

where σ1, . . . , σM ∈ (0,∞) are dispersion parameters repre-
senting the observational uncertainty, λ ∈ (0,∞) is a regu-
larization parameter, and ‖ · ‖H : H → [0,∞) is a norm on
H , which is defined later. The first term of (10) is a loss
term, which represents a deviation between the predicted values
F1 u, . . . ,FMu and the observed values s1, . . . , sM . On the
other hand, the second term is a regularization term, which
evaluates the reasonability ofu independently of the observation.
If we can design the norm ‖ · ‖H so that the wave fields that
are likely to occur have small norms, the solution of (10) will be
induced to such wave fields. Therefore, it is desirable to design
an appropriate norm exploiting prior information of wave fields.

On the basis of the above discussion, we introduce the norm
‖ · ‖H over H defined as

‖u‖H :=

(∫
x∈S2

|ũ(x)|2
w(x)

dχ

) 1
2

(u ∈ H ). (11)

Here, w : S2 → (0,∞) is a weighting function defined as

w(x) :=
1

4πC(β)
exp(βη ◦ x) (x ∈ S2), (12)

where β ∈ [0,∞) andη ∈ S2 are constant parameters andC(β)
is a scaling constant (so that w satisfies

∫
x∈S2 w(x) dχ = 1)

defined as

C(β) :=

{
1 (β = 0)

(exp(β)− exp(−β))/(2β) (β ∈ (0,∞))
. (13)

This function w is also known as the probability density
function of the von Mises–Fisher distribution used in directional
statistics [33]. Note that w(x) takes a large value when x is
close to η, especially in the case of large β. Therefore, by
using this norm in (10), we can impose large penalties for wave
fields originating from wave sources in the direction away from
η while imposing small penalties for wave fields from wave
sources in the direction close to η. When β = 0, on the contrary,
the solution of (10) will be induced relatively to a diffuse field.
The weighting function w can be further generalized by using
a linear combination of (12) for different parameters β and η,
which is useful in cases of multiple wave sources. This extension
is discussed in Section III-D after we describe the basic concept
of the proposed method.

B. Closed-Form Solution

We provide the closed-form solution of (10) on the basis of
theories on Hilbert spaces. First, we define the inner product
〈·, ·〉H on H as

〈u1, u2〉H :=

∫
x∈S2

ũ1(x)
∗ũ2(x)

w(x)
dχ (u1, u2 ∈ H ). (14)

Then, (H , 〈·, ·〉H ) is a complex Hilbert space because it is
isomorphic to the Hilbert space L2(S2) with the weighted L2

inner product. Using this inner product 〈·, ·〉H , we can write the
objective function as

Q(u) =
M∑

m=1

1

σ2
m

|〈vm, u〉H − sm|2 + λ〈u, u〉H (u ∈ H ),

(15)
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where v1, . . . , vM ∈ H are given by

vm(r) :=

∫
x∈S2

w(x)γm(x)∗ exp(−ikx ◦ (r − rm)) dχ

(r ∈ Ω, m ∈ [[1,M ]]). (16)

Then, we can apply the representer theorem [26], [27], which
guarantees that the solution of (10), denoted by û, has the form
of

û =
M∑

m=1

α̂mvm (17)

with some α̂ := [α̂1, . . . , α̂M ]T ∈ C
M . Therefore, we need only

to seek the optimal coefficients α̂ in the finite-dimensional
linear space C

M instead of û in the infinite-dimensional linear
space H . Here, α̂ can be obtained by solving the following
optimization problem:

minimize
α∈CN

Q(∗)(α) := (Kα− s)HΣ−1(Kα− s)

+ λαHKα, (18)

which is given by substituting u =
∑M

m=1 αmvm with α :=
[α1, . . . , αM ]T in (15). Here, s ∈ C

M , Σ ∈ C
M×M , and K ∈

C
M×M are defined as

s := [s1, . . . , sM ]T, (19)

Σ :=

⎡
⎢⎢⎣
σ2
1 0

. . .

0 σ2
M

⎤
⎥⎥⎦ , (20)

K :=

⎡
⎢⎢⎣
K1,1 . . . K1,M

...
. . .

...

KM,1 . . . KM,M

⎤
⎥⎥⎦ (21)

with

Km1,m2
:= 〈vm1

, vm2
〉H

=

∫
x∈S2

w(x)γm1
(x)γm2

(x)∗

· exp(−ikx ◦ (rm1
− rm2

)) dχ

(m1,m2 ∈ [[1,M ]]). (22)

Finally, by solving (18), we obtain

α̂ = (K + λΣ)−1s, (23)

and û is given by substituting (23) into (17). Therefore, the
remaining problems are the calculations of v1, . . . , vM and K.

C. Directionally Weighted Spherical Wavefunctions and
Directionally Weighted Translation Operators

As noted in Section II-C, the directivities of various sensors
can be well modeled by finite-order spherical harmonic func-
tions. Suppose γ1, . . . , γM can be represented as

γm(x)∗ =
Nm∑
ν,μ

cm,ν,μYν,μ(x) (x ∈ S2, m ∈ [[1,M ]]) (24)

withN1, . . . , NM ∈ N. Then, by substituting (12) and (24) into
(16) and (22) and solving the integrals (see Appendix IX for
detailed derivations), we obtain

vm(r) =

Nm∑
ν,μ

cm,ν,μϕν,μ(r − rm) (r ∈ Ω, m ∈ [[1,M ]]),

(25)

Km1,m2
=

Nm1∑
ν1,μ1

Nm2∑
ν2,μ2

c∗m1,ν1,μ1
cm2,ν2,μ2

T ν2,μ2
ν1,μ1

(rm1
− rm2

)

(m1,m2 ∈ [[1,M ]]}), (26)

where

ϕν,μ(r) :=
1

C(β)
ξν,μ(kr + iβη)

(r ∈ R
3, ν ∈ N, μ ∈ [[−ν, ν]]), (27)

T ν2,μ2
ν1,μ1

(r) :=
1

C(β)
Θν2,μ2

ν1,μ1
(kr + iβη)

r ∈ R
3, ν1, ν2 ∈ N,

(μ1 ∈ [[−ν1, ν1]], μ2 ∈ [[−ν2, ν2]]) (28)

with

ξν,μ(z) :=
1

iν
jν

((
z21 + z22 + z23

) 1
2

)
yν,μ

(
z

(z21+z
2
2+z

2
3)

1
2

)

(z := [z1, z2, z3]
T ∈ C

3, ν ∈ N, μ ∈ [[−ν, ν]]),
(29)

Θν2,μ2
ν1,μ1

(z) :=

ν1+ν2∑
ν3,μ3

G(ν1, μ1; ν2, μ2; ν3, μ3)ξν3,μ3
(z)

(z ∈ C
3, ν1, ν2 ∈ N,

μ1 ∈ [[−ν1, ν1]], μ2 ∈ [[−ν2, ν2]]). (30)

Here, jν(·) : C → C is theνth-order spherical Bessel function
of the first kind, yν,μ(·) : C3 → C is the normalized homo-
geneous harmonic polynomial [21] of order ν and degree μ
(i.e., a homogeneous harmonic polynomial satisfying yν,μ(x) =
Yν,μ(x) forx ∈ S2), andG(·) denotes the Gaunt coefficient with
a slight modification regarding complex conjugation, which is
defined as

G(ν1, μ1; ν2, μ2;μ3;μ3)

:=

∫
x∈S2

Yν1,μ1
(x)∗Yν2,μ2

(x)Yν3,μ3
(x)∗ dχ

(ν1, ν2, ν3 ∈ N, μ1 ∈ [[−ν1, ν1]],
μ2 ∈ [[−ν2, ν2]], μ3 ∈ [[−ν3, ν3]]). (31)

The closed-form expression of (31) can be obtained using the
formulae in [21], and an efficient computational algorithm is
proposed in [34]. Note that (29) is well defined independently
from branches of the 1/2-power function and can also be defined
at z = [z1, z2, z3]

T ∈ C
3 such that z21 + z22 + z23 = 0 by using

limit values because these points are removable singularities
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Fig. 2. Directionally weighted spherical wavefunctions of order ν = 0 and degree μ = 0 plotted in xy-plane (r = [x, y, 0]T). (a) β = 0; (b) β = 2; (c) β = 5;
(d) β = 25.

Fig. 3. Directionally weighted spherical wavefunctions of order ν = 1 and degree μ = 1 plotted in xy-plane (r = [x,y, 0]T). (a) β = 0; (b) β = 2; (c) β = 5;
(d) β = 25.

(also note that the term (z21 + z22 + z23)
1
2 in (29) is not the

complex norm given by (|z1|2 + |z2|2 + |z3|2) 1
2 ).

When β = 0, it can be immediately shown that (27) and
(28) correspond respectively to the usual spherical wavefunction
and translation operator [4], [19], [20] (except for the con-
stant coefficients), and this method corresponds to our previ-
ous work [19]. Conversely, the proposed method is obtained
formally by replacing the usual spherical wavefunctions and
translation operators in [19] with (27) and (28), respectively
(therefore, the computational costs are essentially the same in
these two methods). Since the differences from the previous
work [19] inβ ∈ (0,∞) are derived from the directional weight-
ing function w, we refer to (27) and (28) as a directionally
weighted spherical wavefunction and a directionally weighted
translation operator, respectively. We show several examples of
directionally weighted spherical wavefunctions in Fig. 2, where
k = 10 andη = [cos(π/3), sin(π/3), 0]T. One can see that these
functions become close to the plane-wave function arriving from
η as β increases.

As a special case, we consider the case of omnidirectional
sensors, i.e., γm(x) = 1 (x ∈ S2, m ∈ [[1,M ]]). Then, we
obtain

vm(r) =
√
4πϕ0,0(r − rm) (r ∈ Ω, m ∈ [[1,M ]]), (32)

Km1,m2
=

√
4πϕ0,0(rm1

− rm2
) (m1,m2 ∈ [[1,M ]]).

(33)

In this case, the proposed method corresponds to the kernel
ridge regression [35] with the kernel function κ : Ω× Ω → C

defined as

κ(r1, r2) :=
√
4πϕ0,0(r1 − r2) (r1, r2 ∈ Ω), (34)

i.e., (H , 〈·, ·〉H ) is a reproducing kernel Hilbert space [36]
generated by κ. Similar discussion for the two-dimensional case
is also given in [29].

D. Extension to Multiple Wave Sources

The proposed method can be easily extended to cases of mul-
tiple wave sources. The weighting functionw can be generalized
as

w(x) :=
L∑

l=1

alC(βl) exp(βlηl ◦ x) (x ∈ S2), (35)

where L ∈ N+, a1, . . . , aL ∈ [0, 1], β1, . . . , βL ∈ [0,∞), and
η1, . . . ,ηL ∈ S2 are the constant parameters satisfying∑L

l=1 al = 1. Then, the directionally weighted spherical wave-
functions and the directionally weighted translation operators
are given by

ϕν,μ(r) :=

L∑
l=1

al
C(βl)

ξν,μ(kr + iβlηl)

(r ∈ R
3, ν ∈ N, μ ∈ [[−ν, ν]]), (36)

T ν2,μ2
ν1,μ1

(r) :=

L∑
l=1

al
C(βl)

Θν2,μ2
ν1,μ1

(kr + iβlηl)

(r ∈ R
3, ν1, ν2 ∈ N,

μ1 ∈ [[−ν1, ν1]], μ2 ∈ [[−ν2, ν2]]), (37)
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and v1, . . . , vM and K can be obtained by substituting (36) and
(37) into (25) and (26), respectively.

E. Comparison With Non-LTI Methods

From (17) and (23), the estimated wave field û is immediately
shown to be linear with respect to the observed signal s in
the proposed method. Here, for a theoretical evaluation of the
computational cost, we consider some application represented
as a linear system with input û and output φ ∈ C

E in the form
of

φ = [Φ1(û), . . . ,ΦE(û)]
T, (38)

where E ∈ N+ is the dimension of the output variable and
Φ1, . . . ,ΦE are arbitrary linear functionals. For example, in the
visualization of wave fields, φ is the pointwise values of û, and
in sound field reproduction using loudspeakers/headphones,φ is
the loudspeaker/headphone signals that reproduce a sound field
û (the details of the reproduction methods are beyond the scope
of this paper; however, note that the loudspeaker/headphone
signals are obtained linearly with respect to the desired field
û in most methods [1]–[7]). From (17), we can rewrite (38) as

φ = V α̂ (39)

with V ∈ C
E×M defined as

V :=

⎡
⎢⎢⎣
Φ1(v1) . . . Φ1(vM )

...
. . .

...

ΦE(v1) . . . ΦE(vM )

⎤
⎥⎥⎦ . (40)

Therefore, from (23), the relationship between φ and s is
represented as

φ = Ms, (41)

where M ∈ C
E×M is defined as M := V (K + λΣ)−1. The

calculation of M requires O(M3 + EM2) times of scalar mul-
tiplication and addition; however, it can be calculated before we
obtain s. Therefore, once we have obtained M , only O(EM)
times of scalar multiplication and addition are required in the
calculation of φ from a given s. Also in the time domain,
(41) can be implemented using E ×M LTI filters determined
independently of s.

For comparison, we provide a brief description of the sparsity-
based method based on lp norm regularization [15], [22]–[24].
In this method, the wave field u is first decomposed into a finite
number of basis functions as

u =

Nbasis∑
n=1

bnψn, (42)

where Nbasis ∈ N+ is the number of basis functions (typically
set to be greater than M ), ψ1, . . . , ψNbasis

: Ω → C are basis
functions and b1, . . . , bNbasis

∈ C are unknown coefficients that
are expected to be sparse (i.e., only a small number of them
have nonzero values). The unknown coefficients b1, . . . , bNbasis

are determined by solving the following minimization problem:

minimize
b∈CNbasis

‖b‖p subject to Db = s (43)

with p ∈ [0, 2), where p = 0 or 1 is typically used. Here, ‖ · ‖p
denotes the lp norm [37],2 and D ∈ C

M×Nbasis is a dictionary
matrix whose (m,n)th element models the observation ofψn by
the mth sensor for m ∈ [[1,M ]] and n ∈ [[1, Nbasis]]. For p > 0,
the following formulation is also often used instead of (43):

minimize
b∈CNbasis

‖Db− s‖22 + λ‖b‖pp, (44)

where λ ∈ (0,∞) is a regularization parameter. By defining
B : CM → C

Nbasis as the nonlinear map where B(s) ∈ C
Nbasis

denotes the solution of (43) or (44) for a given s ∈ C
M and

Ψ ∈ C
E×Nbasis as

Ψ :=

⎡
⎢⎢⎣
Φ1(ψ1) . . . Φ1(ψNbasis

)
...

. . .
...

ΦE(ψ1) . . . ΦE(ψNbasis
)

⎤
⎥⎥⎦ , (45)

we can represent the relationship between φ and s as

φ = ΨB(s). (46)

In this case, we cannot utilize the same precomputation as in
(41) sinceB is a nonlinear mapping. For the calculation ofB(s),
i.e., the optimization of (43) or (44), the orthogonal matching
pursuit [37], [38], (accelerated) proximal gradient [39], and
iteratively reweighted least squares [37], [40] are representative
algorithms. In total, the following times of scalar multiplication
and addition are required in the calculation of (46).

Orthogonal matching pursuit (p = 0):

O(EK +KMNbasis)

(Accelerated) proximal gradient (p = 1):

O(EK +KiterMNbasis)

Iteratively reweighted least squares (0 < p < 2):

O(EK +KiterM
2Nbasis)

Here, K ∈ N+ is the number of nonzero values in b, and
Kiter ∈ N+ is the number of iterations in the algorithm. Particu-
larly whenE is small, these computational costs are much larger
than that of the proposed method. Also in the time domain, (46)
does not allow a fast implementation using LTI filters in the time
domain owing to the nonlinearity of B. Therefore, the proposed
method is preferable to the above non-LTI methods from the
viewpoint of the computational cost, which is an important
factor in applications such as real-time systems, where fast
implementation is required.

IV. NUMERICAL EXPERIMENTS

Numerical experiments of sound field estimation using a
microphone array were conducted to demonstrate the perfor-
mance of the proposed method. The sound field in the air was
considered, and the phase velocity (i.e., the speed of sound) was
set as c = 340 m/s. We compared the proposed method with
the current LTI method presented in [18] (also introduced as the

2We use the term “norm” according to conventions although it is not a norm
in the strict sense for p ∈ [0, 1).



UENO et al.: DIRECTIONALLY WEIGHTED WAVE FIELD ESTIMATION EXPLOITING PRIOR INFORMATION ON SOURCE DIRECTION 2389

Fig. 4. True sound field under free-field condition at 500 Hz plotted in xy-
plane (r = [x,y, 0]T m).

general sampling array approach in [2]), which is referred to
here as the truncation method. In addition, the proposed method
forβ = 0, which corresponds to our previous work [19], was also
investigated for comparison. Hereafter, the notation of temporal
frequency is used instead of angular frequency.

A. Estimation of Plane-Wave Field Under Free-Field
Condition

In a three-dimensional free field, 64 microphones were located
on a sphere with a radius of1.0m centered at the origin. Their po-
sitions were determined according to the spherical t-design [41].
Each microphone was modeled as a cardioid microphone ori-
ented outward, i.e., the observed signals s1, . . . , sM in a sound
field u were given by

sm =
1

2
u(rm)− 1

2ik

∂

∂ym

u(rm) + εm (m ∈ [[1,M ]]).

(47)
Here, for each m ∈ [[1,M ]], ym denotes the outward unit

normal vector on the sphere at rm, ∂/∂ym denotes the direc-
tional derivative along the direction ym, and εm denotes the
observation noise of the mth microphone. For u ∈ H , these
microphones can be equivalently modeled by the following
directivities:

γm(x) =
1

2
+

1

2
ym ◦ x (x ∈ S2, m ∈ [[1,M ]]). (48)

Furthermore, these directivities γ1, . . . , γM can be repre-
sented as (24) with

cm,ν,μ =

⎧⎪⎨
⎪⎩
√
π (ν = 0)

2π
3 Y1,μ(ym)∗ (ν = 1)

0 (ν ≥ 2)

(m ∈ [[1,M ]]). (49)

The true sound field utrue was set as a single plane wave,
which was defined as

utrue(r) := exp(−ikxinc ◦ r) (r ∈ R
3) (50)

with xinc = [1, 0, 0]T (note that xinc denotes the incident direc-
tion, not traveling direction). An example of the true sound field
is shown in Fig. 4, where the black line denotes the boundary of
the microphone array. The observed signals were calculated us-
ing (47), and the observation noises were sampled independently
from the circularly symmetric Gaussian distribution with zero

Fig. 5. Normalized mean squared error (NMSE) plotted against frequency
under free-field condition.

Fig. 6. Relationship between parameters and normalized mean squared error
(NMSE) under free-field condition. (a) 500 Hz; (b) 1000 Hz.

mean and variance of 10−2 × S, where S denotes the average
power of the noise-free signals (i.e., the signal-to-noise ratio was
20 dB).

In the proposed method, σ1, . . . , σN were set as 1, and λ
was set as 10−2. For prior information, we used the weighting
function defined in (12). Here, we defined η := [cos θ, sin θ, 0]T
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Fig. 7. Estimated sound fields under free-field condition at 500 Hz plotted in xy-plane (r = [x,y, 0]T m). (a) proposed method (β = 0); (b) proposed method
(β = 4, θ = π/6); (c) proposed method (β = 16, θ = π/6); (d) truncation method.

Fig. 8. Normalized error distributions under free-field condition at 500 Hz plotted in xy-plane (r = [x,y, 0]T m). (a) proposed method (β = 0); (b) proposed
method (β = 4, θ = π/6); (c) proposed method (β = 16, θ = π/6); (d) truncation method.

for θ ∈ [0, π/2] (θ = 0means the accurate prior information and
a large θmeans an inaccurate one), and different values of β and
θ were investigated.

In the truncation method [18], the truncation order was deter-
mined as 7 so that the number of unknown coefficients corre-
sponds to the number of microphones, i.e., 64. The global origin
(center of the spherical wave function expansion) was set at
the center of the spherical microphone array. The regularization
parameter in the matrix inversion was set at 10−2 as in the
proposed method.

As an evaluation criterion, the normalized mean squared error
(NMSE) was used, which was defined as

NMSE := 10 log10

∑
i∈Ieval |utrue(r

(i)
eval)−uest(r(i)eval)|2∑

i∈Ieval |utrue(r
(i)
eval)|2

(dB).

(51)

Here, uest denotes the estimated sound field, and the eval-
uation points {r(i)eval}i∈Ieval were set as all grid points with an
interval of 0.1 m on and inside the surface of the spherical
microphone array.

First, the relationship between frequencies and NMSEs was
plotted in Fig. 5. We can see that the NMSEs for the proposed
method (β = 0) were almost the same as those for the truncation
method at low frequencies and lower than those for the truncation
method at high frequencies, which was also reported in [19]
for the two-dimensional case. Among the proposed methods,
the NMSEs for θ = 0 were lower than those for the other
conditions, and even the NMSEs for θ = π/6 (i.e., inaccurate
prior information) were lower than those for β = 0. For further
investigation, the NMSEs at different θ and β were plotted at
frequencies of 500 and 1000 Hz in Fig. 6. It can be seen that

for θ = 0, the NMSE decreased as β increased, and for θ > 0,
the NMSE took a minimum value at a certain value of β. This is
considered to be because the estimation was strongly affected by
inaccurate prior information in cases of large β for θ > 0. The
best value of β varied depending on θ and the frequency, and
their quantitative relationship seems complex; however, at least,
many conditions achieved lower NMSEs than the condition of
β = 0. These results indicate that even rough prior information
on the source direction may improve the estimation accuracy in
the proposed method. We also show an example of the estimated
sound fields and the (pointwise) normalized error distributions at
500Hz in Figs. 7 and 8, respectively. In this example, the NMSEs
were (a) −4.87, (b) −18.20, (c) −24.74, and (d) −1.18 dB. The
tendencies described above can also be seen in these results.

B. Estimation of Monopole Field Under Free-Field and
Reverberant Conditions

In a 6m× 4m× 3m rectangular room with its center defined
as the origin, the same spherical microphone array as used in
the previous experiments was located with its center positioned
at [−1, 0, 0]T m. The reverberation in the room was simulated
by the image-source method [42], where image sources were
considered up to the 20th reflection order. Here, the reflection
coefficients were set asΓ ∈ {0, 0.4, 0.8} for all six wall surfaces,
where each of the above three values was investigated (Γ = 0
corresponds to the free-field condition). In these settings, the
reverberation time (from Sabine’s formula) and the reverberation
radius (critical distance) [43] were respectively0.13 s and1.35m
for Γ = 0.4 and 0.30 s and 0.88 m for Γ = 0.8.

The true sound field utrue was set as a superposition of two
monopole functions, whose direct wave component was defined



UENO et al.: DIRECTIONALLY WEIGHTED WAVE FIELD ESTIMATION EXPLOITING PRIOR INFORMATION ON SOURCE DIRECTION 2391

Fig. 9. True sound field under reverberant condition (Γ = 0.8) at 500 Hz

plotted in xy-plane (r = [x,y, 0]T m).

Fig. 10. Normalized mean squared error (NMSE) plotted against frequency.
(a) Γ = 0; (b) Γ = 0.4; (c) Γ = 0.8.

as

utrue(r) =

2∑
q=1

A(q) exp(ik‖r − r
(q)
src‖2)

4π‖r − r
(q)
src‖2

(r ∈ R
3) (52)

with A(1) = 15 m, r(1)scr = [2.5, 0, 0]T m, A(2) = 10i m, and
r
(1)
scr = [1, 1, 1]T m. An example of the true sound field is shown

Fig. 11. Relationship between parameters and normalized mean squared error
(NMSE). (a) Γ = 0; (b) Γ = 0.4; (c) Γ = 0.8.

in Fig. 9, where the black line denotes the boundary of the
microphone array and the blue dots denote the position of the
sound sources projected into the xy-plane. The observed signals
were calculated using (47), and the observation noises were
added in the same way as in the previous experiments.

In the proposed method, σ1, . . . , σN and λ were set to be the
same as in the previous experiments. For prior information, we
used the weighting function defined in (35) with L = 3, where
we defined

β1 = β2 = β, β3 = 0, (53)

η1 = [1, 0, 0]T, η2 =

[
2√
6
,
1√
6
,
1√
6

]T

, (54)

a1 = a2 =
1− a

2
, a3 = a. (55)
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Fig. 12. Estimated sound fields under reverberant condition (Γ = 0.8) at 500 Hz plotted in xy-plane (r = [x,y, 0]T m). (a) proposed method (β = 0); (b)
proposed method (β = 6, a = 0); (c) proposed method (β = 6, a = 0.5).

Fig. 13. Normalized error distributions under reverberant condition (Γ = 0.8) at 500 Hz plotted in xy-plane (r = [x,y, 0]T m). (a) proposed method (β = 0);
(b) proposed method (β = 4, a = 0.5); (c) proposed method (β = 4, a = 0).

using the parametersβ ∈ [0,∞) anda ∈ [0, 1]. We definedβ3 =
0 for the third weighting to represent the reverberant component,
and differentβ andawere investigated. In the truncation method,
the same parameters as in the previous experiments were used.
The NMSE was used as an evaluation criterion.

First, the relationship between frequencies and NMSEs was
plotted in Fig. 10. In the free-field condition, i.e., Γ = 0, one
can see similar tendencies to the experimental results in Sec-
tion IV-A. In the reverberant conditions, the NMSEs for the
proposed method (β = 6, a = 0) became large as Γ increased,
which was because the regularization term for a = 0 takes a
large value for reverberant components. On the other hand, the
proposed method (β = 6, a = 0.5) achieved the lower NMSEs
than the proposed method (β = 0) at most frequencies although
the performance improvement decreased as Γ increased. The
reduced effectiveness is considered to be related to the extent of
reverberation; in highly reverberant environments, even sound
fields originated from monopole sources become close to diffuse
fields, which makes it difficult to improve estimation perfor-
mance by using a directional weighting.

For further investigation, the NMSEs for different a and β at
500Hzwere plotted in Fig. 11. Also in this case, most conditions
achieved lower NMSEs than β = 0, which indicates again that
even rough prior information may contribute to the improvement
of estimation performance. We also show an example of the
estimated sound fields and normalized error distributions for
Γ = 0.8 at 500 Hz in Figs. 12 and 13, respectively. In this exam-
ple, the NMSEs were (a) −5.22, (b) −5.90, and (c) −3.90 dB.
The tendencies described above can also be seen in these results.

Finally, to investigate how the above results generalize, we
conducted the same evaluations for several different source
positions, i.e.,r(1)src , r

(2)
src , and several accuracies of prior informa-

tion, i.e., η1,η2. The source positions were sampled randomly
according to the uniform distribution on the entire room exclud-
ing the ball with a radius of 2.0 m centered at [−1, 0, 0]T m.
The directions η1,η2 were sampled randomly so that the angle
between ηl and the true lth source’s direction from the center
of the spherical microphone array was θ ∈ {0, π/6, π/3} for
each l ∈ {1, 2}, where each of the above three values of θ was
investigated. Figure 14 shows the relationship between NMSEs
averaged over 20 trials and frequencies for different values of a,
β, andΓ. For θ = 0 (i.e., accurate prior information), one can see
that the performance improvement using the directional weight-
ing can be generalized in various settings of source positions.
Moreover, the proposed method (β = 6, a = 0.5, θ = π/6)
exhibited lower NMSEs than the proposed method (β = 0).
For Γ = 0.8, the NMSEs for these two conditions were very
close; however, the proposed method (β = 6, a = 0.5, θ = π/6)
showed slightly lower NMSEs at most frequencies. These results
mean a certain degree of inaccurate prior information can be used
in the proposed method.

V. CONCLUSION

We proposed a wave field estimation method exploiting prior
information of source directions by introducing a directional
weighting function. The closed-form solution was obtained
using the directionally weighted spherical wavefunctions and
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Fig. 14. Relationship between parameters and normalized mean squared error
(NMSE) averaged over 20 trials. (a) Γ = 0; (b) Γ = 0.4; (c) Γ = 0.8.

directionally weighted translation operators. In the numerical
experiments, we confirmed that a higher estimation accuracy can
be achieved by incorporating prior information in the proposed
method than by using other existing methods that do not use any
prior information.

APPENDIX A

APPROXIMATION BY PLANE-WAVE FUNCTIONS

We show that for any solution u of (1), bounded closed set
ΩK ⊂ Ω, and positive number ε, there is a function uaprox ∈ H
satisfying

|u(r)− uapprox(r)| < ε ∀r ∈ ΩK . (56)

First, from the boundedness of ΩK , there is an open ball
B ⊃ ΩK centered at the origin. For such B, from the Lax–
Malgrange theorem [44], [45] (note that the Helmholtz equation
is an elliptic partial differential equation), there is a function

f : B → C satisfying (Δ + k2)f = 0 and

|u(r)− f(r)| < ε/2 ∀r ∈ ΩK . (57)

Moreover, from [46], f admits the spherical wavefunction
expansion as

f(r) =
∑
ν,μ

◦
fν,μξν,μ(kr) (r ∈ B), (58)

where
∑

ν,μ is the abbreviated form of
∑∞

ν=0

∑ν
μ=−ν . Here,

for ν ∈ N and μ ∈ [[−ν, ν]],
◦
fν,μ ∈ C denotes the expansion

coefficients, and ξν,μ(·) : C3 → C is defined in (29). This series
converges uniformly on ΩK ; therefore, there is some N ∈ N

satisfying

|f(r)− fN (r)| < ε/2 ∀r ∈ ΩK , (59)

where fN : Ω → C is defined as

fN (r) :=

N∑
ν,μ

◦
fν,μξν,μ(kr) (r ∈ Ω). (60)

From (57) and (59), we obtain

|u(r)− fN (r)| < ε ∀r ∈ ΩK . (61)

On the other hand, from the equality (see Appendix IX)

ξν,μ(kr) =
1

4π

∫
x∈S2

exp(−ikr ◦ x)Yν,μ(x) dχ, (62)

fN is shown to be in H . Therefore, by taking uapprox := fN ,
we obtain (56).

APPENDIX B

DERIVATION OF DIRECTIONALLY WEIGHTED SPHERICAL

WAVEFUNCTIONS AND DIRECTIONALLY WEIGHTED

TRANSLATION OPERATORS

First, we prove the following equality:

ξν,μ(z) =
1

4π

∫
x∈S2

exp(−iz ◦ x)Yν,μ(x) dχ

(z ∈ C
3, ν ∈ N, μ ∈ [[−ν, ν]]). (63)

Let Ξ(·) : C3 → C be defined as

Ξ(z) :=
1

4π

∫
x∈S2

exp(−iz ◦ x) dχ (z ∈ C
3). (64)

Since exp(−iz ◦ x) can be represented as a convergent power
series with respect tox, we can apply the integral formula in [47]
and obtain the following equality:

Ξ(z) =
∞∑

n=0

(−1)nn!

(2n+ 1)!
(z21 + z22 + z23)

n

= j0

(
(z21 + z22 + z23)

1
2

)
(z := [z1, z2, z3]

T ∈ C
3).

(65)
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Moreover, let Yν,μ be differential operators obtained by re-
placing variables of the polynomials yν,μ formally with corre-
sponding partial differentials. Then, from (64), we obtain

(Yν,μΞ)(z) =
(−i)ν
4π

∫
x∈S2

exp(−iz ◦ x)Yν,μ(x) dχ

(z ∈ C
3, ν ∈ N, μ ∈ [[−ν, ν]]). (66)

On the other hand, from Hobson’s theorem [21] and (65), the
following equality holds:

(Yν,μΞ)(z) =

[(
1

z

d

dz

)ν

j0(z)

∣∣∣∣
z=(z2

1+z2
2+z2

3)
1
2

]
yν,μ(z)

=
(−1)ν

(z21 + z22 + z23)
ν
2
jν

((
z21 + z22 + z23

) 1
2

)
yν,μ(z)

= (−1)νjν

((
z21 + z22 + z23

) 1
2

)

· yν,μ
(

z

(z21 + z22 + z23)
1
2

)

(z := [z1, z2, z3]
T ∈ C

3, ν ∈ N, μ ∈ [[−ν, ν]]).
(67)

From (66) and (67), we obtain (63).
Next, we prove the following equality:

Θν2,μ2
ν1,μ2

(z) =
1

4π

∫
x∈S2

exp(−iz ◦ x)Yν1,μ1
(x)∗Yν2,μ2

(x) dχ

(z ∈ C
3, ν1, ν2 ∈ N,

μ1 ∈ [[−ν1, ν1]], μ2 ∈ [[−ν2, ν2]]). (68)

From the linearization formula of the spherical harmonic
functions [21], we obtain

Yν1,μ1
(x)∗Yν2,μ2

(x) =

ν1+ν2∑
ν3,μ3

G(ν1, μ1; ν2, μ2; ν3, μ3)Yν3,μ3
(x)

(x ∈ S2, ν1, ν2 ∈ N,

μ1 ∈ [[−ν1, ν1]], μ2 ∈ [[−ν2, ν2]]).
(69)

Using this formula and (63), we obtain (68) as

1

4π

∫
x∈S2

exp(−iz ◦ x)Yν1,μ1
(x)∗Yν2,μ2

(x) dχ

=

ν1+ν2∑
ν3,μ3

G(ν1, μ1; ν2, μ2; ν3, μ3)

· 1

4π

∫
x∈S2

exp(−iz ◦ x)Yν3,μ3
(x) dχ

=

ν1+ν2∑
ν3,μ3

G(ν1, μ1; ν2, μ2; ν3, μ3)ξν3,μ3
(z)

(z ∈ C
3, ν1, ν2 ∈ N, μ1 ∈ [[−ν1, ν1]], μ2 ∈ [[−ν2, ν2]]).

(70)
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