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A Poisson multi-Bernoulli mixture filter for
coexisting point and extended targets
Ángel F. Garcı́a-Fernández, Jason L. Williams, Lennart Svensson, Yuxuan Xia

Abstract—This paper proposes a Poisson multi-Bernoulli mix-
ture (PMBM) filter for coexisting point and extended targets,
i.e., for scenarios where there may be simultaneous point and
extended targets. The PMBM filter provides a recursion to
compute the multi-target filtering posterior based on probabilistic
information on data associations, and single-target predictions
and updates. In this paper, we first derive the PMBM filter
update for a generalised measurement model, which can include
measurements originated from point and extended targets. Sec-
ond, we propose a single-target space that accommodates both
point and extended targets and derive the filtering recursion
that propagates Gaussian densities for point targets and gamma
Gaussian inverse Wishart densities for extended targets. As a
computationally efficient approximation of the PMBM filter, we
also develop a Poisson multi-Bernoulli (PMB) filter for coexisting
point and extended targets. The resulting filters are analysed via
numerical simulations.

Index Terms—Multiple target filtering, point targets, extended
targets.

I. INTRODUCTION

Multiple target filtering refers to the sequential estimation of
the states of the current targets, which may appear, move and
disappear, given past and current noisy sensor measurements.
This is a key component in many applications such as self-
driving vehicles [1] and maritime navigation [2]. Multi-target
filtering can be solved in a Bayesian framework by computing
the posterior density on the current set of targets, given
probabilistic models for target births, dynamics and deaths,
and also models for the measurements, obtained from one
or multiple sensors [3], [4]. The target birth model contains
probabilistic information on where targets may appear in the
surveillance area, and it enables the resulting filters to contain
information on potential targets that may remain occluded [5,
Fig. 6], which is of paramount importance in some applications
such as self-driving vehicles.

If the target extent is small compared to the sensor res-
olution, it is common to use point-target modelling. In this
model, a target state typically contains kinematic information,
such as position and velocity, and one target can generate at
most one measurement at each time step [6]. Conversely, if
the target extent is large compared to the sensor resolution,
a better choice is to use extended target modelling [7]. Here,
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the target state usually contains both kinematic information
and information on its extent, e.g., represented by an ellipse
[8]. In addition, each extended target may generate more than
one measurement at each time step, represented via a Poisson
point process (PPP) in the standard model [7], [9], [10].

For both point and extended targets with Poisson birth
model and the standard measurement models, the posterior
density is a Poisson multi-Bernoulli mixture (PMBM), which
can be calculated by the corresponding PMBM filtering recur-
sions1 [5], [11], [12]. The PMBM has a compact representation
of global hypotheses, representing undetected targets via the
intensity of a PPP and making use of probabilistic target
existence in each global hypothesis. The PMBM recursion can
also handle a multi-Bernoulli birth model by setting the PPP
intensity to zero and adding new Bernoulli components in the
prediction step, resulting in the MBM filter [12], [13]. The
MBM filter can also be extended to consider multi-Bernoullis
with deterministic target existence, which we refer to as the
MBM01 filter, at the expense of increasing the number of
global hypotheses [12, Sec. IV]. Both MBM and MBM01

filters can consider target states with labels, and the (labelled)
MBM01 filtering recursion is analogous to the δ-generalised
labelled multi-Bernoulli (δ-GLMB) filter [14], [15].

There are applications in which it is important to have more
general models than the standard point and extended target
models [3]. Specifically, there may be some targets that are
small compared to the sensor resolution, while other targets are
large, which implies that there are coexisting point/extended
targets in the field of view. For example, in a self-driving
vehicle application, pedestrians may be modelled as point
targets while other vehicles as extended targets. The distinction
between point and extended targets may also depend on
the distance, as sensor resolution is usually higher at short
distances. Therefore, it is of interest to develop multi-target
filters that can handle coexisting point and extended targets.
The extended target measurement models in [15], [16] are
general enough to model measurements from coexisting point
and extended targets, but no single-target state, dynamic model
and filter implementations are presented for this case.

In this paper, we fill this gap and propose a PMBM filter
for coexisting point and extended targets. In order to do so,
we first develop a PMBM filtering recursion for a generalised
measurement model, in which each target generates an inde-
pendent set of measurements with an arbitrary distribution, and
clutter is a PPP. With a suitable choice of the target-generated

1A course on multiple target tracking with detailed information on
these topics can be found at https://www.youtube.com/channel/UCa2-
fpj6AV8T6JK1uTRuFpw.
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measurement distribution, this generalised model recovers the
standard point and extended target measurement models. As
a result, the PMBM filter with the generalised measurement
model can be used to address multi-target filtering problems
with point and extended targets [5], [11], [12], and more
general problems. For example, the generalised measurement
model can also be used for diffuse multipath [17], extended
targets composed of point-scatterers [7], and point targets
with stationary landmarks, modelled as extended targets. The
resulting PMBM recursion has a track-oriented form that
enables efficient implementation [18].

Based on the developed PMBM filtering recursion, the
second contribution is to derive a PMBM filter for coexisting
point and extended targets. In this setting, each Bernoulli
contains probabilistic information on target existence and type,
either point or extended target. The implementation is provided
for a linear Gaussian model for point targets [19] and a Gamma
Gaussian Inverse Wishart (GGIW) model for extended targets
[5], [7], [20]. Finally, we explain how a PMBM density in this
context can be projected onto a Poisson multi-Bernoulli (PMB)
density [11]. Performing this projection after each update
provides us with a PMB filter, which is a fast approximation
to the PMBM filter. Simulation results are provided to analyse
the performance of the filters.

The rest of the paper is organised as follows. Section II
introduces the problem formulation and an overview of the
solution. The update for the PMBM filter with generalised
measurement model is derived in Section III. Section IV
explains the PMBM filter for coexisting point and extended
targets, and the PMB projection. Simulation results and con-
clusions are given in Sections V and VI, respectively.

II. PROBLEM FORMULATION AND OVERVIEW OF THE
SOLUTION

This paper deals with multiple target tracking with both
point and extended target models. This section presents an
overview of a PMBM filter with a generalised measurement
model that will be used to model coexisting point and extended
targets in Section IV. We introduce the models in Section II-A
and the PMBM filter overview in Section II-B.

A. Models

A single target state x ∈ X , where X is a locally compact,
Hausdorff and second-countable (LCHS) space [3], contains
the information of interest about the target, for example, its
position, velocity and extent. The set of targets at time k is
denoted by Xk ∈ F (X ), where F (X ) represents the set of
finite subsets of X .

A main novelty in this paper is the development of a PMBM
filter with a generalised measurement model. Here, the set
Xk of targets at time step k, is observed through a set Zk ∈
F (Rnz ) of noisy measurements, which consist of the union
of target-generated measurements and clutter, with the model:
• Each target x ∈ Xk generates an independent set Z of

measurements with density f (Z|x).
• Clutter is a PPP with intensity λC (·).

It should be noted that the standard point and extended
measurement models [5], [11] can be recovered by suitable
choices of f (Z|x).

We also consider the standard dynamic model for targets.
Given the set Xk of targets at time step k, each target x ∈ Xk

survives with probability pS (x) and moves to a new state with
a transition density g (· |x ), or dies with probability 1−pS (x).
At time step k, targets are born independently following a
Poisson point process (PPP) with intensity λBk (·).

B. PMBM posterior

In this paper, we show that, for the above-mentioned
measurement and dynamic models, the density fk|k′ (·) of
Xk given the sequence of measurements (Z1, ..., Zk′), where
k′ ∈ {k − 1, k}, is a PMBM density. This section provides
an overview of the PMBM posterior and its data association
hypotheses.

The PMBM is of the form [11], [12]

fk|k′ (Xk) =
∑

Y ]W=Xk

fpk|k′ (Y ) fmbm
k|k′ (W ) (1)

fpk|k′ (Xk) = e−
∫
λk|k′ (x)dx

∏
x∈Xk

λk|k′ (x) (2)

fmbm
k|k′ (Xk) =

∑
a∈Ak|k′

wak|k′
∑

]
n
k|k′

l=1 Xl=Xk

nk|k′∏
i=1

f i,a
i

k|k′
(
Xi
)

(3)

where λk|k′ (·) is the intensity of the PPP fpk|k′ (·), representing
undetected targets, and fmbm

k|k′ (·) is a multi-Bernoulli mixture
representing potential targets that have been detected at some
point up to time step k′. Symbol ] denotes the disjoint union
and the summation in (1) is taken over all mutually disjoint
(and possibly empty) sets Y and W whose union is Xk, i.e.,
Xk is fixed, and Y and W free.

In the PMBM posterior, there are nk|k′ Bernoulli compo-
nents and for each Bernoulli there are hik|k′ possible local

hypotheses. By selecting a local hypothesis ai ∈
{

1, ..., hik|k′
}

for each Bernoulli, we obtain a global hypothesis a =(
a1, ..., ank|k′

)
∈ Ak|k′ , where Ak|k′ is the set of global hy-

potheses. Each global hypothesis represents a multi-Bernoulli
distribution. The i-th Bernoulli component with local hypoth-
esis ai has a density

f i,a
i

k|k′ (X) =


1− ri,a

i

k|k′ X = ∅
ri,a

i

k|k′f
i,ai

k|k′ (x) X = {x}
0 otherwise

(4)

where ri,a
i

k|k′ is the probability of existence and f i,a
i

k|k′ (x) the
single target density. The weight of global hypothesis a is
wak|k′ and meets

wak|k′ ∝
nk|k′∏
i=1

wi,a
i

k|k′ (5)

where wi,a
i

k|k′ is the weight of the i-th Bernoulli with local
hypothesis ai, and

∑
a∈Ak|k′

wak|k′ = 1.



The set of feasible global hypotheses is defined as in the
extended target case [5], [21]. We denote the measurement
set at time step k as Zk =

{
z1k, ..., z

mk

k

}
. We refer to

measurement zjk using the pair (k, j) and the set of all such
measurement pairs up to (and including) time step k is denoted
by Mk. Then, a single target hypothesis ai for the i-th
Bernoulli component has a set of measurement pairs denoted
asMi,ai

k ⊆Mk. The set Ak|k′ of all global hypotheses meets

Ak|k′ =
{(
a1, ..., ank|k′

)
: ai ∈

{
1, ..., hik|k′

}
∀i,

nk|k′⋃
i=1

Mi,ai

k′ =Mk′ ,Mi,ai

k′ ∩M
j,aj

k′ = ∅, ∀i 6= j

}
.

That is, all measurements must be assigned to a local hy-
pothesis, and there cannot be more than one local hypothesis
with the same measurement. More than one measurement
can be associated to the same local hypothesis at the same
time step. Each global hypothesis therefore corresponds to
a unique partition of Mk′ [5, Sec. V], and the number of
global hypothesis is the Bell number of |Mk′ |. At each time
step, each non-empty subset of Zk generates a new Bernoulli
component, corresponding to a potential target detected for
the first time or clutter. This implies that, at each time step,
2mk − 1 new Bernoulli components are generated.

It should be noted that the prediction step of a PMBM
density is closed-form for the standard dynamic models [11],
[12], and is not affected by the choice of measurement model.
Therefore, the next section focuses on the update and we omit
the details for prediction, which can be found in [11], [12].

III. PMBM UPDATE FOR A GENERALISED MEASUREMENT
MODEL

This section provides the PMBM filter update step with the
measurement model in Section II. We denote a Kronecker delta
as δi [·], with δi [u] = 1 if u = i and δi [u] = 0, otherwise.
Also, given two real-valued functions a (·) and b (·) on the
target space, we denote their inner product as

〈a, b〉 =

∫
a (x) b (x) dx. (6)

A. Update

The update of the predicted PMBM fk|k−1 (·) after observ-
ing Zk is given in the following theorem.

Theorem 1. Assume the predicted density fk|k−1 (·) is a
PMBM of the form (1). Then, the updated density fk|k (·)
with set Zk =

{
z1k, ..., z

mk

k

}
is a PMBM with the following

parameters. The number of Bernoulli components is nk|k =
nk|k−1 + 2mk . The intensity of the PPP is

λk|k (x) = f (∅|x)λk|k−1 (x) . (7)

For Bernoullis continuing from previous time steps i ∈{
1, ..., nk|k−1

}
, a new local hypothesis is included for each

previous local hypothesis and either a misdetection or an
update with a non-empty subset of Zk. The updated number of
local hypotheses is hik|k = 2mkhik|k−1. For missed detection

hypotheses, i ∈
{

1, ..., nk|k−1
}

, ai ∈
{

1, ..., hik|k−1

}
, we

obtain

Mi,ai

k =Mi,ai

k−1 (8)

li,a
i,∅

k|k =
〈
f i,a

i

k|k−1, f (∅|·)
〉

(9)

wi,a
i

k|k = wi,a
i

k|k−1

[
1− ri,a

i

k|k−1 + ri,a
i

k|k−1l
i,ai,∅
k|k

]
(10)

ri,a
i

k|k =
ri,a

i

k|k−1l
i,ai,∅
k|k

1− ri,aik|k−1 + ri,a
i

k|k−1l
i,ai,∅
k|k

(11)

f i,a
i

k|k (x) =
f (∅|x) f i,a

i

k|k−1(x)

li,a
i,∅

k|k

. (12)

Let Z1
k , ..., Z

2mk−1
k be the nonempty subsets of Zk. For a

Bernoulli i ∈
{

1, ..., nk|k−1
}

with a single target hypothesis

ãi ∈
{

1, ..., hik|k−1

}
in the predicted density, the new local

hypothesis generated by a set Zjk has ai = ãi + hik|k−1j,

ri,a
i

k|k = 1, and

Mi,ai

k =Mi,ãi

k−1 ∪
{

(k, p) : zpk ∈ Z
j
k

}
(13)

l
i,ai,Zj

k

k|k =

〈
f i,ã

i

k|k−1, f
(
Zjk|·

)〉
(14)

wi,a
i

k|k = wi,ã
i

k|k−1r
i,ãi

k|k−1l
i,ai,Zj

k

k|k (15)

f i,a
i

k|k (x) =
f
(
Zjk|x

)
f i,ã

i

k|k−1(x)

l
i,ai,Zj

k

k|k

. (16)

For the new Bernoulli initiated by subset Zjk, whose index is
i = nk|k−1 + j, we have two single target hypotheses (hik|k =
2), one corresponding to a non-existent Bernoulli

Mi,1
k = ∅, wi,1k|k = 1, ri,1k|k = 0 (17)

and the other

Mi,2
k =

{
(k, p) : zpk ∈ Z

j
k

}
(18)

l
Zj

k

k|k =

〈
λk|k−1, f

(
Zjk|·

)〉
(19)

wi,2k|k = δ1

[
|Zjk|

] ∏
z∈Zj

k

λC (z)

+ l
Zj

k

k|k (20)

ri,2k|k =
l
Zj

k

k|k

wi,a
i

k|k

(21)

f i,2k|k(x) =
f
(
Zjk|x

)
λk|k−1(x)

l
Zj

k

k|k

. � (22)

Theorem 1 is proved in Appendix A. We can see that the
updated PPP intensity in (7) corresponds to the predicted
intensity multiplied by the probability of not receiving any
measurements. This is expected as the PPP contains informa-
tion on the undetected targets. Misdetection hypotheses lower
the probability of existence of the Bernoullis via (9) and (11).



If f (∅|x) does not depend on x, the single-target densities of
misdetection hypotheses remain unchanged, see (12).

For the update of a previous Bernoulli component with
subset Zjk, the updated Bernoulli has a probability of existence
equal to one. Each non-empty subset Zjk ⊆ Zk creates a
new Bernoulli component. If |Zjk| > 1, the existence prob-
ability ri,2k|k of the new Bernoulli component is one, which
implies that, conditioned on the corresponding hypothesis,
this Bernoulli represents an existing target. If |Zjk| = 1, the
existence probability ri,2k|k of the new Bernoulli component
depends on the clutter intensity λC (·), as this Bernoulli may
correspond to a target or to clutter. The higher λC (·), the
lower the probability of existence of this potential target.

B. Relation to standard point/extended target models

In the standard point target measurement model, a target x is
detected with probability pD (x) and, if detected, it generates
one measurement with density l(·|x). This model is obtained
by setting

f (Z|x) =


1− pD (x) Z = ∅
pD (x) l(z|x) Z = {z}
0 |Z| > 1.

(23)

If we use the above definitions of local and global hypotheses
and Theorem 1 for point targets, many of the global hypotheses
contain local hypotheses where more than one measurement is
associated to the same Bernoulli at the same time step. Since
this is impossible according to (23), all these hypotheses would
obtain weight zero. A more convenient way to handle point
targets is to exclude these hypotheses from the set Ak|k that
we consider, see [11].

In the standard extended target model, a target x is detected
with probability pD (x) and, if detected, it generates a PPP
measurement with intensity γ (x) l(·|x), where l(·|x) is a
single-measurement density and γ (x) is the expected number
of measurements. We can recover this model by setting

f (Z|x) =

{
1− pD (x) + pD (x) e−γ(x) Z = ∅
pD (x) γ|Z| (x) e−γ(x)

∏
z∈Z l(z|x) |Z| > 0.

(24)

In this case, Theorem 1 becomes the standard extended-target
PMBM update in track-oriented form [5], [21].

C. Discussion

We have shown that the update of a PMBM prior with the
generalised measurement model in Section II is also PMBM.
The proposed measurement model contains the standard point
target and extended target measurement models as particular
cases, and can be used for other types of measurement
modelling. For example, another important special case is that
each target could generate a union of independent Bernoulli
measurements, which can model extended targets that consist
of reflection points [22], [23]. It can also model extended
targets with binomially distributed target-generated measure-
ments [24]. The considered measurement model also allows us

to model coexisting point and extended targets, for example,
modelling radar returns from vehicles (extended targets) and
pedestrians (point targets), as will be explained in Section IV.
It can also model scenarios in which far-away targets produce
point-target measurements and targets that are sufficiently
close produce extended-target measurements, for example, by
setting a distance threshold, which may depend on the target
extent, to switch between both types of model. The proposed
PMBM update requires PPP clutter, which can be relaxed in
Bernoulli filters [25].

We would also like to remark that we have presented the
results for PPP birth density, as we think this is generally
the most suitable birth process, due to the lower number of
generated hypotheses [12], [13]. Nevertheless, the presented
results also hold for the following cases. For multi-Bernoulli
birth, the above equations are valid, by setting the Poisson
intensity equal to zero, and adding the Bernoulli components
for new born targets in the prediction step [12], [13]. In this
case, the posterior is a multi-Bernoulli mixture (MBM), which
can also be represented as MBM01 [12, Sec. IV]. For multi-
Bernoulli birth, one can also uniquely label each Bernoulli
component, for which the labelled MBM01 recursion would
correspond to the δ-GLMB filter recursion [15].

IV. PMBM FILTER FOR COEXISTING POINT AND
EXTENDED TARGETS

This section presents the PMBM filter, and a track-oriented
PMB filter, for coexisting point and extended targets. The
single target space for point targets is Rnx , which represents
the kinematic state (e.g. position and velocity). We model
extended targets with the GGIW model [16], whose space is
Xe = R+ ×Rnx × Sd+, where R+ represents the positive real
numbers and Sd+ the positive definite matrices of size d, which
is the dimension of the extent.

The single target space for coexisting point/extended targets
is then X = Rnx ] Xe, where ] stands for union of sets
that are mutually disjoint, i.e., X = Rnx ∪ Xe and Rnx ∩
Xe = ∅ [3]. Other works with this type of hybrid space are
for example [3], [26]–[28]. If x ∈ Xe, then x = (γ, ξ,X),
where γ represents the expected number of measurements per
target, ξ is the kinematic state and X is the extent state that
describes the target’s size and shape. It should be noted that,
though not necessary, it is also possible to include a class
variable in the target space to distinguish between point and
extended targets, as in interacting multiple models [29], see
Appendix B. This appendix also explains the corresponding
single-target integral.

We use a measurement model that corresponds to the stan-
dard point and extended target measurement models depending
on the type of target we observe. That is, for x ∈ Rnx , f(Z|x)
is given by (23) with a probability pD (x) = pD1 of detection,
l(z|x) = N (z;H1x,R) where H1 is the measurement matrix,
R is the noise covariance matrix, and N (·;x, P ) is a Gaussian
density with mean x and covariance P . For x ∈ Xe, f(Z|x)
is given by (24) with a probability pD (x) = pD2 of detection,
γ (x) = γ, and l(z|x) = N (z;H2ξ,X) where H2 is the
measurement matrix.



The rest of this section is organised as follows. Section IV-A
presents the considered single-target densities. The update and
the prediction are provided in Sections IV-B and IV-C. The
PMB approximation is addressed in Section IV-D. Target state
estimation is explained in Section IV-E. Practical aspects are
discussed in Section IV-F.

A. Single-target densities

We develop a PMBM implementation in which we propa-
gate a Gaussian for single target densities and a (factorised)
GGIW density for extended target densities [7], [20], [30]. In a
factorised GGIW density, the distributions for γ, ξ and X are
independent, which has computational and practical benefits
[7, Sec. III.A.2].

The Gaussian density for x ∈ X with mean xi,a
i,1

k|k′ and

covariance matrix P i,a
i,1

k|k′ is

Np
(
x;xi,a

i,1
k|k′ , P

i,ai,1
k|k′

)
= N

(
x;xi,a

i,1
k|k′ , P

i,ai,1
k|k′

)
(25)

for x ∈ Rnx and zero for x ∈ Xe. Note that Np (·) is zero
evaluated at x ∈ Xe, as Np (·) represents point targets.

The Gamma density with parameters α > 0 and β > 0 is
denoted as G (·;α, β). The inverse Wishart density on matrices
in Sd+ with v > 2d degrees of freedom and parameter matrix
V ∈ Sd+ is denoted as IW (; v, V ) [31]. Then, the GGIW
density for x ∈ X with parameters

ζi,a
i

k|k′ =
(
αi,a

i

k|k′ , β
i,ai

k|k′ , x
i,ai,2
k|k′ , P

i,ai,2
k|k′ , v

i,ai

k|k′ , V
i,ai

k|k′

)
(26)

is

Ge
(
x; ζi,a

i

k|k′

)
= G

(
γ;αi,a

i

k|k′ , β
i,ai

k|k′

)
N
(
ξ;xi,a

i,2
k|k′ , P

i,ai,2
k|k′

)
× IW

(
X; vi,a

i

k|k′ , V
i,ai

k|k′

)
(27)

for x ∈ Xe and zero for x ∈ Rnx .
The single-target density of the i-th Bernoulli and local

hypothesis ai is

f i,a
i

k|k′ (x) = ci,a
i

k|k′Np
(
x;xi,a

i,1
k|k′ , P

i,ai,1
k|k′

)
+
(

1− ci,a
i

k|k′

)
Ge
(
x; ζi,a

i

k|k′

)
(28)

where ci,a
i

k|k′ and
(

1− ci,a
i

k|k′

)
are the probabilities that the target

is a point-target and extended target, respectively. The PPP
intensity is a mixture

λk|k′ (x) =

np

k|k′∑
q=1

wp,qk|k′Np
(
x;xp,q,1k|k′ , P

p,q,1
k|k′

)

+

ne
k|k′∑
q=1

we,qk|k′Ge
(
x; ζe,qk|k′

)
(29)

where npk|k′ is the number of components with point-targets,
with weight wp,qk|k′ , mean xp,q,1k|k′ and covariance P p,q,1k|k′ , and
nek|k′ is the number of components with extended targets, with
weight we,qk|k′ and parameters ζe,qk|k′ . It should be noted that∑np

k|k′

q=1 wp,qk|k′ and
∑ne

k|k′

q=1 we,qk|k′ represent the expected number
of undetected point and extended targets, respectively.

B. Update

We represent the update of a GGIW density with parameters
ζi,a

i

k|k−1 with a given measurement set Zjk as a function(
ζe,qk|k, `

e,q
k|k

)
= ue

(
ζi,a

i

k|k−1, Z
j
k

)
where ζe,qk|k is the updated GGIW and `e,qk|k the marginal
likelihood, see Appendix C. The Kalman filter update of a
Gaussian density with mean xi,a

i,1
k|k−1 and covariance P i,a

i,1
k|k−1

and measurement z is represented as(
xi,a

i,1
k|k , P i,a

i,1
k|k , `i,a

i,1
k|k

)
= up

(
xi,a

i,1
k|k−1, P

i,ai,1
k|k−1, z

)
where xi,a

i,1
k|k and P i,a

i,1
k|k are the updated mean and covariance,

and `i,a
i,1

k|k is the marginal likelihood, see [19] for details.
We apply Theorem 1 to obtain the specific parameters of

the updated PMBM provided in the following lemma.

Lemma 2. The updated PMBM with a prior PMBM de-
scribed by (1), (28) and (29), with measurement set Zk ={
z1k, ..., z

mk

k

}
has the structure in Theorem 1 with the follow-

ing parameters. The number of PPP components is npk|k =

npk|k−1 and nek|k = 2nek|k−1. For point targets,

xp,q,1k|k = xp,q,1k|k−1, P
p,q,1
k|k = P p,q,1k|k−1, (30)

wp,qk|k =
(
1− pD1

)
wp,qk|k−1. (31)

For extended targets and q ≤ nek|k−1, we have

ζe,qk|k = ζe,qk|k−1, w
e,q
k|k =

(
1− pD2

)
we,qk|k−1. (32)

For q > nek|k−1, q̃ = q − nek|k−1,(
ζe,qk|k, `

e,q
k|k

)
= ue

(
ζe,q̃k|k−1, ∅

)
(33)

we,qk|k = pD2 `
e,q
k|kw

e,q̃
k|k. (34)

For missed detection hypotheses of previous Bernoullis,

f i,a
i

k|k (x) = ci,a
i

k|kNp
(
x;xi,a

i,1
k|k , P i,a

i,1
k|k

)
+
(

1− ci,a
i

k|k

)
×
[
wGe

(
x; ζi,a

i,1
k|k

)
+ (1− w)Ge

(
x; ζi,a

i,2
k|k

)]
(35)

where xi,a
i,1

k|k = xi,a
i,1

k|k−1, P i,a
i,1

k|k = P i,a
i,1

k|k−1, ζi,a
i,1

k|k = ζi,a
i

k|k−1
and(
ζi,a

i,2
k|k , `i,a

i,2
k|k

)
= ue

(
ζi,a

i

k|k−1, ∅
)

(36)

li,a
i,∅

k|k = ci,a
i

k|k−1
(
1− pD1

)
+
(

1− ci,a
i

k|k−1

)(
1− pD2 + pD2 `

i,ai,2
k|k

)
(37)

wi,a
i

k|k = wi,a
i

k|k−1

[
1− ri,a

i

k|k−1 + ri,a
i

k|k−1l
i,ai,∅
k|k

]
(38)

ri,a
i

k|k =
ri,a

i

k|k−1l
i,ai,∅
k|k

1− ri,aik|k−1 + ri,a
i

k|k−1l
i,ai,∅
k|k

(39)

ci,a
i

k|k =

(
1− pD1

)
ci,a

i

k|k−1

li,a
i,∅

k|k

(40)



w =
1− pD2

1− pD2 + pD2 `
i,ai,2
k|k

. (41)

The detection hypotheses of a previous Bernoulli with a subset
Zjk, with

∣∣∣Zjk∣∣∣ = mj
k, has ri,a

i

k|k = 1, and

wi,a
i

k|k = wi,ã
i

k|k−1r
i,ãi

k|k−1l
i,ai,Zj

k

k|k (42)(
ζi,a

i

k|k , `
i,ai

k|k

)
= ue

(
ζi,ã

i

k|k−1, Z
j
k

)
. (43)

For mj
k > 1, li,a

i,Zj
k

k|k = pD2 `
i,ai

k|k and ci,a
i

k|k = 0, which implies

that xi,a
i,1

k|k and P i,a
i,1

k|k are irrelevant. For mj
k = 1, Zjk = {z},

we have(
xi,a

i,1
k|k , P i,a

i,1
k|k , `i,a

i,1
k|k

)
= up

(
xi,a

i,1
k|k−1, P

i,ai,1
k|k−1, z

)
(44)

l
i,ai,Zj

k

k|k = ci,a
i

k|k−1p
D
1 `

i,ai,1
k|k

+
(

1− ci,a
i

k|k−1

)
pD2 `

i,ai

k|k (45)

ci,a
i

k|k =
ci,a

i

k|k−1p
D
1 `

i,ai,1
k|k

l
i,ai,Zj

k

k|k

. (46)

For the new Bernoulli initiated by subset Zjk, the single target
density corresponding to an existing Bernoulli is

f i,2k|k (x) = ci,2k|k

np
k|k−1∑
q=1

wq1Np
(
x;xi,2,qk|k , P

i,2,q
k|k

)

+
(

1− ci,2k|k
) ne

k|k−1∑
q=1

wq2Ge
(
x; ζi,2,qk|k

)
(47)(

ζi,2,qk|k , `i,2,q2,k|k

)
= ue

(
ζe,qk|k−1, Z

j
k

)
(48)

wi,2k|k = δ1

[
|Zjk|

] ∏
z∈Zj

k

λC (z)

+ l
Zj

k

k|k (49)

where wq1 ∝ w
p,q
k|k−1`

i,2,q
1,k|k and wq2 ∝ w

e,q
k|k−1`

i,2,q
2,k|k.

For mj
k > 1,

l
Zj

k

k|k = pD2

ne
k|k−1∑
q=1

we,qk|k−1`
i,2,q
2,k|k, (50)

ri,2k|k = 1 and ci,2k|k = 0. For mj
k = 1, Zjk = {z}, we have(

xi,2,qk|k , P
i,2,q
k|k , `i,2,q1,k|k

)
= up

(
xp,q,1k|k−1, P

p,q,1
k|k−1, z

)
(51)

l
Zj

k

k|k = pD1

np
k|k−1∑
q=1

wp,qk|k−1`
i,2,q
1,k|k

+ pD2

ne
k|k−1∑
q=1

we,qk|k−1`
i,2,q
2,k|k (52)

ri,2k|k =
l
Zj

k

k|k

wi,a
i

k|k

(53)

ci,2k|k =
pD1
∑np

k|k−1

q=1 wp,qk|k−1`
i,2,q
1,k|k

l
Zj

k

k|k

. �

(54)

Lemma 2 is obtained by using Theorem 1 and the GGIW
and Gaussian updates [5], [19]. We can see that the number
of components in the PPP corresponding to extended targets
doubles in the update. This is due to the fact that the likeli-
hood for misdetection for extended targets, see (24), has two
terms 1 − pD2 and pD2 e

−γ . The first term corresponds to a
misdetection obtained through the detection process modelled
by pD2 , whereas the second term corresponds to a misdetection
obtained when the detection PPP generates zero measurements
[5], [16], [32]. These terms create two updated PPP compo-
nents for each prior PPP component. For the same reason,
in the update of previous Bernoullis with a misdetection, the
extended target updated density is a mixture of two GGIW,
see (35). As only the Gamma distribution differs in the two
updated GGIWs, we apply merging for Gamma densities [33]
to obtain an updated single-target density of the form (28).

For the detection of previous Bernoullis, the hypothesis
represents with probability ri,a

i

k|k = 1 that there is target. If
mj
k > 1, the target is an extended target with probability

one (ci,a
i

k|k = 0). If mj
k = 1, the target may be a point or an

extended target. For the new Bernoulli components, if mj
k > 1,

the local hypotheses represent an existing extended target with
probability one. For mj

k = 1, the new Bernoulli may represent
clutter, a single target or an extended target. All possible clutter
events are accounted for in the hypotheses with mj

k = 1 and
so do not need to be duplicated in events with mj

k > 1. We can
also see that the single target density (47) for new Bernoulli
components is a mixture for both point and extended targets.
To obtain an updated density as in (28), we perform merging
of the Gaussian mixtures and merging of the GGIW mixtures
[33], [34].

It should be noted that, if the probability of detection is non-
constant, it can be approximated as a constant at the predicted
means for point and extended targets for each hypothesis [5,
Tab. IV]. Then, we can perform the corresponding updates in
Lemma 2.

C. Prediction

We consider that the probability of survival is a constant
pS (·) = pS and linear/Gaussian dynamics for point targets.
That is, for x ∈ Rnx , we have

g (· |x ) = N (·;Fx,Q) (55)

where F is the transition matrix and Q is the process noise co-
variance matrix. For GGIW targets, there are several dynamic
models [7], [8]. In the simulations, we use the one in [5]. We
also assume that a point target cannot become an extended
target and vice versa. The target birth intensity is of the form

λBk (x) =

nb,p
k∑
q=1

wb,p,qk Np
(
x;xb,p,q,1k , P b,p,q,1k

)



+

nb,e
k∑
q=1

wb,e,qk Ge
(
x; ζb,e,qk

)
. (56)

We apply the PMBM prediction step [11], [12] to obtain
a PMBM with the following parameters. Given a single-
target filtering density f i,a

i

k−1|k−1 (·) of the form (28), then the

predicted density is of the same form with ci,a
i

k|k−1 = ci,a
i

k−1|k−1
and

ζi,a
i

k|k−1 = pe

(
ζi,a

i

k−1|k−1

)
(57)(

xi,a
i,1

k|k−1, P
i,ai,1
k|k−1

)
= pp

(
xi,a

i,1
k−1|k−1, P

i,ai,1
k−1|k−1

)
(58)

where pp (·) and pe (·) denote the Kalman filter [19] and the
extended target GGIW prediction [5, Tab. III], respectively.

The predicted PPP is

λk|k−1 (x) =

np
k−1|k−1∑
q=1

pSwp,qk−1|k−1Np
(
x;xp,q,1k|k−1, P

p,q,1
k|k−1

)

+

ne
k−1|k−1∑
q=1

pSwe,qk−1|k−1Ge
(
x; ζe,qk|k−1

)
+ λBk (x)

where
(
xp,q,1k|k−1, P

p,q,1
k|k−1

)
= pp

(
xp,q,1k−1|k−1, P

p,q,1
k−1|k−1

)
and

ζe,qk|k−1 = pe

(
ζe,qk−1|k−1

)
.

While this prediction step assumes that there is no dynamic
change between point and extended targets (e.g., the targets are
pedestrians and vehicles), in some applications, a point target
may become an extended target if it gets sufficiently close to
the sensor. In this setting, one should design the corresponding
transition density to capture this.

D. PMB approximation

It is also useful to consider a PMB approximation to the
PMBM (1) to develop a faster algorithm. If we perform this
approximation after each update, we obtain the corresponding
PMB filter [11], [35]. Given an updated PMBM (1) with k′ =
k, the track-oriented PMB approximation is

fpmb
k|k (Xk) =

∑
Y ]W=Xk

fpk|k (Y ) fmb
k|k (W ) (59)

fmb
k|k (Xk) =

∑
]

nk|k
l=1 Xl=Xk

nk|k∏
i=1

f ik|k
(
Xi
)

(60)

where f ik|k (·) is a Bernoulli density with probability ri of
existence and single target density pi (·) such that

ri =

hi∑
ai=1

wi,a
i

k|k r
i,ai

k|k (61)

pi (x) =

∑hi

ai=1 w
i,ai

k|k r
i,ai

k|k f
i,ai

k|k (x)

ri
(62)

wi,a
i

k|k =
∑

b∈Ak|k:bi=ai

wbk|k. (63)

The PMB approximation (59)-(60) minimises the Kullback-
Leibler divergence (KLD) on a single target space augmented

with an auxiliary variable, which represents if the target
remains undetected or corresponds to the i-th Bernoulli com-
ponent [36]. We can see that (62) is a mixture over all local
hypotheses and that the PPP part of the PMBM (1) is not
affected by the PMB approximation.

In the implementation for coexisting point-extended targets,
we are interested in single target densities of the form (28). By
using moment matching (KLD minimisation) for the mixture
in pi (·), we obtain the single-target density

pi (x) = ciNp
(
x;xik|k, P

i
k|k

)
+
(
1− ci

)
Ge
(
x; ζik|k

)
(64)

ci =

∑hi

ai=1 w
i,ai

k|k r
i,ai

k|k c
i,ai

k|k

ri
(65)(

xik|k, P
i
k|k

)
= mG

(
xi,a

1,1
k|k , P i,a

1,1
k|k , ..., , xi,a

hi
,1

k|k , P i,a
hi
,1

k|k ,

βi,a
1

G , ..., βi,a
hi

G

)
(66)

βi,a
i

G ∝ wi,a
i

k|k r
i,ai

k|k c
i,ai

k|k (67)

ζik|k = mGG

(
ζi,a

1

k|k , ..., ζ
i,ah

i

k|k , βi,a
1

GG , ..., β
i,ah

i

GG

)
(68)

βi,a
i

GG ∝ w
i,ai

k|k r
i,ai

k|k

(
1− ci,a

i

k|k

)
(69)

where mG (·) is a function that obtains the mean
and covariance of a Gaussian mixture with weights

βi,a
1

G , ..., βi,a
hi

G (normalised to sum to one) and mo-

ments xi,a
1,1

k|k , P i,a
1,1

k|k , ..., , xi,a
hi
,1

k|k , P i,a
hi
,1

k|k [37]. The function
mGG (·) obtains the GGIW parameters that minimise the KLD

from a mixture with weights βi,a
1

GG , ..., β
i,ah

i

GG (normalised to

sum to one) and parameters ζi,a
1

k|k , ..., ζ
i,ah

i

k|k [33], [34].

E. Target state estimation

Given a PMBM posterior, we can apply several estimators
to estimate the current set of targets, see details in [12, Sec.
VI]. We proceed to explain how Estimator 1 in [12, Sec. VI],
which is the one we use in the simulations, is adapted to deal
with the single-target space X = Rnx ] Xe.

We first obtain the global hypothesis with highest weight
and select its Bernoulli components whose probability of
existence is above a threshold (0.5 in the simulations). For
each of these Bernoulli components, which have densities of
the form (28), we estimate a target state, which may be a point
or an extended target. If the probability of being a point target
is ci,a

i

k|k > 0.5, then we estimate a point target located at the

mean xi,a
i,1

k|k . Otherwise, we estimate an extended target with
kinematic and extent states located at the mean [8]

ξ̂k = xi,a
i,2

k|k (70)

X̂k =
V i,a

i

k|k

vi,a
i

k|k − 2d− 2
. (71)



F. Practical aspects

As in other multiple target filters with data associations, the
number of global and local hypotheses increases unboundedly
in time. Therefore, in practice, it is necessary to perform
approximations, with the objective of only propagating hy-
potheses with relevant weights. In fact, due to the structure
of the hypotheses of Theorem 1, the way to handle the data
association problem with coexisting point and extended targets
is quite similar to the extended target case [5], [7].

In our implementation, the PMBM posterior is represented
by a list of Bernoullis i ∈

{
1, ..., nk|k′

}
, where each of

them contains their local hypotheses with their parameters,
a global hypothesis table, which contains indices to local
hypotheses of each Bernoulli, and a vector with the global
hypotheses weights. To deal with the data association problem
at each update, we first perform gating to obtain two sets of
measurements: 1) measurements that are in the gate of at least
one previous Bernoulli, and 2) measurements that are only in
the gate of the PPP components. Measurements that do not
fall into these categories are discarded.

For the set of measurements in group 1), we first generate
possible partitions of this set using the DBSCAN algorithm
with distance thresholds between Γd,min and Γd,max, with a
step size of εd [38], [39]. The minimum number of points
to form a region, which is a parameter of the DBSCAN
algorithm, is set to 1 to capture point-target measurements.
Among the possible partitions generated by the multiple runs
of DBSCAN algorithms, there may be repeated ones, so
we keep the unique ones and we obtain the unique subsets
of measurements in these partitions. These subsets are then
used to generate the updated local hypotheses for previous
Bernoullis, see (8)-(16). A new Bernoulli component is also
created for each unique subset of measurements that is in
the gate of a GGIW PPP component. For each previous
global hypothesis and partition, obtained by DBSCAN, we
run Murty’s algorithm [40] to find the global hypotheses with
highest weights.

For the set of measurements in group 2), which may
correspond to newly detected targets, we run the DBSCAN
to obtain possible partitions. Each of these partitions in theory
gives rise to different global hypotheses corresponding to
new born targets. We simplify this procedure by finding the
partition with highest weight and only generating the Bernoulli
components that are generated by the sets in this partition [5].
These new Bernoulli components are added to all the global
hypotheses, whose weights remain unchanged.

We would like to point out that, while DBSCAN is a
fast method for clustering, it is agnostic to target shape.
Therefore, in difficult scenarios, it may be suitable to consider
further partitions using additional methods that account for
target shape, for example, prediction partition and expectation
maximisation partition [32], [41].

We also perform pruning of global hypotheses with low
weights, and pruning of Bernoulli components with low ex-
istence probabilities [12], [13], [42]. A pseudocode of the
resulting PMBM update is provided in Algorithm 1. The PMB
filter performs the same PMBM update and it is then followed

by the PMB approximation, see Section IV-D. It is also
possible to approximate the PMB marginal data association
probabilities directly using belief propagation [43]–[45].

Algorithm 1 Pseudocode of the PMBM update
- Perform gating to separate current measurements into the follow-
ing disjoint categories:

◦ 1. A set of measurements that are in the gate of at least one
previous Bernoulli.

◦ 2. A set of measurements that are only in the gate of PPP
components.
- For measurements corresponding to 1:

◦ Run DBSCAN to generate possible partitions.
◦ Obtain unique subsets in the previous partitions.
◦ Generate new local hypotheses for previous Bernoullis.
◦ Generate new Bernoulli components.
◦ For each previous global hypothesis, run Murty’s algorithm to

obtain updated global hypotheses.
- Perform pruning of global hypotheses and Bernoulli components.
- For measurements corresponding to 2 (new targets):

◦ Run DBSCAN to generate possible partitions.
◦ Find the partition with highest weight.
◦ Generate the new Bernoulli components for this partition.
◦ Add these Bernoullis to the global hypotheses.

V. SIMULATIONS

In this section, we assess the PMBM and PMB filters for
coexisting point and extended targets via numerical simu-
lations2. In this section, we refer to these filters as point-
extended PMBM and PMB (PE-PMBM and PE-PMB) filters.
The filters are implemented with the following parameters:
maximum number of hypotheses 20, threshold for pruning the
PPP weights 10−5, threshold for pruning Bernoulli compo-
nents 10−3 and threshold for pruning global hypotheses 10−3.
The DBSCAN algorithm [38] is run with distance thresholds
between Γd,min = 0.1 and Γd,max = 12, with a step size of
εd = 0.1. We have also implemented a point-extended MBM
(PE-MBM) filter, see Section III-C.

Extended target filters can in principle deal with point-target
detections, as they do not place zero probability to this event.
Therefore, we compare the proposed filters with extended
target PMBM and PMB filters, which we refer to as E-PMBM
and E-PMB filters [5], [39]. We proceed to discuss the models
and the simulations results. All the units in this section are
given in the international system.

A. Models

We consider a point target state [px, ṗx, py, ṗy]
T , which

contains position and velocity in a two-dimensional plane.
Point targets move with a nearly-constant velocity model with

F = I2 ⊗
(

1 τ
0 1

)
, Q = qI2 ⊗

(
τ3/3 τ2/2
τ2/2 τ

)
where τ = 1, q = 0.25, ⊗ denotes Kronecker product and I2 is
an identity matrix of size 2. The probability of survival is pS =
0.99. The extended target model is the GGIW model in Section
IV. Extended targets move with the previous nearly-constant

2Matlab code is available at https://github.com/Agarciafernandez and
https://github.com/yuhsuansia.
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Fig. 1: Scenario of the simulations. Two extended targets are born at
time step 1 and two point targets are born at time steps 5 and 10. The
extended targets are alive at all time steps. The last time steps of the point
targets are 38 and 60. Targets are in close proximity at around time step
50. Target states at time of birth are marked with a red cross, and every
10 time steps with a cross. The 3-σ ellipse for extended targets is shown
every 10 time steps.

velocity model and their extent matrix and γ parameter remain
constant. The probability of survival is 0.99.

The birth model is a PPP of the form (56). The PPP
point target part has parameters nb,pk = 1, wb,p,1k = 0.03,
xb,p,1,1k = [0, 0, 0, 0]

T , P b,p,1,1k = diag([2002, 42, 2002, 42]).
The extended target part has: nb,ek = 1, wb,e,1k = 0.06, and

ζb,e,qk =
(

40, 4, xb,p,1,1k , P b,p,1,1k , 20, 200I2

)
.

As the birth covariance matrix is large, new born targets
may appear in a large area. The multi-Bernoulli birth model
for the PE-MBM filter has a single Bernoulli with existence
probability 0.06, point-target probability c = 1/3, point target
mean xb,p,1,1k and covariance P b,p,1,1k , and GGIW ζb,e,qk .

We measure the positions of the targets. For point targets,
we have parameters: pD1 = 0.95, and

H1 =

(
1 0 0 0
0 0 1 0

)
, R = σ2I2

where σ2 = 1. For extended targets, the parameters are
pD2 = pD1 , H2 = H1. Clutter is uniformly distributed in the
surveillance area [−500, 500] × [−500, 500] with an average
of λC = 8 false alarms per scan. We consider 100 time
steps and the set of trajectories shown in Figure 1, which has
been obtained by sampling from the dynamic process. The E-
PMBM and E-PMB filters are recovered by setting the birth
intensity for point targets to zero in the PE-PMBM and PE-
PMB filters.

B. Results

We first show the ground truth and the estimate of the set
of targets at time step 52 in an illustrative run with the PE-
PMBM filter in Figure 2. We can see that the each extended
target generates several measurements and are detected. The
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Fig. 2: Ground truth and estimated set of targets at time step 52
in an illustrative run. Measurements are shown as black crosses. Blue
ellipses represent the true extended targets, a green cross represents
the true point target. The red, dashed ellipses represent the estimated
extended targets and the pink cross represents the estimated point target.
The three targets are properly detected and classified. At this time
step, there are 22 measurements within the gate of the previous targets
(the three targets shown in the figure). The output of the DBSCAN
algorithm with different distance thresholds produces 18 partitions of
these measurements, ranging from partitions with 22 clusters (each with
a single measurement) to 2 clusters.

ellipses of the estimated targets are reasonably accurate. The
point target generates a single measurement at this time step,
and it is also detected. Its estimate is close to its true state.
In this scenario, the class probability quickly reaches either
zero or one for the considered targets, classifying all targets
correctly.

We evaluate filter performance via Monte Carlo simulation
with 100 runs. We compute the error between the true set of
targets at each time and its estimate using the generalised op-
timal subpattern assignment (GOSPA) metric with parameters
α = 2, p = 2, c = 10, and its decomposition into localisation
errors and costs for missed and false targets [46]. The base
metric for target states is the Gaussian Wasserstein distance,
which measures error for position and extent [47]. In the base
metric, we consider a point target as an extended target with
extent zero.

The root mean square GOSPA (RMS-GOSPA) error against
time and its decomposition are shown in Figure 3. We can see
that PE-PMBM and PE-PMB filter perform quite similarly
and outperform E-PMBM and E-PMB. PE-MBM performs
quite similarly to PE-PMBM and PE-PMB but does not detect
one of the targets at time step 1, as the birth model sets
the maximum number of new born targets to one. For PE-
PMBM and PE-PMB, missed target errors are higher when
new targets are born. False target errors are higher when targets
die and when targets get in close proximity. Localisation
errors are higher at the beginning of the simulation, and when
targets get in close proximity, as the data association problem
is more complicated. ET-PMBM and ET-PMB also behave
quite similarly and have more difficulty in detecting the point
targets, so they show a higher missed target error at some time
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Fig. 3: RMS-GOSPA error (m) for the position elements and its de-
composition. The PE-PMBM and PE-PMB filters have very similar
performance. PE-MBM fails to detect one of the targets at time step
1. The E-PMBM and E-PMB have a higher error at some time steps
due to missed point targets. E-PMBM and E-PMB localisation errors are
also higher at some time steps, as point targets are estimated with some
extent.

steps. In addition, the localisation error is also higher at some
time steps, as point targets are estimated with a certain extent,
which increases the error compared to the ground truth.

The running times of the Matlab implementations (100 time
steps) on an Intel Core i5 laptop are: 56.4s (PE-PMBM),
17.5s (PE-PMB), 64.5 (PE-MBM), 25.5s (E-PMBM) and
15.2 (E-PMB). The PMB filters are considerably faster than
PMBM/MBM, as they do not propagate a mixture through the
filtering recursion. Only considering extended targets is also
faster, though it decreases performance.

To provide more complete simulation results, we show the
RMS-GOSPA errors, along with the GOSPA error decompo-
sition, considering all time steps for different values of the
probability of detection and clutter rate in Table I. Due to
space constraints, we do not show E-PMB, which behaves
quite similarly to E-PMBM. In this table, “Tot.”, “Loc.”,
“Fal.” and “Mis.” refer to total GOSPA, localisation, false
target and missed target costs, respectively. The filters with
coexisting point extended targets consistently provide more
accurate results, especially due to a lower number of missed
targets. The PE-PMBM and PE-PMB filters provide quite
similar results though the PE-PMB filter is slightly better.
While the PE-PMBM filter provides the closed-form solution
to the filtering recursion, we apply approximations and an
suboptimal estimator, so the PE-PMB filter may work better
in some scenarios. Decreasing the probability of detection or
increasing the clutter rate, the GOSPA error for all filters
increases, mainly due to a rise in missed target cost.

VI. CONCLUSIONS

We have derived the update of a PMBM filter with a
measurement model that can consider point and extended
targets, and we have shown that the updated posterior is also
a PMBM. We have also proposed an implementation of the

resulting PMBM recursion to consider coexisting point and
extended targets. In order to do so, we first set the suitable
single-target space and single target densities, which are based
on Gaussian densities for single targets, and GGIW densities
for extended targets. Finally, based on the previous results, we
have explained how to obtain a computationally-lighter PMB
filter for coexisting point and extended targets.

We think there are many lines of future work. In many
applications, there are coexisting point and extended targets,
and one can perform research into tailored measurement and
target models for each application. Another line of future work
is to extend the above results to consider PMBMs on sets
of trajectories, with coexisting point and extended targets, to
provide full trajectory information [21], [27], [28].
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Supplementary material: A Poisson
multi-Bernoulli mixture filter for co-
existing point and extended targets

APPENDIX A

In this appendix, we prove Theorem 1, which provides the
update step, making use of probability generating functionals
(PGFLs). A PGFL is an alternative representation of a multi-
object density, in the same way as Fourier and z-transforms
are for signals defined in the time domain.

For a multi-object density f (·), its PGFL Gf [·] is given by
the set integral [3]

Gf [h] =

∫
hXf(X)δX (72)

where h (·) is a unitless function of state space, and hX =∏
x∈X h(x) , h∅ = 1. The test function for PGFLs related to

densities defined for targets and measurements are denoted as
h (·) and g (·), respectively.

Given the PGFL Gf [·], we can recover its multi-object
density f (·) by the set derivative [3]

f (X) =
δ

δX
Gf [h]

∣∣∣∣
h=0

. (73)

A. PGFLs of targets and measurements

The density (1) in PGFL form is represented as [11]

Gk|k′ [h] = Gp
k|k′ [h] ·Gmbm

k|k′ [h] (74)

Gp
k|k′ [h] = exp

(
〈λk|k′ , h− 1〉

)
∝ exp

(
〈λk|k′ , h〉

)
(75)

Gmbm
k|k′ [h] =

∑
a∈Ak′|k

wak|k′

nk′|k∏
i=1

Gi,a
i

k|k′ [h] (76)

∝
∑

a∈Ak′|k

nk|k′∏
i=1

[
wi,a

i

k|k′G
i,ai

k|k′ [h]
]

(77)

where

Gi,a
i

k|k′ [h] = 1− ri,a
i

k|k′ + ri,a
i

k|k′〈f
i,ai

k|k′ , h〉. (78)

Given the multi-target state X , measurements from each
target are independent, and there is also independent PPP
clutter. Therefore, the PGFL GZ [g|X] of the measurements
given X is the product of PGFL

GZ [g|X] = exp
(
〈λC , g − 1〉

) ∏
x∈X

G[g|x] (79)

where G[g|x] is the PGFL of f (Z|x).

B. Joint PGFL of targets and measurements

The joint PGFL of measurements and targets is [3], [11]

F [g, h] =

∫ ∫
gZkhXkf (Zk|Xk) fk|k−1 (Xk) δZkδXk

(80)

=

∫
G[g|Xk]hXkfk|k−1 (Xk) δXk (81)

= exp
(
〈λC , g − 1〉

)
Gk|k−1[hGZ [g|·]] (82)

∝ exp
(
〈λC , g〉+ 〈λk|k−1, hG[g|·]〉

)
×

∑
a∈Ak|k−1

nk|k−1∏
i=1

[
wi,a

i

k|k−1G
i,ai

k|k−1
[
hG[g|·]

]]
. (83)

We denote the first line of (83) as

F 0[g, h] = exp
(
〈λC , g〉+

〈
λk|k−1, hG[g|·]

〉)
(84)

which represents the joint PGFL of measurements (including
false alarms) and targets in the PPP, up to a proportionality
constant. We also denote

F i,a
i

[g, h] = Gi,a
i

k|k−1
[
hG[g|·]

]
(85)

= 1− ri,a
i

k|k−1 + ri,a
i

k|k−1

〈
f i,a

i

k|k−1, hG[g|·]
〉

(86)

which represents the joint PGFL of measurements (not includ-
ing false alarms) and the i-th potential target. Then, using (5),
we can write (83) as

F [g, h] ∝ F 0[g, h]
∑

a∈Ak|k−1

nk|k−1∏
i=1

[
wi,ak|k−1F

i,ai [g, h]
]
. (87)

C. Updated PGFL

We calculate the updated density fk|k (·) via its PGFL
Gk|k[h], which is given by the set derivative of F [g, h] w.r.t.
Zk evaluated at g = 0 [3, Sec. 5.8] [11, Eq. (25)]

Gk|k[h] ∝ δ

δZk
F [g, h]

∣∣∣∣
g=0

. (88)

Applying the product rule [11, Eq. (31)], we obtain

Gk|k[h] ∝
∑

W0]···]Wnk|k−1
=Zk

δ

δW0
F 0[g, h]

×
∑

a∈Ak|k−1

nk|k−1∏
i=1

δ

δWi

(
wi,a

i

k|k−1F
i,ai [g, h]

) ∣∣∣∣
g=0

.

(89)

The sum in (89) is over all decompositions of the measurement
set Z into (nk|k−1 + 1) subsets, where one subset, W0,
represents measurements which are either false alarms, or
correspond to a target represented by the PPP component (i.e.,
a target which has never been detected so far), and subset Wi,
i > 0, represents measurements assigned to the i-th Bernoulli.

We develop the required set derivatives over the following
lemmas, starting with the Bernoulli component F i[g, h] in
Section A-C1, and then moving on to the update of the PPP,
F 0[g, h], in Section A-C2.

1) Bernoulli update: We calculate the set derivative of
F i,a

i

[g, h]. For Wi 6= ∅, we have

δ

δWi
F i,a

i

[g, h] = ri,a
i

k|k−1

〈
f i,a

i

k|k−1, h
δ

δWi
G[g|·]

〉
(90)

δ

δWi
F i,a

i

[g, h]

∣∣∣∣
g=0

= ri,a
i

k|k−1

〈
f i,a

i

k|k−1, hf (Wi|·)
〉

(91)



where we have applied (73). For Wi = ∅, the set derivative
does not change F i,a

i

[g, h].
Equation (91) and F i,a

i

[0, h] are the PGFL of a weighted
Bernoulli component [11, Lem. 2] with parameters given in
the following lemma.

Lemma 3. The update of the weighted PGFL component
wi,a

i

k|k−1G
i,ai

k|k−1[h] (weighted Bernoulli) with measurement set
Wi, i.e.,

wi,a
i,Wi

k|k Gi,a
i,Wi

k|k [h] =
δ

δWi

(
wi,a

i

k|k−1F
i,ai [g, h]

) ∣∣
g=0

is the PGFL of a weighted Bernoulli distribution, i.e., a
distribution of the form [11, Lem. 2]

f i,a
i,Wi

k|k (X) = wi,a
i,Wi

k|k ×


1− ri,a

i,Wi

k|k X = ∅
ri,a

i,Wi

k|k f i,a
i,Wi

k|k (x) X = {x}
0 |X| > 1

(92)
where for Wi = ∅,
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i

k|k−1 + ri,a
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k|k

]
(93)
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k|k =
〈
f i,a
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k|k−1, f (∅|·)
〉

(94)

ri,a
i,Wi

k|k =
ri,a

i

k|k−1l
i,ai,Wi
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(95)

f i,a
i,Wi

k|k (x) =
f i,a

i

k|k−1(x)f (∅|x)

li,a
i,Wi

k|k

. (96)

For |Wi| ≥ 1,

wi,a
i,Wi

k|k = wi,a
i

k|k−1r
i,ai

k|k−1l
i,ai,Wi

k|k (97)

li,a
i,Wi

k|k =
〈
f i,a

i

k|k−1, f (Wi|·)
〉

(98)

ri,a
i,Wi

k|k = 1 (99)

f i,a
i,Wi

k|k (x) =
f i,a

i

k|k−1 (x) f (Wi|x)

li,a
i,Wi

k|k

. (100)

This lemma therefore proves how to update a previous
Bernoulli with a misdetection or a detection hypothesis in
Theorem 1.

2) PPP update: We now turn to calculating the update of
the PPP in (89) via the set derivative of F 0[g, h], see (84).

Lemma 4. The set derivative of F 0[g, h] is

δ

δW0
F 0[g, h] = F 0[g, h]

∑
P∠W0

∏
V ∈P

dV [g, h] (101)

where

dV [g, h] =
δ

δV

(〈
λC , g〉+

〈
λk|k−1, hG[g|·]

〉)
(102)

and
∑
P∠W0

denotes the sum over all partitions P of W0. �

The proof of Lemma 4 is in Section A-D.
Following (89) , we evaluate the first factor of (101),

F 0[g, h], at g = 0 to obtain

F 0[0, h] = exp
(〈
λk|k−1, hf (∅|·)

〉)
. (103)

This is proportional to the PGFL of a PPP with intensity
λk|k (x) = f (∅|x)λk|k−1 (x), which proves (7).

We now need to compute the set derivatives in (102),
evaluate them at g = 0 and compute the corresponding multi-
object densities. For V = {v} (set with a single element), we
have

d{v}[g, h] = λC (v) +
〈
λk|k−1, h

δ

δ {v}
G[g|·]

〉
(104)

d{v}[0, h] = λC (v) +
〈
λk|k−1, hf ({v} |·)

〉
(105)

where we have applied the linear rule [3].
For |V | > 1, we have

dV [g, h] =
〈
λk|k−1, h

δ

δV
G[g|·]

〉
(106)

dV [0, h] =
〈
λk|k−1, hf (V |·)

〉
(107)

where we have applied that the set derivative of a constant is
zero. This is why the term λC (v) is not present in (106).

The following lemma provides the form of the multi-object
densities whose PGFL is dV [0, h] in (105) and (107).

Lemma 5. The update of the PGFL of the PPP prior with
measurement subset V

wVk|kG
V
k|k[h] = dV [g, h]

∣∣∣
g=0

are PGFLs of weighted Bernoulli distributions with the form
[11, Lem. 2]

fVk|k(X) = wVk|k ×


1− rVk|k X = ∅
rVk|kf

V
k|k(x) X = {x}

0 |X| > 1

(108)

where

wVk|k =

[
δ1 [|V |]

∏
z∈V

λC (z)

]
+ lVk|k (109)

lVk|k =

〈
λk|k−1, f (V |·)

〉
(110)

rVk|k =
lVk|k

wVk|k
(111)

fVk|k(x) =
f (V |x)λk|k−1 (x)

lVk|k
. � (112)

Therefore, the PGFL of the updated PPP in (101) corre-
sponds to the union of a PPP for undetected targets, with
intensity λk|k (x) = f (∅|x)λk|k−1 (x) and, a multi-Bernoulli
mixture where each term in the mixture is a partition of
W0 and each Bernoulli component has a weight and density
provided in Lemma 101. This concludes the proof of Theorem
1.

It should be noted that to perform the PMBM update
we first take all possible sets W0 ] · · · ] Wnk|k−1

= Zk,
which represents subsets of Zk associated to the PPP (W0)
or the previous Bernoullis (Wi, i > 0). Then, we take all
possible partitions P of W0, P∠W0, to generate the new
Bernoulli components. A compact way to represent these
decompositions is to take all possible subsets of Zk to generate
the new Bernoulli components and represent the possible data



associations to previous Bernoulli components, as in done in
Theorem 1.

D. Set derivative of F 0[g, h]

We prove Lemma 4 by induction. The set derivative of
F 0[g, h], see (84), with respect to a set with |W | = 1 is
straightforward, as there is a single partitioning of a one
element set. For induction, we assume that the lemma holds
up to a given size |W |, and we show that it holds for
W̃ = W ∪ {z}:

δ

δW̃
F 0[g, h]

=
δ

δ{z}
δ

δW
F 0[g, h] (113)

=
δ

δ{z}

(
F 0[g, h]

∑
P∠W

∏
V ∈P

dV [g, h]

)
(114)

=

(
δ

δ{z}
F 0[g, h]

) ∑
P∠W

∏
V ∈P

dV [g, h]

+ F 0[g, h]
∑
P∠W

(
δ

δ{z}
∏
V ∈P

dV [g, h]

)
(115)

= F 0[g, h]d{z}[g, h]
∑
P∠W

∏
V ∈P

dV [g, h]

+ F 0[g, h]
∑
P∠W

∑
V ∈P

(
δ

δ{z}
dV [g, h]

) ∏
V ′∈P\{V }

dV ′ [g, h].

(116)

Each step in the previous derivation results from the product
rule [3].

From (102), we have ∂
∂{z}dV [g, h] = dV ∪{z}[g, h]. In ad-

dition, each partitioning of W̃ consists of either a partitioning
of W with an additional single element subset {z}; or a
partitioning of W , adding element z to one of the existing
subsets [3, App. D.2]. Since the top line in (116) handles the
former case and the bottom line handles the latter case, we find
that (116) is equivalent to F 0[g, h]

∑
P∠W̃

∏
V ∈P dV [g, h],

which proves Lemma 4.

APPENDIX B

A. Single-target integral

Given a real-valued function π (·) on X = Rnx ] Xe such
that

π (x) =

{
πp (x) x ∈ Rnx

πe (γ, ξ,X) x = (γ, ξ,X) ∈ Xe,
(117)

its single target-integral is the sum of the integrals in Rnx and
Xe [3, Sec. 3.5.3]

∫
X
π (x) dx =

∫
Rnx

πp (x) dx

+

∫
Sd+

∫
Rnx

∫
R+

πe (γ, ξ,X) dγdξdX. (118)

TABLE II: Update and marginal likelihood of a GGIW density

Input: Prior GGIW parameters ζ+ = (α+, β+, x+, P+, v+, V+), set W of
measurements.
Output: (ζ, `) = ue (ζ+,W ), where ζ are the updated GGIW parameters
and ` the marginal likelihood evaluated at W .

If |W | > 0

ζ =



α = α+ + |W |
β = β+ + 1
x = x+ +Kε
P = P+ −KHP+

v = v+ + |W |
V = V+ +N + Z

where

z =
1

|W |
∑
z∈W

z

Z =
∑
z∈W

(z − z) (z − z)T

X̂ = V+ (v+ − 2d− 2)−1

ε = z −Hx+

S = HP+H
T +

X̂

|W |
K = P+H

TS−1

N = X̂1/2S−1/2εεTS−T/2X̂T/2

` =
(
π|W | |W |

)−d/2 |V+| v+−d−1

2 Γd

(
v−d−1

2

) ∣∣∣X̂∣∣∣1/2 Γ (α) (β+)α+

|V |
v−d−1

2 Γd

(
v+−d−1

2

)
|S|1/2 Γ (α+) (β)α

.

If |W | = 0

ζ = (α+, β+ + 1, x+, P+, v+, V+)

` =

(
β+

β+ + 1

)α+

.

B. Relation to spaces in interacting multiple models

We explicitly relate the space of coexisting point extended
targets, X = Rnx ] Xe, in Section IV to spaces used in
interacting multiple models [29], which usually include a
class variable to distinguish between different models. Given
x ∈ Rnx ] Xe, we know if x represents a point target or an
extended target as Rnx and Xe are disjoint. Therefore, it is
not necessary to extend the single target space with a class
variable to distinguish both types of targets.

Nevertheless, it is possible to add a class variable c such
that the single target state becomes y = (c, x), where c = 0
for point targets and c = 1 to extended targets. In this case,
the single target space is ({0} × Rnx) ] ({1} × Xe) and the
PMBM filtering recursion remains unchanged.

APPENDIX C

For completeness, in this appendix, we provide the (approxi-
mate) single extended target update for factorised GGIW priors
[5], [30]. The resulting expressions are provided in Table II.
The update for the parameters of the Gamma distribution is
exact due to the Poisson-Gamma conjugacy.
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