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Localization With One-Bit Passive Radars 1in
Narrowband Internet-of-Things Using Multivariate
Polynomial Optimization
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Abstract—Several Internet-of-Things (IoT) applications provide
location-based services, wherein it is critical to obtain accurate
position estimates by aggregating information from individual sen-
sors. In the recently proposed narrowband IoT (NB-IoT) standard,
which trades off bandwidth to gain wide coverage, the location
estimation is compounded by the low sampling rate receivers and
limited-capacity links. We address both of these NB-IoT drawbacks
in the framework of passive sensing devices that receive signals
from the target-of-interest. We consider the limiting case where
each node receiver employs one-bit analog-to-digital-converters
and propose a novel low-complexity nodal delay estimation method
using constrained-weighted least squares minimization. To support
the low-capacity links to the fusion center (FC), the range estimates
obtained at individual sensors are then converted to one-bit data. At
the FC, we propose target localization with the aggregated one-bit
range vector using both optimal and sub-optimal techniques. The
computationally expensive former approach is based on Lasserre’s
method for multivariate polynomial optimization while the lat-
ter employs our less complex iterative joint range-farget location
estimation (ANTARES) algorithm. Our overall one-bit framework
not only complements the low NB-IoT bandwidth but also supports
the design goal of inexpensive NB-IoT location sensing. Numerical
experiments demonstrate feasibility of the proposed one-bit ap-
proach with a 0.6% increase in the normalized localization error
for the small set of 20—60 nodes over the full-precision case. When
the number of nodes is sufficiently large (>80), the one-bit methods
yield the same performance as the full precision.

Index Terms—TFractional optimization, localization,
narrowband internet-of-things, one-bit quantization, passive
radar.
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1. INTRODUCTION

ECENT industry estimates project that nearly 75 billion

devices will be connected in the Internet-of-Things (IoT)
by the year 2025 [1]. The IoT is envisioned to connect the phys-
ical and digital world through extensive instrumentation with
sensing, wearable, and intelligent devices [2]. A common [oT
application is to provide various localization-based services [3],
[4], wherein a large network of devices collects and transmits
data to determine the position of entities-of-interest with respect
to a node or sensor within the IoT. The location information
is critical in order to gather crucial inference from physical
measurements in applications such as military surveillance [5],
physiological sensors [6], smart homes [7], disaster response [8],
and environmental monitoring [9].

Global Positioning System (GPS) devices are quite reliable
in providing localization measurements in other applications.
However, GPS deployment at every IoT node is very expensive
in terms of cost and power, especially for networks with massive
number of devices. Further, GPS performs poorly in indoor envi-
ronments. Therefore, many alternative loT localization methods
have been proposed in recent studies [4]. A promising technol-
ogy is passive sensor tags that augment existing [oT deployments
through backscatter communications [10]. These tags do not
have any active radio-frequency (RF) chain components thereby
leading to huge savings in cost and energy. This is also a practical
approach because it is difficult to re-purpose the preset [oT net-
work sensing modalities (usually fixed before the deployment),
especially when it comprises millions of devices [11]. On the
other hand, addition of passive sensors does not require changing
the deployed IoT hardware or placement of new communications
and power sources [12].

Since the IoT framework is defined by a massive number of
largely battery-powered devices, that also transmit or receive
data, the underlying challenges for any communications link in
this setting are low power, low data rate, wide coverage, and
scalability [13]. In this context, the 3 rd generation partnership
project (3GPP) recently introduced narrowband IoT (NB-IoT)
system specifications to support wide coverage area, long user
lifetime, and low power/cost devices over a narrow bandwidth
of 180 kHz [14]. While not fully backward compatible with
existing 3GPP devices, the NB-IoT harmoniously coexists with
legacy networks by reusing the functionalities of the latter’s
design. The reduced NB-IoT bandwidth implies higher transmit
power spectral density within the existing 3GPP specifications.
This, combined with a soft re-transmission strategy [15], en-
hances the coverage of NB-IoT over conventional IoT solutions.
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The ultra-low complexity and low power consumption features
of NB-IoT are advantageous for location-based services such
as smart parking, smart tracking, and smart home [16]. In this
paper, we focus on passive localization in NB-IoT networks.

While NB-IoT networks benefit from low bandwidth to en-
hance their coverage, the same feature imposes challenges in
localization by severely limiting the data rate. Commonly used
ranging-based localization techniques lose accuracy because of
low data rates [17]. In NB-IoT devices, low battery-power is
insufficient to handle high sampling rates required to attain
necessary localization accuracy [18]-[21]. A popular alterna-
tive NB-IoT localization technique is to employ fingerprinting,
wherein the received signal strength indicator (RSSI) measure-
ments are collected at specified locations during the training
phase and then compared with online measurements to deter-
mine the location of the target [18], [22]. However, this approach
requires prior knowledge of a detailed RSSI database which may
be unavailable or unattainable. Hence, recent NB-IoT studies
explore RSSI-independent signal processing methods such as
successive interference cancellation [19], maximum likelihood
estimation [20], frequency hopping [21] and machine learn-
ing [23]. Our proposed technique is inspired by localization in
passive radar [24] not requiring prior RSSI measurements.

The aforementioned works assume that measurements at each
node are digitally represented by a large number of bits per
sample such that the resulting quantization errors can be ne-
glected. Further, when nodal measurements are sent to a fusion
center (FC) for an aggregate decision, full capacity links are
assumed. In this paper, contrary to these works, we consider the
limiting case wherein the receivers at each node employ one-
bit analog-to-digital converters (ADCs), which directly convert
node measurements into complex data with binary components,
each containing one-bit information, by comparing the real and
imaginary parts of the node measurements with appropriate
thresholds separately and noting the sign. This leads to one-bit
per component measurements. Considering the fact that the cost
and power consumption of ADCs increase exponentially with
the number of quantization bits and sampling frequency [25],
the use of one-bit ADCs supports the low-cost and low-power-
consumption features of NB-IoT. We then leverage the recent
advances in one-bit signal processing [26] to estimate the target
range/delay with respect to a specific node. To cope with the
capacity limitations of the nodal links, we assume that, prior to
transmission to FC, the receive sensors quantize nodal estimates
to one-bit data. The FC then performs target localization, i.e.
determination of target’s position with respect to the entire
network, using the one-bit range vector aggregated from the
estimates sent by all the nodes.

Converting analog signals into digital data using a single bit
per sample leads to significant errors in the digital approximation
of the original analog signals. This necessitates development of
new algorithms for information retrieval from one-bit samples.
One-bit sampling has a rich heritage of research in statistical
signal processing [27]-[29] and signal reconstruction [30]. It
was shown in [30] that, for band-limited bounded-amplitude
square-integrable input signals, a sufficient number of one-
bit samples lead to recovery of full-precision data with lo-
cally bounded point-wise error, resulting in an exponentially
decaying distortion-rate characteristic. In the past few years,
one-bit signal processing has received significant attention in
numerous modern applications such as array processing [31],
[32], massive multiple-input multiple-output (MIMO) [33], deep
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learning [34], dictionary learning [35], and radar [36]. Most of
these works are based on either well-known Bussgang’s The-
orem [31], [33], [37] or compressive sensing techniques [34]-
[36], [38]. Further, there are some elegant works on colocated
one-bit radar and array processing [32], [39] which formulate
the parameter estimation from one-bit measurements as an op-
timization problem with linear constraints which can be solved
by polynomial-time algorithms. Contrary to previous works on
colocated one-bit radar [39], our proposed method investigates
widely separated radar setting.

We first formulate the problem of range/time-delay estimation
in a clutter-free environment from one-bit samples received by
each NB-IoT sensor as a sparse recovery problem. The formu-
lation and approach of the clutter-free scenario is effectively
applicable in a weak clutter environment but the impact of strong
clutter is unexamined and left for the future work. We show that,
unlike infinite precision sampling, oversampling could improve
the range/delay estimation performance in one-bit sampling.
Further, oversampling leads our proposed approach to be able to
achieve a considerably high resolution for time-delay estimation
despite the narrow bandwidth used in NB-IoT. Toward dealing
with the capacity limitations of the backhaul links, we assume
that each sensor forwards an one-bit conversion of their range
measurements to the FC. Collecting these one-bit measurements
at the FC, we formulate the passive localization problem using
the bistatic range-difference model. Note that the passive lo-
calization with NB-IoT sensors has a model similar to that of
a passive radar [24]. The passive radar localization has been
considered in [24] in the high-resolution ADC framework in
which full-precision range measurements are assumed. This
usually results in a system of several equations that are solved
conventionally by the least squares (LS) method. In this con-
text, apart from application to NB-IoT localization, ours is the
first work in the context of one-bit sampling in a passive and
distributed radar setting.

In our bistatic range-difference model, recovering locations
from one-bit samples requires minimizing a cost function that is
a non-negative polynomial in range measurement variables and
subjected to polynomial inequalities defined by the positive-
valued samples (the one-bit range measurements). The general
approach to solving this problem is to re-cast the feasibility
of this finite system of polynomial constraints in terms of
an equivalent polynomial that involves squares of (unknown)
polynomials [40]. However, it is rather difficult to express a
non-negative multivariate polynomial as a sum-of-squares. To
address this, we employ Lasserre’s general solution approach for
polynomial optimization problems via semi-definite program-
ming (SDP) using methods based on moment theory [41]. Our
novel formulation jointly estimates the full-precision data as well
as the target location. While this method could attain the global
minimum, its computational complexity grows considerably
with increase in the number of NB-IoT sensors. In order to
reduce the computational complexity, we trade accuracy with
complexity by proposing a novel sub-optimal iterative joint
range-target location estimation (ANTARES) algorithm. We
also derive the Cramér-Rao bound (CRB) for localization with
one-bit nodal range measurements and use it as benchmark for
assessing the estimation performance of the proposed optimal
and sub-optimal algorithms. Numerical results show that when
sufficiently large number of NB-IoT nodes are available, the
optimal approach yields same performance as the full-precision
and ANTARES leads to only 0.43% increase in the normalized
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localization error. Further, the normalized localization error rises
minimally by 2.2% and 0.6% for a smaller set of 20-60 nodes
using ANTARES and optimal algorithm, respectively, over the
full precision case.

Preliminary results of this work appeared in our conference
publication [42], where performance analysis was not included
and only Lasserre’s approach was considered. In this paper,
we also investigate the one-bit time-delay estimation for the
oversampled scenario and present ANTARES algorithm. In
summary, our work provides a robust framework for location-
based services in NB-IoT, does not require prior RSSI measure-
ments, performs target delay estimation with one-bit samples,
yields localization using limited capacity links, and is com-
putationally efficient. Further, our work also has connections
with the recent developments in spectrum sharing and joint
radar-communications (JRC) design [25], [43]. Unlike some
recent works [44] where new waveforms are developed for
distributed JRC, our work exploits existing NB-IoT signaling
for a sensing application.

The rest of the paper is organized as follows. In the next
section, we describe the system and signal model of the passive
localization problem via the NB-IoT sensors. We introduce our
one-bit nodal range estimation algorithm in Section III. Then,
using these estimates, we localize the target at FC in Section IV
through a polynomial optimization. We validate our models and
methods through numerical experiments in Section V before
concluding in Section VI.

Throughout this paper, we refer the vectors and matrices
by lower- and upper-case bold-face letters, respectively. The
superscripts (-)7 and (-) indicate the transpose and Hermitian
(conjugate transpose) operations, respectively. [A]; ; and [a];
indicate the (4, j)-th and i-th entry of A and a, respectively. The
notations ||al||; and ||a||2 stand for ¢;-norm and ¢5-norm of the
vector a, respectively; |a| and [a] represent the absolute value
of and the least integer greater than or equal to the scalar a,
respectively; the estimates of a and a are indicated by a and a,
respectively; superscript within parentheses as (~)(k) indicates
the value at k-th iteration; a diagonal matrix with the diagonal
vector a is diag(a); the real and imaginary parts of the complex
number a are Re{a} and Im{a}, respectively; deg(.) is the
degree of a polynomial; E{.} stands for the statistical expec-
tation; I, is the M x M identity matrix; AT, [T, = AAT and
I3 = Iy — AAT indicate the pseudo-inverse, the projection
matrix onto the range space and the projection matrix onto
the null space of the full column rank matrix A, respectively;
R(A) and N (A) represent the range and null spaces of A,
respectively; A > 0 and a > 0 indicate a positive semidefinite
matrix and a vector with all elements greater than or equal
to zero, respectively. The symbol ® represents the Hadamard
(element-wise) product and sgn(-) stands for the sign function.
The notation g—f is the partial derivative of the function f with
respect to the variable x.

II. SYSTEM MODEL

Consider a source, say, acommunications base-station whose
location in Cartesian coordinatesis [§7 07 67]7 € R3x1.The
source transmits a known baseband single-tone NB-IoT signal
s(t) € C with bandwidth B. As per NB-IoT specifications,
the signal has spectrum limited to 180 kHz. It is similar to
LTE with fewer (1, 3, 6, or 12) subcarriers with normal cyclic
prefix [13], [45] and employs rotated phase shift keying (PSK)
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Fig. 1. Ilustration of the localization scenario. The NB-IoT #1, #2, . . ., nodes
(blue) are passive sensors (located at distances d~1, (ZQ, A dg from the base
station). The nodes receive the signal from the source bounced off from a target-
of-interest (red) located at distances dy,d1, . . . , dg from the nodes and dg from
the base station. In our proposed model, the nodes employ one-bit ADCs to
sample the received signal and estimate the range. The estimated range at each
node is quantized and then forwarded to the FC for an aggregated estimate.

constellations, either /2 binary PSK (7/2-BPSK) or /4
quadrature PSK (7/4-QPSK). The resulting signal is

N.-1
s(t) = Z are* gt —kT.), 0<t<T, (1
k=0

where aj, € {£1} for 7/2-BPSK and a;, € {1, +j} for w/4-
QPSK are known pilot symbols, M is the alphabet size (2 for
7/2-BPSK and 4 for 7/4-QPSK), N, is the maximum number
of symbols allowed during the transmission, 7" denotes the
observation interval, T, is the symbol period, and g(t) is the
pulse shaping filter impulse response with bandwidth B.

The transmit signal is bounced off from the target-of-interest
located at [6* 6Y 67]7 € R3*!. In a typical NB-IoT setting, a
target could be a subject carrying a mobile phone, an intelligent
vehicle or a robot. The backscattered signal is then received
by M distinct NB-IoT sensor nodes. The location of the m-
th node is [6%, 6%, 6z e R¥*'\me M ={1,2,...,M}.
These nodes are synchronized with the base-station (Fig. 1).
Synchronization could be provided by sending a periodic syn-
chronization signal from the base-station to the NB-IoTs, includ-
ing timing information of the base-station, while the base-station
maintains a constant clock using either receiving a reference time
from GPS or an atomic clock. After receiving the the base-station
timing information, NB-IoTs are able to accurately synchronize
their clocks with the base-station clock [46]-[49]. More detailed
information about the periodic synchronization signal and the
synchronization mechanism in NB-IoT systems are provided
in [48], [49], and the references therein. Synchronization may
be also achieved through the use of protocols such as IEEE
1588 generic precision time protocol (gPTP) [50], network time
protocol (NTP) [51] and wireless PTP [52]. These cost-effective
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clock synchronization protocols are also popular in other appli-
cations, including electrical grid networks, cellular base-station
synchronization, industrial control, and vehicular systems [53],
[54].

If the distance between the source and the target is dy and that
between the target and the m-th NB-IoT node is

A = \/(5351 — 6%)2 4 (87 — 6Y)% + (6, — 6%)2,

1<m< M, (2

then the true target range with respect to the m-th NB-IoT node
is

T = dm + do, 1 < m < M. 3)

The propagation is non-dispersive and the base-station signal
received by the NB-IoT nodes includes a direct line-of-sight
(LoS) path from the base-station to the nodes and an indirect
non-LoS (NLoS) path from the base-station to the target and then
to the nodes. The demodulated baseband analog signal received
at m-th sensor is
Um(t) = Qms(t — Tm) + ams(t — ) + 0 (t), (4

where o, € C (o, € C) and 7,,, € R (7,,, € R) are the atten-
uation coefficient and time-delay of the propagation channel for
the direct (indirect) path, respectively; and 7.,,(¢) € C denotes
additive white noise following a circular-symmetric complex
Gaussian distribution with variance N,,, > 0. The unknown time
delay 7, is linearly proportional to 7,,, i.e. T7,,, = 4, /c Where
¢ = 3 x 108 m/s is the speed of light. The unknown direct path
delay 7, is also linearly proportional to the distance between
the m-th node and the base station. i.e., T,,, = d,;,/c Where
dm = \/(6%, — 05)2 + (630 — 07)2 + (62, — 67)% denotes the
distance between the m-th node and the base station.

The baseband signal is filtered by an ideal low-pass filter with
bandwidth B and frequency response

1, Q] <2nB,
H©) = {0, ‘oth|erwise.
This low-pass filtering of the signal ¢, (¢) yields
Ym(t) = Ams(t — o) + @ st — ) + N (), (6)
where 1., (t) is the filtered noise trail whose auto-correlation is

(&)

1 [ _
R, (t1 —t3) = %/ Nm|H(Q)|26—JQ(t1—t2)dQ

= 2BN,,sinc(2B(t1 — ta)), @)

where sinc(u) = W

Each NB-IoT node is equipped with a one-bit ADC which
admits binary samples of the corresponding v, (¢) during the
observation interval [0, T'). The ADC sampling frequency f; =
T%. = 29 B, where ¢ is an integer greater than or equal to one,
referred to as the oversampling factor. Figure 2 conceptually de-
picts a one-bit ADC which comprises a Continuous-to-Discrete
Converter (CDC) with sampling frequency fs = 29 B followed

by a one-bit quantizer. The CDC produces L = Tl = 29BT dis-
crete samples of y,,, (¢) during the time interval [0, T"). Stacking
all discrete samples produces a C“*! vector

Ym = ams(a:rn) + amS(Tm) + M, (8)
where [y’m]l = y7n((l - 1)T5), [S(%m)]l = 3((l - 1)T5 - 7f\:’m)a
[s(tm)]i = s((Il = 1)Ts — 7 )s and [Ny, ]; = m, (1 — 1)Ts) for
l=1,2,..., L. From (7) and Gaussianity of n,,(t), vector n,,
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y’"l Zm

Fig.2. Conceptual representation of the oversampled one-bit ADC. The CDC
block represents the digitizer operating at sampling rate of 1/Ts. A quantizer
Q(+) then converts the digital samples into a one-bit data stream.

follows a zero-mean complex Gaussian distribution with the
covariance

E{n,nfl} =0’ % e C"*" ©)

where [X]; ; = sinc(%) and 02, = 2BN,),.

The quantizer, represented by a function Q(-), converts the
discrete samples into binary data by comparing each sample
to a known threshold and then measuring the sign of the real
and imaginary parts of the resulting difference. These one-bit
measurements at the m-th NB-IoT node are

Zy = Q(ym)7 (10)
where the [-th element of Q(y, ) is
[Q(ym))i0 = %snge{[ym]z — Iyli})
+ %sgnam{[ym]l ). an

with ~,,, € CE*1 are known thresholds levels.

The nodal processing at each NB-IoT receiver entails estima-
tion of the target time-delays, and hence the range, from one-bit
samples z,,. In the next section, we devise a method for one-bit
time-delay estimation.

III. TIME-DELAY ESTIMATION WITH ONE-BIT SAMPLES

Several approaches have been proposed in the literature to
estimate range (time-delay) of targets from one-bit samples
with most formulating this as an optimization problem. For
example, the covariance matrix formulation of [39] employs
cyclic optimization method to extract the range along with other
parameters. Other recent works using only one sensor exploit
sparsity of the target scenario to estimate unknown parameters
by applying techniques such as ¢;-norm minimization [55]
and log-relaxation [56] to solve the resulting optimization. In
our passive NB-IoT sensor set-up, the objective function is a
variation of weighted least squares (WLS) that we minimize
via {1-norm regularization to estimate 7,, using the one-bit
quantized observations, i.e., z,,. In conventional passive radars,
direct and indirect path signals are recorded in separate ref-
erence and surveillance channels, respectively. However, the
direct signal may seep into the surveillance channel and mask
the relatively weaker indirect signal. In such cases, adaptive
filters are employed to first suppress the direct signal in the
surveillance channel [57]. However, our NB-IoT scenario is an
opportunistic sensing application where the receivers are not
equipped to record separate channels. Moreover, as explained
next, the (additive) overlap of direct signal with the target echo
is useful because the former is used to estimate the latter in our
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formulation. Here, we also remark that there are passive radar
applications where direct signal suppression is not crucial. For
example, this requirement is often relaxed in passive sensing
using communications satellites because of the relatively weak
power of the direct path satellite signal than, say, commonly
used broadcasting signals [58].

A. Constrained-Weighted Least Squares Minimization

Equation (8) can be transformed to the frequency domain by
multiplying both sides by an L x L Discrete Fourier Transform

(DFT) matrix F, whose (n, k)-th entry is e 2% This yields

Fy,, = andiag(sz, )a(Tn) + andiag(s,, )a(rm) + Tom,
(12)
where 7, = Fn,,, [a(u)]; =e et oy 0< 1< L—1
and s, = F's,, with
S(-1T,) 1<I<L— (2],
[suli {0 otherwise. (13)

Let us discretize the continuous space of the time delay,
ie., [0,T), into a given set of N > L grid points, i.e.,
{Tms.., Tm,n} [59]. This discretization transforms (12) into
the following sparse model

FY'rn = [g © A(?'m)]am + ﬁ’m (14)

a(Tpn) € CN, S =
and @, = [@m,1 QN €

where  A(T,,) = [a(Tm,1)
[g?m,l o g?le] € CLXN
CNV*1 s a sparse vector with

Qs if ?m,k = Tm,
[am]k = amv if ?m,k - ?m,y (15)
0, otherwise.

The waveform s is known at NB-IoT receiver. Hence, the
problem is to find y,, and a sparse vector c,, which are
consistent with the model in (15) as well as one-bit measurments
Z,. In consequence, the time-delay estimation problem can be
formulated as follows [55]

m;mmlze a1 + pl|W [Fym EXo A(?m)]am] IE:

subject to Re{z,,} © Re{y,, —v,,} = 0,
Im{z,,} © Im{ymm —~v,,} = 0.

where p is a regularization parameter and W = S :FH isa
weighting matrix. The first term in the objective of (16) promotes
sparsity in @, while the second term is a WLS criterion that
penalizes the model mismatch in (14) considering the fact that
the additive noise in (14) follows a circular-symmetric complex
Gaussian distribution with the covariance matrix o,,FXFH.
Further, linear constraints arise because one-bit quantized and
discrete samples must share the same sign. Introducing a
slack variable x,, = E’%FH[Fym —[So AF)]am], (16)
becomes

(16)

minimize ||@,, |1 + p||Xm|2

Xm0

subject to
Re{zm} © Re{F[S © A(Tm)[Gm + 7%y — v} = 0,
Im{z,,} © Im{F7[S © A(F,)|@n + 7%, — 7, } = 0.
(17)
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Fig. 3. An equivalent representation of Fig. 3 to show both oversampled y
and Nyquist-sampled y .

The above problem comprises minimization of a convex ob-
jective function with linear constraints and can be solved effi-
ciently [60].

The solution of (17) yields estimate of &, which has two
non-zero elements at indices k; and ky. From this, we find
Tm = [M M]T. The estimated unknown time delay

m N N
corresponding to the indirect path is then
Tm = max{[Tm|1, [Tm]2},

Lemma 1: T,, is a consistent estimate of 7,,.

Proof: See Appendix A. |

Hence, the a consistent estimate of the range of the target is
given by 7, = ¢Top.

~

(18)

B. Improved Performance With Oversampling

It is possible to improve the recovery performance if the one-
bit ADCs sample at a rate higher than the Nyquist. Note that the
samples are still quantized to only single bits. In this section, we
analyze the effect of oversampling.

In case of oversampling, let replace the CDC module in
Fig. 2 with an equivalent system (Fig. 3) composed of a CDC
that samples y,,, (¢) at the Nyquist rate followed by an ¥-fold
upsampling. A low-pass filter with frequency response

- <
H(eJQ) = {g’ |Q‘ =9

Otherwise,
outputs the oversampled data y,,. The oversampled y,, and
Nyquist-sampled y,,, (see Fig. 3) are related as [61]

L9
1
—p+ 1>

[ym]l - Z[ym]pﬁnc (lﬁ

p=1

19)

| yml ifl=(p-1)9+1, 1<p< L/,
Sl Fmlpsine (5 = p+1).

otherwise.
(20)

Indeed, (20) implies that % elements of y,,, are exactly equal to
those of y,,; and the other elements of y,, are obtained from
linear combinations of the elements of y,,,. Let [¥,,];1 = [ym]i
forl # (p—1)9+1and 1 <p < L/Y and Z (.|@) denote the
Fisher Information Matrix (FIM) with respect to the parameter
vector 6. The linear dependence of y,, and y,, implies that
Z(3,,|¥m, Tm, am) = 0.Hence, it follows from the chain rule
of FIM [62] that
I (YT7L|Tm7 am) =7 (ym‘Tma am)~ (21
This means that oversampling has no impact on the accuracy of
the time-delay estimation using full-precision data in our model.
Now let us consider the effect of oversampling on the accuracy
of the time-delay estimation using one-bit data. Substituting (20)
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into (10) yields
[Z77L]l - Q([Ym]l)
ifl=(p-1)09+1,1<p<L,

o [’i’rn]pa
=10 (Z]f:l[ym}psinc (5t —p+ 1)) , otherwise,

(22)
where z,, = Q(¥,,) contains the one-bit data at the Nyquist
rate. From (22), we deduce that whereas % elements of z,,
are exactly equal to those of z,,, the remaining elements of
Zm, denoted by Z,, € C1~ %)L can not be constructed from
linear combinations of the elements of z,, like the full-precision
case. In other words, (22) indicates that while z,, provides
information about only the signs of y,,,, Z,, provides additional
information on the signs of the linear combinations of y,,.
Therefore, in general, Z (Z,|Zm, Tim, Ot ) = 0. From the chain
rule of FIM [62], we have

T (| Tm, @m) =L (Zon|Tm, @m) + L (Zon|Zim, Tiny Qn)-

(23)

Considering (23) and Z (Z., |Zm, T, @) = 0, we observe
Z (Zm|Tm, @m) = L (Zm|Tm, @) (24)

This implies that oversampling could enhance the parameter
estimation performance when one-bit quantized data is used.

IV. TARGET LOCALIZATION WITH ONE-BIT SAMPLES

In order to comply with bandwidth and power limitations,
each of the M sensors converts its nodal range measurements
into a binary sample w,,, by comparing it to a positive threshold
Am >0, 1.e.,

Wy, = SEN(Tm — Am)- (25)
All nodes forward this binary range and the corresponding
thresholds to the FC which localizes the target using the binary
range measurements from all nodes. We first present a frame-
work for target localization with full precision (or infinite-bit)
range measurements and follow it with our methods for one-bit
data.

A. Localization With Full-Precision Range Estimates

Recall the expressions of d,,, and r,, in (2) and (3), respec-
tively. Without loss of generality, consider the first (m = 1)
sensor as the reference sensor. The difference between the true
range with respect to reference sensor and any of the remaining
m-th (m > 1) sensor is
(26)
Rearranging (26) as r,, —r1 + di = d,,, and squaring both
sides produces

((rm — 1) + dv)?
= dy, = (0, = 67)% + (6, — 67)* + (67, — 61)%, 27
where the last equality follows after substituting d,,, from (2).
Simplifying yields
(657 — 67)(65, — 57)
+ (0% = 81) (8% — 81 + (5% — 87) (67, — o7)

1
+(Tm'—rﬂd1=:§K5ﬁ'—5ff'+(5%ﬁ—5?f

rm_’rlzdm_dly

+ (67, = 67)% = (rm — 11)?], (28)
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which are linear in the target coordinates [§* §Y 6%]7. Denote
the unknown parameter vector

0=[6"—67 ov—3Y %067 d] eR™L. (29

Then, collecting all linear equations specified by (28) for m =

2,..., M, we obtain the following compact matrix form
GO = h, (30)
where
(05 —6F) (65 —4Y) (95 —0f) ra—m
G=| z : :
(0% —01) (63 —01) (0 —0f) raa—m
e RM-Dx4.
€2
and
hol
2

(05 — 0F)% + (95 — 0f)* + (05 — 67)* — (r2 —11)?

(O, — 07)2 + (6%, — 67)? + (03, — 67)? — (rag — 71)?

c RIM-1)x1. (32)

In practice, every true m-th sensor range 7, is unknown. As
explained in the previous section, we employ constrained WLS
to obtain the estimate 7,,,. Assume 7,,, = 7y, -+ €, Where e,,, is
the estimation error due to the receiver noise. Then, the equality
in (30) does not hold and the resulting perturbed system of
equations takes the form

€e=GO —h, (33)

where € denotes the perturbation term. Assuming G is full
column rank, the least squares (LS) solution of the system of
linear equations in (33) yields

6 = G'n.
Then, the target location is obtained as
(6% v 6" = [0 +0f [Bl+0} [B]s+07]". (35

Remark 1: Contrary to range estimation, WLS is not appli-
cable for estimating 6 in (33) because the covariance matrix of
perturbation e is unknown. This is apparent from the fact that the
covariance matrix of the perturbation term is a function of the
variances of the range estimation errors, i.e., €1, €3, ..., €xr, as
well as the unknown target location. Under such circumstances,
the best choice for the weighting matrix is the identity matrix,
which reduces WLS to LS.

When the FC receives the full-precision nodal range esti-
mates, i.e., 7, for 1 < m < M, the aforementioned LS solution
in (35) is quite effective. However, when the nodal range esti-
mates are quantized to one-bit as in (25), the LS approach is no
longer applicable at the FC.

(34)

B. Optimal Localization With One-Bit Nodal Range Estimates

We first develop an optimal approach for localization with
one-bit quantized range measurements from the M nodes de-

noted by w = [wl, Wo, ..., W M]T. We show that this optimal
approach achieves the global minimum.
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A T
Consider 7= [ry 13 rar] € RM-Dx1 and de-
note 1 as a (M — 1) x 1 vector with all ones as its elements.

Define
(55 —5F) (03 —3Y) (55— o)
V — : : G R(M*l)xs
(6%~ 07) (3% — oY) (65— )
(36)
and
bl
2
(65— 67)2 + (84 — 60)% + (65 — 67)2
. c R(M*l)xl.
(0% — 07)* + (0%, — 61)* + (95, — 07)?
(37
Both V and b are known a priori. Then,
G=[V 7-n1], (38)

th*%(?*Tll)Q(F*Tll). (39)

We jointly estimate the unknown 6 and r by solving the opti-
mization

minimize ||GO — h||3
7,0

subjectto w ® (r — A) = 0, (40)
r >0,
where X = [A1, Ao, ..., A\ys]T. The firstlinear constraint in (40),

similar to the formulation in Section III, arises because the one-
bit quantized data and the elements of 7 — X must share the
same sign; and the second constraint indicates that range values
are non-negative. Reformulate the objective function £(r, 8) =
|GO — h||3 as
L(r,0)
2
A — 1_ _
L H[V r—rll]07b+§(r—r11)®(r7r11)

2
(41)
When r is fixed, the LS solution for 8 is given by (34). Substi-
tuting (34) into (41) yields

L(r) = L(r,0) 2 |GG'h - h|} = |I&h|3

= H iHv My 7 rll)]
2

;o (42
2
where the last equahty is obtained by substituting (38)—(39)
and using 11§ = 115, — I (-, 1) following the projection

decomposition theorem [63] Since I3 (7 — r11) € N(VH),

« [b— %@—7«11) o (r—rll)}
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it is easily confirmed that Iy Iy, =, 1)
plifying (42) to

= HH%, ry1) SIM-

(v

1 7 T
;C('I") = |:b — 5(7” — Tll) ® (T — Tll):| |:HJ\} — HH#(F—’!‘ll)

X [b;(rﬁl)Q(rrll)} . 43)
Expanding Hn\i,(?qll) yields
iy, v g1y = I (F — DI (F - 1)
_ Iy (7 —rm1)(F — 1) Ty (ad)

My (7 = r11)]3

Note that the fact that G is full column rank guarantees ||I13, (7 —

11)||3 # 0. Substituting (44) in (43), the £(r) takes the rational

form JE ; where F (), given in (45) at the bottom of this page,
is a polynomial of degree 6 and

J(r) = Iy (7 = m1)]3, (46)
is a polynomial of degree 2. Hence, (40) becomes
minimize (r)
o J(r) 47)
subjectto w @ (r — A) = 0,
r > 0.

The optimization problem in (47) is non-convex. In order to
relax this fractional structure, we decouple the numerator and
the denominator as stated in the following theorem.

Theorem 1: The optimization problem in (47) is equivalent

to
minimize v
subject tovJ(r)— F(r) >0 (48)
w0 (r —A) =0,
r >0,
where v is a slack variable.
Proof: See Appendix B. |

The objective in the optimization problem (48) is not ratio-
nal. However, it is still non-convex because of the polynomial
constraint v.7 (r) — F(r) > 0 of degree 6. To reformulate the
problem to an equivalent SDP, we employ Lasserre’s multivari-
ate polynomial optimization [41].

Definition 1 (Monomial basis of degree p): The vector g,,(u)
is called the monomial basis of degree p if it contains all mono-
mials u}' uy? - - uq® such that Y 7_, v; < p with v;’s being
integers.

For example, g, (u1, us) is the monomial basis of degree 2 if

T
go(fur,ua]") =1 w w u} wus (49)

To parametrize the first constraint of (48), substituting (45)—
(46) in vJ (r) — F(r), and expanding the resulting equation,

Fir) = T~ r )3 (I bl + 1% (7~ ri1) © (7= ra )] 1 = b7 [ = ) (7= ) )

— (b (F — 1))

4

1 ([(? —r1)© (7 —r1)]) Oy (T — 7«11))2 + b Ty (F — m1)(F — 1) T [(F— 1) © (F —r11)], (45)
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we obtain (50) given at the bottom of this page, where

Sl S i
iyl L1
_2y11[nl]tm—17
1]

ifm=n=1,
if2<m=n<M,
ifm=1,2<n<M
if2<m#n<M,

'(/)mn =

m—1,n—1"
(5D
M-1—~M-1 .
- = im1 Zj:l )i bl ifm =1,
N | 6 P O if2 <m < M,
(52)

and x = ||IIy/b||3. Using Definition 1, we parameterize the
polynomial in the first constraint of (48) as
= ¢"gg([r,v]") (53)
where ¢ is the vector of the coefficients corresponding to the
monomial basis g ([r, v]T ), which is readily obtained from (50).
We state the SDP equivalent of (48) in the following theorem.
Theorem 2: Given the scalars rq, 79, - -+, 73y and integers
{vi}M,, define K : RM+1 — Ras IC(T’TI’Ig? coepMyrML) =
P v-varss SUch that (1) = pgo..o = 1. Construct the matri-
ces

vJ(r) — F(r)

=K (g,([r,v]")g, ([r,0]")) (54)
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Then, there exists an integer p > 3 for which the optimization
problem (48) is equivalent to

minimize ftgq..01
I

subject to T),(p) = 0,
TP*3(H) = 0,
T (1) = o,

such that the minimizer of (48) is

(57)
1<m<2M+1,

RN

T
= [Mfomom M61-~007 e 7H60---10a HSO---m] . (58)

Proof: See Appendix C. ]

Remark 2: Note that the number of optimization variables in
(57) is equal to (M +2pp +1) which could be very large even for
moderate values of the number of sensors M and the relaxation
order p. Therefore, even though this method is able to attain the
global minimum, it could become computationally expensive in
the practical scenarios.

C. Sub-Optimal Localization With One-Bit Nodal Range
Estimates

It is possible to reduce the computational complexity of the
Lasserre’s SDP method by trading off the optimality. We now
present such a sub-optimal approach by iteratively solving (40)
through alternating minimizations over 6, r; and 7. Although
this method, that we call ANTARES standing for iterative joint
rANge-TARget location EStimation, achieves only a local mini-
mum, its computationally efficiency is significantly higher than
SDP.

Denote 8%, ) and 7(¥) to be the values of the parameters

0, r; and 7 at the k-th iteration, respectively. Given 0™ and

K(gp-1([r,v]")gp—1 ([r,v]") ifm=2M +1, rgk), using (41), the problem in (40) with respect to 7 at the
Umax — V) (k + 1)-th iteration becomes
&) . M (i — 72 (k (k) k ’
and minimize 22 f + [0y — i) +¢F)
Tps(p) =K (gpfs([hv}T)gf_g([?‘, U]T)¢T96([7’7U]T)) : . Wi (Tyy — Am) >0, 2<m < M,
(56) subject tor >0 2<m< M (59)
M M M (2 1/’ Yn)
Uj('l“) Z wmmrmv + ( Ko, mem m + Z Zwmnrmﬁzv + s e (7‘;1” ri - T’,:,Sn’l“i)
m=1n=1
m#n
M M M

+ (l‘imwmn - wmmwnn)(’r?nrn — ’I"?n?”,i) + (Kmlin — men T Tn + Z Z Z wmnwmk

(r4 Tl — 2rmrnr;g + r2 27“,%)

M M M M

_ wmmwnk)
4

m=1n=1k=1
m#EnF£k

wmkwnq wmnwkq) LR d
('(/]mm'(/]nk wmnﬁk)r Tk + Z Z ZZ 4 T T nTkTq + Z Z Z

m=1n=1k=1q=1
m#EnFk#q

- 3wmnwl k)’l’??"m’l"n’l"k

(’(/}1 mwnk

(4wmnwmk + 3wmmwnk)r rpTET1 + (’L/)mn"fk Zwmmwnk)rmrnrkrl + 32 Z Z Zwmnwqu TnTkTq,

M M M
(50)
m=2n=2k=2q=2

m#EnFk#q
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g(k) _

where ¢ = [va™],_1 — [blny  with

T
0@ 18], [6®)];] . The global minimizer of (59)

gives the update of 7*) as #**+1) to be used in the next
iteration. Observe this optimization problem is separable in
ro,7r3,...,77. Hence, we convert it into M — 1 parallel
optimization problems, each of which is

1
minimize 17“;‘% + BB + ¥ 4 wP®p,, 4 W)

subject to W, (r'rn - >\m) > Oa
T'm 2 07 (60)
where
B = 10" — ", (612)
(k)\2

=30 i1 4 (0102 4¢P 6t
k k k
W) = — () + 38W1r ) 2 (([09)a)? + () rP

+2(0®1a¢, (6lc)

(k)4
@ = Tl 0,0y 4 ((091)2 + ) (1492

—20®],PrM 4 ()2, (61d)

Since the objective and constraints in (60) are differentiable,
the global minimizer of (60) belongs to a set of points which sat-
isfy the following Karush-Kuhn-Tucker (KKT) conditions [60]:

3+ 38002 4 ocBe 4 W) o1, — 00 =0, (62a)
Wi (P — Am) > 0, (62b)
Tm > 0, (62¢)
01W (T, — A) = 0, (62d)
02T =0, (62e)
01 >0, (62f)
02 > 0. (62g2)

where p; and g9 are the KKT multipliers. From (62b)—(62g),
there are three possibilities:
i) o1 > 0and oo = 0: From (62¢), under this condition, r,,
must be equal to \,,. Considering r,,, = A\, and 9o = 0,
it follows from (62a) that

01 = w'm(A?n + 3/87(‘5))\37; + 2§7(7]l€))\m + W’Syl:)) (63)
Further, from o; > 0, the point 7, = A, satisfies the
KKT conditions if

Wi (N2, + 38N 1 2cI N 4wty > 0. (64)
o1 = 0 and oo > 0: From (62f), r,, must be zero under
this scenario. Considering r,, = 0 and p; = 0, it follows

from (62a) and (62b) that oo = wgf ) and w,,, < 0. Hence,
when g5 > 0, the point r,,, = 0 satisfies the KKT condi-

tions if
(k)
Wi >0
m ) 65
{wm <0. (65)
iii) p; = 0 and g2 = 0: Under this scenario, the KKT con-

ditions imply that r,,, must be equal to the non-negative
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real roots of the following cubic equation
3 436002 4okl 4wk =0,
which satisfy (62b). The roots of (66) are given by

1 A

— = (38 4 ¢u 0
Fo=—3 (35,,,, +&70 + qug), q€{0,1,2},
(67)

where ¢ = , Ay = \3/ Sty aray w, Ny =
9(B)? — 6% and Ay = 54(85%))% — 548% i) +
27w,(,]f). Further, it is well-known that amongst the
KKT-compatible non-negative real roots of (66), only

those which also satisfy the following second-order
sufficient condition

35 +680F 4 +20) >0, (68)
act as the minimizers of (60) [60]. As a result, we only
consider the non-negative real root of (66) for which (62b)
and (68) hold true.

Accordingly, the set of points which are the minimizers of
(60) is derived by following (i) to (iii) above. Then, the global
minimizer of (60) is the point in this set at which the value of
the objective in (60) is the smallest.

Once 7**1) is found, the problem (40) with respect to 7 at
the (k + 1)-th iteration is cast as

4 B o ol

(66)

—14jv3
2

minimize
subject to wq(ry — A1) >0, (69)
1 Z 07
where
1 M
=g 2 - 0%, (70a)
m=2
(k+1) 1 -3 (k+1)\2 R (k1) (R
S1 = M—1 Z §(Tm ) + 3[0 ]4rm + Cm
m=2
+ ([6W™]4)?, (70b)
1 M
. _
it = 2 Do) 4 3l0W (Y
m=2
+2 (([OP]0)? + ) 7D
+2(0M)],¢), (70¢)
M (k1)y
k 1 (rm )
= gy 2 e Ly
m=2
+ (891202 + ) (%) 4 2100, (Pl
+(¢)2. (70d)

The global minimizer of (69) is attained by following a

procedure similar to that of (60). From 7+ and T§k+1), the
update of 8 at (k + 1)-th iteration is
oi+1) — gI" (kD) (1)

]L(k+1>

where G
(k+1)
1

and h**+1) are computed by substituting 7(¥+1)

and r for 7 and r; in (31) and (32), respectively.

Authorized licensed use limited to: University of Luxembourg. Downloaded on June 21,2021 at 14:07:47 UTC from IEEE Xplore. Restrictions apply.



2534

Algorithm 1: Iterative Joint Range-Target Location Estima-
tion (ANTARES).
Input: one-bit samples w, threshold vector A, optimality
tolerance parameters £; and £5.
Output: Target location estimate 0, range estimate 7.
1: Initialization: Set k = 0, (¥ ¢ R**! arbitrarily and

7"50) > 0 such that w; (7'50) — A1) > 0.
2: While |0T) — 9" |2 > ¢, and
|0+ — 02 > 5 do
3 if 2 < m < M then
4 S« {o}.
5 if (64) is fulfilled then
6 S — { A} US.
7 else
8 3« S.
9 end if
10 if (65) is fulfilledthen
11: S« {0} US.
12: else
13: 3~ S.
14 end if
15 for g < 0to2 do
16 D «+ {@}.
17 Find f from (67).
18 ifw,(Fg—An) >0,Fg>0,Im{F,} =0

and 3F 2 + 685 F 4 + 264 > 0 then

19: D+~ DUF,.

20: end if

21: end for

22: $+~DUS.

23: Find r,p¢ € § at which the objective of (59) is
minimized.

24 r&,’f“) < Topt-

25: end if

26: Follow steps 4-17 to solve (69) for 7,§k+1).
27: glk+1) L qi* T pk+1)

28: end while

29: 9 = 0+ and 7 = (k1)

Algorithm 1 summarizes the steps of aforementioned
ANTARES for joint estimation of 8 and 7. Note that each
iteration of ANTARES requires solving one-dimensional op-
timizations, each of which has a closed-form solution. Further,
the optimizations with respect to 79,73, ..., 7, are solved in
parallel at each iteration. Hence, ANTARES is computationally
highly efficient compared to (57).

D. CRB for Localization With One-Bit Nodal Range Estimates

We employ the CRB as a benchmark for assessing the estima-
tion performance of the proposed optimal and sub-optimal al-
gorithms. This is also useful for demonstrating the performance
loss of one-bit quantization over the unquantized processing.

Assume that the estimation error term in 7,, = 7, + €,
ie., em, follows a zero-mean Gaussian distribution with vari-
ance ’U , 1 <m < M. Then, 7, is distributed as a Gaussian
random varlable with mean r,, and variance v ,1<m<
M. The 71,72,...,Ty are statistically 1ndependent. Hence,
the conditional probability density function of w given g =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

T ¢ R(]\/[+4)><1 is

fwla)= H@(w” e =2nl).

where ®(z) = % J£ e7“*/2du. The CRB is the inverse of the
Fisher Information Matrix (FIM) I(q), whose (4,

is [64]
- Olog f(w | q) Olog f(w | q)
M@)i; =E { dlal; dlql; } .

From (72), (2) and (3), the partial derivatives of the log-
likelihood log f(w | q) are

[5:2’ 5y’5z’ dOvvla V2, ... vUJW]

(72)

Jj)-th element

(73)

M _M
Olog f(W ‘ q Z wm — ) )e 202,
d6* m=1 Umqu)(%n)w“)
(74)
M / . ,M
810gf(W ‘ q) B 1 (5!/ — &Y )6 2v5,
a6y V2m m=1 'Umqu)(%)\m)) 7
(75)
610% f(W ‘ q Z wm 57Zn) 2vm
967 m:1 Umd @(w)
(76)
M M
dlogf(w|q) 1 Wme a7
ddg Var i vmd,n@(%ﬁm’)’
— 21}771,
dlog f(w|q) _  wmn(rm =Am)e ,1<m< M.
Ovg, 2 @(w) -
(78)

Inserting (74) to (78) into (74) and exploiting the statistical
independence of wy, wa, . .., wys, the elements of the FIM are

(6 5 ) (T‘m*)\m)z 7(7‘m,*)\7n)2
fea— Yim e Um
mahs = Y Gt " ,
mzzl 2rofd, La(ate)  pemiha)
(719)
M _ 7(7”m*>\"rn)2 7(7‘771*3\771)2 _
6y — V)2 [ e,
L(g)]22 = + ,
’HLZ:1 2WU%ld%1 L @( TW’U_Tf\m ) (P( _7‘72):)\711 ) ]
(80)
M R (7'771,*A’"L)2 _ (7'7n*A7n)2
(6,2 _ 52)2 e 'U?n e Umé,
[L(q)]s,3 = - + :
7; 2mvZ d2, | D TmJAm, ) @ 7rn;fA,n, )]
(81)
M - o (T‘7n*)\1n)2
TIPS PRUTE L Tl E
Y 2mo2, &,
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1 1
X [ + ], (82)
(P( r?rzv_m%\VVL ) @( _r7773:)\'rrz )
(rom-Am)?
M —m—pm )
(6, — 5%)(07, — 5)e
I =
[ (q)]173 mzzzl 27TU72nd$n
1 1
X [ + ], (83)
D(rate) | p(rathe)
Crm-Am)?
M —m_pm )
(63, — 8)(07, — 5+
I —
[ (q)]23 mzzl QWU%@d?ﬂ
1 1
X [ + ], (84)
&( T’Tnl:mAm, ) B fm;:)\m )
Y e_(vvm;Amﬂ . .
I =
SCUE an::l 2mv2, d2, |:¢)(T7n,)\m,) * (I)(Tm,+>\m):|7
" "8s)
(rm *>\7n )2 (rm *)\'m ) 2
M . - - 7 -
(6.L _ 61, ) e v, e vE,
I(q)14 = Z o + )
= 2mup d7, (I)(rmvjj\m) (I)(frn:,jz)\m)
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Fig. 4. N-RMSE of the time-delay estimates versus the SNR with L = 100
and ¢ = 1. The signal s(z) is a 7w/2-BPSK modulated signal with bandwidth B
= 180 KHz.
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V. NUMERICAL EXPERIMENTS

We investigated the performance of our proposed method
through numerical simulations. We also compared the perfor-
mance of one-bit processing with full precision measurements.
We used MATLAB CVX package to solve optimizations in (17)
and (57) [65]. All the experiments are conducted under identical
conditions under Matlab R2018a on a PC equipped with an
operating system of Windows 10 64-bit, an Intel 17-6820HQ
2.70 GHz CPU, and a 8§ GB RAM. Throughout all the experi-
ments, we define signal-to-noise ratio (SNR) (in dB) at the m-th
node as
[t [ 8(7m) [I°

2
Om

SNRm = 10 loglo

One-bit time-delay estimation: For 100 digital samples ob-
tained at the Nyquist rate, i.e. . = 100 and ¢ = 1, Fig. 4 shows
the normalized root-mean-squared-error (N-RMSE) of the time-
delay estimates, computed over 1000 Monte Carlo trials, with

J ~
Zj:1(7m,j —Tm)?

respect to SNR. This estimation N-RMSE is —

where 7,,, ; denotes the time-delay estimate at the j-th Monte
Carlo trial and J is the number of Monte Carlo trials. We assume
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Fig.5. N-RMSE of the time-delay estimates versus the the oversampling factor

# with L = 100 and SNR = —5 dB. The signal s(¢) is a 7/2-BPSK modulated
signal with bandwidth B = 180 KHz.
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Fig. 6. Localization with M = 20 NB-IoT nodes (black circles) uniformly
spaced on a circle with radius of 800 m. The target-of-interest is randomly
placed at (—309 m; 287 m). The SNR at all the NB-IoT nodes is 0 dB.

s(t) to be 7/2-BPSK-modulated with a raised cosine shaping
filter of the bandwidth 180 KHz and the roll-off factor 1. The
temporal threshold «y,,, is randomly drawn from a uniform dis-
tribution with support [— Amax, Amax), Where A .y denotes the
maximum amplitude of the received signal at NB-IoT nodes. We
observe that to achieve the same N-RMSE, the SNR should be
about 5 dB higher for one-bit processing than the full-precision
case.

Effect of oversampling: As discussed in Section III-B, over-
sampling compensates the performance loss arising from the
one-bit quantization scheme. Fig. 5 shows the N-RMSE of
the time-delay estimates versus the oversampling factor, i.e.,
9, at SNR = —5 dB. As predicted in theory, the N-RMSE of
oversampled one-bit processing with ¥ = 5 approaches that of
the full-precision processing.

Localization with different node geometries: Next, we in-
vestigate our proposed localization method for various node
placements. We consider three node geometries: uniform cir-
cular (Fig. 6), uniform linearly-spaced in an L-shape (Fig. 7),
and random (Fig. 8). To show the performance over dif-
ferent ranges, we consider the performance of these ge-
ometries over small ([—800 m, 800 m] x [~800 m, 800 m]),
large ([—2000 m, 2000 m] x [—2000 m, 2000 m]), and mid-
size ([—1200 m, 1200 m] x [—1200 m, 1200 m]) areas, respec-
tively. In Fig. 6, the nodes were spaced on a circle with radius of
800 m and the target and the base-station were randomly placed
at [—309 m, 287 m] and [—208, m, —312 m| (in X-Y Carte-
sian coordinate system), respectively. When the nodes were
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Fig. 7. Localization with M = 20 NB-IoT nodes (black circles) lin-
early spaced in an L-shape. The target-of-interest is randomly placed
at (371 m,—338 m). The SNR at the m-th node (m > 1) is SNR,, =

SNRy (%2)” with SNR, = 0 dB.
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Fig. 8. Localization with M = 20 NB-IoT nodes (black circles) randomly
distributed over the area [—1200 m, 1200 m] x [—1200 m, 1200 m]. The target-
of-interest is randomly placed at (1160 m, —340 m). The SNR at the m-th node

2
(m > 1)is SNR,, = SNRy (%2)" with SNR; = 0 dB.

configured in L-shape and randomly, the target was randomly
placed at [371.7 m, —338.4 m] and [—615.8 m, —753.8 m] and
the base station was randomly located at [-98 m, 1112 m] and
[—87 m, 53 m], respectively.

To consider the impact of the relative distances of the different
nodes to the target of interest on the SNR, we generate the SNR at
the m-th node (m > 1) as SNR,,, = SNR; (%*)? where SNR;
denotes the SNR at the reference node, which is assumed to be
0 dB in Figs. 6, 7, and 8. The temporal thresholds and s(t) are
generated similar to Fig. 4. The maximum detectable range by
NB-IoT nodes, i.e., mmax, Was considered to be 4000 m. The
positive thresholds \,,,’s were randomly drawn from 8 predeter-
mined values over the interval (0, 7max]. These thresholds are
encoded with 3 bits and transmitted to the FC along with one-bit
range information.

Our ANTARES algorithm estimates the target location with
errors of 22.89, 23.87, and 21.52 m for circular, L-shape, and
random geometries, respectively. This is very close to that of the
optimal method given in Theorem 2, wherein the corresponding
errors are 6, 9.4, and 7.81 m, respectively; the errors in the
full-precision methods are 1 m, 1.2, and 1.06 m, respectively.
This indicates the robustness of our method against distribution
in of NB-IoT nodes. In order to draw a comparison between
the computational complexities of ANTARES and the optimal
method, we take account of their corresponding run-times for
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Fig.9. Localization with M = 20 NB-IoT nodes (black circles) randomly dis-
tributed within the area [—1200 m, 1200 m] x [—1200 m, 1200 m]. The target-
of -nterest is randomly placed at (—618 m, —338 m). The SNR at the m-th node

(m > 1)is SNR,, = SNRy (42)” with SNR; = —5 dB.
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Fig.10. (a) N-RMSE and (b) Relative N-RMSE in the estimated target location
with respect to the number of IoT devices M. The SNR at the m-thnode (m > 1)

2
is SNR,, = SNRy (%2)” with SNRy = —2 dB.

the investigated scenarios in Figs. 6, 7, and 8, which are, respec-
tively, 3.27 s, 3.63 s, and 3.91 s for ANTARES besides 81.39 s,
88.53 s, and 85.74 s for the optimal method. This implies that
ANTARES is considerably more computationally efficient than
the optimal method in Theorem 2.

Next, for the random geometry, we show the effect of de-
creasing SNR; to —5 dB (Fig. 9). The error with ANTARES
algorithm now degrades to 59.85 m compared to 12.4 and 3.4 m
observed in the optimal and full-precision approaches.

Statistical performance: Figs. 10(a) illustrates the local-
ization N-RMSE, i.e. N-RMSE in the estimation of the target
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location, with respect to the number NB-IoT nodes M, defined

I (sr_§z 24 §Y—8Y)2 ~ o~
as Y6 56 ) , where [67,6%]7 denotes the target
J\/5$2+6y2 7777
location estimate at the j-th Monte Carlo trial and J is the
number of Monte Carlo trials. Figs. 10(a) plots the normalized-

I *(@)]1,1+[T 1 (q)]2,2
PEEEW IR

is specified in Section IV-D. The nodes and targets were

placed randomly over ([—800 m, 800 m] x [—800 m, 800 m])

area during each of the 200 Monte Carlo trials. The SNR at

the m-th node (m > 1) is assumed to be SNR,,, = SNR; (%—’;)2

with SNR; = —2 dB. Further, the temporal thresholds, s(¢) and
Ap’s are generated similar to Figs. 4 and 7. We observe that
the N-RMSE:s of the proposed optimal and ANTARES methods
improve with increase in M. The N-RMSE for the optimal
method is very close to the normalized root of the CRB and
it approaches to that of the full-precision when M > 80. It is
also seen that the normalized CRB tends to the N-RMSEs of
the full-precision at the high number of sensors. In addition,
Fig 10(b) shows the relative N-RMSE, namely the difference in
N-RMSE of the optimal and ANTARES methods as well as the
normalized CRB relative to that of full-precision. We observe
that the relative N-RMSE rises by 2.2%, 0.6% and 0.3% in
case of ANTARES, optimal methods and the CRB, respectively,
over the full-precision approach when M = 20. The observed
difference in the estimation performance of ANTARES and
optimal approaches arises from the fact that the alternating
approach employed for ANTARES is guaranteed to converge to
only a local minimum of the optimization problem in (44) [66],
while the optimal method always provides the global minimum
of (44).

The temporal thresholds were randomly generated in all ex-
periments. Comparing the localization accuracy in Figs. 6-10
show that variations in temporal thresholds do not have consid-
erable influence on the overall localization performance.

root-localization-CRB, i.e., \/ where I(q)

VI. SUMMARY

In summary, the one-bit sampling offers an attractive solution
to the challenges posed by the NB-IoT for location-based ser-
vices. The one-bit samplers are integral to developing low cost
and low power devices. We proposed a one-bit passive sensor
array formulation to estimate the time-of-arrival in an NB-IoT
network. The quantized samples of the estimates are then for-
warded to an FC. We propose a novel method that casts the
localization problem from aggregated quantized nodal estimates
as a multivariate fractional optimization problem that we solve
using the optimal Lasserre’s SDP relaxation. We also propose the
ANTARES algorithm as an alternative sub-optimal method with
reduced computational complexity compared to Lasserre’s. Our
approach is helpful in addressing the problem of maintaining
high localization accuracy while deploying reduced-rate ADCs
at the nodes as well as limited-capacity NB-1oT links.

APPENDIX A
PROOF OF LEMMA 1

The optimization problems (16) and (17) are equivalent.
Hence, it suffices to prove this for only (16). Define

Yo = 0, 8(T5,) + ag,s(7y,) + gy, (95)
where [, a8, 72, 7o Mo T # [Qms Qs Ty Ty M) and

thus, y7, # ym. It suffices to show that [Q(y5,)]i # [Q(ym)]i
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at least for one [ as L — oo. The previous statement holds only
if, at least for one [, the following occurs:

Re{[ymli} > Re{[v,,li} > Re{[y;.li}, o,
Re{[ym|i} < Re{[v,li} <Re{ly;.li}, or, 96)
Im{[yn)i} > Im{[v,li} > Im{[y7, i}, o,

I {[ym)i} < Im{[v,,Ji} < TIm{[y;,]:}.

Let A denote the event described by (96) for a given [. In
practice, the real and imaginary parts of [y,,]; and [y;,]; are
upper bounded by, say, A,.x. Then, probability of A is [67]
[Re{lymi} — Re{[y;.li}|

QAmax

T {[ymi} — Im{[y;,]1}|
+ ;Amax -

The probability that (96) occurs at least for one [, denoted by #H,
is

Pr(A) =

o7

|R€{ [y’m]l} — Re{[ysn]lH
2Amax

Il ;S{[ym}), ©8)

From [67],1 — x < e™*,Vx € R. Hence, it follows that

|Re{ Ymh} Re{[ym][”
Pr(H) >

2Amax

Pr(?-l)zl—ﬁ(l—

=1

[Im{[ym ]} +Im{[y5, 11}

2 Amax .
99)
[Re{[ymli}—Re{[y7.li}| _

> i

Thus, — Zle

- — o0 as L — oo, and limy, ., Pr(H) =
1. This irﬁnﬁfies that y,, is the only point which satisfies the
constraints in (16) as L — oo. Accordingly, as L — oo, the
optimization problem (16) reduces to the LASSO estimator
which has been shown to be consistent [68]. This completes the
proof.

But  y;, # ym.
[ { [y ]} +Tm{[y5,]i}

max

APPENDIX B
PROOF OF THEOREM 1

To show that (48) is equivalent to (47), we first prove that
the global minimum of (47) coincides with that of (48). Assume
that 7% and [r*7 v*]7 are the minimizers of (47) and (48),
respectlvely Deﬁne aset K= {r e RY|wo (r—A) = 0}.
Given J(r) > 0 for r € KK, it readily follows from the first
constraint in (48) that JE ; < v*. Considering that 7% belongs
to the feasible set of (47), i.e., r; € KK, we obtain

Fry) _ Fr)

J(rs) = T(r)
On the other hand, defining v, = ;E:E; and considering 7} € K,
it follows that [r*7" v,]T isin the feasible set of (48). Therefore,
F(ry)
JI(ry)’
Now, comparing (100) and (101) implies that (47) and (48) share
the same global minimum, i.e.,

(100)

v <, =

(101)

(102)
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Further deduction from (100) and (102) yields
F(ry) _ F(re)
J(ry)  T(re)
indicating 7} is also a minimizer of (47). This completes the
proof.

(103)

APPENDIX C
PROOF OF THEOREM 2

A. Preliminaries to the Proof

Recall the definition of sum-of-squares (SOS) polynomial and
a useful related result as follows.

Definition 2 (Sum-of-squares): A polynomial P (u) of degree
2q is sum-of-squares (SOS) if and only if there exist polynomials
Vi(w), ..., Vr(u) of degree g such that P(u) = .1, V?(u).

Lemma 2: Given P as the set of SOS polynomials and poly-
nomials &;(u) for 1 < ¢ < I, define the sets

W={uecR"|&(u)>0,Vie{l,2,....I}} (104)
Gy = {ZP u) | E(u)
= 1,Pi(u) € P,deg (P;(u)&i(u)) < 2p},  (105)

such that W is compact and there exists a polynomial U (u) €
G, where {u € R™ | U(u) > 0} is compact. Then, a polyno-
mial B(u) of degree ¢ is strictly positive on W, i.e., B(u) >
0 Yu € W, if and only if B(u) € G, for some integer p >
max([q], max — plo —left — lcezldeg(s 7).

Proof: We refer the reader to [69]. | |

B. Proof of the Theorem

We first show that (48) satisfies the conditions stated in
Lemma 2 of Appendix XII-A. In consequence, it can be re-
formulated as minimization of a positive polynomial function
on a compact set. Lasserre has shown that minimizer of a
positive polynomial function on a compact set can be obtained
through solving an equivalent SDP [41, Theorem 4.2]. Thus,
we ultimately resort to [41, Theorem 4.2] to recast the resulting
optimization problem as an SDP.

Consider &;’s to be the inequality constraints of (48). Then,
we need to prove the following three statements:

1) The feasible set of (48) is compact.

2) A polynomial U([r,v]T) € G, exists such that {r €

RM v e R |U([r,v]T) > 0} is compact.

3) The objective function of (48) is strictly positive on its

feasible set.

For the first statement, note that the feasible set contains all of
its boundary points and is therefore closed. From Heine-Borel
Theorem [70], to show compactness of the feasible set, it suffices
to show that it is bounded. To this end, note the constraint on the
value of = which is limited by the maximum detectable range
max € R~o of the NB-IoT nodes so thatr,,, < ry.x forallm €
IM. This implies that the continuous function Z{r) is bounded on

J(r)
T ={recRM|r, <rna, ¥m €M} [70, Theorem 4.16].
In other words, ;E:g < ¢, where ¢ = maiierqrrﬂze ;E:g The
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optimization problem in (48) is indeed a minimization of an
upper bound of ;E:g , 1.e. v. Without loss of generality, assume
v < Upax Where vnax > . These practical constraints on 7 and
v do not change the solution of (48) but guarantee boundedness
and thereby compactness of the its feasible set. On the other
hand, it is possible to show the boundedness of v, in turn, entails
the boundedness of r. To show that, let assume B to be an
arbitrary subsetof {1, ..., M} and define c such that [c];, = [r]x

for k € B. When v < vp,x, from (45) and (46), we get
lim v J(r) — F(r) =
Cc—00

1.
— — lim
4 c—oo

(IH%/(T |0y [(F - 1) © F —r1)] |13

2
~(IF=r) o F - n) (7 - 1)) ) (106)
Using Cauchy—Schwarz inequality and idempotency of 115, we
have

[y (7 = D3y [(F = m1) © F = m1)] |5 >

(IF—n1)o@E - IE-n1) . o7

It follows from (106) and (107) that, when v < vy, and as each
., approaches infinity, the constraint v.7 (r) — F () becomes
negative. Hence, when v < vy, to ensure v.7 () — F(r) >
0, the ranges r,,, m € IM must be bounded. This implies that
v < vmax 18 sufficient for the compactness of the feasible set of
(48). Accordingly, without loss of generality, the optimization
problem (48) becomes

minimize v
v,
subject to v J (1) — F(r) > 0,
wo(r—A) =0, (108)
r >0,

Umax — U Z Ou
in which the feasible set is compact. Note that, in practice, the
value of ¢ is unknown and, to satisfy the condition vy ,x > ¢,
Umax Should be selected sufficiently large.
For the second statement, consider

gi([T7U]T)
1 ifi =0,
vJ(r) — F(r), ifi=1,
= wi1(ri-1 — Ni—1), ifi=2,...,M+1,
TieM—1, ife=M+42,...,2M + 1,
VUmax — U, ifi =2M + 2,
(109)
and that G, is defined according to (105). Con-
struct  Pi([r,v]T)=0 for i=0,1,...,2M +1 and

Pornrra([r,v]T) = 1. It readily follows that vy —v =
SN[, 0] D) Ei([r,v]T),  thus vpayx — v € G, with
p > 1. Further, the set {v € R | vyyax — v > 0} is closed and
bounded and, therefore, compact. This proves the second
statement.

The third statement requires establishing the strict
positiveness of the objective on the feasible set of (108),
ie., W={rcRM veR|r=0, wo (r—A) =

2539

0, vJ(r) — F(r) > 0, Umax — v > 0}. Considering a € R~
as a constant parameter independent of » and v, it is always
possible to replace v with v + a in the cost function of (108)
without affecting its solution. Then, it follows from (42)
that v > L(r) = j;g:; > 0, thereby v+ a > 0 on W for any
constant a € R . This proves the third statement.

Consequently, according to Lemma 2, (48) is equiva-
lent to minimization of the positive function v+ a on
the compactset W = {r ¢ R™, v ¢ R | & ([r,v]T) > 0,Vi €
{1,2,...,2M + 2}} where &,;’s are given in (109). Now, resort-
ing to [41, Theorem 4.2], the resulting minimization problem
can be equivalently recast as the SDP in (57). This completes
the proof.
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