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Abstract—Millimeter wave (mmwave) fixed wireless access is
a key enabler of 5G and beyond small cell network deployment,
exploiting the abundant mmwave spectrum to provide Gbps
backhaul and access links. Large antenna arrays and extremely
directional beamforming are necessary to combat the mmwave
path loss. However, narrow beams increase sensitivity to physical
perturbations caused by environmental factors. To address this
issue, in this paper we propose a predictive transmit-receive beam
alignment process. We construct an explicit mapping between
transmit (or receive) beams and physical coordinates via a Gaus-
sian process, which can incorporate environmental uncertainties.
To make full use of underlying correlations between transmitter
and receiver and accumulated experiences, we further construct
a hierarchical Bayesian learning model and design an efficient
beam predictive algorithm. To reduce dependency on physical
position measurements, a reverse mapping that predicts physical
coordinates from beam experiences is further constructed. The
designed algorithms enjoy two folds of advantages. Firstly, thanks
to Bayesian learning, a good performance can be achieved even
for a small sample setting as low as 10 samples in our scenarios,
which drastically reduces training time and is therefore very
appealing for wireless communications. Secondly, in contrast to
most existing algorithms that only predict one beam in each time-
slot, the designed algorithms generate the most promising beam
subset, which improves robustness to environment uncertainties.
Simulation results demonstrate the effectiveness and superiority
of the designed algorithms against the state of the art.

Index Terms—Beam alignment, Bayesian learning, beam pre-
diction, beam training, fixed wireless access, Gaussian processes,
millimeter wave communications.

I. INTRODUCTION

M ILLIMETER wave (mmwave) fixed wireless access

(FWA), which is also referred to as mmwave distri-

bution network and supported by the IEEE 802.11ay, enables

different deployment scenarios, including broadband residen-

tial access, WiFi access point (AP), small cell backhaul,

and home media sharing [1]. By operating in the mmwave

bands, mmwave FWA provides much increased capacity com-

pared to other WiFi systems that operate in the microwave

bands. Moreover, since mmwave links are highly directional,

it also presents significant opportunities for spatial reuse,
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offering more flexibility in the deployment of FWA systems.

As a promising cost-efficient high-performance alternative

and complement to the conventional fixed access networks,

mmwave FWA offers many advantages to service providers,

including high coverage, low upfront cost, and less coordina-

tion with various building owners.

The advantages of mmwave FWA systems particularly rely

on the features of mmwave bands, including the availability of

large available bandwidth and the line-of-sight (LOS) nature of

mmwave communications which helps to control interference

between systems [2]. However, it is far from easy to reap these

benefits due to the propagation features of mmwave signals. In

fact, millimeter wave systems require a large directional gain

in order to combat their relatively high path loss compared to

systems with lower frequencies and the additional losses due

to rain and oxygen absorption. Fortunately, the small wave-

length of mmwave signals makes it convenient to compensate

the above by packing a large number of antennas into a small

space, which also enables adaptive alignment of transmit and

receive beams.

Although beamforming techniques at mmwave have been

widely studied (e.g., in the standards IEEE 802.15.3c and

IEEE 802.11ad), beamforming for mmwave FWA systems is

more challenging. The reason is two-fold. Firstly, the distance

between the transceivers in mmwave FWA systems is often

longer in outdoor environments, which requires a much larger

beamforming gain (or equivalently, narrow beams). Secondly,

other environmental factors such as wind and precipitation can

cause a large receive SNR (signal-to-noise ratio) degradation

and thus require a more subtle beam alignment (BA) [3].

In particular, since the transceiver units of mmwave FWA

systems are mounted to outdoor facility such as poles, pillars

or street lamps, vibration and movement induced by wind

flow and gusts, traffic vibrations, or other disruptions may

cause unacceptable outage probability if BA is not frequently

performed [4]. This is particularly challenging for the pencil-

beams employed in these links, where fractions of a degree in

azimuth angle can cause SNR loss of a few dB.

To address these issues, an adaptive BA algorithm using a

hierarchical multi-resolution codebook was proposed in [4],

which, to some extent, can avoid the costly exhaustive search

of all pairs of transmit and receive beams. Note that the perfor-

mance of the hierarchical search scheme heavily relies on the

adopted hierarchical codebook. Because of the importance of

the hierarchical codebook, it has attracted much attention and

has been widely researched [5]–[9]. For example, by exploiting
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sub-array and deactivation techniques, a hierarchical codebook

design was devised in [8], where closed-form expressions were

provided to generate the codebook. Nevertheless, the training

overhead of the adaptive search based algorithms is still high

for large-scale antenna array systems. More importantly, in

practical dynamic environments, mmwave channels fade fast

and the period of each coherence block is too short to allocate

enough time for frequent and accurate BA [10].
To reduce the overhead of beam training, one promising way

is to extract and exploit information from the training history,

so as to reduce the beam search space for future training.

Such an idea is facilitated by the fast development of machine

learning (ML), which leads to ML based beam training al-

gorithms [10]–[17]. The existing ML based solutions roughly

fall into two categories, i.e., supervised learning (SL) based

category and reinforcement learning (RL) based category. The

SL based algorithms occupy most of the existing ML based

beam training solutions [10]–[15]. To achieve a satisfying

performance, SL based algorithms require a large number

of training samples in advance, which limits its application

scope. The second category is based on RL or more general

sequential decision and optimization [16]–[21]. Based on the

multi-armed bandit (MAB), a lightweight RL approach, a

beam training algorithm was proposed in [16], which could

utilize contextual information effectively. However, due to the

limited structure of the MAB, it is difficult to discover useful

patterns and make complex decisions via MAB. The temporal

correlation information is well exploited in [20], [21] to design

beam training and/or data transmission algorithms, e.g., spatial

information through random mobilities of users is exploited in

[21].
To achieve a good performance for small sample setting, in

this paper we leverage the Gaussian process (GP) to construct

an explicit mapping between transmit (or receive) beams and

physical coordinates. To enhance the basic GP based beam

prediction algorithm, we further design two algorithms that

can respectively make full use of underlying correlations be-

tween the transmitter and receiver and reduce the dependency

on physical position measurements. Thanks to the Bayesian

learning based design paradigm, a good performance can be

achieved even for the small sample setting. Instead of a single

beam, a promising beam subset is generated by the designed

algorithms, which makes the algorithms more robust. The main

contributions are summarized as follows:

• Aiming at achieving a good performance for small sample

sets, we propose a BA algorithm by exploiting the GP to

construct a probabilistic mapping between transmit (or

receive) beams and physical coordinates. An important

advantage of the GP-based design is that the environmen-

tal uncertainty is incorporated into the BA algorithm.

• To take full advantage of accumulated experiences and

(in particular) the correlation between the transmitter and

receiver, we further propose an enhanced BA algorithm

based on the PAC-Bayesian learning theory. Compared to

the original BA algorithm, the enhanced design dramati-

cally reduces the computational complexity.

• We construct a reverse mapping which can predict phys-

ical coordinates from the record of past optimal beams,

based on which we propose a novel BA algorithm. The

novel algorithm consists of both coordinate prediction and

beam prediction, which helps to reduce (or even avoid)

coordinate measurements and thus reduce training time.

• Comprehensive simulation results are provided to demon-

strate the effectiveness and superiority of the proposed

BA algorithms. It is shown that the proposed algorithms

are robust to environmental changes and uncertainties

and can achieve a good performance even for the small

sample setting.

The remainder of this paper is organized as follows. The

system model of mmwave FWA backhaul is described in

Section II. In Section III, a predictive BA algorithm is designed

based on Bayesian deep learning. To exploit the correlation

between the transmitter and receiver, an enhanced BA design

is proposed in Section IV. To reduce the training time and

samples, a physical coordinate (position) prediction algorithm

is designed based on the record of past optimal beams in

Section V. Simulation results and conclusions are given in Sec-

tion VI and Section VII, respectively. GP and PAC-Bayesian

learning theory are provided in Appendix A to facilitate the

development of the GP based BA algorithms. Tedious proof

is deferred to Appendix B to improve readability.

Notations: Bold uppercase A and bold lowercase a denote

matrices and column vectors, respectively. Without particular

specification, non-bold letters A, a denote scalars. Particularly,

bold italic lowercase letters x represent physical coordinates.

Caligraphic letters A stand for sets or distributions. P(·), E(·)
and (·)H stand for probability, mathematical expectation and

Hermitian operators, respectively. I{·} and card(A) denote an

indicator function and the cardinality of the set A, respectively.

(·)� represents an optimal quantity, e.g., an optimal solution

of an optimization problem. CN (m,R) stands for a complex

Gaussian random vector with mean m and covariance matrix

R. A ∼ U(a, b) indicates that A is a random variable that is

uniformly distributed in interval [a, b].

II. SYSTEM MODEL

Consider a millimeter wave (mmwave) wireless backhaul

system, which consists of one transmitter (Tx) and one receiver

(Rx), as shown in Fig. 1. The Tx and Rx are equipped with NT

transmit antennas and NR receive antennas, respectively. To fa-

cilitate practical system implementation, analog beamforming

based on codebooks is considered in this paper, where each

transmit (or receive) beam is chosen from a codebook CT (or

CR) of size MT (or MR) [2].

Without loss of generality, CT and CR are constructed by

sampling beam spaces. Specifically, for uniform linear arrays

(ULAs), CT is constructed as

CT =
{
fi = aT(−1 + 2i/MT) | i = 0, 1, · · · ,MT − 1

}
. (1)

aT(·) in (1) takes the form

aT(x) =
1√
NT

[
1, ej

2π
λ dTx, ej

2π
λ 2dTx, · · · , ej 2π

λ (NT−1)dTx
]
,

where λT and dT are the signal wave-length and the distance

between any two adjacent antennas, respectively. CR can be
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Fig. 1. An illustration of a millimeter wave MIMO FWA backhaul system.

constructed similarly and denoted by

CR =
{
wj = aR(−1 + 2j/MR) | j = 0, 1, · · · ,MR − 1

}
.

Due to the sparsity of mmwave channels, an extended Saleh-

Valenzuela geometric model is considered in this paper. The

wideband mmwave transmission is suffered from beam squint

effect [22], [23]. For simplicity, the narrow-band channel mod-

el is considered in this paper. The extension to the wideband

case is deferred to future works. The channel matrix between

the Tx and the Rx is given by

H =
√
NTNRd−τ

L∑
l=1

αlaR(φl)a
H
T (ψl), (2)

where d is the distance between the Tx and the Rx, τ is the

path-loss exponent, L is the number of propagation paths, and

αl is the complex small-scale fading path gain of the l-th
path. In (2), φl and ψl take the form φl = cos(θl) and ψl =
cos(ϑl), where θl and ϑl represent the physical angle of arrival

(AoA) and physical angle of departure (AoD) of the l-th path,

respectively. aR in (2) represents Rx array response vector.

Let the transmit beam be f ∈ CT. The signal received at the

Rx with receive beam w ∈ CR is given by

y =
√
PwHHfs+ n, (3)

where P is the transmit power, s of size Lp × 1 is the pilot

sequence, and n ∼ CN (0, σ2
nI) is the noise vector. For the

codebook-based beamforming system, each time-slot consists

of two phases, i.e., beam training and data transmission. The

main task of beam training is to search the optimal transmit

and receive beams (i.e., find out the beams with the highest

measured signal power) for the subsequent phase of data

transmission. The effective achievable rate (EAR) is adopted

as a metric to measure the throughput performance of a beam

training algorithm, which is defined as [10]

Reff = (1− TB/TS) log
(
1 + P |wHHf |2), (4)

where TB and TS denote the duration of beam training within

a time-slot and the duration of a time-slot, respectively.

To achieve a high throughput, the time allocated for beam

training TB should be as little as possible, so as to reserve

more time for data transmission. Meanwhile, the array gain

|wHHf | should be as large as possible. However, the two

goals are in conflict with each other. On the one hand, a

large array gain can be achieved only when the optimal beams

are found. On the other hand, finding the optimal beams is

time-consuming for a large antenna array and often requires

a large training overhead. This issue becomes more severe in

the FWA system, where more frequent BA is required due

to environ-mental factors, typically, the vibrations caused by

wind or other external stimulations.

To mitigate this issue, we will propose an efficient approach

based on Bayesian learning. Similar to [11]–[15], where the

information of location is exploited to construct a mapping

based on neural networks, the key is to construct an explicit

mapping between beam directions and coordinates. Essentially,

BA is to match the beam directions with the AoDs/AoAs of

key channel paths. The AoDs/AoAs are determined by the

locations (of Tx and Rx) and their surroundings. Since the

LOS path is often present and dominates and the influence of

the surroundings can be ignored for the considered FWA sys-

tem, the AoDs/AoAs are mainly determined by the locations.

Therefore, it is reasonable and efficient to construct an explicit

mapping between the beam directions and coordinates.

III. TRANSMIT-RECEIVE BEAM ALIGNMENT DESIGN VIA

BAYESIAN DEEP LEARNING

In this section, we will propose an efficient BA algorithm

based on Gaussian Processes (GPs). In particular, we assume

that the Tx and Rx predict their beams independently.

A. Predictive Beam Alignment via GPs - A Naive Algorithm

In a mmwave backhaul communication system, once the Tx

and Rx coordinate positions P and Q are determined, the AoD

and AoA (and thus the optimal transmit and receive beams)

can also be found, i.e., the AoD and AoA are functions of the

(physical) coordinates P and Q. For simplicity, we focus on a

displacement at the Tx and assume that the Rx is static with

coordinates (0, d0, HR) where d0 is the horizontal distance

between the Tx and Rx and HR is the height of the Rx, as

shown in Fig. 2. If no vibration occurs (i.e., the Tx coordinates

are (0, 0, HT) with HT denoting the height of the Tx pillar), the

beam direction vector is 
v0. If a displacement occurs (e.g., due

to wind flow) and the coordinates of the Tx are P (xt, yt, zt),
then the beam direction vector is given by


vt =
(−xt, d0 − yt, HR − zt)√

x2
t + (d0 − yt)2 + (HR − zt)2

. (5)

The relative AoA θt can be calculated using the geometry in

Fig. 2 and the law of cosines as

θt = arccos

( |P0Q|2 + |PtQ|2 − |P0Pt|2
2|P0Q| · |PtQ|

)
. (6)

Note that the expressions derived in (5) and (6) are obtained

under some idealistic assumptions. However, things are often

not that simple. Typically, the pillar shape may be deformed,

as shown in Fig. 3. In fact, affected by the material and

usage time of the pillar, local meteorological or weather

conditions and so on, it is challenging (and even impossible) to

derive an accurate and deterministic expression to characterize

the relationship between the physical coordinates and the

AoD/AoA (or the beam direction vectors). It is also difficult
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Fig. 2. The relationship between coordinate positions and beam directions.

to incorporate environmental uncertainties into a deterministic

model. Accordingly, henceforth we instead adopt a stochastic

process to model the displacement of the Tx and Rx beams

as a result of complex environmental perturbations, which we

use for our learning based beam alignment approach.

x

y

z

O

v
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P H

Fig. 3. An accurate and deterministic expression may be unavailable due to
all kinds of non-ideal factors, e.g., the pillar shape is deformed.

Instead of the deterministic modeling via NNs, we consider

a non-parametric stochastic modeling via stochastic processes,

so as to incorporate uncertainties and improve robustness 1. In

particular, GPs are chosen in this paper, thanks to the inference

tractability (without complex and difficult sampling), sufficient

flexibility (to approximate an arbitrary function) and the good

small sample performance. Due to the tractability, closed-form

expressions of GP posterior probabilities are available, which

enables to compute quantities of interest (e.g., posterior pre-

diction performance). For completeness, a brief introduction

of GPs is provided in Appendix A. Let x(t) = (xt, yt, zt) be

the coordinates of point P at time t. The prediction model,

i.e., the mapping between the beam index bT(·) of transmit

beam and coordinates x(t), denoted by f , can be written as

bT(x(t)) = f(x(t)) + p(x(t)), (7)

where p(x) incorporates possible uncertainties (e.g., due to

system or modeling error) 2. The GP that describes the transmit

1Since the parameters of the considered stochastic process take value in a
Euclidean space of dimension greater than 1, the stochastic process is, in fact,
a random field. However, we still adopt the terminology - stochastic process.

2Note that in practice we, in fact, predict the beam direction bT(x(t)) by
constructing the mapping bT(x(t)) = f(x(t)), where bT(·) and f(·) may
be vector (functions). Then, bT is mapped into a beam index via quantization
according to the codebook. To avoid complex notations and descriptions, it
is assumed to predict the beam index in this paper.

beams is denoted by BT(x) and referred to as transmit beam

process (TBP). The beam process for Rx, i.e., receive beam

process (RBP) BR(x), is defined similarly.

For a GP, the pattern of beam change (e.g., the periodicity

of x(t)) is encoded into its kernel, denoted by kT(x(t),x(t
′)).

From the view of Bayesian inference, the kernel encodes the

prior. Typically, kT(·, ·) can be a linear combination of the SP

kernel kSP(·, ·) and the SM kernel kSM(·, ·), i.e.,

kT(x,x
′) = c1kSP(x,x

′) + c2kSM(x,x′) + σ2
pδx,x′ , (8)

where c1 > 0 and c2 > 0 are the combination coefficients,

and δx,x′ is a Kronecker delta (i.e., δx,x′ = 1 if and only

if x = x′). However, the practical environment is often very

complex. The kernel provided in (8) may be not rich enough

to characterize the practical beam processes.

Thanks to the powerful representation and fitting ability of

neural networks (NNs), we tackle this problem by parame-

terizing TBP via NNs. To parameterize a GP, it is sufficient

to parameterize its mean function and kernel. 3 In contrast

to the mean function, it is a bit difficult to parameterize the

kernel, since its positive-definiteness much be guaranteed. In

this paper, we adopt the method in [24]. Let kB(·, ·) be a base

kernel, which can be a SE kernel, a PE kernel, a SM kernel,

and so on. The NN is used as a feature extractor on top of

which the base kernel is applied. We take the SE kernel as an

example and let Φ(x;φ) be the NN with parameters φ (e.g.,

the weights and biases). Then, the parametric kernel kP(·, ·)
reads as

kP(x,x
′) =kB

(
Φ(x;φ),Φ(x′;φ)

)
=σ2

f exp

(
− 1

2l2
‖Φ(x;φ)− Φ(x′;φ)‖2

)
.

Let kT(·, ·) represent the parameterized kernel of TBP. The NN

with parameters φT for kT(·, ·) is referred to as transmit kernel

encoding network (TKEN). The parametric TBP is denoted by

BT(x) = GP(
0, kT(x,x

′;φT)
)
.

Let the beam index at point xi (i = 1, · · · , n) be b(xi).
4

For convenience, b(xi) is abbreviated as bi, and other variables

are denoted similarly. The task is to predict the beam at xn+1.

Let Sn = {(x1, b1), · · · , (xn, bn)} and bn = [b1, · · · , bn]T be

the training set and the label set, respectively. By using (26)

- (28), the Bayesian posterior distribution is given by

p(B(xn+1) |Sn,xn+1) ∼ N (
μ(xn+1), σ

2(xn+1)
)

(9)

μ(xn+1) = kT
∗(K+ σ2

pI)
−1bn (10)

σ2(xn+1) = k∗∗ − kT
∗(K+ σ2

pI)
−1k∗. (11)

Please refer to Appendix A (in particular (26) - (28)) for the

definition and calculation of k∗∗, k∗ and K.

For simplicity, we take uniform linear array as an example.

To improve robustness, instead of predicting and sweeping one

single beam, we sweep the beams within an interval, which is

referred to as beam confidence interval (BCI), i.e.,

Icσ = �μ(xn+1)− cσ(xn+1), μ(xn+1) + cσ(xn+1)�, (12)

3The mean function can be directly parameterized via NNs. Similar to most
literatures, we set the mean function to zero and concentrate on the kernel.

4Note that {b(x)} is a sample function (or path) of the stochastic process
{B(x)}, while {B(x)} has infinite sample functions.
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where c usually takes 3, 2 and 2.5 in practice. In fact, c = 3
and c = 2 respectively correspond to the 3σ criterion in math-

ematical statistics and the 2σ criterion in machine learning

community, while c = 2.5 is introduced to balance the two

most common criteria. As an example, if c = 3 is chosen, the

posterior prediction performance (or probability of successful

probability) is
∫ c

−c
1√
2π

exp
(
−x2

2

)
dx ≈ 0.9975 ≈ 1. Note

that the choice of the value of c implies a tradeoff between

different performance metrics. A smaller value of c implies a

lower training overhead while a worse reliability.

A remaining problem is to determine the hyper-parameters,

i.e., the parameters of the base kernel and the weights of the

NN. This problem is related to Bayesian model selection [25]

and can be addressed via marginal likelihood (or evidence)

p(bn |Xn = [x1, · · · ,xn]) maximization. The marginal like-

lihood is the integral of the likelihood times the prior, i.e.,

p(bn |Xn) =

∫
p(bn | f,Xn)p(f |Xn)df, (13)

where f is the mapping in (7) that needs to be inferred from

data, p(f |Xn) = N (0,K) is the prior, and p(bn | f,Xn) =
p(bn | f(Xn),Xn) = N (f(Xn), σ

2
pI) is the likelihood. Via

appropriate algebraic operations, p(bn |Xn) is calculated to

be N (0,K+σ2
pI). In practice, we maximize the log marginal

likelihood (LML), i.e., log p(bn |Xn), which is calculated as

log p(bn |Xn) = −1

2
bT
n(K+ σ2

pI)
−1bn−

1

2
log det(K+ σ2

pI)−
n

2
log 2π. (14)

Given the training set (or samples) Sn = {(x1, b1), (x2, b2),
· · · , (xn, bn)}, the parameters can be determined by maximiz-

ing log p(bn |Xn). This is a nonlinear optimization problem,

which can be solved via nonlinear optimization methods.

Algorithm 1: Bayesian Beam Alignment/Training Algorithm

1 input: initial experiences ST = {(x1, b1), · · · , (xn0 , bn0 )}
and SR = {(x′

1, b
′
1), · · · , (x′

n0
, b′n0

)}; cσ criterion

2 initial: let time-slot counter n = n0

3 loop (in each time-slot n)

(1) maximize LML in (14) to optimize GP predictive model

(2) compute covariance matrix/vector/scalar K, k∗ and k∗∗
(3) determine transmit BCI according to (9) - (12)

(4) determine receive BCI similarly

(5) sweep all beam pairs constructed from BCIs to find out

optimal transmit beam b�n+1 and receive beam b′�n+1

(6) perform data transmission with beams b�n+1 and b′�n+1

(7) update n, ST and SR: n ← n+ 1

ST ← ST ∪ {(xn, bn)} and SR ← SR ∪ {(x′
n, b

′
n)}

end-loop

For clarity, the designed BA algorithm is summarized in

Algorithm 1. The input of Algorithm 1 is the training datasets

ST (for Tx) and SR (for Rx) up to time-slot tn0
. Note that ST

and SR can be empty and Algorithm 1 is implemented online

in this case. In step 3-(1), we first maximize the LML to deter-

mine the hyper-parameters. Then, we determine the transmit

BCI in steps 3-(2) and 3-(3). The receive BCI is determined

similarly. In step 3-(5), we find out the optimal transmit and

receive beams by sweeping all beam pairs constructed from

the BCIs. With the optimal beams available, we can perform

data transmission, in step 3-(6). In step 3-(7), we enlarge the

training sets by adding the current experiences into ST and

SR. The step to find out the optimal beams for time-slot tn+2

is similar. As t increases, a better performance can be achieved

with more data accumulated. If the BCIs are large or do not

contain the real beams, it implies that the current model (e.g.,

GP kernel) is inappropriate and Although 1 should be restarted.

If the assumption deviates from practice due to some

accidental factors, the predicted beam confidence interval does

not contain the real beam direction or the interval is relatively

large, which thus affects the prediction performance or other

performance metrics (e.g., effective achievable rate). In this

case, it is sufficient to recollect a training dataset and optimize

the model. Fortunately, since our algorithms can run online and

require only a small number of samples (due to a good small

sample performance), they will adapt to the new environment

quickly again.

Remark 3.1 An important advantage of Algorithm 1 is that

a good performance can be achieved even for a small sample

setting, which is desirable for ever-changing communication

environments. Moreover, in contrast to most of the existing

algorithms that predict a single beam each time, Algorithm 1

takes environmental uncertainties into account and outputs a

beam subset, which greatly improves its robustness.

Note that although Algorithm 1 has appealing advantages,

we hope that we can perfect it by overcoming the following

drawbacks. Firstly, to obtain the BCI (or the posterior distri-

bution), a complex optimization problem has to be solved in

each time-slot, i.e., maximize the LML in (14). As more and

more experiences are accumulated, the scale of the problem

also increases, which may be prohibitive. On the other hand,

since the Tx and Rx are in a similar/same environment, their

experiences are correlated. It is hoped that we can exploit the

correlated experiences to improve the performance. Secondly,

it is troublesome to measure the coordinates in each time-

slot. We hope that the measurements can be reduced and even

avoided. Next, we will address the two issues.

IV. BEAM ALIGNMENT WITH CORRELATION EXTRACTION

AND EXPLOITATION

In this section, we perfect the designed BA algorithm by

extracting and exploiting underlying correlation between the

changes of the Tx coordinates and Rx coordinates.

A. Correlation Capture - Hierarchical Prior Modeling

The changes of the Tx coordinates and Rx coordinates are

often correlated in practice. In particular, the antenna arrays

of the Tx and Rx may be placed at the top of the pillars (e.g.,

installed at the top of the street lamps). Because of the same or

similar external affections (e.g., the wind), the changes of the

coordinates share many features. For example, the changes of

the coordinates share a same or similar periodicity, although

their magnitudes may be different. It is expected to reduce the

Authorized licensed use limited to: Southeast University. Downloaded on May 04,2021 at 09:46:34 UTC from IEEE Xplore.  Restrictions apply. 



1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3076899, IEEE
Transactions on Signal Processing

6

scale of the optimization problem in (14) while improve the

system performance by leveraging the correlation.

First, we consider how to characterize the correlation. Let

kT(·, ·) and kR(·, ·) denote the GP kernels of the TBP and RBP

which are parameterized by NNs with weights φT and φR,

respectively. The NNs of kT(·, ·) and kR(·, ·) are respectively

referred to as transmit and receive kernel encoding network

(TKEN and RKEN). The parameterized beam processes are

denoted by

BT(x) =GP(
0, kT(x,x

′;φT)
)

BR(x) =GP(
0, kR(x,x

′;φR)
)
.

(15)

From the perspective of Bayesian inference, kT(·) is, in fact,

the prior of TBP. With data ST = {(x1, b1), · · · , (xn, bn)}
available, kT(·) is updated into the posterior k′T(·). The per-

spective also applies to RBP.

The key is to capture, represent and exploit the correlation.

In view that TBP and RBP are affected by the same or similar

external effects, it is reasonable to assume that the GP kernels

kT(x,x
′;φT) and kR(x,x

′;φR) are sampled from a prior

distribution. Note that since kT(x,x
′;φT) and kR(x,x

′;φR)
themselves are priors, the introduced prior distribution is, in

fact, a prior for the priors, i.e., a hyper-prior (See Fig. 4).

Fig. 4. An illustration of hierarchical prior modeling - the kernels of TBP
and RBP are parameterized via NNs, while the correlation between TBP and
RBP is captured and represented via a hyper-prior.

Although there are different methods to introduce a hyper-

prior for the GP kernels, we adopt a simple but very effective

method. Firstly, the NNs of kT(x,x
′;φT) and kR(x,x

′;φR)
shall the same network structure, i.e., the same number of

layers, the same number of neurons in each layer, and so

on. Secondly, the weights and biases in the same location of

the NNs share a common probability distribution, which has

dual attributes, i.e., prior (used to capture prior correlations

and initialize the weights and biases) and posterior (used to

parameterize the GP kernels via sampling). For simplicity, the

hyper-prior is chosen as zero-mean isotropic Gaussian, i.e.,

P(θ) = N (0, σ2
PI), where θ represents φT or φR.

B. Correlation Extraction and Exploitation - Hyper-Posterior
and Posterior Inference

Given the hyper-prior P and experiences ST = {(xi, bi) | i
= 1, · · · , n} and SR = {(x′

i, b
′
i) | i = 1, · · · , n}, the key is to

extract correlation and use it to improve system performance.

Since the correlation is contained in the hyper-prior and expe-

riences ST and SR. From the Bayesian perspective, we shall

transform the hyper-prior into a hyper-posterior. We hope that

the extracted correlation can compensate for the performance

loss due to a limited number of samples. More specifically, it

is hoped that the generalization error (GE) could be as small as

possible. Let Z(S, P ) =
∫
H P (h)

∏m
j=1 p(zj |h)dh denote the

marginal likelihood with a sample set S = {z1, z2, · · · , zm}.

The hyper-posterior that yields the smallest GE is character-

ized in the following theorem.

Theorem 1. Given the hyper-prior P and experiences ST and
SR, the hyper-posterior that achieves the optimal PAC-Bayes
GE bound is given by 5

Q�(P ) =
P(P ) exp

(
[lnZ(ST, P ) + lnZ(SR, P )]/2

)
R(P,ST,SR)

, (16)

where R(P,ST,SR) is given by

R(P,ST,SR)

=

∫
P(P ) exp

(
lnZ(ST, P ) + lnZ(SR, P )

2

)
dP.

Proof: See Appendix B.

The optimal hyper-posterior Q�(P ) in (16) is derived via

upper bounding the GE performance, which are provided in

(40) or (42). Theorem 1, in fact, provides an efficient method

to extract the correlation, which is realized by transforming

the hyper-prior along with the experiences of Tx and Rx into

the hyper-posterior. In particular, the closed-form expression

in (16), which is up to the constant term R(P,ST,SR), is

provided to compute the optimal hyper-posterior Q�(P ).

In practice, it may be difficult (and even unnecessary) to

accurately compute Q�(P ). Hence, tractable approximations

of Q� may be more appealing. For simplicity, we next consider

a simple but effective approximation - maximum a posterior

(MAP). Another commonly used approximation is variational

inference (VI) [26], which is omitted due to space limitation.

The MAP approximates Q�(P ) by a single-point (or Dirac)

measure, i.e.,

P̂ = argmax
P∈M(H)

Q�(P ) = argmax
P∈M(H)

lnQ�(P ).

Via simple algebraic operations, it can be verified that P̂ can

be obtained by minimizing the following cost function

c(P ) = − lnZ(ST, P ) + lnZ(SR, P )

2
− lnP(P ). (17)

5P (·) represents a probability distribution/measure on the hypothesis space
H (i.e., the function space that consists of all prediction models), namely, P
is a GP. Each GP is determined by its kernel parameterized a NN. Hence, P , a
distribution on NN parameters, represents a probability measures on the space
of all GPs, which is denoted by P(P ) = P(θ). The two spaces (i.e., the
hypothesis space that contains the prediction models of interest and the space
of NN parameters that correspond to GP kernels) are two different spaces.
For the GP regression setting, lnZ(S, P ) is, in fact, the LML in (14).
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C. Beam Alignment with Correlation Exploitation

Based on the aforementioned discussion, we can propose

a more efficient BA algorithm which can extract and exploit

the correlation contained in the experiences of Tx and Rx to

further improve the system performance. The principle of the

designed BA algorithm is outlined in Fig. 5.

x

x

Fig. 5. The principle of beam prediction with correlation exploitation.

Via the hierarchical Bayesian modeling, a reasonable hyper-

prior is introduced to capture the correlation. With sufficient

experiences available, by extracting the correlation, the hyper-

prior is transformed into a hyper-posterior. A good posterior

can be further obtained via the MAP approximation. Now, a

sufficiently good predictive model has been obtained, since

the weights and biases of the NNs in TKEN and RKEN have

been determined. As a result, there is no need to maximize the

LML in (14). Note that the predictive model is shared by the

Tx and Rx. For both Tx and Rx, once unseen coordinates are

arrived, a BCI can be obtained according to Eq.(9) - Eq.(11).

The BA algorithm is summarized in Algorithm 2.

Algorithm 2 mainly consists of two parts. The first part is to

extract the correlation from the experiences, while the second

part is to exploit the correlation to improve the system perfor-

mance. To determine a BCI, or equivalently, the posterior dis-

tribution p(B(xn+1) |Sn,xn+1) ∼ N (
μ(xn+1), σ

2(xn+1)
)

in (9), the experiences Sn are still required. Alternatively, we

can choose a subset of Sn to further reduce the computational

complexity. Finally, to extract the correlation, the experiences

ST and SR have to be gathered together. With the assumption

that Tx has a larger computational capacity, a preferable option

is that Tx undertakes the task and Rx sends its experiences to

Tx. Accordingly, the EAR in (4) is modified as

Reff =
(
1− (TB + TE)/TS

)
log

(
1 + P |wHHf |2), (18)

where TE is the overhead of collecting the experiences.

Remark 4.1 Compared to Algorithm 1, an important ad-

vantage of Algorithm 2 is that there is no need to optimize the

(predictive) model by solving a complex optimization problem

in each time-slot. Therefore, the computational complexity of

Algorithm 2 is much less than that of Algorithm 1.

V. COORDINATE PREDICTION VIA BEAMS

To avoid measuring coordinates frequently, in this section

we propose an efficient algorithm to predict the coordinates

based on the record of past optimal beams. Then, we incor-

porate the coordinate prediction algorithm into BA.

Algorithm 2: Beam Alignment with Correlation Exploitation

1 input: experiences ST = {(x1, b1), · · · , (xN , bN )} and

SR = {(x′
1, b

′
1), · · · , (x′

N , b′N )}; cσ criterion

2 extract correlation
(1) introduce hyper-prior for NNs of TKEN and RKEN

(2) transform the hyper-prior into a hyper-posterior

(3) determine posterior via MAP or VI approximation

3 loop (in each time-slot n ≥ N + 1)

(1) compute covariance matrix/vector/scalar K, k∗ and k∗∗
(2) determine transmit BCI and receive BCI

(3) sweep all beam pairs constructed from BCIs to find out

optimal transmit beam b�n+1 and receive beam b′�n+1

(4) perform data transmission with beams b�n+1 and b′�n+1

(5) update n, ST and SR: n ← n+ 1

ST ← ST ∪ {(xn, bn)} and SR ← SR ∪ {(x′
n, b

′
n)}

end-loop

A. Coordinate Prediction via Beams

For convenience, the Tx is taken as an example to elaborate

on the coordinate prediction. Up to now, to predict the beam

direction in time-slot n + 1, the coordinates xn+1 have to

be provided. However, it may be costly and troublesome to

accurately measure the coordinates in each time-slot. There-

fore, an algorithm that requires less measurements or can

automatically estimate the coordinates is more appealing.

Fortunately, the coordinates can be estimated from past beams

(i.e., the corresponding beam directions of the beams) which,

for convenience, are referred to as beam experiences (BEs).

The rationality is that the environment and also the coordinates

often change continuously, which leads to continuous changing

beam direction. In other words, the continuous change of the

beam direction, in fact, reflects the change of the coordinates.

Therefore, based on the continuity, the coordinates xn+1 can

be estimated from on the BEs.

The mapping relationship between the coordinates x(t) and

the beam direction b(t) 6 can be written as

x(t) = g(b(t)) + q(t), (19)

where q(t) incorporates possible uncertainties caused by sys-

tem or modeling error. To facilitate inference, a multi-output

GP (MO-GP) is used to characterize the mapping in (19).

For simplicity, the MO-GP is decomposed as K single-output

GPs with K denoting the dimension of each coordinate vector,

although it may incur some performance loss.

Algorithm 3: Coordinate Prediction via Beam Experiences

1 input: beam experiences D = {(b1,x1), · · · , (bn,xn)},

beam bn+1 and cσ criterion

2 maximize LML to optimize GP predictive model

3 determine predictive distribution of each dimension

4 determine coordinate confidence region Rn+1

5 output: coordinate confidence region Rn+1

6Notice that a beam direction is a continuous quantity, while a beam index
is a discrete quantity (an integer). Here, b(t) represents a continuous quantity.
The beam index can be obtained via quantization with a codebook.
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Let D = {(b1,x1), · · · , (bn,xn)} denote the BEs, i.e.,

the training set for coordinate prediction (CP). The task of

predicting the coordinates xn+1 based on D is similar to the

prediction of the beam bn+1 based on Sn = {(x1, b1), · · · ,
(xn, bn)}. Due to space limitation, the details are omitted. For

clarity, the algorithm to predict coordinates is summarized in

Algorithm 3, which applies to both Tx and Rx. Note that the

output of the CP algorithm is often a region of R
K which

is referred to as coordinate confidence region (CCR), i.e., a

region that contains the coordinates with a high probability.

B. Beam Alignment Incorporating Coordinate Prediction

In this subsection, we take Tx as an example to show how

to incorporate beam prediction (BP) and coordinate prediction

into BA. The design principle is shown in Fig. 6. It consists of

two modules, i.e., BP module and CP module. The individual

roles of the two modules are as follows:

• The role of the BP module is to provide a reliable BCI.

The optimal beam can be found by sweeping all beams

within the BCI.

• The CP module is in charge of determining an effective

CCR, based on which the BP module can estimate or

predict an effective BCI.

O

t
t

Fig. 6. A sketch of the BA design principle incorporating CP and BP.

Note that the BP module takes as input a scalar or a vector,

while the output of the CP module is a Euclidean region, e.g.,

R. To tackle this issue, we discretize R by sampling L points

within R and obtain a discrete point set D = {y1,y2, · · · ,yL

}. For each point yi ∈ D, the BP module is invoked and

yields a BCI I(yi) with mean value bi. Then, by sweeping

all beams within
⋃L

i=1 I(yi), we can find the optimal beam

b�. The coordinates for b�, denoted by y�, are chosen as the

point in D whose BCI contains b� and is also narrowest.

Now, we can present a BA algorithm with both BP and

CP, which is summarized in Algorithm 4 for clarity. In each

time-slot, the main steps are as follows. In step 3-(1), we

first determine a CCR via Algorithm 3 based on the BEs D.

We discretize the CCR and obtain a discrete point set D in

step 3-(2). In step 3-(3), we estimate a BCI for each sampled

point. By sweeping all beams within the union of all BCIs in

step 3-(4), we can find the optimal beam bn+1. In step 3-(5),

based on the optimal beam, we further determine the optimal

coordinates xn+1. In steps 3-(6) and 3-(7), we perform data

transmission and update the experiences, respectively.

Algorithm 4: Tx (or Rx) Beam Alignment with Both BP and CP

1 input: initial BP dataset D = {(b1,x1), · · · , (bn0 ,xn0 )};

cσ criterion

2 initial: construct CP dataset S = {(x1, b1), · · · , (xn0 , bn0 )};

let time-slot counter n = n0 + 1

3 loop (in each time-slot n)

(1) determine coordinate confidence region via Algorithm 3

(2) sample CCR to obtain a point set D = {y1, · · · ,yL}
(3) determine BCI I(yi) for each point yi via BP module

(4) sweep beams within
⋃ I(yi) to find optimal beam bn+1

(5) determine optimal coordinates xn+1 for beam bn+1

(6) perform data transmission with found optimal beam

(7) update n, D and S: n ← n+ 1,

D ← D ∪ {(bn,xn)} and S ← S ∪ {(xn, bn)}
end-loop

In Algorithm 4, it is assumed that the initial dataset D =
{(b1,x1), · · · , (bn0

,xn0
)} is available. Typically, the dataset

can be collected in advance or online (but the frequency of

measuring the coordinates is much lower than that of BA). If

this dataset is unavailable or difficult to obtain, it is still able

to predict beams efficiently via GPs. Note that one can always

obtain a dataset like D′ = {(t1, b1), · · · , (tn0
, bn0

)} 7. Then,

Algorithm 1 can be used with only a minor modification, i.e.,

to replace the coordinates x by the time t. For completeness,

the modified algorithm is summarized in Algorithm 4′.

Algorithm 4′: Tx (or Rx) Beam Alignment with Beam Dataset

1 input: initial beam dataset D′ = {(t1, b1), · · · , (tn0 , bn0 )};

cσ criterion

2 initial: let time-slot counter n = n0 + 1

3 loop (in each time-slot n)

(1) maximize LML to optimize GP predictive model

(2) compute covariance matrix/vector/scalar K, k∗ and k∗∗
(3) determine transmit BCI according to (9) - (12)

(4) sweep transmit BCI to search optimal beam b�n+1

(5) perform data transmission with optimal beam b�n+1

(6) update n,D′: n ← n+ 1,D′ ← D′ ∪ {(tn, bn)}
end-loop

Remark 5.1 Compared with Algorithm 1 and Algorithm 2,

the most important feature of Algorithm 4 is that there is no

need to measure the coordinates in real-time. However, since

two GPs are introduced in Algorithm 4, it may consume more

computing and storage resources. Compared with Algorithm 1,

Algorithm 2 and Algorithm 4, which are mainly model-driven,

Algorithm 4′ is more inclined to be data-driven.

Up to now, we have focused on single-beam (or beam pairs)

training and tracking. To train and track multiple beams, we

can employ multiple GPs to construct multiple mappings and

in each time-slot we sweep all beams within the BCIs provided

7Note that bi is the beam at time-slot i, which can be obtained via hieratical
or exhaustive search or other algorithms. Note that ti can be the real time or
simply i/T0 with T0 a normalized (time) constant.

Authorized licensed use limited to: Southeast University. Downloaded on May 04,2021 at 09:46:34 UTC from IEEE Xplore.  Restrictions apply. 



1053-587X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3076899, IEEE
Transactions on Signal Processing

9

by all GPs. The detailed operations are similar to the case of

single-beam training and tracking, which are omitted.

VI. NUMERICAL RESULTS

In this section, simulation results are provided to demon-

strate the performance of the proposed BA algorithms. The

first subsection describes the simulation environment, while

the second subsection provides the simulation results.

A. Simulation Environment

A communication environment shown in Fig. 2 is chosen

to evaluate the algorithms. In contrast to Fig. 2, both Tx and

Rx are affected by the wind. It should be pointed out that

although the specific environment is chosen, our algorithms

also apply to other environments. In Section III-A, we have

derived the expressions of Tx beam direction vector and AoA

when given the Tx coordinates P (xt, yt, zt). Let βt and αt be

the Tx elevation angle and azimuth angle, respectively. Then,

the Tx coordinates P (xt, yt, zt) can be calculated as

xt =H sin(βt) cos(αt), yt = H sin(βt) sin(αt)

zt =H cos(βt).
(20)

In practice, the wind often disrupts the (stable) beam along

a fixed direction within an appropriate time-interval. Let U be

the time-interval. In each [jU, (j+1)U), the azimuth α is fixed

to a constant. Since the expressions in (20) are obtained under

an ideal case, we add some stochastic elements into them to

model possible non-ideal factors (e.g., the deformation of the

pillar). Specifically, H in (20) is modified as

Ht = H0

√
sin2(kβt + n1) + cos2(kβt + n2), (21)

where H0 is the original length of the pillar, k is distributed

as N (1, σ2
β) and ni (i = 1, 2) are distributed as ∼ N (0, σ2

i ).
To incorporate external effects in terms of time-dimension,

a damped periodical stochastic process is used to model the

change of the elevation angle β. The stochastic process in the

interval [0, U) can be mathematically expressed as

β0(t) =
(
Ad(t) sin(2πfd(t− t0)+φ0)+

b(t)+N(t)
) · I{0≤t<U}. (22)

The meaning of the parameters in (22) is explained below:

• A is a random variable characterizing the angle spread.

It reflects the initial strength of the external effects. d(t)
describes the attenuated behavior of the external effects.

It is a decreasing function, e.g., an exponential function

exp(−ηt) with η a positive random variable.

• t0 and φ0 denote initial random time and initial random

phase. fd characterizes the frequency of the disturbance

effects. t0 is assumed to be uniformly distributed in an

interval [a1, b1], and it is similar for φ0 and fd.

• b(t), a constant function, denotes the stable beam direc-

tion. N(t) absorbs other possible stochastic disturbance

factors. In each time-slot, it randomly and independently

takes a value within a set, e.g., [−0.5, 0.5].

A complete expression of β can be expressed as

β(t) =

∞∑
n=0

β0(t− nU). (23)

For clarity, an instance is provided in Fig. 7. The simulation

setting of Rx is similar to that of Tx, which is omitted.
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Fig. 7. An instance of two stochastic processes of the elevation angle β.

The sizes of Tx and Rx codebooks CT and CR satisfy

MT = NT and MR = NR. The channel model in (2) consists

of both LOS path and NLOS paths. The NLOS part of the

channel model consists of 3 clusters and each cluster consists

of 4 channel paths [27]. The AoD and AoA of the LOS path

are determined according to (21), while the AoDs and AoAs

of all NLOS paths are uniformly distributed in an interval,

e.g., [0, 2π] or [0, π]. The LOS path gain is distributed as

αLOS ∼ CN (1/
√
2 + i/

√
2, 0.1). The average power ratio

between the LOS path gain αLOS and each NLOS path gain

αNLOS is 10dB. The path gain of each NLOS path is distributed

as CN (0, σ2
NLOS), where σ2

NLOS is calculated according to the

gain of the LOS path. The path loss or attenuation dτ in (2) is

fixed to dτ = NTNR/16. The SNR γ is defined as γ = P/σ2
n

with P and σ2
n given in (3). U in (22) is set to U = 160.

B. Performance of Beam Alignment

In this subsection, we demonstrate the performance of the

proposed BA algorithms. Since the BA algorithms proposed

in this paper, i.e., Algorithm 1, Algorithm 2 and Algorithm 4,

are all designed based on GP learning, they are abbreviated

as GPL-1, GPL-2 and GPL-4, respectively. In addition to the

conventional hierarchical search (HS) based BA algorithm [4],

several ML based BA algorithms proposed recently, i.e., direct

upper confidence bound (DUCB) [16], hierarchical posterior

matching (HPM) [20], partially observable Markov decision

process (POMDP) with some modifications [21] and stochastic

bandit learning (SBL) [19], are adopted for comparison. EAR

[19] and probability of successful alignment (PSA) are used

as performance metrics to evaluate different algorithms.

First, we evaluate different BA algorithms by comparing the

EAR and PSA performances vs. the size of available training

set T . The algorithms designed in this paper are implemented
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online, and the first T samples are chosen as the training

set and the remaining samples are used for testing. It is well

known that the size of the training set has a significant impact

on the performance of most ML algorithms. T of a small

value corresponds to a small sample performance of a learning

algorithm. Note that the small sample case is very common

in wireless communications, since the channels often vary

rapidly. For GPL-1, the size of its initial training set, i.e., n0

in GPL-1, is set to n0 = 10. The average EAR performance

of different BA algorithms is shown in Fig. 8.
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Fig. 8. The average EAR performance vs. the size of the training set: fd =
0.3 and A ∼ U(3, 29).

It is seen that GPL-1 achieves the best EAR performance

among the four BA algorithms and approaches the oracle-

aided ideal algorithm which accesses the optimal beams with-

out any training overhead. It is also seen that GPL-1 can

achieve a good performance for a small sample setting (e.g.,

when T ≥ 46 ≈ 101.66), which is appealing in mmwave

communications. The reason for this is three-fold. Firstly, in

contrast to the data-driven design paradigm, the algorithms in

this paper are designed based on the paradigm that is driven

by (communication) model and empirical data collaboratively

[28]. Secondly, instead of predicting a single beam accurately,

only an interval that contains the beam of interest is required to

predict, which further reduces the number of required samples.

Thirdly, an appealing and important advantage of Bayesian

learning is that a good performance can be achieved even

for a small sample setting, which is attributed to the model

averaging function of Bayesian learning. In contrast, both

POMDP and SBL can achieve a good performance only under

a large sample setting. As the size of the available training set

decreases, their performance degenerates quickly.

Fig. 9 demonstrates the PSA performance of different BA

algorithms. It is not surprising that GPL-1 achieves the best

PSA performance for the two cases (i.e., low SNR and high

SNR), which further shows the effectiveness and superiority

of GPL-1 under the small sample setting. It is observed that

for the two performance metrics (i.e., EAR and PSA), DUCB

achieves the worst performance among the four algorithms.

The reason for this is that the considered mmwave channels

vary rapidly, and DUCB is mainly applicable to slow-varying
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Fig. 9. The PSA performance vs. the size of the training set: fd = 0.3 and
A ∼ U(3, 29).

mmwave channels. POMDP performs a little better than SBL,

since more information can be incorporated into MDP states,

which helps to make better decisions.
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Fig. 10. The average EAR performance vs. the rate of environment change:
A ∼ U(15, 30), T = 160 for GPL-x and T = 3200 for SBL and POMDP.

To further evaluate the proposed BA algorithms, we com-

pare the EAR and PSA performance for changing environ-

ments which are characterized by fd in (22). The simulation

results of GPL-2 are also provided. The EAR performance of

different BA algorithms is shown in Fig. 10.

It is observed that for two SNR settings, GPL-1 achieves

the best EAR performance among the five BA algorithms and

GPL-2 achieves the second best one. More importantly, both

GPL-1 and GPL-2 can achieve a good EAR performance for

the changing environments. The reason for this is that the two

BA algorithms predict beams based on coordinate positions.

As long as the coordinates can be obtained, the GPs based

designs can provide good predictions. In contrast, the rate of

environment change has an influence on SBL and POMDP.

As the environment changes faster, the EAR performance of

the two algorithms decreases accordingly. It is also observed

that SBL performs better than HPM. The reason for this is

that beam index difference technique is incorporated into SBL,
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making it well-suited for varying environments.
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Fig. 11. The PSA performance vs. the rate of environment change: A ∼
U(15, 30), T = 160 for GPL-x and T = 3200 for SBL and POMDP.

Fig. 11 shows the PSA performance of the five algorithms

for the changing environments. Similar to the EAR metric,

GPL-1 and GPL-2 achieve the best PSA performance, while

the PSA performance of SBL and POMDP decreases as the

environment changes faster. Observing from Fig. 10 and Fig.

11, one can find that GPL-1 achieves a better performance

than GPL-2 in terms of both EAR and PSA. The reason for

this is two-fold. Firstly, gathering together the experiences of

Tx and/or Rx incurs some overhead, e.g., consume a part of

time resource. Secondly, GPL-1 optimizes the GP predictive

model in each time-slot, while GPL-2 optimizes the predictive

model once and then uses the model for a long time. Note that

optimizing the predictive model involves solving a complex

optimization problem, which may be prohibitive in some cases.

Finally, we demonstrate the EAR and PSA performance of

different BA algorithms for varying SNR, as shown in Fig.

12 and 13. The simulation results of GPL-4 are provided as

well. It is observed that GPL-1 and GPL-4 achieve a better

performance (in terms of both EAR and PSA) than the existing

three BA algorithms. Moreover, the two GP learning based

BA algorithms are immune to the environment change, which

is desirable in practice. It is seen that GPL-1 achieves a bit

better performance that GPL-4. The reason for this is that the

estimated coordinates may not be very accurate, which may

affect the final performance. However, an important advantage

of GPL-4 is that there is no need to measure the coordinates

in each time-slot, which can save a lot of trouble. As a non-

adaptive algorithm, it is not surprising that HS achieves the

worst performance among the five BA algorithms.

VII. CONCLUSION

In this paper, aiming at achieving the goal of obtaining a

good performance for the small sample setting, we designed

a GP learning based BA algorithm which takes as input the

coordinates. Then, we enhanced the BA algorithm from two

aspects, i.e., reducing the computational complex to improve

the data efficiency and avoiding measuring the coordinates fre-

quently. By extracting and exploiting the correlation between
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Fig. 12. The average EAR performance vs. SNR: A ∼ U(10, 30), T = 160
for GPL-x and T = 3200 for SBL and POMDP.
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Fig. 13. The PSA performance vs. SNR: A ∼ U(10, 30), T = 160 for
GPL-x and T = 3200 for SBL and POMDP.

Tx and Rx, we accomplished the first goal. We completed

the second goal by introducing another GP that predicts the

coordinates. Thanks to the Bayesian learning based design

paradigm, we can obtain a good and robust performance in

terms of both EAR and PSA for the small sample setting.

Finally, simulation results were provided to demonstrate the

effectiveness and superiority of the proposed algorithms.

APPENDIX A

PAC-BAYESIAN LEARNING

In this appendix, Gaussian Process (GP) regression and

PAC-Bayesian learning are briefly introduced to facilitate

developing efficient BA algorithms.

A. Gaussian Processes and Regression

A stochastic process f(x) is called a Gaussian process (GP)

if (and only if) for any finite number of points x1, · · · ,xn,

the joint probability density function, p(f(x1), · · · , f(xn)), is

Gaussian [29]. 8 A GP is completely characterized by its mean

8{f(xn)} are, in fact, random variables, while {xn} denote indices.
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function m(x) and covariance function k(x,x′), which is, in

a sense, similar to the multi-variate Gaussian distribution. The

mean function m(x) and the covariance function k(x,x′) of

a GP f(x) are respectively defined as

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].
(24)

Accordingly, the GP is written as

f(x) ∼ GP(
m(x), k(x,x′)

)
. (25)

For simplicity, m(x) is assumed to be zero, i.e., m(x) = 0.

The task of GP regression is to infer f(x∗) for an unseen

x∗, given noisy observations D = {(xi, yi) | yi = f(xi) +
wi, wi ∼ N(0, σ2

w), i = 1, · · · , n}. According to the definition

of GPs, the joint distribution of y = [y1, · · · , yn)]T and the

test output f∗ = f(x∗) is given by[
y
f∗

]
∼ N

(
0,

[
k(X,X) + σ2

wI k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
,

where k(X,X) with X = [x1, · · · ,xn] represents the n × n
matrix of the covariances evaluated at all pairs of the columns

of X, and k(X,x∗), k(x∗,X) and k(x∗,x∗) are calculated

similarly. The conditional distribution of f∗ = f(x∗), i.e., GP

predictive distribution, at a test input x∗ is given by

p(f∗|D,x∗) ∼ N (
μ(x∗), σ2(x∗)

)
(26)

μ(x∗) = kT
∗(K+ σ2

wI)
−1y (27)

σ2(x∗) = k∗∗ − kT
∗(K+ σ2

wI)
−1k∗, (28)

where K = k(X,X), k∗ = k(X,x∗) and k∗∗ = k(x∗,x∗)
are introduced for simplicity.

The covariance function k(·, ·), also referred to as a kernel,

is crucial for GP regression, because it encodes the prior about

the function to be learned, i.e., the specification of the kernel

implies a distribution over functions. Briefly speaking, the

kernel defines nearness or similarity under the GP perspective

[25]. However, an arbitrary function of input pairs x and x′

may not be a kernel. Next, we briefly introduce several kinds

of kernels, which are widely used in practice [25].

1) Squared Exponential Kernel: The squared exponential

(SE) kernel takes the form

kSE(x,x
′) = σ2

f exp

(
− 1

2l2
‖x− x′‖2

)
, (29)

where σ2
f and l denote the signal variance and length-scale,

respectively [25]. The physical meaning of the parameter l is

that if we think that the GP varies rapidly, the length-scale

l should be shorter. Hence, the degree of variation of a GP

is achieved by simply adjusting the parameters of the kernel.

Note also that since the SE kernel is infinitely differentiable,

the GP with this kernel is smooth.

2) Periodic Kernel: The expression of the periodic kernel

(PE) is given below

kPer(x,x
′) = σ2

f exp

(
− 2

l2
sin2

(
p−1π‖x− x′‖2)

)
, (30)

where p characterizes the periodicity, and the meaning of the

other parameters is similar to the SE kernel [30].

3) Spectral Mixture Kernel: To provide more flexibility, the

spectral mixture (SM) kernel takes the form

kSM(x,x′) =
Q∑

q=1

aq
|Σq|0.5
(2π)D/2

exp

(
−1

2

∥∥Σ0.5
q (x− x′)

∥∥2) ·

cos〈x− x′, 2πμq〉,
(31)

where {αq}, {Σq} and {μq} are mixture weights, bandwidths

(inverse length-scales) and frequencies, respectively. The SM

kernel is more expressive, which helps to discover interesting

and important structures and patterns of a stochastic process.

B. PAC-Bayesian Learning

A learning task is characterized by an unknown data dis-

tribution D over a domain Z , from which a set of m points

S = {zi | zi ∼ D, i = 1, · · · ,m}. Let S ∼ Dm represent

the i.i.d. (independent and identically distributed) sampling of

m data points. In supervised learning, each zi takes the form

zi = (xi, yi), where xi ∈ X and yi ∈ Y are input feature

and target label, respectively. Given S, the goal is to find a

hypothesis (usually a function h : X → Y) from a hypothesis

space H that can make a good prediction on an unseen input

feature x∗ ∼ Dx. The quality of the prediction is measured

by a loss function L : H × Z → R. The design goal is to

minimize the expected error for the data distribution, i.e.,

L(h,D) = Ez∗∼DL(h, z∗). (32)

Since D is unknown in practice, the empirical error is used

instead, which is given by

L̂(h,S) = 1

m

m∑
i=1

L(h, zi). (33)

Note that since only a finite number of data points are used

for training, the uncertainty of the predictions is inevitable.

For this reason, we are concerned with randomized predictors,

i.e., the probability measures on the hypothesis space H. Let

M(H) represent a set of probability measures over H. Two

probability measures, i.e., the prior P ∈ M(H) and the

posterior Q ∈ M(H), are considered. P and Q also denote

the respective probability densities. It should be pointed out

that the prior should be independent of the observed data set

S, while the posterior may depend on it. The performance of

a randomized predictor is characterized by the Gibbs error

L(Q,D) = Eh∼QL(h,D). (34)

Similarly, its empirical counterpart is defined as

L̂(Q,S) = Eh∼QL̂(h,S). (35)

The generalization error (GE) L(Q,D) is unknown due to

D. Hence, the empirical error (EE) L̂(Q,S) is considered

instead, which may result in overfitting and thus poor gener-

alization performance. It is meaningful to bound the unknown

GE based on the EE. The PAC-Bayesian learning provides

such a guarantee with a high probability [26].

Lemma 1. Given a data distribution D, a hypothesis space
H, a loss function L : H × Z → R, a prior distribution
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P ∈ M(H), a confidence level δ ∈ (0, 1), and β > 0, with
probability at least 1−δ over samples S ∼ Dm, ∀Q ∈ M(H)
the following inequality holds true:

L(Q,D) ≤ L̂(Q,S)+β−1
(
DKL(Q||P )

− ln δ +Ψ(β,m)
)
, (36)

where DKL(·||·) denotes the Kullback-Leibler (KL) divergence,
and Ψ(β,m) depends on P and D.

In practice, we are particularly interested in the posterior

Q� that yields the lowest GE. For this purpose, it is natural to

minimize the bound L̂(Q,S) + β−1DKL(Q||P ) in (36), i.e.,

Q�(h) = argmin
Q∈M(H)

L̂(Q,S) + β−1DKL(Q||P ).

Fortunately, the optimal distribution Q�, known as the optimal

Gibbs posterior [31], has a closed-form and is given by

Q�(h) =
P (h) exp

(− βL̂(h,S))
Eh∼P

[
exp

(− βL̂(h,S))] . (37)

In a probabilistic setting, the loss function L is defined as the

negative log-likelihood of the data, i.e.,

L(h, zi) = − log p(zi |h).

Let β = m. Then, the optimal Gibbs posterior coincides with

the Bayesian posterior

Q�
P,S(h) =

P (h)
∏m

i=1 p(zi |h)∫
H P (h)

∏m
i=1 p(zi |h)dh

. (38)

APPENDIX B

PROOF OF THEOREM 1

Let Q : Zm × M(H) → M(H) be an arbitrary learner,

which takes in a data-set of size m and a prior and outputs a

posterior. For a data-set S and a prior P , the resultant posterior

is denoted by Q(S, P ). Let L(Q,D, Q, n) represent the GE

of a learner Q with a hyper-posterior Q on a data distribution

D when n data points are sampled from D, i.e.,

L(Q,D, Q, n) = E
S∼Dn

E
P∼Q

E
h∼Q(S,P )

E
z∼D

L(h, z). (41)

Similar to the derivation of Theorem 2 in [32], we leverage

Lemma 1 to bound the GE of TBP and RBP when learning is

done by Q. To utilize Lemma 1, the hypothesis space, prior

and loss function should be appropriately redefined. A “tuple

hypothesis” is defined as f = (P, h), where P ∈ M(H) and

h ∈ H. The “prior over hypothesis” π = (P, P ) is defined as

a distribution over M(H) × H in which P is first sampled

from P and h is then sampled from P . According to Lemma

1, the “posterior over hypothesis” can be any distribution over

M(H)×H, in particular, ρ = (Q, Q(S, P )) with S ∈ {ST,
SR}, in which P is first sampled from Q and h is then sampled

from Q = Q(S, P ).

Now, we bound the GE of TBP and RBP. The KL diver-

gence between ρ and π is calculated as

DKL(ρ||π)
= E

f∼ρ
log

ρ(f)

π(f)
= E

P∼Q
E

h∼Q(S,P )
log

Q(P )Q(S, P )(h)

P(P )P (h)

= E
P∼Q

log
Q(P )

P(P )
+ E

P∼Q
E

h∼Q(S,P )
log

Q(S, P )(h)

P (h)

=DKL(Q||P) + E
P∼Q

DKL(Q(S, P )||P ).

By applying Lemma 1 and letting β = m = n in (37), we can

obtain that for any confidence level δ0 ∈ (0, 1], the inequality

in (39) holds uniformly over (Q, Q) ∈ M(M(H))×M(H).
Let δ0 = δ/2. The use of the union bound yields (40), i.e.,

the upper bound of the sum of the GEs of TBP and RBP.

Let L(Q, Q, n) = L(Q,DT, Q, n) + L(Q,DR, Q, n). For

convenience, let C(δ, n) = 2/n ln(2/δ) + 2/nΨ(n, n). When

the Gibbs posterior is chosen as the learner, inequality (40)

can be simplified as

P

{
L(Q, Q, n) ≤− 1

n
E

P∼Q
[
lnZ(ST, P ) + lnZ(SR, P )

]

+
2

n
DKL(Q||P) + C(δ, n)

}
≥ 1− δ, (42)

where Z(ST, P ) = Eh∼P [exp(−nL̂(h,ST))] and Z(SR, P ) is

defined similarly.

The optimal hyper-posterior distribution Q� shall minimize

the upper bound in (42), i.e.,

J(Q) = − 1

n
E

P∼Q
[
Z(ST, P ) + Z(SR, P )

]
+

2

n
DKL(Q||P),

where C(δ, n) is omitted since it is independent of Q. Ac-

cording to (37), the optimal posterior Q� is given by

Q�(P ) =
P(P ) exp

(
[Z(ST, P ) + Z(SR, P )]/2

)
R(P,ST,SR)

,

which completes the proof.
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