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Abstract—The idea of Innovation Search, which was initially
proposed for data clustering, was recently used for outlier
detection. In the application of Innovation Search for outlier
detection, the directions of innovation were utilized to measure
the innovation of the data points. We study the Innovation
Values computed by the Innovation Search algorithm under a
quadratic cost function and it is proved that Innovation Values
with the new cost function are equivalent to Leverage Scores. This
interesting connection is utilized to establish several theoretical
guarantees for a Leverage Score based robust PCA method and
to design a new robust PCA method. The theoretical results
include performance guarantees with different models for the
distribution of outliers and the distribution of inliers. In addition,
we demonstrate the robustness of the algorithms against the
presence of noise.The numerical and theoretical studies indicate
that while the presented approach is fast and closed-form, it can
outperform most of the existing algorithms.

Index Terms—Robust PCA, Outlier Detection, Innovation
Search, Unsupervised Learning, Leverage Statistics

I. INTRODUCTION

Principal Component Analysis (PCA) has been extensively

used for linear dimensionality reduction. While PCA is useful

when the data has low intrinsic dimension, its output is

sensitive to outliers in the sense that the subspace found by

PCA can arbitrarily deviate from the true underlying subspace

even if a small portion of the data is corrupted. In addition,

locating the outlying components is of great interest in many

applications. There are two different robust PCA problems

corresponding to two different models for the data corruption.

The first problem, known as low rank plus sparse matrix

decomposition, assumes that a random subset of the elements

of data are corrupted and the corrupted elements are not

concentrated in any column/row of the data [1], [4]. In the

second problem, a subset of columns of the data are affected

by the data corruption [37], [40], [18], [11], [21], [6], [10],

[24], [13], [39], [38], [23]. This paper focuses on the column-

wise model, i.e., it is assumed that data matrix D ∈ R
M1×M2

can be expressed as

D = ([B A])T ,

where A ∈ R
M1×ni , B ∈ R

M1×no , T is an unknown

permutation matrix, and [B A] represents the concatenation

of matrices A and B. The columns of A lie in an r-
dimensional subspace U . The columns of B do not lie entirely

in U , i.e., the ni columns of A are the inliers and the no

columns of B are the outliers. The output of a robust PCA

method is an estimate for U . If U is estimated accurately, the

outliers can be located by projecting the data points on the

complement of U .

A. Summary of Contributions

Most of the existing robust PCA algorithms require a large

number of iterations each with high computational complexity

and most of them are not supported with thorough performance

guarantees. We present closed-form and provable robust PCA

methods which mostly outperform the existing methods. The

main contributions can be summarized as follows.

• It is proved that Innovation Value introduced in [32] is

equivalent to Leverage Score if a quadratic cost function is

used to find the optimal directions instead of the ℓ1-norm based

cost function. This interesting connection is used to establish

several theoretical guarantees.

• Inspired by the explanation of Leverage Scores with In-

novation Search, a new robust PCA method, which uses a

symmetric measure of similarity, is presented. The presented

closed-form methods mostly outperform the existing methods

while they only include one singular value decomposition plus

one matrix multiplication.

• Theoretical performance guarantees under several different

models for the distribution of the outliers and inliers are

presented. Furthermore, the robustness to the presence of noise

is studied and it is shown that the algorithm can provably

distinguish the outliers when the data is noisy.

B. Notation

Given a matrix A, ‖A‖ denotes its spectral norm, ‖A‖F
denotes its Frobenius norm, and AT is the transpose of A. For

a vector a, ‖a‖p denotes its ℓp-norm and a(i) its ith element.

For a matrix A, ai denotes its ith column and ‖A‖1,2 =
∑

i ‖ai‖2. SM1−1 indicates the unit ℓ2-norm sphere in R
M1 .

Matrix D = U
′

ΣV where U
′ ∈ R

M1×rd is the matrix of

left singular vectors, Σ ∈ R
rd×rd is a diagonal matrix whose

diagonal values are equal to the non-zero singular values of

D, the rows of V ∈ R
rd×M2 are equal to the right singular

vectors, and rd is the rank of D. The orthonormal matrix

U ∈ R
M1×r is defined as a basis for U . Note that U

′

is a

basis for the entire data, U is a basis for the inliers, rd is the

rank of D, and r is the rank of A. The subspace U⊥ is defined

as the complement of U .

http://arxiv.org/abs/2106.12190v1
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II. RELATED WORK

Robust PCA is a well-known problem and many approaches

were developed for this problem. In this section, we briefly

review some of the previous works on robust PCA. Some of

the earliest approaches to robust PCA are based on robust

estimation of the data covariance matrix, such as the mini-

mum covariance determinant, the minimum volume ellipsoid,

and the Stahel-Donoho estimator [14], [10], [36]. However,

these methods mostly compute a full SVD or eigenvalue

decomposition in each iteration and their performance greatly

degrades when ni

no
< 0.5. In addition, they lack performance

guarantees with structured outliers. Another approach is to

replace the Frobenius Norm in the cost function of PCA with

ℓ1-norm [20], [16], as ℓ1-norm was shown to be robust to

the presence of the outliers [3], [16]. In order to leverage

the column-wise structure of the outliers, the authors of [7]

replaced the ℓ1-norm minimization problem used in [16] with

an ℓ1,2-norm minimization problem. In [19] and [40], the

optimization problem used in [7] was relaxed to two different

convex optimization problems. The authors of [19], [40]

provided sufficient conditions under which the optimal points

of the convex optimization problems proposed in [19], [40]

are guaranteed to yield an exact basis for U . The approach

presented in [35] focused on the scenario in which the data is

predominantly unstructured outliers and the number of outliers

is larger than M1. In [35], it is essential to assume that the

outliers are randomly distributed on S
M1−1 and the inliers

are distributed randomly on the intersection of S
M1−1 and

U . The outlier detection method proposed in [34] assumes

that the outliers are randomly distributed on S
M1−1 and

a small number of them are not linearly dependent which

means that [34] is not able to detect the linearly dependent

outliers and the outliers which are close to each other. Another

approach is based on decomposing the given D into a low

rank matrix and a column sparse matrix where the column

sparse matrix models the presence of the outliers [5], [37].

However, this approach requires the number of outliers to be

significantly smaller than the number of the outliers and the

solver algorithms that are used to decompose the data need to

compute a SVD of the data in each iteration.

The main shortcomings of the previous methods are sensi-

tivity to structured outliers and the lack of comprehensive the-

oretical guarantees. The Coherence Pursuit method, proposed

in [28], was shown (theoretically and numerically) to be robust

to different types of outliers. However, Coherence Pursuit can

miss outliers which carry weak innovation with respect to the

inliers. The iSearch algorithm, proposed in [32], was shown

to notably outperform Coherence Pursuit in detecting outliers

with weak innovation . Similar to Coherence Pursuit, the

robustness of iSearch against different types of outliers were

supported with several theoretical guarantees. However, in

contrast to Coherence Pursuit which is a closed-form method,

iSearch needs to run an iterative and computationally expen-

sive solver to find the directions of innovation. This paper

presents robust PCA methods which have the advantages of

both (CoP and iSearch) algorithms: while they are closed-form

algorithms, their ability in distinguishing outliers are on a par

with iSearch. In the rest of this section, Coherence Pursuit and

iSearch are reviewed in more details.

Coherence Pursuit (CoP): CoP [28] assigns a value, termed

Coherence Value, to each data point and U is recovered using

the span of the data points with the highest Coherence Values.

The Coherence Value corresponding to data point di represents

the similarity between di and the rest of the data points.

CoP uses inner-product to measure the similarity between data

points and it distinguishes the outliers based on the fact that

an inlier bears more resemblance to the rest of the data than

an outlier.

Innovation Search (iSearch) [32]: Innovation Pursuit was

initially proposed as a data clustering algorithm [31], [30].

The authors of [31], [30] showed that Innovation Pursuit can

notably outperform the self-representation based clustering

methods (e.g. Sparse Subspace Clustering [8]) specifically

when the clusters are close to each other. Innovation Pursuit

computes an optimal direction corresponding to each data

point di which can be written as the optimal point of

min
c

‖cTD‖1 subject to cTdi = 1 . (1)

If C∗ ∈ R
M1×M2 contains all the optimal directions, Inno-

vation Pursuit builds the adjacency matrix as Q+QT where

Q = |DTC∗|. In [32], it was shown that the optimal direc-

tions can be utilized for outlier detection too. The approach

proposed in [32], termed iSearch, assigns an Innovation Value

to each data point and it distinguishes the outliers as the data

points with the higher Innovation Values. The Innovation Value

assigned to di is computed as

1

‖DT c∗i ‖1

where c∗i is the optimal point of (1). iSearch needs to run an

iterative solver to find the optimal directions. In contrast, the

methods presented in this paper are closed-form and they can

be hundreds of time faster.

Leverage Statistics: In regression, Leverage Scores are de-

fined as the diagonal values of the hat matrix XT (XXT )−1X

where X ∈ R
m1×m2 is the design matrix [9]. Assuming that

the rank of X is equal to m1, then the ith leverage score is

equal to ‖vxi‖22 where the rows of Vx ∈ R
m1×m2 are equal to

the right singular vectors of X and vxi is the ith column of Vx.

Leverage has been typically used in the regression framework

and there are few works which focused on using it for the

robust PCA problem [25], [26]. For instance, [25] utilized

leverage to reject the outlying time points in an functional

magnetic resonance images (fMRI) run. However, there is not

still an analysis and full understating of Leverage in the robust

PCA setting. We show that Innovation Value introduced in [32]

is equivalent to Leverage Score if a quadratic cost function is

used to find the optimal directions. This interesting connection

is used to establish several theoretical guarantees and to design

a new robust PCA method.
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Algorithm 1 Asymmetric Normalized Coherence Pursuit

(ANCP) for Robust PCA

Input. The inputs are the data matrix D ∈ R
M1×M2 and r

which is the dimension of the recovered subspace.

1. Normalize the ℓ2-norm of the columns of D, i.e., set di

equal to di/‖di‖2 for all 1 ≤ i ≤M2.

2. Rows of V ∈ R
rd×M2 are equal to the first rd right singular

vectors of D where rd is the rank of D.

3. Define x ∈ R
M2 , vector of Normalized Coherence Values,

as

x(i) =
1

‖vi‖22
. (2)

4. Construct matrix Y from the columns of D correspond-

ing to the largest elements of x such that they span an r-

dimensional subspace.

Output: The column-space of Y is the identified subspace.

III. ROBUST PCA WITH LEVERAGE AND INNOVATION

SEARCH

The table of Algorithm 1 and the table of Algorithm 2

show the presented methods along with the used definitions.

Algorithm 1 utilizes Leverage Scores to rank the data points

and the data points with the minimum Leverage Scores are

used to build a basis for U . In this section, we show the

underlying connection between Algorithm 1 and iSearch and

the motivation for naming Algorithm 1 “Asymmetric Normal-

ized Coherence Pursuit” is explained. In addition, we explain

the motivations behind the design of Algorithm 2 based

on the connection between Algorithm 1 and iSearch. Both

algorithms are closed-form and they are faster than most of

the existing methods. The computation complexity of ANCP

is O(rdM1M2) and the computation complexity of SNCP is

O(rdM1M2 + rdM
2
2 ).

The presented robust PCA algorithms use the data points

corresponding to the largest Normalized Coherence Values

to form the basis matrix Y. If the inliers are distributed

uniformly at random in U , then r data points corresponding

to the r largest Normalized Coherence Values span U with

high probability. However, in real data, the inliers form some

clustering structure and the algorithm should continue adding

new columns to Y until the columns of Y span an r-
dimensional subspace. It means that we need to check the

singular values of Y multiple times. Two techniques can

be utilized to avoid these extra steps [32], [29]. The first

approach is based on leveraging side information that we

mostly have about the population of the outliers. In most of the

applications, we can have an upper-bound on no/M2 because

outliers are mostly associated with rare events. If we know that

the number of outliers is less than y % of the data, matrix Y

can be constructed using (1−y) % of the data columns which

are corresponding to the largest Normalized Coherence Values.

The second technique is to use the adaptive column sampling

method proposed in [29] which uses subspace projection to

avoid sampling redundant columns.

Algorithm 2 Symmetric Normalized Coherence Pursuit

(SNCP) for Robust PCA

Input. The inputs are the data matrix D ∈ R
M1×M2 and r

which is the dimension of the recovered subspace.

1. Similar to Step 1 in Algorithm 1.

2. Define V ∈ R
rd×M2 as in Algorithm 1.

3. The vector of Normalized Coherence Values is defined as

x(i) =

M2
∑

j=1

(vi
Tvj)

2

‖vi‖22‖vj‖22
.

4. Construct matrix Y as in Algorithm 1.

Output: The column-space of Y is the identified subspace.

A. Explaining Leverage Score for Robust PCA Using Innova-

tion Search

Algorithm 1 ranks the data points based on the inverse

of their leverage scores. The following lemma shows that

Leverage Score is directly related to Innovation Value.

Lemma 1. Suppose rows of V ∈ R
rd×M2 are equal to the

first rd right singular vectors of D where rd is the rank of D.

Define c∗i as the optimal point of

min
c

‖cTD‖2 subject to cTdi = 1 . (3)

Then, ‖DT c∗i ‖22 = 1
‖vi‖2

2

.

Lemma 1 indicates that if a quadratic cost function is used to

compute the optimal directions in iSearch, Innovation Values

are equivalent to Leverage Scores. Accordingly, we can use the

idea of Innovation Search to explain the Leverage Score based

robust PCA method. First suppose that di is an outlier which

means that di has a non-zero projection on U⊥. Since most of

the data points are inliers, the optimization problem utilizes the

projection of d in U⊥ and finds the optimal direction near U⊥

to minimize ‖AT ci‖22. In sharp contrast, when di is an inlier,

the linear constraint strongly discourages the optimal direction

to be close to U⊥. Thus, ‖AT c∗i ‖22 is notably larger when di

is an inlier comparing to ‖AT c∗i ‖2 when di is an outlier. Ac-

cordingly, since 1
‖vi‖2

2

= ‖DT c∗i ‖22 = ‖AT c∗i ‖22 + ‖BT c∗i ‖22,

1/‖vi‖22 is much larger when di is an inlier comparing to the

same value when di is an outlier because ‖AT c∗i ‖22 is much

larger when di is an inlier.

The following Lemma indicates that ‖DT c∗i ‖22 can be

written as the sum of the similarities between the columns

of V ∈ R
rd×M2 .

Lemma 2. Define c∗i and V as in Lemma 1. Then,

‖DT c∗i ‖22 =

M2
∑

j=1

(

vT
i vj

‖vi‖2‖vi‖2

)2

. (4)

Thus, Algorithm 1 is inherently similar to CoP but Algo-

rithm 1 utilizes the coherency between the columns of V.

In other word, the functionality of Algorithm 1 is similar to

that of a CoP algorithm which is applied to a data matrix
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whose non-zero singular values are normalized to 1. This is

the motivation to name the presented algorithms Normalized

Coherence Pursuit.

B. Symmetric Normalized Coherence Pursuit

The measure of similarity used in (4) is not symmetric.

In other word, the similarity between di and dj which is

computed as
(

v
T
i vj

‖vi‖2‖vi‖2

)2

is not equal to the similarity

between dj and di which can be written as
(

v
T
i vj

‖vj‖2‖vj‖2

)2

.

Accordingly, we modify the measure of similarity used in (4)

into a symmetric measure of similarity. The Normalized Co-

herence Value corresponding to di using the symmetric mea-

sure of similarity is defined as x(i) =
∑M2

j=1

(

v
T
i vj

‖vi‖2‖vj‖2

)2

.

Algorithm 2 uses the symmetric measure of similarity to

compute the Normalized Coherence Values. The numerical

experiments show that utilizing the symmetric function can

notably improve the performance in most of the cases.

IV. THEORETICAL STUDIES

In this section, we present analytical performance guaran-

tees for Normalize Coherence Pursuit under different models

for the distribution of the outliers. The connection between

Innovation Values and Leverage Scores is utilized to analyze

the ANCP method and we leave the analysis of SNCP to future

works. In the following subsections, the performance guar-

antees with unstructured outliers, linearly dependant outliers,

noisy inliers, and clustered outliers is provided. Moreover, in

contrast to most of the previous methods whose guarantees are

limited to randomly distributed inliers, Normalized Coherence

Pursuit is supported with theoretical guarantees even when

the inliers are clustered. The following sections provide the

theoretical results and each theorem is followed by a short

discussion which highlights the important aspects of that

theorem.

To simplify the exposition and notation, in the presented

results, it is assumed without loss of generality that T is equal

to the identity matrix, i.e, D = [B A]. The subspace U is

recovered using the span of the data points with the largest

Normalized Coherence Values. A sufficient condition which

guarantees exact recovery of U is that the minimum of the

Normalized Coherence Values corresponding to the inliers is

larger than the maximum of the Normalized Coherence Values

corresponding to the outliers, i.e.,

min
(

{x(i)}M2

i=no+1

)

> max ({x(i)}no

i=1) . (5)

This is not a necessary condition but it is easier to guarantee.

In addition, we define

ψ = max

({

1

‖bT
i R‖22

}no

i=1

)

where R is an orthonormal basis for U⊥ and bi is the ith

column of B. The parameter ψ indicates how close the outliers

are to U .

Proof Strategy: Although the presented theorems consider

different scenarios for the distribution of the inliers/outliers

and different techniques are required to guarantee (5) in each

case, but a similar strategy is used in the proofs of all the

results. In contrast to Cop which analyzed {|dT
i dj |}i,j based

on the distribution of the data, it is not straightforward to

directly bound {|vT
i vj |}i,j . In addition, in contrast to iSearch

which leveraged the fact that the optimal direction of (1) is

mostly orthogonal to U when di is an outlier, the optimal

direction obtained by (3) is not necessarily orthogonal to

U when di is an outlier. In the proofs of the presented

results, we utilized the geometry of the problem in which

the optimal direction of (3) is not close to U when di is

an outlier. Specifically, corresponding to outlier di, we define

d⊥
i = RR

T
di

‖dT
i R‖2

2

and by definition dT
i d

⊥
i = 1. According to

the definition of c∗i as the optimal point of (3) and according

to Lemma 1, 1
‖vi‖2

2

≤ ‖DTd⊥
i ‖22. We utilized this inequality

to derive the sufficient conditions which prove that (5) holds

with high probability. The detailed proofs of all the results are

provided in the appendix.

A. Outliers Distributed on S
M1−1

In most of the previous works on the robust PCA problem,

the performance of the outlier detection method is analyzed

under the assumption that the outliers are randomly distributed

on S
M1−1. This is a simple scenario because the outliers

are unstructured and the projection of each outlier on U is

not strong with high probability given that r is sufficiently

small because when the outliers are randomly distributed as

in Assumption 1, then E[‖UTb‖22] = r
M

( b is an outlying

data point). The following assumption specifies the presumed

model for the distribution of the inliers/outliers.

Assumption 1. The columns of A are drawn uniformly at

random from U ∩ S
M1−1 and the columns of B are drawn

uniformly at random from S
M1−1.

The following theorem provides the sufficient conditions to

guarantee the exact recovery of U .

Theorem 3. Suppose D follows Assumption 1. If x is defined

as in (2) and

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)

>
(ψ − 1)no

M1
+

max

(

8

3
log

2M1

δ
,

√

16
no

M1
log

2M1

δ

)

,

(6)

then (5) holds and U is recovered exactly with probability at

least 1− 3δ.

Since the outliers are randomly distributed, the expected

value of ‖bT
i R‖22 is equal to M1−r

M1

which is nearly equal to 1

when r/M1 is small [28], [27]. Thus, Theorem 3 roughly indi-

cates that if ni/r is sufficiently larger than no/M1, Normalized

Coherence Values can successfully distinguish the outliers. It

is important to note that ni is scaled with r while no is scaled

with M1. It means that if r is sufficiently small and if the

outliers are unstructured, U can be recovered exactly even if no

is much larger than ni. In addition, one can observe that when

the outliers are unstructured, the requirements of Normalized
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Coherence Pursuit are similar with those of CoP [28]. In the

next subsection, we observe a clear difference between their

requirements when the outliers are close to U .

B. Outliers in an Outlying Subspace

Although Assumption 1 is a popular data model in the

literature of robust PCA, it is not a realistic assumption in

the practical scenarios. In practice, outliers can be structured

and they are not completely independent from each other as it

is assumed in Assumption 1. For instance, in anomaly event

detection, the outlying video frames are highly correlated or

in misclassified data points identification, they can belong to

the same cluster [12]. In this section, we study the robustness

against linearly dependant outliers. The following assumption

specifies the presumed model for the outliers.

Assumption 2. Define subspace Uo with dimension ro such

that Uo /∈ U and U /∈ Uo. The columns of A are randomly

distributed on U ∩S
M1−1 and the columns of B are randomly

distributed on Uo ∩ S
M1−1.

The following theorem provides the sufficient condition to

guarantee that (5) holds.

Theorem 4. Suppose D follows Assumption 2. If x is defined

as in (2) and

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)

>

‖UT
o U

⊥‖
(

ψno

ro
+ ψmax

(

4

3
log

2ro
δ
,

√

no

ro
log

2ro
δ

))

then (5) is satisfied and U is recovered exactly with probability

at least 1− 2δ.

Theorem 4 roughly states that if ni/r is sufficiently larger

than no/ro, the exact recovery is guaranteed with high prob-

ability. If ro is comparable to r, then the number of inliers

should be sufficiently larger than the number of outliers. This

confirms our intuition about the outliers because if ro is

comparable to r and no is also large, we cannot label the

columns of B as outliers. It is informative to compare the

requirements of Normalized Coherence Pursuit with that of

CoP. The following theorem provides the sufficient conditions

to guarantee that CoP successfully distinguishes the outliers.

Theorem 5. Suppose D follows Assumption 2. If

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)

>

‖UTUo‖2
(

ni

r
+max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

))

+

no

ro
+max

(

4

3
log

2ro
δ
,

√

4
no

ro
log

2ro
δ

)

,

then the CoP method proposed in [28] recovers U exactly with

probability at least 1− 3δ.

One can observe that the requirement of Theorem 5 is much

stronger than that of Theorem 4 because ni/r appears on the

right hand side of the sufficient condition of Theorem 5. The-

orem 5 predicts that when Uo is close U , the CoP Algorithm

is more likely to fail. This is a correct prediction because

when U and Uo are close, the inliers and the outliers are

close to each other and their inner-product values are large. In

addition, by comparing the sufficient conditions of Normalized

Coherence Pursuit with that of iSearch [32] with linearly

dependant outliers, we can observe that the nature of the

sufficient conditions are similar. In the presented experiments,

it is shown that Normalized Coherence Pursuit is on a par with

iSearch in identifying outliers with weak innovation while it

is a closed-from algorithm and its running time is much faster.

C. Noisy Inliers

Although exact recovery of U is not feasible when the

inliers are noisy but the Normalized Coherence Values can

distinguish the outliers even in the strong presence of noise.

In this section , we present a theorem which guarantees that

(5) holds with high probability if ni/r and Signal to Noise

Ratio (SNR) are sufficiently large. The following assumption

specifies the presumed model.

Assumption 3. The matrix D can be expressed as

D = [B
1

√

1 + σ2
n

(A+E)]T .

The matrix E ∈ R
M1×ni represents the presence of noise

and it can be written as E = σnN where the columns of

N ∈ R
M1×ni are drawn uniformly at random from S

M1−1

and σn is a positive number which controls the power of the

added noise.

Before we state the theorem, let us define vectors {ti}M2

i=1

where ti = Σvi and the diagonal matrix Σ contains the non-

zero singular values of D. Note that di = U
′

ti and ‖ti‖2 =

‖di‖2. In addition, define tmin = mini

(

{

‖Σ−2
ti‖2

tTi Σ−2ti

}M2

i=no+1

)

and tmax = maxi

(

{

‖Σ−2
ti‖2

tTi Σ−2ti

}M2

i=no+1

)

.

Theorem 6. Suppose A and B follow Assumption 1 and D

is formed according to Assumption 3. If x is defined as in (2)

and

(
√

1 + σ2
n − tmaxσn)

2

1 + σ2
n

(

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

))

> 2σnnit
2
max+

ψ

(

no

M1
+max

(

4

3
log

2M1

δ
,

√

4
no

M1
log

2M1

δ

))

+

σ2
nψ

1 + σ2
n

(

ni

M1
+max

(

4

3
log

2M1

δ
,

√

4
ni

M1
log

2M1

δ

))

then (5) holds with probability at least 1− 3δ.

In this section, we considered the unstructured outliers

whose number can be much larger than M1 and ni. Consider

the challenging scenario that the unstructured outliers domi-

nate the data, thus the values of all the singular values are close
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to each other which indicates that the values of tmin and tmax

are close to one. Thus, the sufficient condition of Theorem 6

roughly states that
(1−σn)

2

1+σ2
n

ni

r
should be sufficiently larger than

niσn + no

M1

. In practise, the algorithm works better than what

the sufficient condition implies because the proof is based on

considering the worst case scenarios.

D. Clustered Outliers

In this section, we consider a different structure for the

outliers. It is assumed that the outliers form a cluster outside of

the span of the inliers. Structured outliers are mostly associated

with important rare events such as malignant tissues [15]

or web attacks [17]. The following assumption specifies the

presumed model for B.

Assumption 4. Each column of B is formed as bi =
1√
1+η2

(q+ηfi). The unit ℓ2-norm vector q does not lie in U ,

{fi}no

i=1 are drawn uniformly at random from S
M1−1, and η

is a positive number.

In Assumption 4, the outliers form a cluster around vector q

which does not lie in U and η determines how close they are

to each other. The following theorem provides the sufficient

conditions to guarantee that Normalized Coherence Values

distinguish the cluster of outliers.

Theorem 7. Suppose that the distribution of inliers follows

Assumption 1 and the distribution of outliers follows Assump-

tion 4. If x is defined as in (2) and

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)

> no

ψ‖qTU⊥‖22
1 + η2

+

ψη2no

(1 + η2)M1
+

η2ψ

1 + η2
max

(

4

3
log

2M1

δ
,

√

no

M1
log

2M1

δ

)

+

η
√
ψ

1 + η2
‖qTU⊥‖2





no√
M1

+ 2
√
no +

√

2no log
1
δ

M1 − 1



 ,

then (5) is satisfied and U is recovered exactly with probability

at least 1− 4δ.

In sharp contrast to Theorem 3, no is not scaled with M1.

This means that when η is small (the outliers are close to

each other), ni/r should be sufficiently larger than no. When

η goes to infinity, the distribution of outliers converges to the

distribution of outliers in Assumption 1 and one can observe

that the sufficient condition in Theorem 7 converges to the

sufficient condition in Theorem 3.

E. Outlier Detection in a Union of Subspaces

In practice, the inliers are not randomly distributed in a

subspace and they mostly form some structures. In this section,

we assume that the inliers are clustered. It is assumed that

the columns of A form m clusters and the data points in

each cluster span a d-dimensional subspace. The following

assumption provides the details.

Assumption 5. The matrix of inliers can be written as A =
[A1 ...Am]TA where Ak ∈ R

M1×nik ,
∑m

k=1 nik = ni, and

TA is an arbitrary permutation matrix. The columns of Ak are

drawn uniformly at random from the intersection of subspace

Uk and S
M1−1 where Uk is a d-dimensional subspace. In other

word, the columns of A lie in a union of subspaces {Uk}mk=1

and (U1 ⊕ ...⊕ Um) = U where ⊕ denotes the direct sum

operator.

The following theorem provides the sufficient conditions to

guarantee that the computed Normalized Coherence Values

satisfy (5) with high probability.

Theorem 8. Suppose that the distribution of the inliers follows

Assumption 5 and the distribution of outliers follows Assump-

tion 1. If x is defined as in (2) and

ϑA > (ψ − 1)
no

M1
+ 2max

(

4

3
log

2M1

δ
,

√

4
no

M1
log

2M1

δ

)

where ϑ = inf
a∈U

‖a‖=1

∑m
k=1 ‖aTUk‖22 and A = mini

{

nik

d
−

max

(

4
3 log

2md
δ
,
√

4nik

d
log 2md

δ

)

}m

i=1

, then (5) is satisfied

and U is recovered exactly with probability at least 1− 3δ.

Theorem 8 reveals an interesting property of the Normalized

Coherence Values. According to the definition of A, A is

roughly equal to min{nik}mk=1/d. Thus, Theorem 8 states that

when the inliers are clustered, the population of the cluster

with the minimum population is the key factor. This property

matches with our intuition about outlier detection because

if there is a cluster with few number of data points, we

could label them as outliers similar to the outliers modeled

in Assumption 2. The parameter ϑ = inf
a∈U

‖a‖=1

∑m
k=1 ‖aTUk‖22

shows how well the inliers are diffused in U . Clearly, if the

inliers are present in all or most of the directions inside U , a

robust PCA algorithm is more likely to recover U correctly.

However, the presented methods do not require the inliers to

occupy all the directions in U . The reason that ϑ appeared

in the sufficient conditions is that the theorem guarantees the

performance in the worst case scenarios.

V. NUMERICAL EXPERIMENTS

In this section, SNCP and ANCP are compared with the ex-

isting robust PCA approaches, including FMS [18], GMS [40],

CoP [28], iSearch [32], and R1-PCA [7], and their robustness

against different types of outliers is examined with both real

and synthetic data.

Remark 1. In the presented theoretical results, it was assumed

that rd is known. When the data is noisy, one can utilize

any rank estimation algorithm and the performance of the

algorithms is not sensitive to the chosen rank as long as rd
is sufficiently larger than r. In the presented experiments, we

set rd equal to the number of singular values of D which are

greater than s1/20 where s1 is the first singular value of D.

A. Comparing Different Scores

In this experiment, we simulate a scenario in which the

outliers are close to U . Suppose r = 8, ni = 180, and no = 40.
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Fig. 1. The plots show the inverse of Normalized Coherence Values computed
by SNCP and ANCP, the Innovation Values, and the inverse of Coherence
Values. In this experiment, the first 40 columns are the outliers.

The outliers are generated as [U H] G where H ∈ R
M1×4

spans a random 4-dimensional subspace and the elements

of G ∈ R
12×20 are sampled independently from N (0, 1).

Fig. 1 demonstrates Innovation Values, Coherence Values, and

Normalized Coherence Values computed by ANCP and SNCP

(the first 40 columns are outliers). In this figure, we show the

inverse of Coherence Values and the inverse of Normalized

Coherence Values to make them comparable to Innovation

Values. One can observe that the scores computed by iSearch,

ANCP, and SNCP can be reliably used to form a basis for U
but the scores computed by CoP do not distinguish the outliers

well enough. As it was predicted by Theorem 5, CoP can fail

to distinguish the outliers when they are close to U . The main

reason is that CoP measures the similarity between the data

points via a simple inner-product while iSearch and ANCP

utilize the directions of innovation to measure the similarity

between a data point and the rest of data. The functionality of

SNCP is similar to that of ANCP while it uses a symmetric

measure of similarity and the plots show that it distinguishes

the outliers in a more clear way.

B. Noisy Data

In this section, we examine the robustness of the robust

PCA methods against noise. Suppose B follows Assumption 2,

r = 5, ro = 10, M1 = 200, ni = 100, and no = 100 where Uo

is a random 10-dimensional subspace. We consider two models

for the distribution of the inliers. The first model is random

distribution on U ∩S
N−1 as described in Assumption 1. In the

second model, it is assumed that the inliers form a cluster in

U . The following assumption describes the second model.

Assumption 6. Each column of matrix A is formed as ai =
Usi

‖Usi‖2

where si = w+γzi, w ∈ R
r is a unit ℓ2-norm vector,

and {zi}ni

i=1 are sampled randomly from S
r−1.

Since the data is noisy, exact subspace recovery is not fea-

sible. Instead, we examine the probability that an algorithm

distinguishes all the outliers correctly. Define vector f ∈ R
M2

such that f(k) = ‖(I− ÛÛT )dk‖2 where Û is the identified

subspace. A trial is considered successful if

max

(

{f(k) : k > no}
)

< min

(

{f(k) : k ≤ no}
)

, (7)

which means that the norm of projection of all the inliers on

Û⊥ should be smaller than the corresponding values for the

outliers. Define SNR =
‖A‖2

F

‖E‖2

F

where E is the noise component

which is added to the inliers. Fig. 2 shows the probability

that (7) is valid versus SNR (the number of evaluation runs

was 200). In the left plot, the distribution of inliers follows

Assumption 1 and in the right plot it follows Assumption 6

with γ = 0.2. One can observe that SNCP outperforms most

of the existing methods on both cases and the performance of

iSearch and ANCP are close. In addition, by comparing the

two plots, it can be observed that the performance of some

of the robust PCA methods is sensitive to the distribution

of the inliers. For instance, FMS outperforms most of the

other methods when the inliers are randomly distributed but

its performance degrades significantly when the inliers form a

cluster in U .
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Fig. 2. The outliers are linearly dependant and they lie in a 10-dimensional
subspace. In the left plot, the inliers are randomly distributed in U (Assump-
tion 1) and in the right plot, the inliers form a cluster (Assumption 6 with
γ = 0.2).

C. Identifying the Permuted Columns

The problem of regression with unknown permutation is

similar to the conventional regression but the correspondence

between input variables and labels is missing or erroneous.

Suppose X ∈ R
d×n is the measurement matrix where n

is the number of measurements. Define Y ∈ R
m×n as

the observation matrix which can be written as Y = ΘX

where Θ ∈ R
m×d is the unknown matrix which is estimated

by the regression algorithm. In the regression problem with

unknown permutation, the observation matrix Y is affected

by an unknown permutation matrix Π, i.e., matrix Y can be

written as Y = ΘXΠ where Π ∈ R
n×n. In this problem, it is

assumed that Π does not displace all the columns of ΘX and

only an unknown fraction of the columns are displaced. The

authors of [33] showed that this special regression problem

can be translated into a robust PCA problem. Define matrix

Z ∈ R
(d+m)×n as Z = ([XT YT ])T , i.e., each column of

Z is equal to the concatenation of the corresponding columns

of X and Y. Suppose n > d and assume that the rank of X

is equal to d. If Π is equal to the identity matrix, the rank

of Z is equal to d. In contrast, when the columns of Y are

displaced, the corresponding columns of Z do not lie in the
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d-dimensional subspace which the other columns of Z lie in.

Therefore, the columns of Z which are corresponding to the

displaced columns can be considered as outliers and a robust

PCA method can be utilized to locate them. Once they are

located and removed, the regression problem can be solved

using the remaining measurements.

In this experiment, the elements of X and Θ are sampled

from N (0, 1), d = 10, and m = 10. Define ni as the number

of columns of Y which are not affected by the permutation

matrix and define no as the number of displaced columns. The

robust PCA methods are applied to Z to find a basis for the

d-dimensional subspace which is spanned by the columns of

Z corresponding to the inliers. If this subspace is estimated ac-

curately, all the displaced columns can be exactly located [33].

Define Log-Recovery Error as log10

(

‖(I−UU
T )Û‖F

‖U‖F

)

, where

Û is an orthonormal basis for the recovered subspace. Fig. 3

shows Log-Recovery Error versus no where ni is fixed equal

to 200 (the number of evaluation runs was 400). This is a

challenging subspace recovery task because the outliers can

be close to the span of inliers and this is the main reason that

CoP did not perform well. One can observe that SNCP and

FMS yielded the best performance.
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Fig. 3. This plot shows subspace recovery error versus the number of dis-
placed measurements. The number of measurements which are not displaced
are equal to ni = 200 and the total number of measurements are equal to
ni + no.

D. Unstructured Outliers

Theorem 3 predicted that when the outliers are randomly

distributed, the number of outliers can be much larger than

the number of inliers provided that ni/r is sufficiently large.

Suppose the data follows Assumption 1 with M1 = 50 and

r = 4. Define Û as an orthonormal basis for the recovered

subspace. A trial is considered successful if
‖(I−UU

T )Û‖F

‖U‖F
<

10−3 . Fig. 4 shows the phase transitions in which white

means correct subspace recover and black designates incorrect

recovery (the number of evaluation runs was 20). The phase

transitions indicate that when ni/r is larger than 5, the

algorithms can successfully recover U even if no = 2000.

In addition, SNCP shows more robustness against the outliers

when ni is small.

E. Structured Outlier Detection in Real Data

The authors of [12], [28] proposed to use robust PCA

to improve the accuracy of the clustering algorithms. The
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SNCP
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n i

ANCP

Fig. 4. The phase transitions in presence of the unstructured outliers versus
ni and no. White indicates correct subspace recovery and black designates
incorrect recovery. In this experiment, the data follows Assumption 1 with
M1 = 50 and r = 4.

robust PCA method is applied to each identified cluster to

find the miss-classified data points as outliers. We refer the

reader to [12], [28] for further details. Similar to corresponding

experiment in [28], we use Hopkins155 dataset which makes

the outlier detection problem challenging. In this dataset, the

data points are linearly dependent and the clusters are close

to each other. Therefore, the outliers are structured and they

are close to the inliers. The clustering error of the clustering

algorithm is 30% and we compute the final clustering error

after applying the robust PCA methods and updating the

clusters. Table I shows the clustering error after applying

different robust PCA methods. One can observe that iSearch,

ANCP, SNCP, and CoP yielded better performance and the

main reason is that they leverage the clustering structure of

the inliers and they are robust against structured outliers.

TABLE I
CLUSTERING ERROR AFTER USING THE ROBUST PCA METHODS TO

DETECT THE MISCLASSIFIED DATA POINTS.

CoP FMS R1-PCA GMS iSearch PCA ANCP SNCP

6.93 28.5 22.56 17.25 3.72 12.01 6.64 3.65

F. Event Detection in Video

In this experiment, we utilize the robust PCA methods to

identify an activity in a video files, i.e., the outlier detection

methods identify the frames which contain the activity as the

outlying frames/data-points. We use the Waving Tree video

file [22] where in this video a tree is smoothly waving and

in the middle of the video, a person crosses the frame. The

frames which only contain the background (the tree and the

environment) are inliers and the few frames corresponding to

the event (the presence of the person) are the outliers. The

tree is smoothly waving and we use r = 3 as the rank of

inliers for all the methods. We use 100 frames where frames

65 to 80 are the outlying frames. In this interval (65 to 80),

the person enters the frame from left, stay in the middle,

and leaves from right. In this experiment, we vectorize each

frame and form data matrix D by the vectorized frames. In

addition, we reduce the dimensionality of D by projecting each

column of D into the span of the first 50 left singular vectors.

Thus, D ∈ R
50×100. Define Û as the estimated subspace and

define the residual value corresponding to data point di as

‖di − ÛÛTdi‖2. The outliers are detected as the data points
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Fig. 5. This figure shows the residual values computed by different methods. Each element represents a frame of the video file and frames 65 to 80 are the
outlying frames.

with the larger residual values. Fig. 5 shows the residual values

computed by different methods. An important observation is

that FMS, PCA (SVD), and R1-PCA clearly distinguished the

first and the last outlying frames but they hardly distinguish the

middle outliers (frames 69 to 74). The main reason is that in

these frames the person does not move which means that these

outlying frames are very similar to each other. Fig. 5 shows

that the ANCP, SNCP, and iSearch successfully distinguish

all the outlying frames since they are robust to structured and

linearly dependant outliers.

G. Running Time

In this section, we study the running time of the robust PCA

methods. For ANCP, SNCP, CoP, and iSearch, we used 50 data

points to build the basis matrix (matrix Y). Table II shows the

running times versus M2 while M1 = 200. Table III shows the

running times versus M1 while M2 = 1500. In all the runs,

r = 5 and ni = 200. One can observe that CoP, SNCP, and

ANCP are notably fast since they are single step algorithms.

The running time of CoP and SNCP is longer than ANCP

when M2 is large because their computation complexity scale

with M2
2 . GMS is also a fast algorithm when M1 is small but

its running time can be long when M1 is large because its

computation complexity scale with M3
1 .

TABLE II
RUNNING TIME OF THE ALGORITHMS VERSUS M2 (M1 = 200).

M2 SNCP ANCP iSearch CoP FMS GMS

500 0.0228 0.0120 0.2660 0.016 0.1130 0.0872

1000 0.0427 0.0160 0.8983 0.0325 0.2440 0.1265

5000 0.2622 0.0428 19.4080 0.3930 0.6635 0.2926

TABLE III
RUNNING TIME OF THE ALGORITHMS VERSUS M1 (M2 = 1500).

M1 SNCP ANCP iSearch CoP FMS GMS

200 0.0614 0.0187 1.7279 0.0576 0.2978 0.1458

500 0.1456 0.0727 2.1261 0.0710 0.9574 0.6399

1000 0.3145 0.2527 2.7695 0.0900 2.7731 2.5590

VI. CONCLUSION

It was shown that Innovation Value under the quadratic

cost function is equivalent to Leverage Score. Two closed-

form robust PCA methods were presented where the first

one was based on Leverage Score and the second one was

inspired by the connection between Leverage Score and In-

novation Value. Several theoretical performance guarantees

for the robust PCA method under different models for the

distribution of the outliers and the distribution of the inliers

were presented. In addition, it was shown with both theoretical

and numerical investigations that the algorithms are robust to

the strong presence of noise. Although the presented methods

are fast closed-form algorithms, it was shown that they often

outperform most of the existing methods.
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VII. PROOFS

In this section, the proofs for the presented theoretical

results are provided. In most of the proofs, we frequently use

the following useful lemmas.

Lemma 9. [28] Suppose g1, ...,gn are i.i.d. random vectors

distributed uniformly on the unit sphere S
N−1 in R

N . If N >
2, then

sup
‖u‖=1

n
∑

i=1

(uTgi)
2 ≤ n

N
+max

(

4

3
log

2N

δ
,

√

4
n

N
log

2N

δ

)

inf
‖u‖=1

n
∑

i=1

(uTgi)
2 ≥ n

N
−max

(

4

3
log

2N

δ
,

√

4
n

N
log

2N

δ

)

with probability at least 1− δ.

Lemma 10. [2] Suppose orthonormal matrix F ∈ R
N×r

spans a random r-dimensional subspace. For a given vector

c ∈ R
N×1

P

[

‖cTF‖2 >
√

c1r̄

N

]

≤ 1− c2N
−3 logN ,

where c1 and c2 are constant real numbers and r̄ =
max(r, logN).

Lemma 11. [28] Suppose g1, ...,gn are i.i.d. random vectors

distributed uniformly on the unit sphere S
N−1 in R

N . If N >
2, then

sup
‖u‖=1

n
∑

i=1

|uTgi| <
n√
N

+ 2
√
n+

√

2n log 1
δ

N − 1

with probability at least 1− δ.

A. Proof of Lemma 1

The optimal point of (3) is equivalent to the optimal point

of

min
c

cTDDT c subject to cTdi = 1

whose Lagrangian function is as follows

cTDDT c+ γ(cTdi − 1) ,

where γ is the Lagrangian multiplier. Assuming that D is a

full rank matrix, the Lagrangian function can be used to find

the optimal point as

c∗i =
(DDT )−1 di

dT
i (DDT )−1 di

. (8)

Accordingly,

‖DT c∗i ‖22 =
dT
i (DDT )−1DDT (DDT )−1 di

(dT
i (DDT )−1 di)2

=

1

dT
i (DDT )−1 di

.

Each data point di can be written as U
′

Σvi. Thus,

‖DT c∗i ‖22 =
1

dT
i (DDT )−1 di

=
1

vT
i vi

.
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B. Proof of Lemma 2

According to (8),

‖DT c∗i ‖22 =

∥

∥

∥

∥

DT (DDT )−1 di

dT
i (DDT )−1 di

∥

∥

∥

∥

2

2

=

M2
∑

i=j

(

dT
i (DDT )−1dj

dT
i (DDT )−1 di

)2

.

Each data point di can be written as U
′

Σvi. Therefore,

‖DT c∗i ‖22 =

M2
∑

i=j

(

vT
i vj

vT
i vi

)2

.

C. Proof of Theorem 3

Define v as the columns of V ∈ R
rd×M2 (the matrix of

right singular vectors) which is corresponding to data point d.

The defined Normalized Coherence Value can be written as

c∗
T
Hc∗

where H = DDT and c∗ is the optimal point of

min
c

cTHc subject to cTd = 1 . (9)

In order to guarantee exact recovery of U , it is enough to

show that (5) holds. Accordingly, we establish a lower bound

for the Normalized Coherence Values corresponding to the

inliers and an upper-bound for the Normalized Coherence Val-

ues corresponding to the outliers and we derive the sufficient

conditions to guarantee that the lower-bound is larger than the

upper-bound.

Suppose d is an inlier. Then, the linear constraint of (9)

ensures that ‖c∗‖2 ≥ 1 and ‖UT c∗‖2 ≥ 1. Therefore,

c∗
T
Hc∗ = ‖AT c∗‖22 + ‖BTc∗‖22

≥ ‖UT c∗‖22 inf
δ∈U

‖δ‖2=1

‖δTA‖22 + ‖c∗‖22 inf
δ‖2=1

‖δ2B‖22

≥ inf
δ∈U

‖δ‖2=1

‖δTA‖22 + inf
δ‖2=1

‖δ2B‖22 .
(10)

We can use Lemma 9 to establish a lower bound for the

Normalized Coherence Values corresponding to the inliers as

follows

P

[

‖DT c∗‖22 <
ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)

+
no

M1
−max

(

4

3
log

2M1

δ
,

√

4
no

M1
log

2M1

δ

)]

< 2δ .

(11)

Now, we need to establish an upper-bound for the Normal-

ized Coherence Values corresponding to the outliers. Define

d⊥ = RR
T
d

‖dTR‖2

2

where R is an orthonormal basis for U⊥ (which

was defined as the complement of U). By definition,

dTd⊥ =
dTRRTd

‖dTR‖22
= 1 .

Since c∗ is the optimal point and d⊥ satisfies the linear

constraint,

‖DT c∗‖22 ≤ ‖DTd⊥‖22 = ‖BTd⊥‖22 .

In addition, according to the definition of d⊥,

‖d⊥‖2 =
1

‖dTR‖2
.

Thus, we can conclude that

P

[

‖DT c∗‖22 >
no

‖dTR‖22M1
+

1

‖dTR‖22
max

(

4

3
log

2M1

δ
,

√

no

M1
log

2M1

δ

)]

< δ .

(12)

Therefore, according to (11) and (12), if (6) is satisfied, then

(5) holds and U is recovered exactly with probability at least

1− 3δ.

D. Proof of Theorem 4

The procedure to prove Theorem 4 is similar to the proce-

dure used to prove Theorem 3, i.e., we guarantee that a lower-

bound for the Normalized Coherence Values corresponding to

the inliers is larger than an upper-bound for the Normalized

Coherence Values corresponding to the outliers. First we es-

tablish the lower-bound for the Normalized Coherence Values

corresponding to the inliers. A Normalized Coherence Value

can be written as

c∗
T
Hc∗ = ‖AT c∗‖22 + ‖BT c∗‖22 .

When d is an inlier, ‖c∗U‖2 ≥ 1 which means

‖DT c∗‖22 ≥ ‖AT c∗‖22 ≥ ‖UT c∗‖22 inf
δ∈U

‖δ‖2=1

‖δTA‖22

≥ inf
δ∈U

‖δ‖2=1

‖δTA‖22 ,
(13)

where c∗ was defined as the optimal point of (9). Since the

inliers are randomly distributed on U ∩ S
M1−1, according to

Lemma 9

P

[

‖DT c∗‖22 <

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)]

< δ .

(14)

In order to establish the upper-bound for the Normalized

Coherence Values corresponding to the outliers, first we define

d⊥ = RR
T
d

‖dTR‖2

2

where R is an orthonormal basis for U⊥. Vector

d⊥ lies in U⊥ and dTd⊥ = 1. Thus,

‖DT c∗‖22 ≤ ‖DTd⊥‖22 = ‖BTd⊥‖22 .
In addition, ‖UT

o d
⊥‖2 ≤ ‖d⊥‖2‖UT

o U
⊥‖. Therefore, we can

use Lemma 9 to establish the following upper-bound

P

[

‖DT c∗‖22 > ‖UT
o U

⊥‖
(

ψno

ro
+

ψmax

(

4

3
log

2ro
δ
,

√

no

ro
log

2ro
δ

)

)]

< δ .

(15)

According to (14) and (15), if the sufficient condition of

Theorem 4 is satisfied, then (5) holds and U is recovered

exactly with probability at least 1− 2δ.



12

E. Proof of Theorem 5

The Coherence Value corresponding to data point

d is equal to

M2
∑

i=1

(dTdi)
2 = ‖dTD‖22 = ‖dTA‖22 + ‖dTB‖22 .

We use similar procedure which was used to prove Theorem 4.

First we establish a lower-bound for Coherence Values corre-

sponding to the inliers. Suppose d is an inlier. Similar to (13)

and (14),

P

[

‖DTd‖22 <
ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

)]

< δ . (16)

Next, we need to establish an upper-bound for Coherence

Values corresponding to the outliers. Since d ∈ Uo,

‖dTD‖22 ≤ sup
δ∈Uo

‖δ‖2=1

‖δTB‖22 + ‖UTUo‖2 sup
δ∈U

‖δ‖2=1

‖δTA‖22 .

Accordingly, using Lemma 9, we can conclude that when d

is an outlier

P

[

‖DTd‖22 >

‖UTUo‖2
(

ni

r
+max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

))

+

no

ro
+max

(

4

3
log

2ro
δ
,

√

4
no

ro
log

2ro
δ

)

]

< 2δ .

(17)

According to (16) and (17), if the sufficient condition of

Theorem 5 is satisfied, the minimum of Coherence Values

Corresponding to the inliers is larger than the maximum of

Coherence Values Corresponding to the outliers and U is

recovered exactly with probability at least 1− 3δ.

F. Proof of Theorem 7

Similar to the proofs of the previous theorems, first we

establish a lower-bound for the Normalized Coherence Values

corresponding to the inliers and an upper-bound for the

Normalized Coherence Values corresponding to the outliers.

Subsequently, the final sufficient conditions are derived to

guarantee that the lower-bound in higher than the upper-bound

with high probability.

Using (13), we can bound the Normalized Coherence Values

corresponding to the inliers as stated in (14).

Similar to the proof of Theorem 4, we define d⊥ = RR
T
d

‖dTR‖2

2

where R is an orthonormal basis for U⊥. Since dTd⊥ = 1,

c∗
T
Hc∗ ≤ d⊥T

Hd⊥ = ‖BTd⊥‖22 .
In addition,

‖BTd⊥‖22 =
1

1 + η2

no
∑

i=1

(

qTd⊥ + ηvT
i d

⊥
)2 ≤

1

1 + η2

(

no(q
Td⊥)2+

η2
no
∑

i=1

(

vT
i d

⊥
)2

+ 2η|qTd⊥|
no
∑

i=1

∣

∣vT
i d

⊥
∣

∣

)

.

Since d⊥ lies in U⊥, qTd⊥ ≤ ‖d⊥‖2 ‖qTU⊥‖2. Moreover,

according to Lemma 11,

no
∑

i=1

∣

∣vT
i d

⊥
∣

∣ ≤ ‖d⊥‖2





no√
M1

+ 2
√
no +

√

2no log
1
δ

M1 − 1



 (18)

with probability at least 1 − δ. Accordingly, using (18) and

Lemma 9, we can establish the following bound

P

[

(1 + η2)‖BTd⊥‖22 > ψno‖qTU⊥‖22+

ψη2no

M1
+ η2ψmax

(

4

3
log

2M1

δ
,

√

no

M1
log

2M1

δ

)

+

η
√

ψ‖qTU⊥‖2





no√
M1

+ 2
√
no +

√

2no log
1
δ

M1 − 1





]

≤ 2δ .

Thus, if the sufficient condition of Theorem 7 is satisfied, then

(5) holds and U is recovered exactly with probability at 1−4δ.

G. Proof of Theorem 8

The only difference between this Theorem and Theorem 3 is

the difference between the presumed model for the distribution

of the inliers. We can not use Lemma 9 to establish a lower-

bound for inf
δ∈U

‖δ‖2=1

‖δTA‖22. According to the clustering structure

of the inliers,

inf
δ∈U

‖δ‖=1

‖AT δ‖22 = inf
δ∈U

‖δ‖=1

m
∑

i=1

‖δTUk‖22
∥

∥

∥

∥

AT
k

UkU
T
k δ

‖δTUk‖2

∥

∥

∥

∥

2

2

≥

inf
δ∈U

‖δ‖=1

m
∑

i=1

‖δTUk‖22

(

inf
δk∈Uk
‖δ‖=1

‖δTk Ak‖22

)

.

(19)

Define

B = min
k





{

inf
δk∈Uk
‖δ‖=1

‖δTk Ak‖22

}m

k=1



 .

According to (19) and the definition of B,

inf
δ∈U

‖δ‖=1

‖AT δ‖22 ≥ B
m
∑

i=1

‖δTUk‖22 = Bϑ .

Using Lemma 9 and the definition of A, we can bound B
as follows

P

[

B < A
]

≤ δ . (20)

Therefore, according to (19) and (20), if the sufficient condi-

tions of Theorem 8 are satisfied, then (5) is satisfied and U is

recovered exactly with probability at least 1− 3δ.
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H. Proof of Theorem 6

We guarantee that a lower-bound for the Normalized Co-

herence Values corresponding to the inliers is larger than

an upper-bound for the Normalized Coherence Values corre-

sponding to the outliers. First we establish the lower-bound for

the Normalized Coherence Values corresponding to the inliers.

Note that

c∗
T
Hc∗ =

1

(1 + σ2
n)

‖(A+E)T c∗‖22 + ‖BT c∗‖22
where c∗ was defined in (9). In addition, the optimal point of

(9) when d = di is equal to c∗i = (DD
T )−1

di

dT
i (DDT )−1di

. According

to the definition of vectors {ti}M2

i=no+1, ‖c∗i ‖2 = ‖Σ−2
ti‖2

tTi Σ−2ti
.

When di is an inlier, 1√
1+σ2

n

((ai + ei)
T c∗) = 1 . Thus,

√

1 + σ2
n + tmaxσn ≥ ‖UT c∗i ‖2 ≥

√

1 + σ2
n − tmaxσn

where tmax and tmin were defined in Section (IV-C). In

addition, when di is an inlier, tmin ≤ ‖c∗i ‖2 ≤ tmax and

‖(A+E)T c∗‖22 ≥ ‖AT c∗‖22 + ‖ETc∗‖22 − 2

M2
∑

i=no+1

(aTi c
∗)(eTi c

∗)

≥ ‖AT c∗‖22 + ‖ETc∗‖22 − 2σnnit
2
max.

Therefore, we can bound the Normalize Coherence Value

corresponding to an inliers as follows

‖DT c∗‖22 ≥
(
√

1 + σ2
n − tmaxσn)

2

1 + σ2
n

inf
δ∈U

‖δ‖2=1

‖δTA‖22+

σ2
n t

2
min

1 + σ2
n

inf
‖δ‖2=1

‖δTN‖22 + t2min inf
‖δ‖2=1

‖δTB‖22 − 2σnnit
2
max .

(21)

Using (21) and Lemma 9, we can establish the flowing bound

‖DT c∗‖22 ≥
(
√

1 + σ2
n − tmaxσn)

2

1 + σ2
n

(

ni

r
−max

(

4

3
log

2r

δ
,

√

4
ni

r
log

2r

δ

))

+

(

σ2
n t

2
min

1 + σ2
2

+ t2min

)

(

ni + no

M1
−

2max





4

3
log

2M1

δ
,

√

4
max(ni, no)

M1
log

2r

δ





)

− 2σnnit
2
max

with probability at least 1− 3δ.

Next Suppose that d is an outlier. Similar to the proof of

Theorem 3, define d⊥ = RR
T
d

‖dTR‖2

2

where R is an orthonormal

basis for U⊥. Since dTd⊥ = 1,

c∗
T
Hc∗ ≤ ‖DTd⊥‖22 = ‖BTd⊥‖22 +

1

1 + σ2
n

‖ETd⊥‖22

≤ 1

‖dTR‖22

(

no

M1
+max

(

4

3
log

2M1

δ
,

√

4
no

M1
log

2M1

δ

))

+

σ2
n

(1 + σ2
n)‖dTR‖22

(

ni

M1
+max

(

4

3
log

2M1

δ
,

√

4
ni

M1
log

2M1

δ

))

,

with probability at least 1 − 2δ. According to the established

lower-bound/upper-bound, if the sufficient conditions of The-

orem 6 are satisfied, the Normalized Coherence Values satisfy

(5) with probability at least 1− 7δ.
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