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Abstract—In this paper, we study the problem of direction
of arrival estimation and model order selection for systems
employing subarray sampling. Thereby, we focus on scenarios,
where the number of resolvable active sources is not smaller than
the number of simultaneously sampled antenna elements, i.e., we
operate above the conventional limit for most estimators. For this
purpose, we propose new schemes based on neural networks and
estimators that combine neural networks with gradient steps on
the likelihood function. These methods are able to outperform
existing estimators in terms of mean squared error and model
selection accuracy, especially in the low snapshot domain, at a
drastically lower computational complexity.

I. INTRODUCTION

In the last decade, data-driven approaches have become in-
creasingly popular in the signal processing community. Driven
by astonishing results from image and speech processing, deep
neural networks have become a tool that finds its way to
many different signal processing applications. Wherever there
are model imperfections or the existing solutions are very
complex to compute, data-based approaches may improve the
performance considerably.

Traditionally, direction of arrival (DoA) estimation is a field
where appropriate stochastic models and potent algorithms are
available. However, there are still some areas where exist-
ing solutions lead to a rather limited performance. Subarray
sampling is one of these applications for which classical
methods do not provide fully satisfying results. The idea
behind subarray sampling is to reduce costs by sequentially
sampling subarrays instead of sampling the whole antenna
array simultaneously, which means that fewer radio frequency
(RF) chains than antennas are needed. Specifically, in the
domain where the number of sources is not smaller than the
number of sampled antenna elements per time step [1], [2],
the performance of existing DoA estimation algorithms is—as
we will show—only acceptable for a prohibitively high num-
ber of snapshots. Therefore, we investigate the suitability of
machine learning–based approaches for systems with subarray
sampling. In particular, we discuss neural networks (NNs) for
the tasks of DoA estimation and model order selection.

Subarray sampling can be seen as a special form of time-
varying arrays. Computable methods for DoA estimation for
time-varying arrays fall into two categories depending on
the ratio of transmitting sources to simultaneously sampled
antenna elements. For fewer sources than sampled antennas

per time step, previous work goes back to [3], where the
single source case is studied. In [4], the same authors extend
their analysis of time-varying arrays to multiple sources and
propose eigenstructure methods based on array interpolation
and focusing matrices. A more direct approach to employing
MVDR and MUSIC for these systems is studied in [5], [6].
The more demanding scenario, where the number of sources is
equal or greater than the number of simultaneously sampled
antennas, is discussed in [1]. There, the authors propose to
use a cost function that matches the subarray covariance
matrices to the observed sample covariance matrices in a
general least squares (GLS) sense. In [2], the covariance matrix
of the full antenna array is estimated by a special subarray
sampling scheme. Afterwards, the DoAs are estimated from
the reconstructed, full covariance matrix with MUSIC [7].
Lastly, the recent work in [8] on non-coherent processing of
partly calibrated arrays yields an estimator that utilizes a sparse
signal representation of the system model and is applicable to
subarray sampling.

Utilizing data-based machine learning techniques for DoA
estimation goes back to the ’80s to Rastogi et al. [9]. A
review of the work from the last century in this field can
be found in [10]. More recently, with the increase in comput-
ing resources, the methods have shifted towards larger fully
connected and convolutional multilayer NNs. The proposed
NN approaches can be assigned to three different groups. One
group poses the DoA estimation problem as a classification
problem by a discretization of the angular domain in several
sectors (e.g., [11]–[14]). The DoA estimation problem then
reduces to determining if a source is present in a specific
angular sector. For the next group, the idea is to estimate a
discretized spectrum (MUSIC [15] or transmit power [16]) as
a proxy by means of a regression network, and derive the
DoA estimates by determining the maxima of the respective
spectrum. In [17], such a NN-based estimation of a pseudo-
spectrum has been shown to perform better than directly
estimating the frequencies with a NN in a multisinusoidal
signal. A disadvantage of the aforementioned methods is that
a minimal angular spread between two sources has to be
assumed, such that each grid point or sector is only associated
with one possible source. The third group, which our proposed
method belongs to, does not suffer from this. There, the NN
should directly produce the DoA estimates at its output. These
models are trained directly on the cost function of interest,
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e.g., mean squared error (MSE). In [18], the authors propose
to use a signal-to-noise-ratio (SNR) classification network to
choose between two different DoA regression networks with
the goal to resolve two narrowly spaced sources. A more
general approach is presented in [19]. There, a NN is discussed
that is able to simultaneously estimate the number of sources
and their DoAs. The authors show that this network is able to
achieve the same performance as a maximum likelihood (ML)
estimator in a scenario with two sources and a single snapshot.

For model order selection, NNs have been first proposed in
[20]. Recently, the model order selection problem has been
revisited for state of the art fully connected, feedforward
network architectures with different input data formats [19],
[21], [22]. In the context of subarray sampling, previous
work on model order selection is limited to [23], where
the applicability of information criteria to the time-varying
preprocessing case is discussed.

In this paper, we discuss several DoA estimation methods
for systems with subarray sampling in Section III. There,
our contributions lie in the proposal of a NN-based DoA
estimator and the modification of the GLS estimator for a
small number of snapshots. Moreover, we provide a thorough
comparison of the newly proposed and existing schemes for
the critical case of as many sources as simultaneously sampled
antennas by means of Monte Carlo simulations. These simula-
tions show that the proposed NN-based estimation scheme is
able to outperform the state-of-the-art estimators in terms of
estimation accuracy and computational complexity. In Section
IV, the model order selection problem for subarray sampling
is discussed. We present a new estimation scheme for the
model order based on a NN and are—to the best of our
knowledge—the first to provide simulation results for the
achievable selection accuracy for these systems. Again, the
proposed NN-based approach is able to provide a significantly
better performance compared to existing methods based on
information criteria, as it provides a higher selection accuracy
at a fraction of the computational cost.

II. SYSTEM MODEL

Let us consider antenna arrays consisting of M antennas.
Throughout this work, we investigate systems which only use
W < M RF chains and a switching network to sample the
received signals, i.e., only a subset of the antenna elements
is sampled simultaneously. In the following, we assume that
at any given time each RF chain is connected to exactly
one antenna element and that there are K different states of
the switching network, i.e., we have K different subarrays
consisting of W antennas. For each subarray, we collect N
snapshots for a joint processing. Then, the n-th sample of the
received signal for the k-th subarray can be written as

y(k)(n) = G(k)
(
A(θ)s(k)(n) + η(k)(n)

)
, (1)

where the steering matrix A(θ) ∈ CM×L captures the
response of the whole array on the DoAs θ of L far-field
sources, s(k) denotes the narrow-band transmit signals, and
η(k) ∼ CN (0, σ2

ηIM ) is some additive white Gaussian noise.
The matrix G(k) ∈ {0, 1}W×M represents the connections

between the RF chains and the antenna elements that form
the k-th subarray.

III. DOA ESTIMATION

In this section, we briefly discuss existing DoA estimation
approaches that are derived from the underlying stochastic
model, before we present a new data-driven NN approach.
Afterwards, we compare these methods by means of Monte
Carlo simulations.

A. Model-Based DoA Estimation

Traditionally, DoA estimation methods have been derived
from the underlying stochastic model. In the scope of DoA
estimation, two different stochastic models are commonly
associated with the received signals y given in (1). These
models differ in the assumed distribution of s [24]. On the
one hand, we may treat s as an unknown parameter of the
stochastic model. On the other hand, we may assume that s
itself follows some probability distribution, which leads to a
stochastic model for y that no longer depends on the individual
realizations of s, but on the parameters of its distribution.

1) Maximum Likelihood Estimator: As the most prominent
model-based estimation method, we start by discussing the ML
estimator. The ML estimator finds its estimates by maximizing
the probability density function at the observed received
signals y with respect to the model parameters. Deriving the
ML estimator under the aforementioned stochastic models, we
obtain the deterministic ML (DML) for the former model
and the stochastic ML (SML) for the latter model. In the
case of L < W , i.e., fewer sources than RF chains, the
computation of the DML estimates is straightforward. As it
is well summarized in [25], we can find closed form estimates
of the signal and noise parameters for fixed angles θ. Plugging
these estimates into the likelihood function gives a non-convex
function in θ. To find the global maximum of this concentrated
likelihood, a multi-dimensional grid search over θ followed by
any kind of gradient ascent technique can be employed.

More challenging is the case with an equal to or greater
number of sources than RF chains L ≥ W , which we will
focus on throughout this section. For the DML case, we have

ȳ(n) =

y
(1)(n)

...
y(K)(n)

 ∼ CN (Ās̄(n), IKW
)
, (2)

with

Ā(θ) = blockdiag
{
G(1)A(θ), . . . ,G(K)A(θ)

}
, (3)

s̄(n) =
[
s(1),H(n), . . . , s(K),H(n)

]H
. (4)

Since in general Ā(θ) does not have full column rank for
L ≥ W , there is a manifold of solutions for θ and s̄(n) that
give the same distribution for ȳ(n), i.e., θ cannot be uniquely
estimated with the DML model [26].

In contrast, the optimization problem corresponding to the
SML estimator, where s(t) ∼ CN (0,Rs), cannot be reduced
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to an optimization which only depends on θ for L > 1 [4].
Instead, the SML likelihood estimates are the solution to

max
θ,Rs�0,σ2

η≥0
−

K∑
k=1

[
ln
(

det(R(k)
y )
)

+ tr(R(k),−1
y R̂(k)

y )
]
,

(5)
with the covariance matrices

R(k)
y = G(k)A(θ)RsA

H(θ)G(k),T + σ2
ηIW , (6)

and the sample covariance matrices

R̂(k)
y =

1

N

N∑
n=1

y(k)(n)y(k),H(n). (7)

This optimization problem has almost surely a unique max-
imizer if Rs is diagonal and L ≤ bρ2c [8], where ρ is the
Kruskal rank of the co-array manifold

V̆ (θ) =


(
G(1)A∗(θ)

)
◦
(
G(1)A(θ)

)
...(

G(K)A∗(θ)
)
◦
(
G(K)A(θ)

)
 , (8)

that uses the Khatri-Rao product, denoted by ◦. For the
correlated source case with a dense covariance matrix Rs,
the extension of the identifiability proof in [8] is non-trivial,
and, as of yet, remains an open problem.

Unfortunately, for the optimization of (5), we cannot find
closed form solutions forRs and σ2

η for fixed θ. Therefore, the
optimization of this non-convex function is over L2 + L + 1
variables, which is computationally very expensive for any
L ≥ 2. To overcome this problem, different methods that
replace the likelihood objective with a covariance-matching
criterion have been proposed to estimate θ specifically for
L ≥ W [1], [2], [8]. As the method introduced in [2] only
works for a special sampling scheme, in which every lag in
the covariance matrix needs to be sampled by at least one of
the subarrays. Instead, we focus on the GLS [1] and sparse
signal repesentation (SSR) [8] methods that do not suffer from
this restriction.

2) GLS Estimator: The GLS estimator has been shown to
be an asymptotically consistent and efficient estimator. The
idea is to obtain the estimates by a covariance fitting criterion.
The GLS approach solves the following optimization problem

min
θ,Rs�0,σ2

η≥0

K∑
k=1

‖T (k)
(
R̂(k)
y −R(k)

y

)
T (k),H‖2F, (9)

where T (k) is a whitening filter, for which the choice T (k) =

R̂
(k),−1/2
y can be motivated by asymptotic considerations [1].

In the optimization above, the signal and noise estimates can
be computed for fixed θ. Hence, the non-convex optimization
problem results in a search for the optimal θ, which can again
be solved by a grid-search approach.

Note that in contrast to the original paper [1], we include
the positive-semidefiniteness constraints on Rs and σ2

η in
the optimization problem (9). Otherwise, we obtain some
infeasible results for the estimates ofRs and σ2

η when working
in the low snapshot domain. This, in turn, means that the
effort for determining the noise and signal estimates for fixed

θ is not a simple least squares problem, but requires the
solution of a semidefinite program in the general case and
non-negative least squares problem (quadratic program) in the
case of uncorrelated sources.

3) SSR Estimator: The SSR estimator has been derived in
[8] from the SPICE estimator [27] for DoA estimation in
partly calibrated arrays. Due to its non-coherent processing,
i.e., phase offsets between the subarrays are not estimated,
it is directly applicable to the subsampling system model at
hand. Similar to the GLS approach, the SSR method is based
on a covariance-matching cost function given by

K∑
k=1

‖R(k),−1/2
y

(
R̂(k)
y −R(k)

y

)
R̂(k),−1/2
y ‖2F. (10)

Using a sparse representation of the covariance matrices R(k)
y

for uncorrelated signals, a second-order cone program (SOCP)
can be derived from (10). Although the derivation of the SSR
estimator is based on the assumption of uncorrelated signals,
the authors argue that due to the robustness of sparse signal
models the method can also be used for the correlated case.
The resulting SOCP can be either solved by a general purpose
solver or, as has been proposed for SPICE in [27], a cost-
effective alternating optimization method can be used (for
details see Appendix A).

B. Purely Data-Based DoA Estimation

In contrast to the previously discussed model-based meth-
ods, in this subsection, we discuss a purely data-based DoA
estimation approach. In particular, we present an end-to-end,
feedforward NN that is trained on artificial training data
sampled from the SML signal model. In the following, we
refer to this NN as MCENet, named after the employed
objective function. Our main focus lies on the uncorrelated
case, i.e., Rs is diagonal, because of multiple reasons. This
assumption provides sufficient identifiability conditions, is at
the core of the SSR estimator, and reduces the complexity of
the GLS estimator. Note that an extension of the proposed
scheme to the correlated case simply means sampling data
from the respective stochastic model.

1) Data and preprocessing: For our training set, we sample
data from the system model in (1). Hereby, the entries of the
DoA vector θ are drawn from a uniform distribution over the
complete field of view, i.e., θ ∼ U(0, U). For now, let us
assume that the entries in θ are sorted in ascending order,
which will be discussed later. The noise and transmit signal
realizations are drawn from uncorrelated Gaussian distribu-
tions according to the SML model. Thereby, we fix the power
of the strongest source to σ2

s,max = 1, and for each realization,
we draw the power of each weaker source in decibel from
a uniform distribution between 0 dB and σ2

s,min. The noise
power also follows a uniform distribution between σ2

η,min and
σ2
η,max. Each data sample consists of KN i.i.d. received signal

realizations y(k)(n), n = 1, . . . , N, k = 1, . . . ,K. Since
we use artificial data, we can feed new, previously unseen
realizations to the NN in each step of the gradient descent
of the learning algorithm. This makes the training inherently
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robust towards overfitting. Additionally, we know the true
DoAs for each realization, therefore, we can use them as the
label for each data sample in a supervised learning approach.

We pass sample covariance matrix information to the input
layer of the NN, which has been shown to be a good
preprocessing step for the complex received signals in the DoA
context [22], [28], [29]. To this end, we form the K subarray
sample covariance matrices R̂(k)

y , k = 1, . . . ,K, and stack
their real parameters, i.e., their diagonal elements and the real
and imaginary parts of their upper triangle, in one large vector
per data sample. Note that the input size of the NN is KW 2,
and thus does not depend on the number of snapshots N .

2) Architecture and cost function: Due to its simplicity, we
use a fully connected, feedforward NN with Nh hidden layers,
each consisting of Nu neurons. For the non-linear activation
function of the hidden layers, we employ the rectified linear
unit (ReLU). The output layer produces L outputs, which are
the estimates of the DoA θ̂.

The most common cost function for parameter estimation
is the MSE. However, for DoA estimation the 2π-periodicity
of the angles has to be taken into account. To that end, the
mean squared periodic error (MSPE), given by

MSPE(θ, θ̂) = Eθ

[∣∣∣mod[−π,π)
(
θ − θ̂

)∣∣∣2] , (11)

has been proposed [30]. An alternative, which is differentiable
at every point and is equivalent to the MSE in the small error
region, is the mean cyclic error (MCE) [31]. The MCE can
be calculated according to

MCE(θ, θ̂) = Eθ

[
2
(

1− cos
(
θ − θ̂

))]
. (12)

Although the non-differentiability of the MSPE is only at one
point, and hence, can be simply replaced by its left derivative
without any adverse impact on the learning procedure, we use
the MCE with its continuous derivative for the cost function
of the NN.

For L > 1, the order of the elements in θ̂ should be
irrelevant for the value of the cost function. Therefore, the
minimum of the sum of the element-wise errors between the
true DoA and all permutations of θ̂ is used for the cost function
f(θ, θ̂), i.e.,

f(θ, θ̂) = min
Π

L∑
`=1

f
(
θ`,π

T
` θ̂
)
, (13)

where Π = [π1, . . . ,πL]T is a permutation matrix. However,
in our studies we observed that if the network is fed with sorted
labels, it converges to a point where the optimal permutation
matrix Π is constant. This means that the minimizer of (13)
for every input sample is the same, i.e., the output of the
network follows a fixed order. Further studies showed that
we can even omit the minimization over all permutations and
simply use the sum of the element-wise errors. The network
will then converge to a point, where it produces the outputs
in the correct order that minimizes the sum MCE.

C. Hybrid DoA Estimation

By hybrid DoA estimation we understand the combination
of two different estimation approaches in a two-stage process.
In our case, this combination uses one of the model-based
methods GLS and SSR or the purely data-based NN method as
an initialization step and a consecutive gradient ascent method
on the SML likelihood. The t-th iteration of the SML gradient
ascent is given by

c[t+1] = Pc
(
c[t] + α[t] ∂L(c)

∂c

∣∣∣
c=c[t]

)
, (14)

where c[t] gathers the values of the parameters θ,Rs, and
σ2
η in the t-th step, L(c) is the log-likelihood function from

(5), α[t] is some adaptable step size, and Pc(•) indicates a
projection onto the feasible set of the parameters c. Thereby,
the gradient of the log-likelihood L(c) reads according to the
chain rule as

∂L(c)

∂ci
=

K∑
k=1

tr

( ∂L
∂R

(k)
y

)H
∂R

(k)
y

∂ci

 , (15)

with

∂L(c)

∂R
(k)
y

= −N
(
R(k),−1
y −R(k),−1

y R̂(k)
y R(k),−1

y

)
, (16)

and the derivatives of the covariance matrix with respect to
the individual entries of the parameter vector c, which are
obtained by

∂R
(k)
y

∂θ`
=G(k)A(θ)Rs

∂

∂θ`
AH(θ)G(k),T

+G(k) ∂

∂θ`
A(θ)RsA

H(θ)G(k),T,

(17)

∂R
(k)
y

∂[Rs]i,j
= G(k)a(θi)a

H(θj)G
(k),T, (18)

∂R
(k)
y

∂σ2
η

= IW . (19)

For the model-based approaches, the consecutive gradient
steps alleviate the grid mismatch problem that is inherent
to any grid-based approach [32]. The NN method, as posed
above, does not suffer from this grid mismatch problem due to
its formulation as a regression problem. However, by utilizing
a purely data-based method in a scenario, where an appropriate
stochastic model exists, we ignore a significant amount of
information about the problem at hand. Hence, we propose
the combination of NN based initialization and model aware
gradient steps on the SML likelihood function to improve the
DoA estimate.

To combine the NN initialization with the SML gradient
steps, an additional intermediate step is necessary. The NN
does not directly yield estimates for the noise variance and
signal covariance matrix, which are needed to form the initial
parameter estimate c[0] for the consecutive gradient approach.
To that end, we propose to use the GLS estimates of these
nuisance parameters Rs and σ2

η for the fixed angular estimates
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θ̂, which requires the solution of a convex optimization
problem as discussed in Section III-A2.

For the gradient approach on the SML likelihood, we
observed that the gradient of the log-likelihood function is
often dominated by the derivative w.r.t. the noise variance
σ2
η at high SNR and for L < W .1 This, in turn, can lead

to a slow progress in the parameters of interest, viz., the
DoA estimates, during a simple gradient ascent approach.
Instead, a block coordinate ascent method can be applied that
alternates between updating the DoA estimates, the estimate of
the signal covarianceRs, and an estimate of σ2

η . For each these
updates of the different subsets of parameters, we perform a
single gradient step in the direction of the respective partial
derivatives with its individual step size. This led to a much
faster convergence in our simulations. The resulting structure
of the hybrid estimators including the block coordinate ascent
is summarized in Algorithm 1.

Algorithm 1: Structure of Hybrid Estimator.

/* Intial Estimate */

1 Obtain initial estimate θ̂[0] by using the SSR, GLS,
MCENet estimator

2 if MCENet has been used then
3 Obtain estimates R[0]

s and σ2,[0]
η from solving (9)

for θ = θ̂[0]

4 else
5 Initial estimates R[0]

s and σ2,[0]
η have already been

found in step 1
6 end
/* Block Gradient Descent */

7 Compute inital log-likelihood value L(c[0])
8 t = 0
9 do

10 θ[t+1] = θ[t] + α
[t]
θ
∂L(c)
∂θ

∣∣∣
θ=θ[t],Rs=R

[t]
s ,σ2

η=σ
2,[t]
η

11 R
[t+1]
s = R

[t]
s + α

[t]
s
∂L(c)
∂Rs

∣∣∣
θ=θ[t+1],Rs=R

[t]
s ,σ2

η=σ
2,[t]
η

12 σ
2,[t+1]
η =

σ
2,[t]
η + α

[t]
σ
∂L(c)
∂σ2

η

∣∣∣
θ=θ[t+1],Rs=R

[t+1]
s ,σ2

η=σ
2,[t]
η

13 t = t+ 1
14 Compute log-likelihood value L(c[t])
15 while L(c[t]) > L(c[t−1])

D. Simulations

To assess the performance of the previously presented al-
gorithms, we provide some simulation results. The considered
system consists of M = 9 omnidirectional antennas that form

1To explain this observation, we consider the sensitivity of the partial
derivatives of the log-likelihood function in the form of its second derivatives.
The expected value of the respective Hessian matrix forms the well known
Fisher information matrix. For high SNR and L < W , the block of the Fisher
information matrix that corresponds to the noise variance scales with O(σ−4

η )
in contrast to the block that corresponds to the parameters of interest θ which
grows with O(σ−2

η ) [33, Eq. (21)] (Note that there is a typo in [33, Eq. (21)].
The lower left entry in the matrix given for the first case should be O(σ−4

η ),
as for the singular case below).

TABLE I
SUBARRAY SAMPLING SCHEME

k Antenna Elements
1 1, 2, 9
2 1, 3, 8
3 1, 4, 7
4 1, 5, 6

TABLE II
SIMULATION PARAMETERS DOA ESTIMATION

Parameter Value
σ2
s,min −9 dB
σ2
η,min −10 dB
σ2
η,max 30 dB
Nh 4
Nu 2048

Weight Initialization Glorot[34]
Batch Size 256
Optimizer Adam[35]

Learning Rate 10−4

Samples per Training Set 128× 106

Samples per Test Set 103

a uniform circular array (UCA). For simplicity, we assume
that all of the L = 3 sources lie in the same horizontal plane
as the antenna array, such that the steering vector of the UCA
only depends on the azimuth. In our simulations, we fix the
ratio of the array radius R and wavelength λ to be equal to
1. The switching network selects K = 4 subarrays consisting
of W = 3 antennas according to the configuration given in
Table I, which uses a clockwise numbering of the antenna
elements of the UCA.

The parameters for the training of our algorithms, as well as
the MCENet parameters, have been chosen according to Table
II.2 For the test set data, we use received signal realizations
stemming from equally powered signals. Note that the parame-
ters for the signal and noise variances in the training set have
been chosen such that the resulting parameter space covers
a reasonably broad operating range for the DoA estimation
task. The knowledge about this limited parameter space is
not incorporated in the model-based algorithms. However, the
MCENet is trained with data from this range, which might
introduce a certain advantage. By choosing the range broad
enough, we want to make sure that this advantage is not too
significant.

We denote the SSR method, for which we use YALMIP
[36] in combination with the MOSEK solver [37] to solve
the internal SOCP, simply by “SSR”, whereas the alternating
optimization variant (see Appendix A) is referred to by “SSR
iter.”. The “SSR iter.” variant uses a fixed number of update
steps, which we set to 104. For the presented SSR variants,
we chose an oversampling factor of 32, i.e., we use 32M
equidistant grid points to cover the whole field of view. In
contrast, the oversampling factor for the GLS method is set to
8, because otherwise the computational complexity for L = 3

2The MCENet parameters have been determined by a small scale random
search. For details see Appendix B.
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sources becomes prohibitively large. As a reference, we added
the results for a Genie ML approach. This approach starts
with an initialization of the parameter vector c with the true
DoAs, noise power, and covariance matrix of the transmit
signals. From there, we use a block coordinate ascent to find
the closest local maximum of the SML likelihood function,
and use the DoAs corresponding to this maximum as the
Genie ML estimates. Note that at high SNR the variance of
the distance between the true DoAs and the local maximum
of the likelihood function, i.e., the Genie ML estimates, is
given by the Cramér-Rao-Bound (CRB), as the ML estima-
tor is asymptotically efficient. However, the CRB is, as a
stochastic bound on the error variance, not really applicable
if only one noise and signal realization is paired with each
DoA realization, unless an immense number of realizations
is considered. Additionally, without enforcing any minimal
distance between the DoAs, the calculation of the CRB suffers
from numerical issues for closely spaced angles. Therefore,
this Genie ML estimator gives a more reasonable performance
bound than the CRB for our simulations. Furthermore, we
show some results for the MVDR estimator [5], which is—
in contrast to the MUSIC approach presented in the same
paper—technically applicable to scenarios with L ≥ W as
well. However, note that the lack of a noise subspace in
the subarray sample covariance matrices leads to the fact
that R̂(k),−1

y has no large eigenvalues that lead to a large
aHG(k),H(θ)R̂

(k),−1
y G(k)a(θ) for the directions θ without a

source (in contrast to L < W , where R(k),−1
y converges to the

projector onto the noise subspace [33]). Therefore, we expect
that the MVDR spectrum cannot differentiate well between
directions with and without sources in this scenario.

1) Uncorrelated Sources: In Fig. 1, we depict the root
MSPE (RMSPE) of the different DoA estimators over the
SNR, defined as 1/σ2

η , for N = 10 snapshots. Thereby, the
RMSPE under the assumption that the true and estimated
DoAs are associated according to (13) is given by

RMSPE =

√√√√ 1

L

L∑
`=1

Eθ

[∣∣∣mod[−π,π)
(
θ` − θ̂`

)∣∣∣2]. (20)

The plot shows the hybrid approaches consisting of an initial-
ization step and block coordinate ascent on the SML likelihood
as solid lines and the plain results of the discussed methods
without subsequent gradient steps as dashed lines. We can
see that none of the proposed methods comes close to the
performance of the Genie ML. Nevertheless, we can identify
a large advantage of the MCENet approach over the model-
based approaches.

To understand where this performance advantage of the
MCENet stems from, we plot the RMSPE of the top 90%
of realizations for each DoA estimator in Fig. 2. Now we
can see that the hybrid MCENet approach almost achieves
the performance of the Genie ML for an SNR of 10 dB
and higher. Meanwhile, the model-based approaches are still
falling behind. Interestingly, 104 update steps are not enough
for the alternating optimization approach “SSR iter.” to achieve
the same performance as the general purpose solver solution.
In last place are the GLS approach that might perform better
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Fig. 1. RMSPE vs. SNR, N = 10.
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Fig. 2. RMSPE vs. SNR, Top 90% of Realizations, N = 10.

for a denser grid, which, however, is computationally in-
tractable, and the MVDR technique. This reduced gap between
the GenieML performance and the performance of the other
algorithms shows that the results in Fig. 1 are dominated
by the suboptimal performance for some of the realizations,
which we will refer to as outliers, whereas for the majority of
the realizations the algorithms achieve an acceptable accuracy.
The hybrid MCENet approach suffers from fewer outliers than
the model-based approaches, which can be seen in Fig. 3 as
well, where we plotted the empirical cumulative density of the
RMSPE per DoA estimator at 20 dB SNR for the Genie ML,
the SSR and the MCENet methods.

Interestingly, the presented estimators differ in which real-
izations lead to outliers, e.g., a realization that leads to an
outlier for the MCENet NN does not necessarily result in
an outlier for the SSR method or vice versa. Whereas our
simulations showed that the GLS estimator struggles especially
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Fig. 3. Empirical Cumulative Density Function, SNR= 20 dB, N = 10,
M = 9.

with closely spaced sources, which is related to the very coarse
grid that it is based on, categorizing which kind of realizations
lead to outliers for the MCENet and SSR methods turned out
to be unsuccessful. For the MCENet NN, the realizations that
lead to outliers depend on the training data, which makes
a theoretical analysis of these critical case rather difficult
and shall be left to later investigations. Specific opportunities
to compensate for these deficits may arise through more
sophisticated active learning strategies. Similarly, the SSR
method is based on the solution of an optimization problem,
which makes it difficult to obtain an intuition about the nature
of the outlier realizations.

When we compare the hybrid MCENet results with the plain
MCENet output, we see in both Fig. 2 and Fig. 3 that the
combination of the data-based MCENet with the model-based
gradient steps is crucial. The MCENet alone cannot provide
estimates that can compete with a model-based approach for
non-outlier realizations. This comes as a trade-off between
high SNR accuracy and outlier robustness, which is also
reflected in the cost function of the NN. By design, the NN
tries to minimize the average MCE over all realizations. In
that sense, minimizing the occurrence of outliers that lead to
large errors weighs more than further improving the accuracy
for realizations with a small error such that during training
the emphasis lies first and foremost on the robustness against
outliers.

The higher susceptibility to outliers of the model-based
approaches vanishes for a higher number of snapshots N , as
can be seen in Fig. 4. There, we compare the relevant cut-out
of the empirical cumulative density of the hybrid approaches
for N = 10 and N = 1000. For high N , we see not only a
general shift of the CDF curves (the CRB scales linearly in
N ), but almost no outliers occur and the performance of SSR
is on par with the MCENet. This result is not surprising, as
the SSR method is based on a covariance-matching criterion.
The sample covariance matrices are consistent estimates of the
true subarray covariance matrices, which in turn justifies the
validity of the covariance-matching objective for high N . Note

10−1 100 101

0.6

0.8

RMSPE [◦]

SSR + ML MCENet + ML Genie ML
N = 10 N = 1000

Fig. 4. Empirical Cumulative Density Function, SNR= 20 dB, varying N ,
M = 9.

10−1 100 101

0.6

0.8

RMSPE [◦]
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Fig. 5. Empirical Cumulative Density Function, SNR= 20 dB, N = 10,
varying M .

that the GLS estimator, which is based on a similar objective as
the SSR method, has been proven to be a consistent estimator
(for a sufficiently dense grid) [1].

An increase in the number of antennas M improves the
average performance of all discussed methods, as is shown
in Fig. 5. However, for M = 25 antennas, we still see
a significant amount of outliers for the MCENet and SSR
approaches. Furthermore, increasing M not only comes with
additional hardware expenditures, but the number of subarrays
K, which have to be sampled, and therefore, the time to scan
the whole array, grows as well.

For an assessment of the case of strictly more sources than
RF chains, the considered UCA with W = 3 RF chains is not
well suited, because the estimation task for L = 4 sources and
the considered system becomes so difficult that the MCENet
and SSR methods are not able to produce reasonable estimates
for a majority of realizations. Instead, we were able to find
encouraging results for other array geometries, but due to the
lack of space further details are beyond the scope of this work.

Another important result to be stated is when referring to the
generalization capabilities of the proposed data-based method,
i.e., how well the MCENet NN generalizes to data outside the
parameter ranges which the training data has been drawn from.
Here it is important to understand that data-based approaches
in general can only perform well in cases that have been
sufficiently represented during the training phase. A similar
observation can be made in the application at hand. In cases
where the proposed method is applied to data which is outside
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the specified parameter ranges, the proposed estimator suffers
from a severe degradation. However, a proper experimental
design of the training phase can easily prevent from those
cases. Which is obviously a disadvantage in comparison to
model-based approaches turns out to be advantageous in cases
where an appropriate stochastic model cannot be easily derived
and model-based approaches suffer from an inevitable model
mismatch.

2) Correlated Sources: A prime example for the aforemen-
tioned adaption of the NN-based estimator by augmenting the
training data set arises when we take a look at correlated
sources. To that end, we created correlated realizations with a
transmit covariance matrix

Rs =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1,

 (21)

with ρ ∈ [0, 1], to compare the performance of the presented
estimators. The results at an SNR of 20 dB can be found in
Fig. 6 for ρ = 1 and in Fig. 7 for varying ρ. In addition to the
MCENet NN that has been trained on data with uncorrelated
sources, we also added the results for an MCENet NN that
has been trained with correlated sources denoted by “MCENet
(Corr)”. For the training of the MCNet (Corr), we not only
sampled the transmit power differences between the sources
from a uniform distribution between 0 dB and −9 dB, but also
the correlation coefficient ρ followed a uniform distribution
between 0 and 1. This data generating model for the training
set of the MCENet (Corr) comprises the realizations of the test
set with correlated sources. Furthermore, we use the MCENet
NN trained on uncorrelated sources as a starting point for
our training procedure of the MCENet (Corr) NN. From this
initialization, we used 16 million data samples stemming from
the correlated data model to adapt the existing network to
the new scenario. This adaptation method resembles an online
training procedure as has been discussed in the context of
model order selection in [22]. In contrast, the SSR method is
inherently based on the uncorrelated data model and cannot
be easily adapted to the correlated case.

We see in Fig. 6 that in the fully correlated case, the SSR
and MCENet method, which has been trained on uncorrelated
data, fail to provide reasonable estimates. This is due to
the fact that the SSR method is based on the uncorrelated
source model and the MCENet NN operates on data that
is very different from its training data. The MCENet (Corr)
NN, however, shows a much better performance, although
it is also not able to fully achieve the Genie ML bound.
The increased generalization capabilities come at the price
of slightly degraded performance for correlation coefficients
close to zero (cf. Fig. 7). The slight performance loss of
MCENet (Corr) at low ρ is the result of a trade-off between
a high accuracy at low and high correlation. This reflects the
MCENet training objective, which penalizes large estimation
errors in the training set, and therefore, promotes robustness
towards critical cases at the cost of a reduced accuracy in
easier scenarios.

3) Fully Sampled Array: The MCENet NN can be trained
not only for arrays with subarray sampling, but also for fully
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Fig. 6. Empirical Cumulative Density Function for Correlated Sources, SNR=
20 dB, N = 10, M = 9, ρ = 1.
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Fig. 7. RMSPE vs. Correlation Coefficient ρ, Top 90% of Realizations,
N = 10.

sampled arrays. In fact, the fully sampled scenario represents a
special case of the systems with subarray sampling for K = 1
and W = M . Again, the estimator outputs are not completely
free of outliers. Hence, we again show the RMSPE of the
top 90% of realizations for each estimator in Fig. 8. As a
comparison, we added the results for the case with subarray
sampling as dashed lines. Note that although we could choose
the same realizations for the DoAs, the signal and noise
realizations for both cases differ from each other because of
the different dimensionality of both cases.

Fig. 8 shows that for a fully sampled array, the performance
gap between the MCENet approach and the SSR reference
almost vanishes. The performance of both methods only differs
for very low SNR, where the MCENet provides a little more
robustness. Also for high SNR, the number of outliers experi-
enced by the MVDR method decrease significantly compared
to the more complex case of subarray sampling. However,
note that the estimators do not only differ in their achievable
accuracy, but also in their computational complexity.



9

5 10 15 20
10−1

100

101

SNR [dB]

R
M

SP
E

[◦
]

SSR + ML MVDR + ML MCENet + ML
Genie ML Fully Sampled Subarray Sampling

Fig. 8. RMSPE vs. SNR for the Fully Sampled Array, Top 90% of
Realizations, N = 10.

TABLE III
COMPUTATION TIMES OF DOA ESTIMATORS

MCENet SSR SSR iter. GLS MVDR
non-hybrid 5.4 s 127.2 s 1002.8 s 1486.2 s 6.5 s

hybrid 52.3 s 174.7 s 1045.3 s 1541.8 s 53.8 s

4) Complexity: On a final note, we want to briefly discuss
the complexity of the presented estimators. To this end, we
show in Table III the computation times of the individual
estimators with and without consecutive gradient steps for
uncorrelated sources and the UCA with subarray sampling.
The presented times are for 1000 realizations at 20 dB SNR
in MATLAB on a simulation server equipped with two
Intel Xeon Gold 6134 processors. Although we know that
computation times do not achieve the same validity as a
rigorous complexity analysis in Landau notation, due to their
dependence on the used hardware and implementation, they
still yield some qualitative insights. From our simulations, we
see that the MCENet inference steps took about a tenth of
the evaluation time of the “SSR” estimator, which itself is
again about ten times faster than the “SSR iter.” with a fixed
iteration count of 104 iterations and the GLS estimator, whose
complexity grows exponentially with the number of sources.
Only the MVDR estimator, which has the worst accuracy,
is able to compete with the MCENet approach in terms of
computational complexity. Taking the consecutive gradient
steps into account3, we see that these steps implemented by
a block coordinate ascent take roughly the same time for all
discussed methods.

3Note that the required time for the gradient steps heavily depends on
the target accuracy. A looser stopping criterion may significantly reduce
the required computation times. For the presented simulations, the stopping
criterion for the gradient steps is very tight (< 10−6 absolute change in the
log-likelihood), to achieve meaningful results for the MDL approach discussed
in the next section.

IV. MODEL ORDER SELECTION

Knowledge about the number of sources in the transmission
environment L is essential in any of the previously presented
DoA estimation approaches. With an inaccurate estimate of the
model order, we base our algorithms on the wrong stochastic
model or choose the wrong NN, which has been trained on
mismatched data. Hence, we discuss the problem of model
order selection in this section. Again, we follow the structure
of the previous section and discuss model-based approaches
first, namely information criteria (IC). Then we present a
data-based approach, which uses a classification NN, and a
performance comparison based on Monte Carlo simulations.

A. Information Criteria

The most common model-based model order selection
methods are based on ICs [38]. All variants of these IC follow
a common structure of their underlying optimization problem.
For the considered system model this optimization problem is
given by

L̂ = argmax
`∈{0,...,Lmax}

ln
(
p`

(
Y ; θ̂, R̂s, σ̂

2
η

))
+ c(`), (22)

where Y contains all observations yk(n), k = 1, . . . ,K, n =
1, . . . , N , the likelihood function of the received signals under
the assumption that the model order is equal to L and
parameterized by the ML estimates of the model parameters
is denoted by p`(·), and c(`) is a penalty term that combats
overfitting of the model order.

In the fully sampled case, the likelihood function can be
reparameterized by the eigenvalues of the sample covariance
matrix. This leads to a very convenient expression for the
value of the likelihood function that depends only on these
eigenvalues and no longer on the DoA estimates for each
considered model order [39]. Therefore, the computational
load is basically reduced to an eigenvalue decomposition in
contrast to evaluating ML estimates for very high model orders
up to Lmax. Unfortunately, this reparameterization is no longer
available when we consider systems with subsampling. This is
made visible by looking at eigendecompositions of the sample
covariances R̂(k)

y , where the true model order L is larger
than the number of RF chains W . Here, the eigenspace can
no longer be decomposed into a signal and noise subspace.
Additionally, as we see from the discussion in Section III-A,
the ML estimates that are generally needed for the evaluation
of the IC cannot be obtained directly for L ≥W .

Instead, we can replace the ML estimates of the model
parameters in (22) by the GLS estimates, as has been proposed
in [23]. Applying the same rational, the SSR estimator or any
hybrid version can be used to evaluate the IC.

B. Purely Data-Based Model Order Selection

As we have seen in Section III-D, the DoA estimates in the
low SNR and low number of snapshots region are heavily
affected by outliers. In [22], it is shown that in the fully
sampled case a NN-based model order selection approach
can outperform classical IC in exactly this region, while
simultaneously performing equally for high SNR and many
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snapshots. Therefore, we follow the lines of [22] and discuss
a similar NN, to which we refer to as CovNet, for model order
selection for systems with subsampling.

1) Data and preprocessing: For the NN, we use the same
kind of preprocessing based on the sample covariance matrices
as described in Section III-B1. Again, due to the artificial data
we use, we can sample from the underlying stochastic model
as described for MCENet. However, the network is now not
only fed with data stemming from a stochastic model with
fixed model order L, but we have to provide data for varying
model orders L = 0, . . . , Lmax. This model order is used in
the form of a one-hot encoded vector as the label for each
data sample. During training, each batch consists of an equal
number of realizations from the varying model orders such
that no bias towards one model order is introduced.

2) Architecture and cost function: Again, we use a fully
connected, feedforward NN with Nh hidden layers with Nu
neurons each and ReLU activation. The output layer consists
of Lmax + 1 neurons and applies a softmax operation to form
the outputs z(`), ` = 0, . . . , Lmax [40]. By training based on
the cross-entropy loss, which for one-hot encoded labels is
given by

max
w

ln (z(`∗|x;w)) , (23)

the output values z(`) can be interpreted as estimates of
the posterior probabilities for model order `. The training
procedure can be seen as a heuristic approach to the optimal
maximum a posteriori (MAP) estimator, because the training
adapts the weights w such that the estimate of the posterior
probability z(L) of the true model order L of the input x is
maximized [41].

C. Simulations

We conducted simulations for model order selection with
the same data generating model as introduced in Section III-D.
The maximal number of sources Lmax that we consider for our
simulations is 3, i.e., we are operating in the range of Lmax ≥
W . For CovNet, we use a smaller network than MCENet.
CovNet has the same structure as its counterpart in [22] with
Nh = 3 layers with Nu = 1024 neurons and has been trained
on 106 batches with 64 samples in each batch, by using the
Adam optimizer [35] with fixed learning rate of 10−2. As
a reference, we use the maximum description length (MDL)
estimator, whose penalty term in (22) under the assumption of
uncorrelated transmit signals is given as [23]

c(`) =
2`+ 1

2
ln (KN) , (24)

and uses the hybrid SSR method, which is computationally
tractable and achieves a better DoA estimation performance
than the GLS approach (cf. Section III-D), to obtain the
necessary parameter estimates.

In Fig. 9, we show the model order selection accuracy of
the discussed methods for varying SNR. To that end, we use
a test set consisting of 4 · 103 data samples with a fixed
SNR and an equal number of data points from all model
orders. Note that due to our SNR definition, fixed SNR means
that the power ratio of the strongest source to the noise is
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Fig. 9. Model Order Selection Accuracy vs. SNR, N = 10

constant, but the transmit powers of the weaker sources are
still randomly drawn, i.e., the ratio of transmit power and
noise power for these sources is smaller than the stated SNR.
Similarly, we show the achieved accuracy of the different
methods for a different number of snapshots N in Fig. 10,
where the respective test sets consist of data samples with a
fixed number of snapshots N and randomly drawn SNR. In
both cases, CovNet achieves a significantly higher accuracy
than the MDL estimator. As we are operating in a low snapshot
region, the SSR estimators are prone to outliers, as discussed
for L = 3 in Section III-D, which leads to the suboptimal
performance of the MDL estimator compared to the NN-based
approach.

Note that, in Fig. 10, we show two different CovNet results.
The solid red line shows the accuracy for a NN, where
the number of snapshots in the training set and test set are
matching, i.e., Ntrain = N , whereas the dashed orange line
shows the performance of a CovNet model that has been
trained on data with Ntrain = 10 snapshots, which means that
for this model the data in the test and training sets are different.
Interestingly, the CovNet model trained on 10 snapshots is
able to generalize well to data with a different number of
snapshots and achieves almost the same performance over all
N as the NNs that have been trained on the same number of
snapshots as in the test set N = Ntrain. This means that for
the implementation in a direction finder, NNs for each possible
number of snapshots do not have to be stored, but a certain
realization can cover different N .

Again, we end this section by a short comparison of the
required computation times of each presented model order
selection algorithm. For 1000 realizations with varying SNR
evaluated on the same simulation server as discussed in
Section III-D, the inference from the CovNet model takes 2.6
seconds. However, the MDL estimator takes 505.2 seconds for
the same task, since a DoA estimate for all possible model
orders—including the computationally expensive high model
orders—has to be performed for every realization. This is a
difference by a factor of 200. Although the CovNet approach
does not automatically yield a DoA estimate like the MDL
approach, its execution time combined with the time for a
consecutive DoA estimation for the estimated model order
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(cf. Section III-D for L = 3) is still significantly smaller.

V. CONCLUSION

From the simulation results in Section III-D and IV-C, we
see that NN-based approaches to DoA estimation and model
order selection are viable alternatives to existing model-based
techniques for systems with subarray sampling. In terms of
selection accuracy and DoA estimation error, the proposed NN
schemes are able to outperform model-based techniques when
the number of available snapshots is small. Hereby, a combina-
tion of NN based initialization and model-based gradient steps
was crucial to achieve competitive DoA estimates, although
improvements on the architecture or training procedure may
further improve the purely NN-based estimates (cf. results in
[19]). Additionally, the computational complexity of a NN
inference is considerably lower than the evaluation of model-
based estimators, which enables completely NN-based DoA
estimation chains for time-critical applications.

However, there are still some open questions that need
to be addressed: How do NN based approaches cope with
array calibration? And, how robust are these methods when
model imperfections come into play? One idea to tackle these
problems is to use an online learning procedure to adapt a
pretrained NN to the changed model as has already been
proposed in [22].

APPENDIX A
ALTERNATING UPDATE FOR SSR ESTIMATOR

The optimization problem for the SSR estimator, according
to [8, Equation (46)], is given by

min
p,σ2

η

K∑
k=1

tr
(
Ř(k),−1
y R̂(k)

y

)
s. t.:p ≥ 0, σ2

η ≥ 0,

G∑
g=1

wgpg + w̄σ2
η = 1,

(25)

with the sparse representation of the covariance matrix

Ř(k)
y = Ǎ(k) diag{p}Ǎ(k),H + σ2

ηI, (26)

where Ǎ(k) is a dictionary containing G subarray steering vec-
tors G(k)A(θ̌g), g = 1, . . . , G, and p contains the respective
power values.

The weights in (25) are given as

wg =
1

KW

K∑
k=1

aH(θ̌g)G
(k),HR̂(k),−1

y G(k)a(θ̌g), (27)

w̄ =
1

KW

K∑
k=1

tr
(
R̂(k),−1
y

)
. (28)

Note that we added a missing factor of 1/K compared to [8,
Equation (46)], as (cf. [27, Equation (17)])

K∑
k=1

G∑
g=1

pga
H(θ̌g)G

(k),HR̂(k),−1
y G(k)a(θ̌g)

+

K∑
k=1

σ2
η tr

(
R̂(k),−1
y

)
−−−−→
N→∞

KW.

(29)

Following the lines of [27, Section III], we obtain the
alternating update rules in the i+ 1-th iteration as

p[i+1]
g = p[i]g

∥∥∥∥ K∑
k=1

aH(θ̌g)G
(k),HŘ

(k),−1
y R̂

(k),1/2
y

∥∥∥∥
2

w
1/2
g ξ[i]

, (30)

σ2,[i+1]
η = σ2,[i]

η

(
K∑
k=1

tr
(
Ř

(k),−1
y R̂

(k)
y Ř

(k),−1
y

))1/2

w̄1/2ξ[i]
, (31)

with

ξ[i] =

G∑
g=1

w1/2
g p[i]g

∥∥∥∥∥
K∑
k=1

aH(θ̌g)G
(k),HŘ(k),−1

y R̂(k),1/2
y

∥∥∥∥∥
2

+ w̄σ2,[i]
η

K∑
k=1

tr
(
Ř(k),−1
y R̂(k)

y Ř(k),−1
y

)
.

(32)

APPENDIX B
JUSTIFICATION OF MCENET PARAMETERS

Let us start by stating that the architecture and parameters
of the MCENet NN have not been heavily optimized with
regard to its performance shown in Section III-D. Clearly,
a more sophisticated architecture (e.g., with convolutional
layers) or an exhaustive search in the hyperparameters has
the potential to improve the performance, as is the case for
any NN-based approach. Nevertheless, we are confident that
the hyperparameters, which we chose for the MCENet NN,
lead to a fair assessment of the achievable performance of the
presented estimator. The reason behind our evaluation lies in
the results of a small scale random search [42], which we
performed to select the hyperparameters of the network. To
that end, we trained multiple MCENet NNs with randomly
chosen hyperparameters from a certain range with data from
the same training set and compared their achieved loss on a
common cross-validation data set.4 In particular, we sampled

4Since we effectively train the networks for a single epoch on a very large
training set, we do not need additional measures to combat overfitting like
early stopping.
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Fig. 11. Random Search Results - Validation Loss vs. Number of Neurons
per Layer.

the number of hidden layers Nh ∈ {1, 2, 3, 4}, the number of
neurons per hidden layer Nu ∈ {128, 256, . . . , 1920, 2048},
and the initial learning rate from the set {10−2, 10−3, 10−4}.
Hereby, an initial learning rate of 10−4 showed the best
convergence of the Adam optimizer out of the three choices.

The results of the random search for a learning rate of
10−4 can be found in Fig. 11. There, we show how the
achieved validation loss depends on the number of neurons
Nu. Note that some points in Fig. 11 are missing as the
employed random search does train a NN only for a random
subset of combinations of hyperparameters instead of each
possible combination. For each choice of Nh, the validation
loss generally decreases for growing Nu, especially for a
low number of neurons. However, the rate at which the
validation loss improves is getting smaller as well such that
we see a saturation of the performance in the number of
neurons. Moreover, we can see that the validation loss does not
significantly improve between choosing 3 or 4 hidden layers.
Therefore, we come to the conclusion that a further increase
in the number of hidden layers or neurons does not yield a
significant performance gain.
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