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Fast and Accurate Amplitude Demodulation
of Wideband Signals

Mantas Gabrielaitis

Abstract—Amplitude demodulation is a classical operation
used in signal processing. For a long time, its effective applications
in practice have been limited to narrowband signals. In this work,
we generalize amplitude demodulation to wideband signals. We
pose demodulation as a recovery problem of an oversampled cor-
rupted signal and introduce special iterative schemes belonging to
the family of alternating projection algorithms to solve it. Sensibly
chosen structural assumptions on the demodulation outputs allow
us to reveal the high inferential accuracy of the method over a
rich set of relevant signals. This new approach surpasses current
state-of-the-art demodulation techniques apt to wideband signals
in computational efficiency by up to many orders of magnitude
with no sacrifice in quality. Such performance opens the door
for applications of the amplitude demodulation procedure in new
contexts. In particular, the new method makes online and large-
scale offline data processing feasible, including the calculation of
modulator-carrier pairs in higher dimensions and poor sampling
conditions, independent of the signal bandwidth. We illustrate
the utility and specifics of applications of the new method in
practice by using natural speech and synthetic signals.

Index Terms—Alternating projections, amplitude demodula-
tion, convex programming, fast algorithms, multidimensional sig-
nals, nonuniform sampling, speech processing, wideband signals.

I. INTRODUCTION

AMPLITUDE demodulation refers to the decomposition
of a signal into a product of a slow-varying modulator-

envelope and a fast-varying carrier. First introduced in radio
communications [1], this procedure has found applications in
data acquisition and processing related to a broad range of
phenomena. Automatic speech recognition [2], atomic force
microscopy [3], ultrasound imaging [4], brainwave [5], seismic
trace [6], and fingerprint [7] analyses are a few among many
examples to mention.

Originally, amplitude demodulation was intended for use
with signals built of locally sinusoidal, i.e., narrowband, carri-
ers. Several classical approaches excel in this setting, with Ga-
bor’s analytic-signal (AS) method being a long-standing cham-
pion [8], [9]. Nonetheless, many relevant problems inevitably
require demodulating signals that feature wideband carriers,
typically of (quasi)-harmonic, (quasi)-random, or spike-train
origin [10]–[18] (see Suppl. Mat. H for an overview). When
applied to them, the classical techniques fail, misleadingly
mixing the carrier and modulator information [19], [20].

For a long time, no consistent and accurate way of de-
modulating wideband signals was known. Typically, a proxy
of the modulator would be obtained by rectifying and then
low-pass filtering the signal. Different implementations of
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this procedure, each adapted for a specific signal class, were
suggested (see, e.g., [17], [21], [22]). The estimates of signal
modulators obtained in this way, however, are neither accurate
nor consistent between different methods. The carriers and
modulators are not appropriately separated either, i.e., they can
be demodulated further by iterating the same procedure [23].
Moreover, the carrier estimates are often unbounded, even in
well-defined situations (see, e.g., [23, Fig. 3.1]).

Recently, two promising demodulation approaches suitable
to signals with arbitrary bandwidths have been formulated.
Turner and Sahani shaped demodulation into a statistical
inference problem [23], [24]. In this so-called probabilistic
amplitude demodulation (PAD) approach, the modulator and
carrier are inferred from the signal as latent variables of an
appropriately selected statistical model. Mathematically, PAD
defines a maximization of a posteriori probability, a high-
dimensional nonlinear optimization task. In another work, Sell
and Slaney chose a deterministic route to demodulation [19].
In their linear-domain convex (LDC) approach, the modulator
is described as a minimum-power signal with penalized high-
frequency terms lying above the original waveform. This prob-
lem is convex and thus amenable to more efficient optimization
methods than the PAD.

The PAD and LDC techniques separate the modulator and
carrier information of various synthetic wideband signals with
a high degree of accuracy [19], [23]. The principal weakness
of these approaches is a huge associated computational burden,
which impedes their use in practical situations (see Section IV
for the performance evaluations). In particular, online or large-
scale offline signal processing is out of reach for the PAD and
LDC demodulations. Besides, derivations of these methods are
guided more by high-level modulator or carrier properties and
computational tractability rather than strict recovery condi-
tions. Hence, the boundaries of their validity in the context
of real-world signals are somewhat blurred.

In this work, we frame demodulation as a problem of modu-
lator recovery from an unlabeled mix of its true and corrupted
sample points. We show that, under some loose constraints on
carriers and modulators, high-accuracy demodulation can be
achieved through exact or approximate norm minimization.
We introduce different versions of custom-made alternating
projection algorithms and test them in numerical experiments
to solve this task. The new approach is shown to be free of the
performance limitations inherent to the PAD and LDC meth-
ods. In particular, it combines the computational economy of
the classical AS technique with the capacity to recover a wide
range of arbitrary-bandwidth signals. We reveal the power of
the new approach in terms of efficiency, accuracy, consistency,
and robustness to corrupted data through theoretical analysis
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and illustrate it using synthetic signals with known structure.
The use of the new method in realistic online and offline
settings is demonstrated by applying it to natural speech.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

In what follows, we assume the representation of a real-
valued signal s(t) formed by a finite collection of its values
uniformly sampled over a limited time interval: si ≡ s(ti),
i ∈ In = {1, 2, . . . , n}. Thus, a realization of the signal,
s ≡ (s1, s2, . . . , sn)T , is an element of an n-dimensional Eu-
clidean space Rn, i.e., a linear space equipped with the inner
product 〈s(1), s(2)〉 =

∑n
i=1(s

(1)
i · s(2)

i ), which induces the
Euclidean norm ‖s‖2 =

√
〈s, s〉. We use modulo n arithmetic

for indexes of vector components in this work.

A. Demodulation constraints

The task of demodulation is to factorize a signal s ∈ Rn
into a modulator m ∈ Rn and a carrier c ∈ Rn:

s = m ◦ c, (1)

where symbol ◦ denotes an elementwise product of two
vectors. There exists an uncountable number of pairs of m
and c that satisfy (1). Thus, further constraints are needed to
define its unique solution. It is precisely these constraints that
give a distinct character to different demodulation methods
and set the domain of their validity [9], [19], [23], [25].

In this work, we introduce the extra demodulation restric-
tions by imposing some general assumptions on m and c.

We define feasible modulators as elements of a convex set

Mω = S≥0 ∩ Sω, (2)

where

S≥0 = {x ∈ Rn : xi ≥ 0, i ∈ In},
Sω = {x ∈ Rn : (Fx)i = 0, i ∈ (In \ Iωn )}, (3)
Iωn = {i ∈ In : i ≤ ω} ∪ {i ∈ In : i > n+ 1− ω}.

In (3), F denotes the operator of the unitary discrete Fourier
transform (DFT), and (. . .)i marks the i-th component of the
argument vector. Hence, in our framework, modulators are
nonnegative low-pass signals whose rate of variation is limited
by the cutoff frequency ω (with 1 ≤ ω ≤ dn/2e), which
parametrizes Mω . This is a formal definition of the classical
modulator-envelope [1], [26].

We declare feasible carriers as elements of a nonconvex set

Cd = S|..|≤1 ∩ S{1},d, (4)

where

S|..|≤1 = {x ∈ Rn : |xi| ≤ 1, i ∈ In},
S{1},d =

{
x ∈ Rn : (∀i)∑i+d−1

j=i I{1}(|xj |) ≥ 1,

(∃i)∑i+d−1
j=i I{1}(|xj |) = 1

}
,

(5)

with I{1} being the indicator function of the singleton {1}.
The set S|..|≤1 implies the boundedness of c between −1 and 1.
This restriction follows from the standard notion that the time-
dependent amplitude of an amplitude-modulated s is purely set

by m. Meanwhile, S{1},d fixes to d the maximum gap between
any two neighboring components of c whose absolute values
are equal to 1.1 As shown next, this constraint allows formulat-
ing extensive demodulation guarantees while only moderately
affecting the scope of relevant carriers. Bandwidth-wise, Cd
covers the whole range, from zero (sinusoidal) to flat (random
spike) bandwidth signals, and defines the qualifier “wideband”
used in this work. Note that the bandwidth of c ∈ Cd is mostly
determined not by d but by the arrangement of the |ci| = 1
and other sample points.2 Instead, as we see next, d decides
whether a chosen c ∈ Cd can be restored after modulation.

B. Demodulation as modulator recovery

Note that, assuming c ∈ Cd, |s| can be seen as a corrupted
version of m: |si| = mi when |ci| = 1, and |si| 6= mi

otherwise. Further, if m can be found from |s|, c follows
from (1) uniquely (ci = si/mi), except the sample points
with mi = 0. The latter, if any, are sparse and can be typically
interpolated from the neighboring points. Hence, in our case,
demodulation is virtually a problem of reconstructing m from
a mix of its true (i : |si| = mi) and corrupted (i : |si| 6= mi)
sample points when the class of each point is unknown. This
viewpoint is at the core of the developments that follow next.

C. Modulator recovery through norm minimization

Our approach to demodulation builds around the estimator

m̂ = arg min
x∈S≥|s|∩S$

‖x‖2, (6)

where S≥|s| = {x ∈ Rn : xi ≥ |si|, i ∈ In}. Note that m ∈
S≥|s| ∩ S$ if $ ≥ ω. The restriction corresponding to S≥|s|
assures that x does not fall below m at the true sample points,
i.e., points where mi = |si|. If, besides, the true sample points
are spread densely enough, we expect the norm minimization
to enforce m̂i = mi at these points. But then, m̂ = m by the
discrete sampling theorem. The foundation for this intuitive
consideration is laid by the following results (see Suppl. Mat. B
for the proofs).

Proposition II.1. For almost every m ∈ Mω , m̂ = m only
if $ ≥ ω, and c ∈ Cd with ns ≡

∑n
i=1 I{1}(|ci|) ≥ $ + ω −

1 =⇒ d ≤ n− ($ + ω − 2).3

Proposition II.2. Consider m ∈Mω and c̃ ∈ Cd̃ with |c̃i| =
1 for i ∈ Jn ⊆ In, and c̃i = 0 otherwise. If m̂ = m holds
for the m and c̃, then it also holds for every pair made of the
same m and any c ∈ Cd with d ≤ d̃ and |ci| = 1 for i ∈ Jn.

Proposition II.3. Assume m ∈Mω and c ∈ Cd with $ ≥ ω.
If, additionally, there exist d ∈ In and i ∈ Id such that ns ≡

1The requirement of the existence of at least one gap of length d in the
definition of S{1},d assures that Cd1∩Cd2 = ∅ if d1 6= d2. Such parametrization
of the carrier set allows specifying more definite demodulation conditions.

2For example, even C1, which features the most limited repertoire among
all Cd, has zero-bandwidth elements (consider the c with ci = (−1)i) and
elements with approximately flat amplitude spectra (consider a c with ci
randomly chosen from {−1, 1}).

3In fact, as follows from the proof of this proposition in Suppl. Mat. B, the
condition that c ∈ Cd for at least some d is necessary for strictly every m.
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(n/d) ∈ N+, ns ≥ $+ ω − 1, and |ci+(j−1)·d| = 1 for every
j ∈ Ins , then m̂ = m.

Proposition II.1 reveals the tight match of m̂ to Cd: no
m ∈Mω can be inferred from s by m̂ precisely if c /∈ Cd. It
also establishes the central role of the presence of true sample
points in the recovery: for almost every m ∈Mω , at least the
number $ + ω − 1 of such points is needed. Proposition II.2
further consolidates the latter view by stating that the success
of the exact recovery of an m ∈Mω via m̂ is fully determined
by the number and positions of the true sample points. In
particular, if exact demodulation is possible for some c̃ with
c̃i ∈ {0, 1}, then it is possible for any c with |ci| = 1 at
i ∈ {j : c̃j = 1} independent of other sample points.

In Proposition II.1, $ ≥ ω and ns ≥ $ + ω − 1
imply ns ≥ 2ω − 1, which is a sufficient condition for m
recovery in the classical setup when all true sample points are
known (see the remark below the proof of Proposition A.1
in Suppl. Mat. A). Hence, the data corruption manifesting in
our problem necessitates further constraints on the number or
positions of true sample points. In particular, Proposition II.3
certifies a full recovery of m if $ ≥ ω, and there exists a (not
necessarily known) subset of at least $+ω−1 regularly-spaced
true sample points. The latter condition covers a wide range
of practically relevant carriers, including: (1) the classical
sin(2πνt + φ) with ν ≥ ω, (2) harmonic signals, (3) regular
spike-trains of |ci| = 1. More generally, any (non)stationary
time-series with regularly placed |ci| = 1 regardless of the
remaining points are eligible.

In addition to the regularity of true sample points, Proposi-
tion II.3 requires n/d to be an integer. Nevertheless, numerical
experiments reveal that both of these conditions can be ignored
without practically relevant consequences (see Suppl. Mat. C
and Fig. 10 there). In particular, we found that the discrep-
ancy between m and m̂ is vanishing with an overwhelming
probability for any c ∈ Cd if $ ≥ ω, and dn/de ≥ 2$ − 1.
This result noticeably extends the scope of recovery conditions
over the domain of practically relevant (quasi-)regular and
stochastic carriers. Among the examples are nonstationary
sinusoidal and harmonic signals and arbitrary spike-trains with
the distance between neighboring spikes at or below d points.
Note that ns ≥ dn/de by the definition of Cd. Hence the
relaxation of the strict regularity condition on the |ci| = 1
sample points comes at the expense of a slightly tighter
constraint on ns necessary for exact recovery of m: compare
ns ≥ 2$ − 1 vs. ns ≥ $ + ω − 1.4

Another important generalization of the recovery conditions
comes with the following inequality:

Proposition II.4. Consider m ∈ Mω and c ∈ S|..|≤1. Take
ns ≥ 2$ − 1 sample points of s = m ◦ c whose indexes are
defined as entries of any chosen r ∈ Nns+ with ri+1 − ri =
n/ns for every i ∈ Ins . Then,

‖m− m̂‖2/‖m‖2 ≤
√

1−∑ns
i=1 s

2
ri/
∑ns
i=1m

2
ri . (7)

4This statement is exact and is established as an intermediate result in the
proof of Proposition II.1.

Hence, if one can find a sequence of at least 2$−1 regularly-
spaced sample points with |si| sufficiently close to mi, then
the relative recovery error is close to 0 in terms of (7). This
result endows m̂ with the stability to discrepancies from the
recovery conditions discussed earlier. At the same time, it
provides approximate recovery guarantees for a wider range of
stochastic and (quasi-)regular carriers besides those with fairly
densely packed |ci| = 1 sample points. Due to the low-pass
restriction on m, (7) is expected to hold approximately for an
irregular r ∈ Nns+ with ri+1 − ri ≤ dn/nse as well.

We finally note that, whereas ω and d are fixed properties
of m and c, $ is a control parameter that must be specified.
An appropriate $, which satisfies the recovery conditions for-
mulated above, can only be selected by using prior knowledge
on m and c or found in a supervised learning setup.

D. Relaxation of the exact minimum-norm requirement

The norm-minimizing property of m̂ in (6) is critical
in formulating sharp recovery conditions. However, from a
practical point of view, little would be lost if another estimator
m̂ with only slightly larger than the minimum norm among
all elements of S≥|s| ∩ S$ is used. Thus, we relax (6) to

find m̂ ∈ S≥|s| ∩ S$
subject to ‖m̂‖2 ' arg min

x∈S≥|s|∩S$
‖x‖2 (8)

To specify the otherwise ambiguous relation operator ', we
request that m̂ obtained through (8) recovers m exactly, i.e.,
is norm-minimizing, for sinusoidal, harmonic, and spike-train
carriers covered by Proposition II.3. As we see later, this
restriction regularizes the numerical algorithms formulated in
the present work for sufficiently accurate demodulation well
beyond those three classes of c. The advantage brought by the
approximation is computational efficiency.

E. Method of solution

The algorithms that we introduce to solve (6) and (8) in this
work fall in the domain of the so-called methods of alternating
projections (APs). The defining feature of each AP method is
an iterative calculation of a feasible point (m̂ ∈ S≥|s| ∩ S$
in our case) via alternating metric projections of its current
estimate onto the separate constraint sets. Initially proposed
by von Neumann for two closed subspaces [27], this approach
was later extended to arbitrary closed convex sets of a Hilbert
space (see [28] for a review). Various implementations of the
AP algorithms exist, featuring different domains of applica-
tion, rate of convergence, and additional requirements satisfied
by the solutions [28], [29].

We provide a rigorous mathematical basis on which the
AP algorithms for solving the demodulation problem rely
in Suppl. Mat. D, E, F. For a practical comprehension of the
material that follows next, it is sufficient to know that:
• The sets S≥|s| and S$ are closed and convex.
• A metric projection, or simply a projection henceforth,

of z ∈ Rn onto a closed convex set S ⊂ Rn is a unique
xz∈S with the smallest distance, i.e., ‖xz−z‖2, from z.
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• The projections onto S≥|s| and S$ are respectively
achieved by operators

PS≥|s| [z] = |s|+ (z− |s|) ◦ θ(z− |s|) (9)

and
PS$ [z] = (F−1 W$ F) z. (10)

Here, θ(. . .) is the Heaviside step function evaluated ele-
mentwise. W$ is a diagonal matrix such that (W$)ii =
1 if i ∈ I$n , and (W$)ii = 0 otherwise.

To emphasize the nature of the underlying numerical algo-
rithms, we name our new approach as AP demodulation.

F. Relation to other problems and approaches

Demodulation is a counterpart of a widely known and
studied problem of blind deconvolution: s = m~ c. Indeed,
both tasks admit the algebraic form of each other in the
Fourier domain. Nevertheless, the properties of m and c
inherent to practical instantiations of amplitude demodulation
and blind deconvolution differ significantly. These differences
predetermine the need for distinctive strategies to solve the
respective tasks, as discussed next.

One of the most powerful convex-programming-based de-
convolution approaches, introduced in [30], builds on the
assumption that m and c belong to known low-dimensional
subspaces. There, recovery of m and c is achieved by minimiz-
ing the nuclear, atomic, `1, or `2,1 norms of their outer product
(in the subspace representation) subject to linear measurement
constraints of s [30]–[33]. This scheme successfully solves
many practically relevant blind deconvolution cases, such as
image deblurring, multipath channel protection, and super-
resolution microscopy [30], [33]. However, the low-dimension
subspace assumption, a crucial prerequisite of the approach,
renders it inapt to deal with realistic carriers in the amplitude
demodulation context. Indeed, even a sinusoidal carrier with
a fluctuating phase is hardly representable in this frame, not
to mention more complex wideband signals met in practice.
Moreover, the subspace model of m and c does not allow
enforcing the amplitude contents to m exclusively.

Deconvolution problems have also been approached by
using AP-like methods [34]–[37]. A general strategy of the
existing algorithms is to achieve deconvolution by an iterative
refinement of both m and c upon the requirement of exact
[34], [36] or approximate [35], [37] adherence to the defining
equality s = m~ c and the support region, intensity range, and
spectrum constraints implied on m and c or r = s −m~ c.
These methods differ significantly between themselves. Each
of them achieves satisfactory recovery by a judicious com-
bination of specific constraint sets and the iterative scheme
adjusted to specific classes of m and c. The nonconvexity of
Cd and the absence of efficient explicit projections onto this
set makes the application of the known deconvolution methods
unsuitable to amplitude demodulation. None of the current
AP-like deconvolution methods allow assigning the amplitude
contents to m purely either.

We next note that our formulation of the amplitude demod-
ulation problem in Section II-B reveals it as a generalization

of the classical task of band-limited signal recovery from
true sample points. An AP method known under the name
Papoulis-Gerchberg and its variants were successfully applied
in the latter setting (see [38] for a review). The differences
in the available information on the recoverable signal lead to
distinct strategies in algorithmic approaches to these two prob-
lems. In particular, the Papoulis-Gerchberg methods rely en-
tirely on known true data. Thus, they are impossible to use for
demodulation purposes. The AP algorithms introduced in the
present work can be applied in the classical setting. However,
not using the available information about the true data makes
them inferior to their classical counterparts unless the sample
points are fairly uniformly spread, as discussed in Section II-C.

The approach suggested in the present work also has some
parallels with the LDC demodulation method by [19]. There,
(1) is accompanied by a constraint on the modulator m ex-
pressed as the solution of the quadratic programming problem

minimize ‖w ◦ Fm‖22 + ‖m‖22
subject to |si| ≤ mi ≤ max[s] ∀i ∈ In,

(11)

where w denotes the weighting vector. (11) was introduced
heuristically, trying to quantify the intuitive notion of the
modulator-envelope as a signal wrapping s from above.

Practical applications suggest the LDC method defined by
(1) and (11) being computationally most efficient and precise
among all current techniques designed for demodulating sig-
nals unreachable to classical algorithms [19], [24]. Thus, we
use it as a reference when evaluating the performance of the
newly-formulated approach of the present work.

III. DEMODULATION ALGORITHMS

In this section, we formulate three algorithms representing
the core arsenal of the AP approach to demodulation. Sim-
plicity, efficiency, and estimation accuracy of the algorithms
are the main aspects under consideration. We refer the reader
to Suppl. Mat. F for proofs of all propositions found here.

A. AP-Basic

We start with the simplest possible AP algorithm, therefore
named “AP-Basic” (AP-B).

Algorithm: AP-Basic (AP-B)
1: Set: Niter, εtol
2: Initialize: i = 0, ε(0) = ‖s‖2/

√
n, m(0) = |s|, a(0) = 0

3: while ε(i) > εtol and i < Niter do
4: i = i+ 1

5: a(i) = PS$ [m(i−1)]

6: m(i) = PS≥|s| [a
(i)]

7: ε(i) = ‖m(i) − a(i)‖2/
√
n

8: end while
9: Finalize: m̂ = m(i)

Here, Niter stands for the maximum number of algorithm
iterations. ε(i) is the infeasibility error at the i-th iteration,
which is used to control the termination of the algorithm.
Specifically, ε(i) measures the distance of the modulator es-
timate m(i) ∈ S≥|s| from S$ and sets a lower bound on
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Fig. 1. The first three iterations of the AP-B algorithm applied to an amplitude-modulated sinusoidal signal. m stands for the real modulator.

the convergence error: ε(i) ≤ ‖m(i−1) − m†‖2/
√
n (see

Suppl. Mat. G). The iterative process is stopped when ε(i)

drops to the level of a predetermined threshold εtol > 0 or
below. εtol ≤ 0 would force the completion of all Niter
iterations of the algorithm. m̂ denotes the final estimate of the
modulator. m̂ arbitrarily close to S≥|s| ∩ S$ can be reached if
Niter is sufficiently large:

Proposition III.1. A sequence m(0),m(1), . . . ,m(i), . . .
formed by the AP-B algorithm for εtol = 0 and Niter → +∞
converges to some m† ∈ S≥|s| ∩ S$. The convergence is
geometric and monotonic, i.e., there exist γ > 0 and 0 < r < 1
such that ‖m(i) − m†‖2 ≤ γ · ri and ‖m(i+1) − m†‖2 ≤
‖m(i) −m†‖2 for i ≥ 0.

It can be shown by example that the AP-B does not always
provide minimum-norm estimators m̂. However, it is expected
to do so at least approximately if some conditions are met. We
clarify this next with the help of Fig. 1, which displays the first
three iterations of the AP-B applied to an example signal.

First, note that the starting point m(0) is elementwise not-
higher than the real modulator m (black). PS$ maps m(0)

to a(1), which, by definition of a metric projection, is its best
mean-squared-error (MSE) approximation in S$ (blue). By the
definition of S$, a(1) is nearly constant over time windows
shorter than n/(2π$) points. In general, the best constant
MSE estimator of a sample of numbers is its average. Thus,
as the best MSE estimator of m(0) over S$, a(1) approximates
the local average of m(0) values in a window of ≈ n/(2π$)
points at every moment. If $ ≥ ω, c ∈ S|..|≤1, and ≈ n/(2π$)
sample points are sufficient to average out the local variations
of c, a(1) is supposed to be proportional to m, at least roughly.
The first iteration is completed by the projection of a(1) back
onto S≥|s| to obtain m(1) (red).

Applying the same reasoning as above, we deduce that, with
each iteration, a(i), and thus m(i), approaches m elementwise
(see Fig. 1). In general, m(i) may exceed the level of the real
modulator m over time windows longer than ≥ n/(2π$)
points for higher i before m† ∈ S≥|s|∩S$ is reached. However,
as follows from the considerations of the previous paragraph,
such segments of m(i) would be approximately compatible
with S≥|s| ∩ S$ and would not be considerably affected in
subsequent iterations. Hence, m̂ obtained by the AP-B is
expected to follow the true sample points of m tightly. If the
number of these points is sufficient, then m̂ 'm as well.

The basis for the above considerations is laid by the fact
that they are exact for some important types of carriers:

Proposition III.2. Consider m ∈ Mω and c ∈ Cd with
|cj | =

∑n/ν
k=1(c̃ν·k · eı2πν(k−1)(j−1)/n), where c̃ν·k ∈ C and

n/ν ∈ N. If $ ≥ ω and ν ≥ $ + ω − 1, then a sequence
m(0),m(1), . . . ,m(i), . . . formed by the AP-B algorithm for
εtol = 0 and Niter → +∞ converges to m.

Among others, Proposition III.2 encompasses the sinusoidal,
harmonic, and regular spike-train carriers covered by Propo-
sition II.3. Thus, in these cases, AP-B satisfies the minimum-
norm property, i.e., provides m̂ that converges to a solution of
(8). The condition ν ≥ $ + ω − 1 in Proposition III.2 plays
the role of the inequality n/d ≥ $+ω−1 in Proposition II.3.

B. AP-Accelerated

One of the potential weak points of AP algorithms based on
pure alternating projections onto convex sets, like the AP-B,
is relatively slow convergence [39]–[41]. Indeed, despite the
geometric nature of the convergence, the actual number of
iterations necessary to reach a specific error level may be
arbitrarily large if the factor r in ‖m(i)−m†‖2 ≤ γ ·ri is suf-
ficiently close to 1. To address this issue, various accelerated
AP schemes have been suggested for specific classes of the
constraint sets [39], [42], [43]. Here, we propose a parameter-
free accelerated version of the AP-B algorithm specifically
designed for the demodulation problem. We refer to it as “AP-
Accelerated” (AP-A).

Algorithm: AP-Accelerated (AP-A)

1: Set: Niter, εtol
2: Initialize: i = 0, ε(0) = ‖s‖2/

√
n, m(0) = |s|, a(0) = 0

3: while ε(i) > εtol and i < Niter do
4: i = i+ 1

5: b(i) = PS$ [m(i−1) − a(i−1)]

6: λ = ‖m(i−1) − a(i−1)‖22/‖b(i)‖22
7: a(i) = a(i−1) + λ · b(i)

8: m(i) = PS≥|s| [a
(i)]

9: ε(i) = ‖m(i) − a(i)‖2/
√
n

10: end while
11: Finalize: m̂ = m(i)

Proposition III.3. A sequence m(0),m(1), . . . ,m(i), . . .
formed by the AP-A algorithm for εtol = 0 and Niter → +∞
converges to some m† ∈ S≥|s| ∩ S$. The convergence is
monotonic, i.e., ‖m(i+1) −m†‖2 ≤ ‖m(i) −m†‖2 for i ≥ 0.

Note that λ > 1 except when PS$ is the identity operator,
i.e., the trivial case of m = |s|. Indeed, it follows from the
definition of PS$ [see (10)] and the unitary property of F that
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‖m(i−1)−a(i−1)‖22 > ‖PS$ [m(i−1)−a(i−1)]‖22 = ‖b(i)‖22, if
PS$ is not the identity operator. It is easy to see that (a(i) −
a(i−1)) = λ · (PS$ [m(i−1)]− a(i−1)) in the above algorithm.
Moreover, if λ is fixed to 1 by force, the AP-A and AP-B
algorithms become identical. Therefore, the AP-A produces
increments from a(i−1) to a(i) that are scaled up compared
with those that were obtained by applying the AP-B algorithm
for the same iterations.

To understand the working principle of the AP-A better,
recall that PS$ [m(i)], and thus a(i), are nearly constant
over time windows consisting of < n/(2π$) points (see
Section III-A). For a semiquantitative analysis, we can as-
sume that this holds exactly. Let us denote a segment of
(m(i−1) − a(i−1)) restricted to such a window by z. Then,
b(i) defined in the same window is just (l−1 ·∑l

j=1 zj) · 1,
and ‖m(i−1) − a(i−1)‖22 corresponds to

∑l
j=1 z

2
j , where,

l = bn/(2π$)c. Consequently, λ · b(i), i.e., the increment
from a(i−1) to a(i), is given by

(∑l
j=1 z

2
j /
∑l
j=1 zj

)
· 1. It

follows from m(i−1) = PS≥|s| [a
(i−1)] that z is elementwise

nonnegative. Therefore,
(∑l

j=1 z
2
j /
∑l
j=1 zj

)
≤ max[z].

However, max[z] corresponds to the difference between the
real modulator and a(i−1) in the considered time window, at
least approximately, if dn/de ≥ 2$−1. Thus, while up-scaling
a(i) − a(i−1) at each iteration to accelerate the convergence,
the AP-A also ensures that a(i) stays approximately within the
bounds of the real modulator m. This property ensures that
m̂ tightly follows m if the same conditions as required by the
AP-B are met.

We further note that
(∑l

j=1 z
2
j /
∑l
j=1 zj

)
= max[z], i.e.,

a(i) reaches m in a single iteration, if all but one element of
z are equal to zero. Importantly, approximately this situation
is faced in reality, as illustrated in Fig. 1. Specifically, with
increased i, (m(i−1) − a(i−1)) becomes mainly flat with
only a few separate elements considerably above 0 over time
windows shorter than n/(2π$) points. For comparison, the
analogous increment from a(i−1) to a(i) is moderate and
equals only max[z]/l in the case of the AP-B method. These
considerations explain the substantial speed-up provided by
the AP-A algorithm in practice. They also reveal that any
additional acceleration steps in the AP-A would result in
overscaled m̂, hence reducing the demodulation accuracy.

The AP-A algorithm repeats the AP-B in terms of exact
recovery guarantees of Proposition III.2:

Proposition III.4. Consider m ∈ Mω and c ∈ Cd with
|cj | =

∑n/ν
k=1(c̃ν·k · eı2πν(k−1)(j−1)/n), where c̃ν·k ∈ C and

n/ν ∈ N. If $ ≥ ω and ν ≥ $ + ω − 1, then a sequence
m(0),m(1), . . . ,m(i), . . . formed by the AP-A algorithm for
εtol = 0 and Niter → +∞ converges to m.

This result substantiates the semiquantitative argumentation of
the AP-A convergence properties provided above and estab-
lishes the respective m̂ as a numerical solution of (8).

C. AP-Projected

As argued above, the AP-A and AP-B algorithms produce
modulator estimates that are expected to tightly follow the
original m if the conditions analogous to those discussed in

Section II-C are met. These estimates, however, do not always
hold the minimum-norm property (6). A classical AP scheme
that guarantees minimum-norm solutions is known under the
name of Dykstra [44], [45]. In particular, Dykstra’s algorithm
calculates the projection of a point in Rn onto the feasible set.
Thus, by choosing an appropriate initial condition, the solution
with a minimized norm can be obtained (see Proposition III.5
next and its proof in Suppl. Mat. F). We consider a version of
this algorithm adapted to solve the demodulation problem and
call it “AP-Projected” (AP-P).

Algorithm: AP-Projected (AP-P)

1: Set: Niter, εtol
2: Initialize: i = 0, ε(0) = ‖s‖2/

√
n, m(0) = c(0) = |s|

3: while ε(i) > εtol and i < Niter do
4: i = i+ 1

5: a(i) = PS$ [m(i−1)]

6: m(i) = PS≥|s| [a
(i) − c(i−1)]

7: c(i) = m(i) − (a(i) − c(i−1))

8: ε(i) =
√

(‖m(i−1) − a(i)‖22 + ‖m(i) − a(i)‖22)/(2 · n)
9: end while

10: Finalize: m̂ = m(i)

Proposition III.5. A sequence m(0),m(1), . . . ,m(i), . . .
formed by the AP-P algorithm for εtol = 0 and Niter → +∞
converges to a unique m† ∈ S≥|s| ∩ S$ such that ‖m†‖2 ≤
‖x‖2 for every x ∈ S≥|s| ∩ S$. The convergence is monotonic,
i.e., ‖m(i+1) −m†‖2 ≤ ‖m(i) −m†‖2 for i ≥ 0.

The AP-P differs from the AP-B in that, before projecting a
point onto S≥|s|, an increment produced by the projection onto
this set in the previous iteration is subtracted. This correction
may cause the infeasibility error ‖m(i)−a(i)‖2/

√
n estimated

after projecting onto S≥|s| to drop to zero intermittently before
the final solution is reached, making it an inappropriate option
as the stopping criterion. Hence, in contrast to the AP-B and
AP-A algorithms, we defined the ε for the AP-P as a combina-
tion of the infeasibility errors evaluated after projecting onto
both sets S$ and S≥|s| at each iteration (see line 8 above). This
error measure is strictly positive and converges to zero when
Niter → +∞ [46].

The understanding of the convergence rate of Dykstra’s
scheme is limited. It was shown that the convergence is
geometric for an intersection of half-spaces [47], [48]. Nev-
ertheless, no equivalent result exists for other convex sets.
Moreover, it was demonstrated that the convergence rate of
this algorithm may depend on the initial conditions and may
be considerably slower than that of AP algorithms based on
pure projections [49].

D. Computational complexity

Except for the projection operator PS$ , each iteration of
the three formulated AP algorithms relies on vector addition,
scalar product, and value update. These are linear in the
number of sample points. The operator PS$ can be easily
implemented by using the direct and inverse fast Fourier trans-
forms (FFTs) and setting the relevant elements of the signal to
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Fig. 2. Typical examples of the test signals (gray), featuring nonstationary sinusoidal (A), harmonic (B), spike-train (C), and stationary white-noise (D)
carriers, and their modulators obtained by using the AP-B (red) and AS-LP (green) algorithms. The signals are represented by their absolute values here. The
predefined modulators are shown in black.

zero in the Fourier domain. The current state-of-the-art FFT
algorithms have an O(n log n) time complexity [50], which,
thus, sets the overall time complexity of the AP algorithms
introduced in this work. Our numerical experiments suggest
that the convergence speed in terms of iteration number is
independent of the signal length (see Suppl. Mat. M).

IV. PERFORMANCE TESTS

To evaluate the AP algorithms introduced above, we com-
pared their performance with the AS and LDC demodulation
approaches when applied to infer the modulator of predefined
synthetic test signals. The LDC approach was implemented
by using two state-of-the-art quadratic programming solvers:
Gurobi (v8.1.1) [51] and OSQP (v0.6.0) [52]. The AS demod-
ulation was achieved by using the FFT-based approach [53].
In that case, we additionally low-pass filtered the obtained
modulator estimate with PS$ to regularize it. We refer to this
modified demodulation scheme as AS-LP.

A. Test signals

The test signals were composed as products of a modulator
and a carrier: s = m ◦ c. Four types of c, approximating
basic building blocks of real-world signals, were used: non-
stationary sinusoidal, harmonic, and spike-train, as well as
stationary white-noise (see, respectively, (176), (180), (184),
and (188) in Suppl. Mat. I). The former two were combined
with modulators of nonstationary Gaussian origin, while the
latter two types of carriers were paired with the so-called
maximally-uniformly distributed modulators (see, respectively,
(160) – (162) and (163) – (168) in Suppl. Mat. I).

In all cases, modulator and carrier pairs were selected to
meet the core recoverability condition dn/de ≥ 2$ − 1, at
least approximately. The remaining parameters of m and c
(see Suppl. Mat. I) were chosen to imitate realistic conditions
as much as possible. For example, in all cases, signals were
taken as segments of longer time series, and thus, were
not n-periodic. The center frequencies of the sinusoidal and
harmonic carriers were set so that only sample points with
|ci| ≈ 1 rather than |ci| = 1 were available.

B. Performance evaluation

Demodulation performance was evaluated by using two
complementary measures: 1) error of the modulator estimate,
Em = ‖m− m̂‖2/‖m‖2; and 2) execution time of the algo-
rithm on the computer, Tcpu. We evaluated the AP and LDC

algorithms in the mode when Tcpu depends on the total number
of sample points but not on the effective degrees of freedom.
This choice made the results general, independent of a selected
cutoff frequency $. To insure against outliers, we averaged
Em and Tcpu over ten independent signal realizations.

Execution of the AP and LDC algorithms is controlled by
a set of metaparameters whose choice influences the output.
Therefore, we aimed for the Pareto fronts, not separate points,
in the (Em, Tcpu) plane. Due to the computing speed limita-
tions inherent to the LDC approach, we had to exploit signal
decomposition into separate fragments for this analysis. In par-
ticular, signals were split into segments that were demodulated
separately and then put together [19]. This allowed achieving
a linear growth in the computation time with the total length
of the signal, and hence, speeding up the calculations. After
identifying the optimal control-parameter combinations, we
compared all methods by demodulating whole signals.

Sets of the demodulation control parameters that we consid-
ered for the Pareto optimality analysis, including those defin-
ing the signal splitting, are provided in Suppl. Mat. J. Details
on the execution of the performance tests on a computer can
be found in Suppl. Mat. K.

C. Results

Fig. 2 shows representative fragments of the test signals
from all four classes (gray) and their modulator estimates ob-
tained by using the AS-LP (green) and AP-B (red) algorithms.
Whereas the AP-B allows obtaining high-quality estimates m̂
in all four cases, the AS-LP does so only for sinusoidal signals.

Results of the performance evaluation in the form of Pareto
fronts in the (Em, Tcpu) plane for n = 215 are displayed in
Fig. 3 A–D. Panels E–H of the same figure show Tcpu vs. n
relations derived by using no window splitting. A closer
analysis of these data reveals the following:

1) The AP algorithms feature lower bounds on the demod-
ulation error Em than the LDC method (Fig. 3 A–D).

2) The AP algorithms are up to five orders of magnitude
faster than their LDC counterparts for achieving the
same Em when optimal signal window splitting is used
(Fig. 3 A–D). The difference is even more pronounced
when no window splitting is assumed (Fig. 3 E–H). For
example, to process a 1 s length signal sampled at
16 kHz, the LDC needs 104 s of CPU time, in contrast
to 10−3 s taken by the AP-A.
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Fig. 3. Performance evaluation. A–D: Pareto fronts in the (Em, Tcpu) plane for different demodulation algorithms applied to the four different types of
test signals when window splitting is used. Green stars mark the results of the AS-LP method. Color arrowheads point to the lower bounds on Em for the
respective AP algorithms. Black arrowheads indicate demodulation error Em values of the AP-B algorithm calculated locally for signal windows shown in
Fig. 2. E–H: Dependence of the demodulation time Tcpu on the signal length n at εtol = 10−3 when window splitting is not exploited. Em values in the
legends correspond to demodulation results at n = 214 ≈ 1.6 · 104.

3) Tcpu varies substantially (up to three orders of magni-
tude) even between different AP algorithms (Fig. 3 A–
D). The AP-A ranks as the fastest, and the AP-P as the
slowest one for all tested signals.

4) Despite the differences in Tcpu, all AP algorithms feature
similar lower bounds on Em, except the spike-train
signals, when the AP-B and AP-P can noticeably surpass
the AP-A on the relative scale (Fig. 3 A–D). Neverthe-
less, on the absolute scale, the AP-A still performs
reasonably well.

5) For all tested signals, the AP-A algorithm outperforms
the AS-LP-based demodulation in the sense that it can
achieve the same or smaller errors with the same Tcpu

(Fig. 3 A–D). Moreover, compared with the AS-LP, AP
algorithms exhibit much lower bounds on Em.

6) Even without the window splitting (when the highest
demodulation accuracy is attained), the AP-A algorithm
takes only 2–3 times longer than the AS-LP method
(Fig. 3 E–H).

We found that the decrease in Em along the Pareto fronts is
mainly determined by the increase in the demodulation win-
dow size. In particular, the lower bounds on Em are achieved
by the particular algorithms when the signal is demodulated
using no window splitting. The relatively lower precision of
the AP-A algorithm compared with AP-B and AP-P in the case
of nonstationary spike-trains can be reduced to its acceleration
mechanism. Indeed, in the AP-A, upscaling of iterates a(i)

is effectively based on the averaging of (m(i) − a(i)) over
a window of length ≈ n/(2π$) at each sample point. The
precision of these estimates is more vulnerable to deviations
from the exact recovery conditions for sparse carriers.

As can be expected, the high accuracy of modulator esti-
mates achieved by the AP algorithms implies the high quality
of carrier predictions ĉ = s/m̂ (see Suppl. Mat. L and Fig. 13

therein). The AP approach leaves the AS-LP behind in terms
of carrier estimation for all four signal types considered (see
Suppl. Mat. L). When applicable, the inferred ĉ can be further
frequency-demodulated by using dedicated techniques (see [1],
[54], and references given there).

The impressive performance of the AP-A algorithm in terms
of Em, Ec, and Tcpu makes it an ideal candidate for amplitude
demodulation of a wide range of signals. Its AP-B and AP-P
counterparts can be used instead if higher precision is needed
in specific cases, as illustrated by the spike-train signals above.

V. CONVERGENCE TESTS

To clarify the differences between the Tcpu estimates of the
three AP algorithms and understand the relationship between
the demodulation and infeasibility errors, we performed a
convergence analysis with the test signals from the previous
section. The simulation results for fixed n = 215 using no
window splitting are summarized in Fig. 4. A closer inspection
uncovers the following:

1) The convergence rates in terms of both ε and Em parallel
the differences in the computing speed of different AP
algorithms. Among them, the fastest is the AP-A, which
reaches any given ε or Em level with the smallest num-
ber of iterations. The AP-P algorithm is the slowest one.

2) The AP-A algorithm converges in a finite number of
iterations (< 30) for all types of test signals studied. In
particular, it requires only ≤ 5 iterations to reach the
plateau level of the demodulation error Em. This fact
explains the extraordinary computational efficiency of
the AP-A documented in Section IV.

3) Differently from the convergence error ‖m(i) −
m†‖2/

√
n, the dependence of E(i)

m on i can be non-
monotonic if m† is not strictly equal to m (Fig. 4 E, G).
Then, E(i)

m starts growing with increased i after reaching
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Fig. 4. Convergence analysis of the AP algorithms. A–D: Dependence of the infeasibility error ε on the iteration number i for the AP-B, AP-A, and AP-P
algorithms applied to the four different types of test signals with n = 215 and no window splitting. E–H: Analogous plots to A–D made for the demodulation
error Em instead of ε. Dotted lines show hypothetical Em values that would be obtained if we continued the AP-A iterations after reaching the final solution.

the minimum point. However, this growth is mild and
of no practical importance as long as m† ≈ m, i.e.,
m̂ ≈m.

The results shown in Fig. 4 represent only signals of fixed
length (n = 215 sample points). Additional simulations sug-
gested no dependence on n (see Suppl. Mat. M).

VI. ROBUSTNESS TESTS

The pivotal condition for successfully separating the
modulator-carrier information of a given signal by our ap-
proach is dn/de ≥ 2ω − 1. In practice, this requirement
is not necessarily met. Hence, the choice of a particular
demodulation method must be guided not only by the algo-
rithmic efficiency but also robustness to deviations from the
ideal recovery conditions. To shed light on this aspect, we
considered demodulation of the test signals from Section IV-A
corrupted by a multiplicative Bernoulli-{0, 1} noise. In this
setup, sample points, including the decisive |si| = mi, are
eliminated with the probability of “0” elements in the noise
(P (0)), effectively decreasing the value of dn/de.

We found that all three AP algorithms considered in this
work show a similar degree of robustness to increased P (0)
(see Fig. 5). Only in the case of sinusoidal signals, the AP-A
is slightly inferior to the AP-B and AP-P. Interestingly, the
advantage of the AP-B and AP-P over the AP-A in the case
of spike-train signals discussed in Section IV-C disappears
in the presence of even small distortions (see Fig. 5 C). The
differences in the Em vs. P (0) relations seen in Fig. 5 A–
D are predetermined by different densities of |ci| ' 1 points
inherent to each carrier type. Analogous results to those shown
in Fig. 5 A–D are obtained when considering carrier recovery
via ĉ = s/m̂ (see Fig. 14 in Suppl. Mat. L).

In contrast to the AP approach, the AS-based demodulation
is highly vulnerable to missing sample points, and hence, to
decreased dn/de (Fig. 5 A–D). Even for sinusoidal signals,

which the AS and AS-LP are specially designed for, the
zeroing of data points leads to a rapid decline in demodulation
quality (Fig. 5 A, E).

The robustness to missing sample points endows the AP de-
modulation method with a highly valuable practical advantage.
In particular, it can be exploited in real-world situations when:
1) the sampling rate is low; 2) some segments of the signal
values are lost; 3) some sample points are corrupted by noise
such that the level of these points can be reduced below the real
modulator by low-pass filtering or explicitly identifying them.
In this context, the PAD and LDC demodulations compare to
the AP approach by construction [23].

VII. HIGH-LEVEL PROPERTIES

As emphasized in Section II, different demodulation meth-
ods can be derived by requesting adherence of the inferred
modulators and carriers to a set of particular properties.
Typically, various combinations that consist of a few out of
many reasonable requirements are sufficient for unique demod-
ulation formulations. However, some of these requirements are
inconsistent with each other, making virtually all classical de-
modulation approaches fail to satisfy one or another essential
condition [9], [23], [25]. For example, the AS demodulation
method may return an unbounded modulator estimate for a
bounded signal [25].

The AP approach formulated in this work is compatible
with the following high-level requirements, which have crys-
tallized as inseparable from the notion of proper amplitude
demodulation with time [19], [23, Section 3.5.2]:
• Boundedness: The modulator and carrier of a bounded

signal are bounded. In particular, it is required that −∞ <
m̂i < +∞ and −1 ≤ ĉi ≤ 1 for every i ∈ In. In the case
of the AP approach, the boundedness of the modulator
is guaranteed by the convergence of the AP algorithms.
The boundedness of the carrier then follows from the
constraint m̂i ≥ |si| and the fact that ĉ = s ◦ m̂−1.
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Fig. 5. Robustness evaluation. A–D: Dependence of the demodulation error Em on P (0) (the probability of missing points) for the four types of test signals
and different AP algorithms at εtol = 10−4 (color coding). E–H: Representative examples of demodulation at various P (0) levels for the test signals from
A–D. Color code: gray – the absolute-value signal, black – the original modulator, color – modulators inferred by different algorithms.

• Scale covariance: The modulator and carrier of a scaled
signal are equal to the modulator and carrier obtained
from the original signal and then scaled by the same
amount. The adherence of the AP approach to this con-
dition follows from two facts. First, projection operators
PS≥|s| and PS$ are homogeneous with degree 1, i.e.,
PS [α · s] = α · PS [s]. Second, each iteration of the AP
algorithms can be expressed as a weighted sum of these
projections with the weights independent of the scale.

• Smoothness: The modulator of a bounded signal in its
continuous-time representation is smooth. Because we
use a discrete-time representation, this requirement has to
be adjusted. In particular, let us denote by m̂′t and m̂′t+∆t

the finite-difference approximations of the modulator’s
time-derivatives of any order at two subsequent time
points: t and t+∆t. Then, we require that, for any ε > 0,
there exists a δ > 0 such that |m̂′t+∆t − m̂′t| < ε when
|∆t| < δ. The AP approach satisfies this requirement
through the boundedness of the modulator and the band-
width constraint set by S$ on it.

• Idempotence: Information associated with the qualities
of modulators and carriers is fully separated. Specifi-
cally, demodulation reapplied to an estimated modulator
(carrier) must return the same modulator (carrier). The
AP approach satisfies the idempotence requirement for
the modulator exactly. Indeed, when any AP algorithm
is applied to its final solution m̂ = m†, the latter
is recognized as the final solution again after the first
new iteration by construction. Regarding the carrier, the
idempotence holds whenever the recovery conditions dis-
cussed in Section II-C are met. That is because, in those
cases, ĉ resulting from the first demodulation contains a
sufficient number of |ĉi| = 1 points to uniquely define the
m̂ = 1 as the norm-minimizing element of S≥|ĉ| ∩ S$.
If the recovery conditions are met only approximately,
we expect no marked deviations from the idempotence
condition (see Fig. 16 in Suppl. Mat. N).

By fulfilling the above requirements, the AP approach parallels
the methods of PAD and LDC demodulation [19], [23]. In this
sense, all of them outperform the classical techniques.

VIII. DEMODULATION OF SPEECH SIGNALS

Amplitude demodulation is of central importance in var-
ious tasks of processing and analysis of speech signals.
Application-wise, this procedure is used in hearing restoration
[10], [55], speech recognition [2], [56], [57], and source sepa-
ration [58], [59]. On the theory side, amplitude demodulation
is exploited in neurophysiological and psychophysical studies
of auditory information processing in the brain [11], [12],
[60], [61]. Depending on the problem, demodulation of either
narrow subband [56], [58], intermediate subband [10], [11],
or whole wideband signal [12], [62] is needed. In all these
cases, modulators and carriers convey the information about
specific aspects of speech, e.g., semantic meaning, associated
emotion, or speaker identity, that need to be extracted.

In this section, we apply the newly-introduced AP approach
to speech demodulation to further demonstrate its potential.
To represent the range of possible real-world situations, we
consider two limiting signal types: 1) a narrow subband
component of a signal obtained by a standard auditory ERB
filter [63]; and 2) the original wideband signal.

A. Direct demodulation

By construction, the output of auditory ERB filters occupies
a frequency subband whose width ∆ is much smaller than its
center frequency fc [63]. The resulting signal is an amplitude-
and phase-modulated sinusoidal s = m◦sin(2πfct+ϕ), with
most of the energies of m and ϕ residing in the frequency
interval [0,∆] [64]. Hence, by the recovery conditions of the
AP approach (see Section II-C), setting the cutoff frequency
$ between ∆ and fc necessarily results in accurate estimates
m̂ and ĉ. In particular, note that the local maximums of |s|
correspond to the true sample points |si| = mi. Thus, the high
quality of demodulation is visually conveyed by a tight match
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Fig. 6. Direct demodulation of speech signals. A: A band-pass-filtered signal of an utterance “. . . at one hundred hertz . . . ” by a female speaker; the signal
was obtained with an equivalent rectangular bandwidth filter of the cochlea centered at fc = 800 Hz and ∆ = 111 Hz. B: The original signal of the utterance
used in panel A (full bandwidth of 22.1 kHz). In both panels, gray color marks the absolute-value version of the signals considered for demodulation. Blue
and red lines show their modulators obtained by using the AP-A algorithm with the cutoff frequency ω set to, respectively, 55 Hz and 222 Hz. Insets display
time-expanded segments of the original window. Red arrowheads indicate the ringing artifacts of the modulator at some prolonged intervals of low signal
levels. Source of the original signal: audio edition of The Economist magazine, issue March 19th 2016, article “Restoring lost memories.”

of m̂ and |s| at these sample points. We illustrate our claims in
Fig. 6 A, where a band-pass component of a female utterance
“. . . at one hundred hertz . . . ” with fc = 800 Hz, ∆ = 111 Hz,
and $ = 222 Hz is considered. Taking into account that
the local maximum points |si| are locally regular and that
they correspond to mi, we could exploit Proposition A.2 in
Suppl. Mat. A to find that Em ≤ 8 · 10−3.

Wideband speech signals are more challenging than their
narrow subbands. They are built of temporarily structured seg-
ments of quasi-random and quasi-harmonic carriers, possibly
featuring frequency glides [65]. These carriers are amplitude-
modulated at different timescales, ranging between a hun-
dred milliseconds and several seconds [23], [66]. The power
spectral density of the corresponding modulators is vanish-
ingly small above 20 Hz (see Fig. 1 in [67]). Moreover, as
we demonstrate in Suppl. Mat. O, the carrier components of
natural speech signals align to the recoverability conditions of
the AP approach for m ∈Mω with ω up to at least ∼ 50 Hz.
Therefore, we expect appropriate performance from the AP
algorithms in the setting of wideband speech.

Fig. 6 B displays demodulation results of the full-band ver-
sion of the speech segment considered in Fig. 6 A by the AP-A
algorithm with $ = 55 Hz. The obtained m̂ (red) envelops
separate phonemes of the sound waveform tightly, indicating
appropriate recovery of the true m (see Section VIII-B next).
However, intervals corresponding to prolonged transitions be-
tween phonemes or words are corrupted by ringing artifacts
(marked by red arrowheads in Fig. 6 B), implying the necessity
of higher frequency components to represent these transitions.
Hence, although the power spectral density of the true m is
very low above 20 Hz, it sums to a noticeable contribution.
Unfortunately, any attempt to cancel the artifacts by just
increasing $ fails by breaking the recovery conditions, as

illustrated by the blue line in Fig. 6 B ($ = 222 Hz there).
No improvement is achieved by utilizing the AP-B, AP-P, or
LDC algorithms either (data not shown).

B. Demodulation using dynamic range compression

The aforementioned problem with modulator estimates of
signals with sharp transitions to/from prolonged intervals of
low-signal amplitude can be resolved by using a dynamic
range compression. In particular, instead of demodulating the
original signal s directly, we first apply a chosen AP algorithm
to its compressed version:

s = sgn(s) ◦ |s|1/p. (12)

Here, p ∈ (1,+∞) controls the level of compression. The
modulator estimate m̂∗ of s is then evaluated by inverse-
transforming the modulator m̂ of s:

m̂∗ = m̂p. (13)

The idea behind (12) is that the compression makes signals
more uniform and, effectively, smooths their sharp changes
responsible for ringing artifacts in the modulator estimates.
These sharp changes are restored in the modulators without
artifacts by the inverse transform (13).

The expected effect of the compression procedure is illus-
trated in Fig. 7, where signal demodulation of an utterance
“. . . protein which forms p. . . ” is considered. Differently from
the direct demodulation result m̂ (red line), the estimate m̂∗

obtained by using the compression with p = 3 (black line)
shows good alignment with |s| in the segments of both low
and high intensity. To justify that this alignment really reflects
the recovery of the true modulator, we performed additional
tests where chimeric signals built of m̂∗ from Fig. 7 and
natural speech carriers were demodulated (see Suppl. Mat. O).
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Fig. 7. Demodulation of speech signals using dynamic range compression. An audio signal of “. . . protein which forms p . . . ” uttered by a female speaker
(full bandwidth of 16 kHz). Gray – the absolute-value version of the signal considered for demodulation, red – its modulator obtained by using the AP-A
algorithm with ω = 55 Hz and no compression (as in Fig. 6), black – modulator of the signal obtained when employing the dynamic range compression [see
(13)], violet – interpolation of the latter two [see (14)]. Red arrowheads indicate ringing artifacts of the modulator estimate. Source of the original signal: the
same as Fig. 6.

We found low demodulation errors, with Em ranging between
9·10−3 and 5·10−2 for different carrier components of speech
signals (see Fig. 18).

The compression level p = 3 used above was adjusted by
a trial and error for speech signals. In general, the gains in
accuracy at low levels with increased p comes at the expense
of reduced precision of modulator estimated at high signal
levels. Thus, a compromise between those two effects must be
reached to find an optimal p. Moreover, the precision of the
modulator estimates can be further increased by interpolating
between m̂∗ (more accurate for low signal levels) and m̂
(more accurate for high signal levels). For example, the violet
line in Fig. 7 shows a weighted average of the form

m̂� = m̂ ◦w + m̂∗ ◦ (1−w), (14)

where

wi =

(
1− ea·(m̂∗

i /max[m̂∗])

1 + ea·(m̂
∗
i /max[m̂∗])−b

)
·
(

1− ea
1 + ea−b

)−1

(15)

for i ∈ In, with b = 3 and a = 10. In general, an
optimal interpolation between m̂ and m̂∗ can be learned by
minimizing ‖m̂�‖22 over a chosen class of functions. Other
compression models than (12), e.g., s = sgn(s)◦log(1+p·|s|),
can be used to evaluate m̂∗ as well.

C. Demodulation in real-time

A number of amplitude demodulation applications, e.g.,
speech recognition [2], ultrasound imaging [68], and cochlear
prosthesis [55], necessitate real-time processing. As we
demonstrate below, the exceptional computational efficiency
of the AP approach allows it to fulfill that requirement.

The nature of the task implies that online modulator es-
timates have to be generated by sequentially demodulating
windowed segments s(j) of a signal s at each updated sample
point j across time:

s(j) : s
(j)
i = wi · sj−kl−1+i, i ∈ {1, 2, . . . , k}. (16)

Here, k is the number of sample points corresponding to the
segment, and kl denotes the number of sample points of it that
are to the left of the current point j. wi, w2, . . . , wk are vector

elements of the window function. The real-time modulator
estimate m̂?

j at sample point j is calculated as

m̂?
j = m̂

(j)
kl+1, (17)

where m̂(j) is a modulator estimate of s(j).
It follows from the time-frequency uncertainty principle [8]

that accurate evaluation of m̂?
j requires s(j) with a duration

of the order of the inverse of the effective bandwidth of the
modulator, or longer. This condition sets the lower bounds on
the segment length k and sampling delay kτ = k − kl − 1
of m̂?. We found empirically that kτ ≈ 2 · (fs/$) and
k ≈ 4 · (fs/$) are typically sufficient for accurate demod-
ulation of wideband speech. These numbers are around two
times smaller for narrow frequency band components of these
signals. We know that $ ≥ 40 Hz for the wideband speech
and its subbands. Thus, delays kτ ≤ 50 ms for estimating m̂?

are sufficient without a sacrifice in precision then. The main
requirement for the window function in (16) is that it smoothly
scales the signal to 0 at the boundaries, with no effect at the
midst. We used a modified version of the Hann window for
this purpose:

wi =





sin2
(
π·(i−1)

2·kl

)
, 1 ≤ i ≤ kl

1, i = kl + 1

cos2
(
π·(i−k+kτ )

2·kτ

)
, k − kτ + 1 ≤ i ≤ k

. (18)

Fig. 8 shows simulation results of real-time demodulation
of a male utterance “. . . with little human hand-holding . . . ”
(sampling rate fs = 16 kHz) based on the AP-A algorithm.
There, demodulation was performed with k = 1536 and
kτ = 768 (τ = 48 ms) for the original signal (Fig. 8 B).
Its subband component centered at 800 Hz (Fig. 8 A) was
processed with k = 128 and kτ = 65 (τ = 4 ms). In each
case, m̂?

j was updated with the frequency of 10 · $. The
obtained estimates m̂? are in very good agreement with m̂∗

derived by using offline demodulation of the whole signal,
with ‖m̂? − m̂�‖2/‖m̂�‖2 < 0.02. Importantly, they were
achieved with modest CPU usage: Tcpu amounted to only
1.6 % (subband signal) and 3.2 % (wideband signal) of the
time length of the demodulated signal on an Intel Core i7-
7700 CPU run in single-thread mode. For comparison, these
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Fig. 8. Demodulation in real-time. A: A band-pass-filtered signal of an utterance “. . . with little human hand-holding . . . ” by a male speaker; the signal was
obtained with an equivalent rectangular bandwidth filter of the cochlea centered at 800 Hz (bandwidth of 111 Hz). B: The original signal of the utterance
used in panel A (full bandwidth of 8 kHz). In both panels, gray color marks the absolute-value version of the signals considered for demodulation. Blue and
red lines show their modulators obtained by using the real-time version of the AP-A algorithm with the cutoff frequency ω set to, respectively, 333 Hz and
40 Hz. Source of the original signal: audio edition of The Economist magazine, issue March 19th 2016, article “Artificial intelligence and Go.”

numbers were, respectively, ∼ 5 · 103 and ∼ 6 · 104 times
higher for the LDC method.

An advantageous side effect of splitting the signal into small
windows for demodulation is that it prevents the ringing arti-
facts (compare Fig. 8 B and Fig. 6 B). This is so because signal
levels do not typically spread over different scales in a short
time window. The window splitting also allows generalizing
demodulation to situations when the cutoff frequency ω of the
modulator varies strongly in time.

IX. EXTENSIONS AND GENERALIZATIONS

A. Demodulation in higher dimensions

Amplitude demodulation has found successful applications
beyond the setting of 1D signals. Several 2D extensions of
the classical AS approach have been introduced and used for
solving tasks in computer vision [7], [69], analysis of speech
spectrograms [70], and biomedical imaging [4], [71], [72]. The
AS framework has also been extended to calculate modulators
and carriers for signals over graphs [73]. These methods are
limited to locally narrowband signals, which manifest visually
as fringe patterns (see Fig. 9 A). This bandwidth restriction
is evaded by a generalization of the AP approach to higher
dimensions that we present next. The extension is immediate
and follows from intuitive abstractions of the constraint sets
introduced in Section II.

Consider a D-dimensional signal s(t1, t2, . . . , tD). Its
uniformly sampled version s is an element of an n-
dimensional Euclidean space TnD of real-valued order
D tensors with n =

∏D
i=1 ni and the inner product

〈s(1), s(2)〉 =
∑n1

i1=1 · · ·
∑nD
iD=1(s̄

(1)
i1···iD · s̄

(2)
i1···iD ). The respec-

tive D-dimensional DFT is given by

F = F(1) ⊗ F(2) ⊗ · · · ⊗ F(D), (19)

where F(i) is a unitary DFT defined over Rni . Then, the
analogs of the constraint sets S≥0, Sω , S≥|s|, S|..|≤1, and S{1},d
from Section II read as

S≥0̄ = {x ∈ TnD : xi1···iD ≥ 0, ij ∈ Inj},
Sω = {x ∈ TnD : (Fx)i1···iD = 0, ij ∈ (Inj \ Iωjnj )}, (20)

S≥|̄s| = {x ∈ TnD : xi1···iD ≥ |s̄i1···iD |, ij ∈ Inj},

and

S|..|≤1̄ = {x ∈ TnD : |xi1···iD | ≤ 1, ij ∈ Inj},
S{1},d =

{
x ∈ TnD : (∀i1 ··· iD)R(i1 ··· iD,x,d) ≥ 1,

(∃i1 ··· iD)R(i1 ··· iD,x,d) = 1},
(21)

where

R(i1 ··· iD,x,d) =
∑
j1≥i1···

∑
jD≥iD

[
I{1}(|xj1···jD |)

·θ
(
1−∑D

k=1(ik − jk)2/d2
k

)]
− I{1}(|xi1···iD |).

(22)

Simply substituting (20) – (21) for their D = 1 versions in
(2), (4), (6), (8), (9), and (10) generalizes the modulator Mω

and carrier Cd sets as well as the modulator estimator m̂ and
the respective AP algorithms. In particular, an m ∈ Mω is a
nonnegative signal with a low-pass rectangular spectrum set
by ω = (ω1, . . . , ωD) along each of the D dimensions in
the DFT domain. A c ∈ Cd is a signal bounded between −1
and 1 with the |c̄i1···iD | = 1 sample points packed sufficiently
densely, as implied by d = (d1, . . . , dD).

Without providing formal proofs, we state that all proposi-
tions and assertions of Sections II and III about the modulator
recoverability and convergence of the AP algorithms general-
ize to D-dimensional signals defined above. All quantitative
conditions involving the parameters $, ω, d, n, and ns in the
D = 1 case are then replaced by elementwise conditions for
$i, ωi, di, ni, and ns,i at i ∈ ID.
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Fig. 9. Demodulation in 2D by using the AP-A algorithm. A: Synthetic fringe pattern of moderate bandwidth. Left – the pattern to demodulate, upper right –
the original modulator and carrier, lower right – the inferred modulator and carrier. B: Wideband signal consisting of randomly-placed spikes of finite width.
Black grid – the signal s̄ to demodulate, white grid – the original modulator m of the signal, color surface – the estimated modulator.

Fig. 9 illustrates the potential of the AP-A algorithm with
the help of two D = 2 cases. Fig. 9 A shows successful
demodulation results for a synthetic narrowband fringe pattern
(Em = 1·10−2, Ec = 3·10−2). Fig. 9 B displays high-accuracy
demodulation of a wideband signal built of randomly-placed
spikes of finite width as c and a Gaussian random field with
a rectangular amplitude spectrum as m. There, the white
grid corresponds to the original m, while the color surface
represents its estimate m̂ (Em = 4 · 10−3, Ec = 1 · 10−2).

The ability of the AP approach to deal with wideband
signals allows it to cover a wider range of practically relevant
situations. Among examples are nonlinear ultrasound imaging
[4], [14], speech processing [20], [70], and complicated cases
of optical interference/diffraction setups [74]. Moreover, it
can also be of great use in time-critical imaging settings by
providing high modulator estimation accuracy at low sampling
rates of the signal (see, e.g., [72], [75]).

The minimum number of sample points necessary to cover
simultaneously for appropriate demodulation increases expo-
nentially with D. Therefore, the computational advantage of
the AP over the PAD and LDC demodulation approaches
is even more pronounced in higher dimensions. In fact, if
evaluated by using the FFT method, F features an O

(
n log n

)

computational time complexity. Hence, the time complexity of
the AP algorithms is defined by the total number of sample
points of the signal irrespective of its dimensionality.

B. Generalized modulators and nonuniform sampling

The demodulation approach formulated in the present work
builds on the assumption that modulators are nonnegative
elements of a low-pass DFT subspace of TnD. However, as
follows from the convergence proofs in Suppl. Mat. F, all of
the introduced AP algorithms are bound to converge to an
m̂ ∈ Mω and a ĉ ∈ Cd independent of the origin of the
linear subspace behindMω . This naturally raises the question
of whether the AP algorithms could recover true m and c
under the generalized subspace assumption. Our preliminary
experiments suggest a positive answer but subject to extra
recovery conditions specific to a subspace of choice.

For example, consider a subset of 2ω− 1 randomly chosen
basis vectors of the DFT over Rn. Denote the corresponding
space as Fω . It can be shown by example that a system
resulting from random subsampling of the aforementioned
vectors at 2ω − 1 time points may be linearly dependent. If
so, it then follows from the proof of Proposition II.1 that,
in contrast to an m ∈ Sω , full recovery of an m ∈ Fω
necessitates more than 2ω − 1 true sample points.

The problem of formulating modulator recovery conditions
for different linear subspaces sets directions for future studies.
If successful, these extensions would allow to:

1) broaden the concept of the amplitude modulator beyond
the low-pass DFT signals,

2) loosen the constraints on the positioning of the |ci| = 1
sample points for recoverable carriers whenever a more
compact representation of modulators is available,

3) encompass nonuniform sampling.

While the above points are yet to be developed, the results of
the present work already provide a strategy for an arbitrarily-
accurate nonuniform sampling. Indeed, for any time grid t̃ ∈
Rñ, we can find a uniform grid t ∈ Rn such that, for every
j ∈ Iñ, there exists an i ∈ In with |t̃j − ti| being arbitrarily
small. We can then interpolate the original data s̃ ∈ Rñ on the
uniform grid t by

si =

{
s̃j , if |t̃j − ti| = min[|t̃j · 1− t|]
0, otherwise

, i ∈ In, (23)

to obtain an s ∈ Rn. The bandwidth constraint on m implies
that all components of s corresponding to the true sample
points of s̃ are desirably close to the true sample points of the
original signal if n is large enough. Then, Proposition II.2
assures that modulator-carrier recovery is possible via (6)
under the conditions discussed in Section II-C for uniformly
sampled signals. The described strategy requires increasing
the effective dimensionality of the signal. However, this may
still be more efficient than evaluating metric projections onto
subspaces spanned by arbitrary nonuniform sampling basis
vectors, which are not orthogonal in general.
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X. CONCLUSION

In this paper, we have introduced a new approach to ampli-
tude demodulation of arbitrary-bandwidth signals. We framed
demodulation as a problem of modulator recovery from an
unlabeled mix of its true and corrupted sample points. Taking
this view, we showed that high-accuracy demodulation can be
achieved via exact or approximate norm minimization of the
modulator for a wide range of relevant signals. We formulated
tailor-made alternating projection algorithms to achieve that in
practice and tested them in a series of numerical experiments.

The generality and numerical efficiency of the new approach
make it a preferred choice in many situations. In the context of
narrowband signals, the new method outperforms the classical
algorithms in terms of robustness to data distortions and
compatibility with nonuniform sampling. When considering
the demodulation of wideband signals, it surpasses the current
state-of-the-art techniques in terms of computational efficiency
by up to many orders of magnitude. Such performance enables
practical applications of amplitude demodulation in previously
inaccessible settings. Specifically, online and large-scale of-
fline demodulation of wideband signals, signals in higher
dimensions, and poorly-sampled signals become practically
feasible. The algorithms underlying the new approach are
simple and easy to implement on a computer.5
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OVERVIEW

This document serves as a source of additional information to support the ideas and results introduced in the

accompanying paper “Fast and Accurate Amplitude Demodulation of Wideband Signals.”

Virtually, the material provided in this supplement can be divided into five blocks comprising, respectively,

Sections A – C, D – G, H – I, J – K, and L – O:

‚ The A – C block provides proofs of modulator recovery conditions.

‚ The D – G block is concerned with mathematical aspects of the alternating projection (AP) algorithms of

amplitude demodulation.

‚ The H – I block reviews the main types of amplitude-modulated wideband signals found in practice and

defines synthetic modulators and carriers used for testing purposes in the present work.

‚ The J – K block presents details on the numerical implementation of the AP and other relevant demodulation

methods on a computer, as well as their benchmarking configurations.

‚ The L – O block contains auxiliary simulation results and their discussion.

A summary of each of the sections follows next to ease navigation through this document.

Section A establishes several auxiliary results that are exploited in the modulator recovery proofs next.

Section B provides proofs for the modulator recovery conditions introduced in Section II-C of the main text.

Section C discusses the results and implementation of the numerical experiments performed to extend the

modulator recovery conditions.

Section D introduces the basic concepts of mathematical analysis necessary for the formulation and study of

the properties of AP algorithms.

Section E formulates and proves relevant properties of the constraint sets of modulator estimates and defines

operators that implement metric projections onto the modulator constraint sets used in this work.

Section F provides the convergence proofs of the AP algorithms introduced in the main text.

Section G derives a lower bound on the convergence error.

Section H reviews the main types of amplitude-modulated wideband signals found in practice.

Section I defines the modulators and carriers of synthetic signals used to test amplitude demodulation

algorithms in the present work.

Section J lists configurations of the execution control parameters employed for the performance analysis of

the AP and LDC algorithms of amplitude demodulation.

Section K provides information on the implementation and execution of the demodulation algorithms on a

computer that we used.
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Section L overviews the results of demodulation algorithm performance tests in terms of carrier estimates.

Section M presents additional simulation results on the dependence of convergence rates of the AP algorithms

on the signal length.

Section N introduces simulation results of repetitive demodulation of carrier and modulator estimates obtained

using the AP-A algorithm.

Section O presents the results of additional simulations that demonstrate the suitability and consistency of

the AP approach to demodulate wideband speech signals.
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RECOVERY CONDITIONS

A. AUXILIARY PROOFS

Here, we establish two important properties of the unitary DFT basis vectors that are repetitively used in the

proofs of propositions about the modulator recovery conditions in the next section.

Proposition A.1. Consider a subset of DFT basis vectors tf pkqukPIω˚
n

. Assume a set of arbitrarily chosen ns

sample points encoded by components of a vector r P Nns` , and introduce a linear transform Lr that maps

every x P Rn to rxr1 , xr2 , . . . , xrns
sT P Rns . Then, a set tLrf

pkqukPIω˚
n

is linearly independent if and only if

ns ě 2ω˚ ´ 1.

Proof.

Necessity. If ns ă 2ω˚ ´ 1, the set of vectors tLrf
pkqukPIω˚

n
is linearly dependent because the number of

linearly independent vectors cannot be higher than the number of components they consists of.

Sufficiency. First, consider the case of ns “ 2ω˚´ 1. Then, tLrf
pkqukPIω˚

n
is linearly independent if and only

if the determinant of a matrix formed by concatenating all vectors from this set in an arbitrary order is not equal

to zero (see, e.g., [1, p. 13]). To show that the latter condition is satisfied in our case, define a matrix

M “ Lrrf pn´ω˚`2q, f pn´ω˚`3q, . . . , f pnq, f p1q, f p2q, . . . , f pω˚´1q, f pω˚qs. (24)

Taking into account that Lrf
pkq can be written as rpzr1qk´1, pzr2qk´1, . . . , pzrns qk´1sT{?n, with z “ eı2π{n, and

that pzr1qk “ pzr1qkmodn, M can be expressed as a product of a diagonal matrix and a Vandermonde matrix:

M “ diagr?n ¨ Lrf
pn´ω˚`2qs rLrf

p1q,Lrf
p2q, . . . ,Lrf

p2ω˚´1qs. (25)

Thus,
det M “ ?n ¨ det diagrLrf

pn´ω˚`2qs ¨ detrLrf
p1q,Lrf

p2q, . . . ,Lrf
p2ω˚´1qs

“ ?n ¨
2ω˚´1ź

i“1

`
Lrf

pn´ω˚`2q˘
i
¨
2ω˚´1ź

i“1

i´1ź

j“1

``
Lrf

p2qqi ´ pLrf
p2q˘

j

˘

“ 1?
n
¨
2ω˚´1ź

i“1
eı2πpn´ω˚`1qri{nloooooooomoooooooon

‰0
¨
2ω˚´1ź

i“2

i´1ź

j“1

`
eı2πri{n ´ eı2πrj{n˘looooooooooomooooooooooon

‰0
‰ 0,

(26)

which implies that the set tLrf
pkqukPIω˚

n
is linearly independent for ns “ 2ω˚ ´ 1. When writing the second

equality above, we used the expression of the determinant of a Vandermonde matrix (see, e.g., [1, p. 143]).

It follows from the definition of linear independence that extending each vector in the set by additional com-

ponents cannot change the set from linearly independent to linearly dependent. Hence, the linear independence

of tLrf
pkqukPIω˚

n
for ns “ 2ω˚ ´ 1 implies the linear independence of tLrf

pkqukPIω˚
n

for ns ą 2ω˚ ´ 1. �
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Remark. The fact that tLrf
pkqukPIω˚

n
is linearly independent for ns ě 2ω˚ ´ 1 means that the system of linear

equations Lrx “ ř
kPIω˚

n

`
ak ¨ Lrf

pkq˘ has a unique solution for all x P Sω˚ if ns ě 2ω˚ ´ 1. In other words,

every x P Sω˚ can be recovered from its known sample points then.

Proposition A.2. Consider some xp1q P Sω˚ and xp2q P Sω˚ . Assume a set of regularly spaced ns ě 2ω˚ ´ 1

sample points encoded by components of a vector r P Nns` such that ri`1 ´ ri “ n{ns for every i P Ins
. Then,

}xp1q}2{}xp2q}2 “ }Lrx
p1q}2{}Lrx

p2q}2. (27)

Proof. By the definition of Sω˚ (see Section II-A in the main text),

x “
ÿ

kPIω˚
n

`
ak ¨ f pkq

˘
, x P Sω˚ . (28)

Moreover, it follows from the unitary property of the DFT matrix, xf pjq, f pkqy “ δj,k,1 that

}x}22 “
ÿ

kPIω˚
n

|ak|2. (29)

Applying Lr to both sides of (28) yields

Lrx “
ÿ

kPIω˚
n

`
ak ¨ Lrf

pkq˘, x P Sω˚ , (30)

where, taking into account that ri`1 ´ ri “ n{ns,
Lrf

pkq “ reı2π¨r1¨pk´1q{n, eı2π¨r2¨pk´1q{n, . . . , eı2π¨rns ¨pk´1q{nsT{?n
“ r1, eı2π¨1¨pk´1q{ns , . . . , eı2π¨pns´1q¨pk´1q{nssT{?ns ¨

`
eı2π¨r1¨pk´1q{n ¨ans{n

˘
.

(31)

Note that Lrf
pkq is the k-th column of the unitary nsˆns DFT matrix multiplied by a coefficient whose absolute

value is equal to
a
ns{n. Therefore, analogously to (29),

}Lrx}22 “ pns{nq ¨
ÿ

kPIω˚
n

|ak|2, (32)

as long as ns ě 2ω˚ ´ 1.2 Consequently, }Lrx}2 “
a
ns{n ¨ }x}2 for x P Sω˚ , which implies (27). �

B. RECOVERY PROOFS

In this section, we prove the modulator recovery conditions stated in the main text in the form of Proposi-

tions II.1 – II.4. We repeat the original assertions from the main text for the sake of convenience.

1Here, and in the sequel, δi,j denotes the Kronecker delta.
2If ns ă 2ω˚ ´ 1, some of the vectors Lrf

pkq and Lrf
pjq are identical for k ‰ j, and hence, (32) does not apply.



RECOVERY CONDITIONS 7

Proposition II.1. For almost every m PMω, m̂ “ m only if $ ě ω, and c P Cd with ns ” řn
i“1 It1up|ci|q ě

$ ` ω ´ 1 ùñ d ď n´ p$ ` ω ´ 2q.3, 4

Proof. We prove the proposition by showing that, almost everywhere in Mω, m ‰ m̂ if c R Cd, or $ ă ω, or

ns ă $ ` ω ´ 1. For the sake of convenience, we restate the definition of m̂ here:

m̂ “ arg min
xPSě|s|XS$

}x}2. (33)

If c R Cd, it means that either |ci| ă 1, for every i P In, or there exists at least one i P In such that |ci| ą 1.

In the former case, |si|{mi ă 1 for every i P In. Hence, for α “ maxt|si|{miuiPIn
, α ¨m belongs to Sě|s| XS$

but has a smaller norm than m, i.e., m ‰ m̂. In the latter case,
ˆ

arg min
xPSě|s|XS$

}x}2
˙

i

ą mi (34)

for all i corresponding to |ci| ą 1 because |si| ą mi then. Thus, m “ m̂ does not apply either. Therefore,

m “ m̂ holds only if c P Cd.

If $ ă ω, then the subset of modulators for which m “ m̂ is valid has the cardinality of R2$´1, and hence,

has zero volume in Mω, whose cardinality is that of R2ω´1.

Next, assume that c P Cd, and $ ě ω, but ns ă $ ` ω ´ 1. Let us represent indexes of all sample points

corresponding to |ci| “ 1 by a vector r P Nns` . Then, analogously to (30), we have

Lrm “
ÿ

kPI$
n

`
ak ¨ Lrf

pkq˘. (35)

For the sake of convenience, let us redefine

f pkq “

$
’’’’&
’’’’%

ϕp1q, k “ 1

pϕp2k´2q ` ı ¨ϕp2k´1qq{?2, 2 ď k ď $

pϕp2pn´kq`2q ` ı ¨ϕp2pn´kq`3qq{?2, n´$ ` 2 ď k “ n

, (36)

and

ak “

$
’’’’&
’’’’%

α1, k “ 1

pα2k´2 ` ı ¨ α2k´1q{
?

2, 2 ď k ď $

pα2pn´kq`2 ` ı ¨ α2pn´kq`3q{
?

2, n´$ ` 2 ď k “ n

. (37)

Then, (35) turns into

Lrm “
2$´1ÿ

i“1

`
αi ¨ Lrϕ

piq˘, (38)

3Here m̂ is as defined by (6) in the main text.
4As d ď n´ p$ ` ω ´ 2q is implied by

řn
i“1 It1up|ci|q ě $ ` ω ´ 1, we do not refer to it explicitly in this proof.
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According to Proposition A.1, a set of ns vectors tLrf
p1q, . . . ,Lrf

prpns`1q{2s,Lrf
pn´tpns´3q{2u, . . . ,Lrfnu is

linearly independent. Hence, by (36), the same applies to tLrϕ
piquns

i“1. Consequently, (38) is an underdetermined

system of linear equations defined by a full-rank matrix. We know from linear algebra that a general solution

of such system is expressed as a sum of its separate solution αp0q and a solution of

0 “
2$´1ÿ

i“1

`
αi ¨ Lrϕi

˘
, (39)

Solutions of (39) form a p2$ ´ 1 ´ nsq-dimensional subspace of R2$´1. Thus, we can express the general

solution of (38) as

α “ αp0q `
2$´1´nsÿ

i“1
ziρ

piq, z P R2$´1´ns , (40)

where tρpiqu2$´1´ns

i“1 is an orthonormal basis of the space of solutions of (39). Taking into account (36) – (37)

as well as the linear independence of tf pkqukPI$
n

and tρpiqu2$´1´ns

i“1 , (40) together with (30) define a linear

injective function that maps from R2$´1´ns to S$:

fpzq “
2$´1ÿ

j“1

ˆ
αp0q `

2$´1´nsÿ

i“1
ziρ

piq
˙

j

ϕpjq, z P R2$´1´ns . (41)

The image of fpzq is a subset of those elements of S$ that coincide with the true modulator m at entries

r P Nns` . The injective nature of this function guarantees the existence of a unique zm P R2$´1´ns such that

m “ fpzmq.
Now, assume an m P Mὼ “ tx P Mω : mi ą 0, i P Inu, i.e., any feasible modulator whose all entries

are strictly positive. Define an ε “ mintmi ´ |si| : p|ci| ă 1q ^ pi P Inqu. ε exists and is positive because

|ci| “ 1 only for ns ă n out of n components of c by the assumption of the proposition, and mi ´ |si| “
mip1 ´ ciq. The linearity of fpzq implies its continuity at every point of its domain. Hence, there exists an η

such that }fpzq ´ fpzmq}2 ă ε whenever z P Hzm,η “ tz P R2$´1´ns : }z ´ zm}2 ă ηu. On the other hand,

}fpzq´ fpzmq}2 “
ařn

i“1rpfpzqqi ´mis2 ă ε implies |pfpzqqi´mi| ă ε, and hence pfpzqqi ą |si|, for every

i P In. Consequently,

fpzq P pSě|s| X S$q, z P Hzm,η. (42)

Furthermore, if m “ m̂, then }m}22 ă }fpzq}22 for every z P pHzm,ηzzmq, i.e., zm is a strict local minimum

point of

}fpzq}22 “
›››››
2$´1ÿ

j“1

ˆ
αp0q `

2$´1´nsÿ

i“1
ziρ

piq
˙

j

ϕpjq
›››››

2

2

“
›››››
2$´1ÿ

j“1

ˆ
αp0q `

2$´1´nsÿ

i“1
ziρ

piq
˙›››››

2

2

“ }αp0q}22 `
2$´1´nsÿ

i“1

`
z2i ` 2 ¨ zi ¨ xαp0q,ρpiqy

˘
.

(43)
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}fpzq}22 is a continuous, differentiable function with a positive-definite Hessian: B2}fpzq}22{BziBzj “ δi,j . Thus,

it has a unique strict local minimum point defined by B}fpzq}22{Bzi “ 0: 5

z:i “ ´xαp0q,ρpiqy, i P I2$´1´ns
. (44)

Remember that, without loss of generality, αp0q is a particular solution of (38). αp0q corresponding to m, i.e.,

αp0q ” pαp0q1 , α
p0q
2 , . . . , α2ω´1, 0, . . . , 0qT with m “ ř2ω´1

i“1 α
p0q
i ϕ

piq, is exactly such a solution. In this case, as

follows from (41), m “ fpz:q if and only if z: “ 0.6 According to (44), that is equivalent to requiring αp0q to

be a solution of the following homogeneous system of linear equations:

xαp0q,ρpiqy “ 0, i P I2$´1´ns
. (45)

Hence, the subset of Mὼ to which m “ m̂ applies has the same cardinality as RD, where D is the dimension

of the solution space of (45). Taking into account the linear independence of tρpiqu2$´1´ns

i“1 , D is equal to

the difference between the number of elements of αp0q that are not identically equal to zero and the number

of equations that are not trivially satisfied by any feasible αp0q. The latter depends on c, specifically, on the

positions of sample points with |ci| “ 1. To see this, consider two cases:

‚ A carrier with equidistantly-spaced true sample points: |ci`pj´1q¨d| “ 1 for some i P Id and every j P Ins
,

where d “ n{ns. Then, it follows from (31) that some of the elements of the system tLrf
pkqukPI$

n
are

identical as long as ns ă 2$ ´ 1.7 Specifically, we have

Lrf
pkq “

$
&
%

Lrf
pk`n´nsq, tpns ` 4q{2u ď k ď $

Lrf
pk`ns´nq, n´$ ` 2 ď k ď n´ tpns ´ 1q{2u

. (46)

Equivalently,

Lrϕns`χns´i “ p´1qχi ¨ Lrϕns´χns`2χi`i, 1 ď i ď 2$ ´ 2` χns
´ ns (47)

and Lrϕpns`1q “ 0 when χns
“ 0, where, χz “ z mod 2. Consequently,8

pρpiqqj “

$
’’’’&
’’’’%

1{?2, j “ ns ` χns
´ i

p´1qχi`1{?2, j “ ns ´ χns
` 2χi ` i

0, otherwise

, 1 ď i ď 2$ ´ 2` χns
´ ns, (48)

and ρp2$´1´nsq “ 0 when χns
“ 0. Moreover, by our choice of αp0q,

α
p0q
j “ 0, 2ω ď j ď 2$ ´ 1. (49)

5This strict local minimum point is the only local minimum point of this function.
6Note that tρiu2$´1´ns

i“1 is linearly independent.
7Note that ns ă $ ` ω ´ 1 and $ ě ω imply ns ă 2$ ´ 1.
8Note that, as discussed before, tϕiuns

i“1 is linearly independent.
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(48) and (49) together imply that (45) holds for i P Ins´p2ω´1q independent of αp0q corresponding to the

chosen m PMὼ , and that (45) holds for the remaining i P pI2$´1´ns
zIns´p2ω´1qq if and only if

α
p0q
j “ 0, 2pns ` 1´$q ď j ď 2ω ´ 1. (50)

Hence, (45) applies only to the subset of Mὼ with

D “ mintp2ω ´ 1q, p2ω ´ 1q ´ 2p$ ` ω ´ 1´ nsqu
“ mintp2ω ´ 1q, 2pns ` 1´$q ´ 1u.

(51)

(51) implies that D ă 2ω ´ 1 as long as ns ă $ ` ω ´ 1. Then, the subset of all m P Mὼ that satisfy

m “ m̂ has zero volume in Mὼ , which has the cardinality of R2ω´1. Moreover, if ns ă $, it follows

from (50) that (45) has only the trivial solution αp0q “ 0, which implies m “ 0. The latter is infeasible

in our case, and hence, m “ m̂ does not apply to any m PMὼ . On the other hand, if ns ě $ ` ω ´ 1,

then all equations of the (45) system are satisfied independent of the actual feasible αp0q. Consequently,

D “ 2ω ´ 1.

‚ An arbitrary c P Cd with unspecified structure. Then, none of the 2$´ 1´ns equations of the system (45)

are satisfied independent of the actual αp0q.9 Therefore,

D “ p2ω ´ 1q ´ p2$ ´ 1´ nsq
“ ns ´ 2p$ ´ ωq.

(52)

(52) is valid only if p2ω´1q ą p2$´1´nsq. Otherwise, (45) has only the trivial solution αp0q “ 0, which

implies m “ 0. The latter is infeasible in our case, and hence, m “ m̂ does not apply to any m PMὼ . In

any case, D ă p2ω ´ 1q as long as ns ă p2$ ´ 1q, which follows from the assumption of the proposition

that ns ă p$ ` ω ´ 1q and $ ě ω. In fact, p2$ ´ 1q ´ p$ ` ω ´ 1q “ p$ ´ ωq.
Compared with the general case, a smaller number of necessary sample points with |ci| “ 1 is achieved in

the first example due to the fact that the subset of vectors Lrϕ
pkq with 2ω ď k ď 2$´ 1 is linearly dependent

and that αp0qk are identically equal to zero in that range. Specifically, every ϕpkq in the range 2ω ď ns´ 1`χns

is proportional to one of the ϕpkq in the range ns ` 2 ´ χns
ď 2$ ´ 1. Every such dependence reduces the

necessary number of points with |ci| “ 1 for modulator recovery by one. Further, it follows from (31), (36),

and Proposition A.1 that the sets tLrϕ
pkquns´1`χns

k“2ω and tLrϕ
pkqu2$´1k“ns`2´χns

are linearly independent. Hence,

no further linear dependencies among tLrϕ
pkqu2$´1k“2ω are possible in general. This means that ns “ $ ` ω ´ 1

is the absolute minimum of sample points with |ci| “ 1 necessary for m “ m̂ to hold. The second example

above illustrates that this number is surely higher for some c P Cd.

The last three paragraphs demonstrate that the subset of Mὼ to which m “ m̂ applies has zero volume in

Mὼ if ns ă $`ω´1. Taking into account that pMωzMὼ q has lower cardinality than Mὼ (R2ω´2 vs. R2ω´1),

we conclude that the set of all m PMω that satisfy m “ m̂ has zero volume in Mω if ns ă $ ` ω ´ 1.

9One possible example of this kind is c with |ci| “ 1 for i P Ins , and |ci| ă 1 for i P pInzInsq.
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�

Proposition II.2. Consider m P Mω and c̃ P Cd̃ with |c̃i| “ 1 for i P Jn Ď In, and c̃i “ 0 otherwise. If

m̂ “ m holds for the m and c̃, then it also holds for every pair made of the same m and any c P Cd with

d ď d̃ and |ci| “ 1 for i P Jn.10

Proof. Denote s̃ “ m ˝ c̃ and s “ m ˝ c. Now, note that |ci| ě |c̃i| by the condition of the proposition,

and hence, |si| ě |s̃i|. Therefore, Sě|s| Ď Sě|̃s|, which implies pSě|s| X S$q Ď pSě|̃s| X S$q, and, consequently,

arg min
xPSě|s|XS$

}x}2 ě arg min
xPSě|̃s|XS$

}x}2. According to the proposition, arg min
xPSě|̃s|XS$

}x}2 “ m. On the other hand, by

construction, m P pSě|s| X S$q. Thus, arg min
xPSě|s|XS$

}x}2 “ m. �

Remark. It can be shown by example that the validity of m̂ “ mp1q for some mp1q P Mω and c̃ P Cd with

|c̃i| “ 1, i P Jn, does not necessarily imply the validity of m̂ “ mp2q for another mp2q PMω and the same c̃.

Proposition II.3. Assume m PMω and c P Cd with $ ě ω. If, additionally, there exist d P In and i P Id such

that ns ” pn{dq P N`, ns ě $ ` ω ´ 1, and |ci`pj´1q¨d| “ 1 for every j P Ins
, then m̂ “ m.10

Proof. Here, we distinguish between two cases: p$ ` ω ´ 1q ď ns ă p2$ ´ 1q and ns ě p2$ ´ 1q.
If p$ ` ω ´ 1q ď ns ă p2$ ´ 1q, then it follows from the proof of Proposition II.1 that m has the smallest

norm among all elements of the image of fpzq defined by (41), i.e, all elements x P S$ that satisfy Lrx “ Lrm.

Next, consider a y P Sω such that pLryqi ě pLrmqi for every i P Ins
and pLryqi ą pLrmqi for at least one

i P Ins
. Then, by (27), }y}2 ą }m}2. Moreover, using the same argumentation as for m, we see that y has

the smallest norm among all elements x P S$ that satisfy Lrx “ Lry. Hence, m has smaller norm than any

other element x P S$ that satisfies Lrx ě Lrm. Moreover, pSě|s| XS$q Ă S$. Thus, we conclude that m̂ “ m

holds.

If ns ě p2$ ´ 1q, then it follows from (27) of Proposition A.2 that

arg min
xPSě|s|XS$

}x}2 “ arg min
xPSě|s|XS$

}Lrx}2. (53)

Further, the constraint set Sě|s| implies that

}Lrx}2 ě }Lr|s|}2, x P Sě|s| X S$. (54)

On the other hand, |sri | “ |mri ¨ cri | “ mri ¨ |cri | “ mri for i P Ins
, i.e., Lr|s| “ rmr1 ,mr2 , . . . ,mrns

sT.

According to Proposition A.1, tLrf
pkqukPI$

n
is linearly independent if ns ě 2$ ´ 1. Therefore, (30)11 has a

unique solution, which, by (28), means that, among all S$, there is a unique x “ m that satisfies Lrx “
rmr1 ,mr2 , . . . ,mrns

sT “ Lr|s|. Hence, by (54), arg min
xPSě|s|XS$

}Lrx}2 “ m, and, by (53), arg min
xPSě|s|XS$

}x}2 “ m. �

10Here m̂ is as defined by (6) in the main text.
11Note that ω˚ in (28) – (30) stands for $ here.
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Proposition II.4. Consider m P Mω and c P S|..|ď1. Take ns ě 2$ ´ 1 sample points of s “ m ˝ c whose

indexes are defined as entries of any chosen r P Nns` with ri`1 ´ ri “ n{ns for every i P Ins
. Then,12

}m´ m̂}2{}m}2 ď
b

1´řns

i“1 s2ri{
řns

i“1m2
ri . (55)

Proof. For the sake of convenience, we will exploit the linear transformation Lr, already introduced in Propo-

sition A.1, that maps every x P Rn to rxr1 , xr2 , . . . , xrns
sT. Then, (55) can be rewritten as

}m´ m̂}2{}m}2 ď
b

1´ }Lrs}22{}Lrm}22. (56)

Note that

}m}22 ´ }m̂}22 ´ }m´ m̂}22 “ 2 ¨ }m̂}2 ¨ p}m}2 ´ }m̂}2q. (57)

Next, we have by construction that m P pSě|s| X S$q. Hence,

}m}22 ě }m̂}22, (58)

which, together with (57) implies }m}22 ´ }m̂}22 ´ }m´ m̂}22 ě 0, i.e.,

}m´ m̂}2{}m}2 ď
b

1´ }m̂}22{}m}22. (59)

On the other hand, by Proposition A.2 , }m̂}22{}m}22 “ }Lrm̂}22{}Lrm}22 if ns ě 2$´ 1 and ri`1 ´ ri “ n{ns
for every i P Ins

. Thus,

}m´ m̂}2{}m}2 ď
b

1´ }Lrm̂}22{}Lrm}22. (60)

Finally, m̂i ě |si| for every i P In because m P Sě|s|, which means that

}Lrm̂}22 ě }Lrs}22. (61)

Combining (60) with (61) leads to (56). �

Remark. Note that }m}22 “ }m̂}22 in (58) if and only if m “ m̂ because Sě|s| X S$ is convex and } . . . }22 is

strictly convex. Therefore, the equality in (55) holds if and only if m “ m̂, i.e., the modulator recovery is exact.

C. FURTHER ANALYSIS: NUMERICAL EXPERIMENTS

Here, we present the results of numerical experiments used to extend the modulator recovery conditions to

carriers with nonuniformly placed sample points |ci| “ 1 in terms of the parameters n, ω, $, and d.

12Here m̂ is as defined by (6) in the main text.
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Setup

The numerical experiments under consideration consist of the following steps.

1. 103 pairs of m and c are generated by randomly sampling from Mω and Cd for every feasible combination

of ω and d consistent with a chosen signal length n.

2. For every pair of m and c generated, m is inferred from the s “ m ˝ c via m̂ defined by (6). The latter

is evaluated by using the AP-P algorithm, introduced in Section III-C of the main text, with εtol “ 10´14

and unlimited Niter.

3. For every combination of the parameters ω and d, two estimates related to the recovery error are evaluated:

1) the average empirical error xEmy and 2) the fraction of cases with vanishing error P pEm ă εq, where

ε is a positive number arbitrarily close to zero. P pEm ă εq can be seen as the demodulation success rate

for a given error threshold ε.

A crucial aspect of the above experiments to producing informative data for our purposes is the way Mω and

Cd are sampled. For both of these sets, we exploited uniform sampling but with some additional constraints, as

explained next.

‚ The cutoff frequency ω, defining the modulator set, and the cutoff frequency $, defining the estimator m̂,

were fixed to be equal. This choice allowed us to considerably reduce the extent of relevant parameter

combinations to be checked without loss of generality. Indeed, $ ě ω is a necessary condition for a full

recovery independent of c P Cd and Mω Ă M$ if $ ą ω. Hence, all recovery conditions applicable in

the case of $ “ ω hold for $ ą ω as well.

‚ Only the subset of pure spike-train carriers consisting of ci P t0, 1u sample points was considered among

all possible c P Cd. According to Proposition II.2, that is sufficient for identifying full recovery conditions

without loss of generality.

‚ Different elements of the pure spike-train subset of Cd may substantially differ in the number ns of sample

points with |ci| “ 1. In particular, rn{ds ď ns ď n ´ d ` 1. We considered modulator reconstruction

by uniformly sampling either from the sparsest (ns “ rn{ds) or the densest (ns “ n ´ d ` 1) subset of

spike-train carriers. In view of Proposition II.2, pure spike-train carriers with ns “ rn{ds have the tightest,

and hence the most general, constraints for exact modulator recovery in terms of the parameters $ and d.

The algorithms for sampling from the modulator and carrier sets specified above are presented in Section I.

Results

Fig. 10 A1 displays color-plots of the fraction P of the modulator recovery cases with Em ă 10´12 over

the pd,$q plane for n “ 32 and ns “ rn{ds. In agreement with the necessary recovery condition discussed

in Section II-C, P pEm ă 10´12q is equal to 0 for all points with rn{ds ă 2$ ´ 1. More remarkably, for

rn{ds ě 2$ ´ 1, P pEm ă 10´12q equals 1 except some boundary points, where P varies between 0.65 and 1.
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Fig. 10. Success rates and errors of modulator recovery for signals based on pure ci P t0, 1u spike-train carriers. A1–A2: color plots of

the fraction (P ) of modulator recovery cases with the recovery error Em lower than 10´12 for different combinations of d and $, and

n “ 32; red lines plot the relation rn{ds “ 2$ ´ 1. A1 displays the results for carriers with ns “ rn{ds spikes, while A2 corresponds

to carriers with ns “ n´ d` 1. B1–B2: the same as A1–A2, but with the average recovery error instead of the success rate over all

modulator and carrier pairs shown for each combination of d and $. C1–C2: the same as A1–A2 except that n “ 256. D1–D2: the

same as B1–B2 except that n “ 256.

However, even in the latter cases, the error is small, as follows from Fig. 10 B1, which plots the average xEmy
over the pd, ωq plane. The maximum likelihood (ML) estimate of P pEm ă 10´12q for all tested modulator-carrier

pairs that adhere to the necessary recovery condition rn{ds ě 2$ ´ 1 is 0.971; its 99% confidence interval is

p0.969, 0.972q.
Increasing the number of carrier points with |ci| “ 1 does not change the landscape of the recovery success

rate considerably. Indeed, pushing ns to the maximum n ´ d ` 1 increases the P values only at points in the

immediate vicinity of the rn{ds “ 2$ ´ 1 boundary (see Fig. 10 A2). Nevertheless, it has to be noted that the

recovery errors are decreased by increasing ns on average (see Fig. 10 B2). The ML estimate of P pEm ă 10´12q
for all tested modulator-carrier pairs that adhere to the necessary recovery condition rn{ds ě 2$ ´ 1 is 0.987

in this case; its 99% confidence interval is p0.986, 0.988q.
We found an analogous picture while considering signals with different lengths n. One such example (n “ 256)

is considered in Fig. 10 C1 – D2. The chances of the modulator recovery with vanishing error, i.e., Em ă 10´12,

are higher in this case. Specifically, the ML estimate of P pEm ă 10´12q is 0.9933, with the 99% confidence

interval p0.9930, 0.9936q when ns “ rn{ds. That can be explained by the smaller contribution of the boundary
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points of the relation rn{ds “ 2$ ´ 1 in the pd,$q plane to the total count. It is important to note that, in all

cases discussed here, essentially the same results are obtained even if the error threshold ε is increased to 10´3.

This rejects any possibility of numerical inaccuracies affecting our conclusion.



16 AP ALGORITHMS

AP ALGORITHMS

D. MATHEMATICAL PRELIMINARIES

In this section, we introduce some basic concepts of mathematical analysis necessary for the formulation and

assessment of the AP algorithms that we used to calculate modulator estimators defined by (6) and (8) in the

main text.

Convex, interior, closed, and bounded sets

We start with definitions of a few basic attributes of sets in Euclidean spaces.

Definition D.1. A set S Ď Rn is said to be convex if θ ¨ x` p1´ θq ¨ y P S for all x,y P S and θ P r0, 1s.

Definition D.2. An element x P S Ď Rn is said to be an interior point of S if there exists an ε ą 0 such that

ty P Rn : }x´ y}2 ă εu Ă S.

Definition D.3. A set that consists of all interior points of S Ď Rn is called the interior of S. We denote it by

S˝.

Definition D.4. An element y P Rn is said to be a contact point of S Ď Rn if, for any ε ą 0, there exists an

x P S such that }x´ y}2 ă ε.

Definition D.5. A set S Ď Rn is said to be closed if it is equal to the set of all its contact points.

Convexity and closedness of sets are preserved under intersection.

Proposition D.6. The intersection S1 X S2 of two closed and convex sets S1 and S2 is closed and convex.

Another important characteristic of sets is their boundedness.

Definition D.7. A set S Ă Rn is said to be bounded if there exists a b P R such that }x ´ y}2 ď b for all

x,y P S.

Definition D.8. A set S Ă R1 “ R is said to be bounded from above if there exists a u P R such that x ď u

for all x P S. u is called an upper bound of S.

Remark. u P R is said to be the least upper bound of S Ă R if x ď u for all x P S, and there exists a y P S
for every ε ą 0 such that y ą u´ ε. The least upper bound exists for any S Ă R bounded from above due to

the continuity of the real numbers.

Definition D.9. A set S Ă R1 “ R is said to be bounded from below if there exists an l P R such that l ď x

for all x P S. l is called a lower bound of S.
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Remark. l̄ P R is said to be the greatest lower bound of S Ă R if l̄ ď x for all x P S, and there exists a y P S
for every ε ą 0 such that y ă l̄ ` ε. Analogously to the least upper bound, any S Ă R bounded from below

has the greatest lower bound.

Convergence of sequences

The following fundamental properties of infinite sequences of points in bounded subsets of Euclidean spaces

play a critical role in the proofs of the convergence of the AP algorithms.

Proposition D.10 (Monotone Convergence Theorem). Any monotonically decreasing sequence of real numbers

xp0q ě xp1q ě . . . ě xpiq ě . . . (62)

that is bounded from below converges to its greatest lower bound l̄, i.e., for every ε ą 0, there exists an Npεq
such that |xpiq ´ l̄| ă ε whenever i ą Npεq.

Remark. Analogously, any monotonically increasing sequence that is bounded from above converges to its least

upper bound.

Definition D.11. Consider a sequence xp0q,xp1q, . . . ,xpiq, . . . in Rn, i.e., xpiq P Rn for every i ě 0. Another

sequence xpk0q,xpk1q, . . . ,xpkiq, . . . in Rn generated by removing some of the elements of the original sequence

is called a subsequence of the latter. Note that ki ą kj for all i ą j ě 0, and ki ě i for every i ě 0 here.

Proposition D.12 (Bolzano-Weierstrass Theorem). Any bounded infinite sequence xp0q,xp1q, . . . ,xpiq, . . . in Rn

has an infinite subsequence xpk0q,xpk1q, . . . ,xpkiq, . . . that converges to a particular x: P Rn, i.e., for any ε ą 0,

there exists an Npεq such that }xpkiq ´ x:}2 ă ε whenever i ą Npεq.

Metric projections

The central operation around which AP algorithms are built is that of a metric projection.

Definition D.13. An element xz of a closed subset S of Rn is said to be a metric projection of z P Rn onto S
if }xz ´ z}2 ď }x´ z}2 for all x P S. We denote a transformation that assigns an xz P S to every z P Rn by

PS : Rn Ñ S.

Remark. PS generalizes the linear projection operator that assigns an element of a linear space to one of its

subspaces (see, e.g., [2, p. 223]). For the sake of brevity, we skip the qualifier “metric” and refer to PS as “a

projection” in the sequel.

Proposition D.14 (see Theoreom 5.11 in [3]). A projection of any element of Rn onto its closed convex subset

S exists and is unique.
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Inequalities

Two important inequalities that we use extensively in the convergence proofs of AP algorithms apply to

Euclidean spaces.

Proposition D.15 (Triangle Inequality).

}x` y}2 ď }x}2 ` }y}2 @x P Rn,@y P Rn. (63)

Remark. Another inequality relevant to us follows from (63). In particular, let us consider some a,b, c P Rn. If we

define x “ a´b and y “ b´c, then (63) implies }a´c}2 ď }a´b}2`}b´c}2, i.e., }a´b}2 ě }c´a}2´}c´b}2.

On the other hand, setting x “ c ´ a and y “ a ´ b, we obtain }c ´ b}2 ď }c ´ a}2 ` }a ´ b}2, i.e.,

}a´ b}2 ě ´p}c´ a}2 ´ }c´ b}2q. Thus,

}a´ b}2 ě
ˇ̌}c´ a}2 ´ }c´ b}2

ˇ̌ @a P Rn,@b P Rn,@c P Rn. (64)

Proposition D.16 (Containing-Half-Space Inequality, see Theoreom 5.13 in [3]). If S Ă Rn is closed and

convex, then

xx´PSrxs,PSrxs ´ yy ě 0 @x P Rn,@y P S. (65)

Remark. S belongs to a half-space Hx “ tz P Rn : xx´PSrxs,PSrxs ´ zy ě 0u, which is defined for every

x P pRnzSq. PSrxs is a boundary point of the Hx.

E. PROPERTIES OF THE CONSTRAINT SETS AND ASSOCIATED METRIC PROJECTIONS

In this section, we establish the convexity, closedness, and other relevant properties of the constraint sets Sě|s|
and S$ that lay the basis for the formulation of the AP demodulation algorithms and determine their convergence

properties. We then define the concrete metric projection operators of points in Rn onto Sě|s| and S$, which are

the main building blocks of the AP demodulation algorithms defined in Section III of the main text.

Properties of the constraint sets

The constraint sets Sě|s| and S$ that define the AP approach to demodulation introduced in Section II of the

main text have the following properties.

Proposition E.1. The set Sě|s| is convex and closed. Its interior is Sě̋|s| “ tx P Rn : xi ą |si|, i P Inu.
Proof. The range of values of each component xi of x P Sě|s| and yi of y P Sě|s| is r|si|,`8q Ă R. Obviously,

θ ¨ xi ` p1´ θq ¨ yi ě minrxi, yis ě |si|
and

θ ¨ xi ` p1´ θq ¨ yi ď maxrxi, yis ă `8,
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where θ P r0, 1s. Therefore,

θ ¨ xi ` p1´ θq ¨ yi P r|si|,`8q @θ P r0, 1s,@i P In.

This, in turn, implies θ ¨ x ` p1 ´ θq ¨ y P Sě|s| because the range of values of each component of x and y is

independent of the actual values of the remaining components. Hence, by Definition D.1, Sě|s| is convex.

To show that Sě|s| is closed, we first note that its complement Sě|s| “ RnzSě|s| is equal to tx P Rn : xi ă
|si|, i P Inu. For any x P Sě|s| and ε ď minr|s| ´ xs,13 there exists no y P Sě|s| such that }x´ y}2 ă ε. Thus,

none of the elements of Sě|s| are contact points of Sě|s|. On the other hand, trivially, all points of Sě|s| are its

contact points. Hence, Sě|s| coincides with the set of its contact points, i.e., it is a closed set.

To determine the interior of Sě|s|, let us denote

A0 “ tx P Rn : xi ą |si|, i P Inu,
Ai “ tx P Rn : xi “ |si|, xj ě |sj |, j P pInztiuqu @i P In.

By construction, Sě|s| “ A0 Y pYni“1Aiq. Next, we note that

ty P Rn : }x´ y}2 ă εu Ă Sě|s| @ ε ď minrx´ |s|s, @x P A0.

Thus, by Definition D.2, all points of A0 are interior points of Sě|s|. On the other hand, for all x P Ai and

ε ą 0, there exists a y P Rn such that }x ´ y}2 ă ε and y R Sě|s|. In particular, this is satisfied by y such

that yi “ xi ´ ε̄ with 0 ă ε̄ ă ε and yj “ xj for all j P pInztiuq. Therefore, none of x P Ai with i P In are

interior points of Sě|s|. Altogether, this allows us to conclude that the interior of Sě|s| is equal to A0. That A0

is nonempty follows straightforwardly from the fact that there exists an xi ą si for any si P R. �

Proposition E.2. The set S$ is convex, closed, and void of interior points. In particular, S$ is a linear subspace

of Rn.

Proof. It follows directly from the definition of Rn that

θ ¨ x` p1´ θq ¨ y P Rn @x P Rn,@y P Rn,@θ P r0, 1s, (66)

and thus,14

θ ¨ x$ ` p1´ θq ¨ y$ P Rn @xω P S$,@y$ P S$,@θ P r0, 1s. (67)

The definition of S$ implies that pFx$qi “ 0 and pFy$qi “ 0 for all x$ P S$, y$ P S$, and i P pInzI$n q,
so that

θ ¨ pFx$qi ` p1´ θq ¨ pFy$qi “ pFpθ ¨ x$ ` p1´ θq ¨ y$qqi “ 0 @i P pInzI$n q (68)

13Note that minr|s| ´ xs ą 0.
14Note that S$ Ă Rn.
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because of the linearity of the Fourier transform. Combining (67) and (68) with the definition of S$, we conclude

that θ ¨ x$ ` p1´ θq ¨ y$ P S$ for all x$ P S$, y$ P S$, i.e., S$ is convex.

To prove that S$ is closed, we show that no point of S$ is a contact point of S$. Indeed, the complement

of S$ in Rn is given by

S$ “
 
y P Rn :

ř
iPpInzI$

n qpFyq2i ą 0
(
. (69)

Let us consider some y P S$. Taking into account the definitions of S$ and S$ and the fact that F is unitary,

we have that, for any x P S$,

}x´ y}22 “ }Fpx´ yq}22 “ }Fx´ Fy}22
“ ř

iPI$
n
ppFxqi ´ pFyqiq2 `ř

iPpInzI$
n qpFyq2i

ě ř
iPpInzI$

n qpFyq2i ą 0.

(70)

Thus, for every y P S$, there exist no x P S$ such that }x ´ y}2 ă ε with ε “
bř

iPpInzI$
n qpFyq2i , which

means that none of the elements of S$ are contact points of S$. Therefore, S$ coincides with the set of its

contact points, i.e., it is closed.

It follows from the definition of S$ that y “ px` ε ¨ ep1qq R S$ for all x P S$ and ε ą 0, where ep1q is the

unit vector with all but its first components equal to zero. Indeed, pFep1qqi “ 1{?n ‰ 0 for all i P In. Moreover,

in that case, }x´ y}2 “ ε. Thus, for all x P S$ and ε ą 0, there exists a y P Rn such that }x´ y}2 ă ε and

y R S$, which means that Sě|s| has no interior points.

A necessary and sufficient condition for a subset S of a linear space Rn to be a subspace is that pα¨x`β¨yq P S
for all α P R, β P R, x P S, and y P S (see, e.g., [2, p. 121]). That this applies to S$ follows from the proof

of its convexity above if we replace θ and p1´ θq by, respectively, α and β. �

Proposition E.3. The intersection of sets Sě̋|s| and S$ is nonempty, i.e., there exists an x P Sě̋|s| X S$.

Consequently, Sě|s| X S$ is also nonempty.

Proof. Let us consider x “ λ ¨ 1, where 1 is an element of Rn with all its components equal to 1, and

λ ą maxrss. It follows directly from the definition of Sě|s| that x P Sě̋|s| Ă Sě|s|. It also follows from the

definitions of S$ and unitary discrete Fourier transform that pFxqi “ δi,0 ¨ ?n ¨ λ, i.e., x P S$. Therefore,

x P pSě̋|s| X S$q Ă pSě|s| X S$q. �

Remark. It is a direct consequence of Propositions D.6, E.1, and E.2 that Sě|s| X S$ is also closed and convex.

Metric projections onto Sě|s| and S$

The metric projections of any point in Rn onto its convex subsets relevant to us, i.e., Sě|s| and S$, are achieved

by the following operators.
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Proposition E.4. The metric projection operator PSě|s| is defined by the elementwise maximum of the target

signal s and the input argument z:

PSě|s| rzs “ |s| ` pz´ |s|q ˝ θpz´ |s|q. (71)

Proof. Note that

`
PSě|s| rzs

˘
i
“

$
&
%
zi, if zi ě |si|
|si|, if zi ă |si|

@i P In. (72)

Hence, a necessary and sufficient condition for transforming any z P Rn to x P Sě|s| is to increase every

component zi of z that does not satisfy zi ě |si| by at least |si| ´ zi, independent of values of the remaining

components. Now, we have from the definition of the Euclidean norm that

}z´ x}2 “
ařn

i“1pzi ´ xiq2 @z P Rn,@x P Sě|s|. (73)

Thus, for every z P Rn, }z´x}2 is minimized by an x P Sě|s| that is obtained by incrementing all components of

z that satisfy zi ă |si| by no more than necessary, i.e., by |si|´zi, and leaving the remaining components intact.

However, this is precisely how the operator PSě|s| is defined via (72). Therefore, by using the Definition D.13

of the projection, we conclude that PSě|s| projects z P Rn onto Sě|s|. �

Proposition E.5. The metric projection operator PS$
is defined by a rectangular low-pass-filter transformation

PS$
rzs “ pF´1 W$ Fq z “

ÿ

iPI$
n

xf piq, zy ¨ f piq. (74)

Here, f piq is the i-th column of the DFT matrix F. W$ is a diagonal matrix such that

pW$qii “
$
&
%

1, if i P I$n
0, otherwise

. (75)

Proof. Let us consider an element of the set S$ expressed by x “ ř
iPI$

n
ai ¨ f piq. It follows from the definition

of the Euclidean norm (see Section II in the main text) that

}x´ z}22 “
Bˆ

z´
ÿ

iPI$
n

ai ¨ f piq
˙
,

ˆ
z´

ÿ

iPI$
n

ai ¨ f piq
˙F

“ xz, zy ´ 2 ¨
ÿ

iPI$
n

ai ¨ xf piq, zy `
ÿ

iPI$
n

a2i

“ xz, zy ´
ÿ

iPI$
n

xf piq, zy2 `
ÿ

iPI$
n

pai ´ xf piq, zyq2 .

(76)

When writing the second equality above, we used the fact that tf p1q, f p2q, . . . , f pnqu are orthonormal. It follows

from the last equality of (76) that }x´ z}2, as a function of ai, is minimized by ai “ xf piq, zy for every i P I$n .

Thus, by Definition D.13,
ř
iPI$

n
xf piq, zy ¨ f piq “ PS$

rzs is the projection of z onto S$. �

Remark. PS$
is a linear operator, whereas PSě|s| is not.
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F. CONVERGENCE PROOFS

Here, we provide proofs of the propositions concerning the convergence of the AP algorithms that are

formulated in Section III of the main text. The proofs are adapted for finite-dimensional Euclidean spaces

and exploit the particular structure of the modulator constraint sets.15 For the sake of convenience, we repeat

the original assertions as well.

AP-B algorithm

Proposition III.1. A sequence mp0q,mp1q, . . . ,mpiq, . . . formed by the AP-B algorithm for εtol “ 0 and Niter Ñ
`8 converges to some m: P Sě|s| X S$. The convergence is geometric and monotonic, i.e., there exist γ ą 0

and 0 ă r ă 1 such that }mpiq ´m:}2 ď γ ¨ ri and }mpi`1q ´m:}2 ď }mpiq ´m:}2 for i ě 0.

Proof. If the sequence mp0q,mp1q, . . . ,mpiq, . . . terminates with some mpNq, i.e., mpN`jq “ mpNq for every

j ą 0, it follows from the formulation of the AP-B algorithm that mpNq “ apNq, i.e., mpNq P Sě|s| X S$.16

Thus, mpNq “ m:, which means that the solution is achieved in a finite number of iterations. We next consider

the case when the sequence mp0q,mp1q, . . . ,mpiq, . . . is infinite. The rest of the proof is divided into three parts

for clarity.

Convergence. The outline of the convergence proof is as follows. We first demonstrate that the distance

between any x P Sě|s| X S$ and mpiq or apiq decreases with every iteration. Using this, we then show that the

sequence mp0q,mp1q, . . . ,mpiq, . . . is bounded, and thus, by the Bolzano-Weierstrass theorem and closedness

of Sě|s| and S$, has a subsequence that converges to some m: P Sě|s| X S$. Referring to the first result again

(that the distance between any x P Sě|s| X S$ and mpiq decreases with every iteration), we finally deduce that

the original sequence mp0q,mp1q, . . . ,mpiq, . . . converges to the same m: P Sě|s| X S$ as any of its infinite

subsequences.

Sě|s| X S$ is nonempty by Proposition E.3. Let us consider some x P Sě|s| X S$ together with mpiq and apiq

taken from the sequences mp0q,mp1q, . . . ,mpiq, . . . and ap0q,ap1q, . . . ,apiq, . . . for some i ě 0. Then, we have

}x´mpiq}22 “ }x´ api`1q ` api`1q ´mpiq}22
“ }x´ api`1q}22loooooomoooooon

ě0
`}api`1q ´mpiq}22loooooooomoooooooon

ě0
`2 ¨ xmpiq ´ api`1q,api`1q ´ xyloooooooooooooooomoooooooooooooooon

ě0
. (77)

The nonnegativity of the last term in the second line of (77) follows from the containing-half-space inequality

(65) and api`1q “ PS$
rmpiqs. Therefore, (77) implies that

}x´mpiq}22 ě }x´ api`1q}22 ` }api`1q ´mpiq}22 @i ě 0 (78)

15For the foundations of AP algorithms in a more general context of arbitrary closed convex subsets of Hilbert spaces, we refer an

interested reader to the seminal works by Bregman [4], Gurin et al. [5], and Boyle & Dykstra [6].
16We remind the reader that apiq “ PS$ rmpi´1qs for any i ą 0 in the case of the AP-B algorithm.



AP ALGORITHMS 23

and

}x´mpiq}2 ě }x´ api`1q}2 @i ě 0. (79)

Replacing mpiq by api`1q and api`1q by mpi`1q in (77), and using the same argumentation as above, including

mpi`1q “ PSě|s| rapi`1qs, we deduce that

}x´ api`1q}22 ě }x´mpi`1q}22 ` }mpi`1q ´ api`1q}22 @i ě ´1 (80)

and

}x´ api`1q}2 ě }x´mpi`1q}2 @i ě ´1. (81)

The validity of (80) and (81) for not only i ě 0 but also i “ ´1 follows from the particular initial conditions

of the AP-B algorithm. Combining (79) and (81) yields

}x´mp0q}2 ě }x´mp1q}2 ě . . . ě }x´mpiq}2 ě . . . (82)

and, equivalently,

}x´mp0q}22 ě }x´mp1q}22 ě . . . ě }x´mpiq}22 ě . . . . (83)

(83) states that the sequence }x´mp0q}22, }x´mp1q}22, . . . }x´mpiq}22, . . . is monotonically decreasing. This

sequence is bounded from below by 0 because of the nonnegativity of the norm, and therefore, it converges to

its greatest lower bound L ě 0 by the monotone convergence theorem (see Proposition D.10). Thus, for every

ε ą 0, there exists an Npεq such that 0 ď }x´mpiq}22 ´ L ď ε whenever i ą Npεq. It follows then from (79)

and (81) that L ď }x ´ api`1q}22 ď }x ´mpiq}22 ď L ` ε, so that 0 ď }x ´mpiq}22 ´ }x ´ api`1q}22 ă ε, and

because of (78), also 0 ď }api`1q ´mpiq}2 ă ?ε whenever i ą Npεq, i.e., the sequence }ap1q ´mp0q}2, }ap2q ´
mp1q}2, . . . , }apiq´mpi´1q}2, . . . converges to 0. If the sequence converges, then any of its infinite subsequences

(see Definition D.11) converges as well, because the removal of elements from the sequence does not change

the validity of the convergence condition:

@ε ą 0 DN 1pεq : i ą N 1pεq ùñ }apki`1q ´mpkiq}2 ă ε, (84)

where ki ą kj for i ą j ě 0 and ki ě i for i ě 0.

Next, we have from the triangle inequality (63) that

}mpiq ´mpjq}2 ď }x´mpiq}2 ` }x´mpjq}2 @i, j ě 0. (85)

Moreover, according to (82), }x´mpiq}2 ď }x´mp0q}2 for i ě 0. Thus, for all i, j ě 0,

}mpiq ´mpjq}2 ď 2 ¨ }x´mp0q}2, (86)
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i.e., the sequence mp0q,mp1q, . . . ,mpiq, . . . is bounded (see Definition D.7). Consequently, according to the

Bolzano-Weierstrass theorem (see Proposition D.12), this sequence has a subsequence mpk0q,mpk1q, . . . ,mpkiq, . . .
that converges to some m: P Rn:

@ε ą 0 DN2pεq : i ą N2pεq ùñ }m: ´mpkiq}2 ă ε. (87)

We show now that m: P Sě|s| X S$. By construction, mpiq P Sě|s| for every i ě 0. According to (87),

there exists an mpiq for any ε ą 0 such that }mpiq ´ m:}2 ă ε. Hence, m: is a contact point of Sě|s| (see

Definition D.4). Moreover, because the latter set is closed (see Definition D.5 and Proposition E.1), m: P Sě|s|.
Next, by exploiting the triangle inequality (63), we can write

}m: ´ apki`1q}2 ď }apki`1q ´mpkiq}2 ` }m: ´mpkiq}2 @i ě 0. (88)

Combining (88) with (84) and (87) and introducing N3pεq “ maxrN 1pε{2q, N2pε{2qs, we get

@ε ą 0 DN3pεq : i ą N3pεq ùñ }m: ´ apki`1q}2 ă ε, (89)

i.e., the subsequence apk0`1q,apk1`1q, . . . ,apki`1q, . . . converges to m:. The set S$ is closed (see Proposi-

tion E.2), and apiq P S$ for every i ě 0 by construction. Therefore, using the same argumentation as for the

subsequence mpk0q, mpk1q, . . . ,mpkiq, . . ., we conclude that m: P S$.

Finally, because m: P Sě|s| X S$, (82) gives

}m: ´mp0q}2 ě }m: ´mp1q}2 ě . . . ě }m: ´mpiq}2 ě . . . . (90)

In the light of (90), the statement of (87) generalizes to

@ε ą 0 DN4pεq : i ą N4pεq ùñ }m: ´mpiq}2 ă ε, (91)

where N4pεq “ kN2pεq`1. Thus, the sequence mp0q, mp1q, . . . ,mpiq, . . . converges to m: P Sě|s| X S$.

Monotonicity. The monotonicity of the convergence of the sequence mp0q,mp1q, . . . ,mpiq, . . . to m: is declared

by (90).

Rate. The key point in establishing the geometric convergence of the AP-B algorithm is the fact that the

intersection of S$ and the interior of Sě|s| is nonempty. Using this fact, we first show that the distances between

mpiq and Sě̋|s|XS$ or api`1q and Sě̋|s|XS$ can be bounded by, respectively, }mpiq´api`1q}2 or }mpi`1q´api`1q}2
multiplied by a universal factor that is greater than one and independent of the iteration number i. In the next step,

we exploit properties of metric projections to obtain two additional inequalities, which, in combination with the

first result, allow deriving a decreasing geometric sequence that bounds }mp0q´m:}2, }mp1q´m:}2, . . . , }mpiq´
m:}2, . . . from above.
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To start, let us consider some x P Sě̋|s| XS$. Such an element exists according to Proposition E.3. Also, there

exists an ε ą 0 such that y P Sě|s| if }x´y}2 ă ε because x belongs to the interior of Sě|s| (see Definition D.2).

If so, then it is also possible to choose a positive β ă ε such that y P Sě|s| if }x´ y}2 ď β. We now introduce

zpiq “ αi
αi ` β ¨ x`

β

αi ` β ¨ a
piq, i ě 0, (92)

where αi “ }apiq´PSě|s| rapiqs}2 “ }apiq´mpiq}2. Note that αi{pαi`βq P p0, 1q, and β{pαi`βq “ 1´αi{pαi`βq.
Moreover, x P S$, and apiq P S$ by construction. Therefore, by the Definition D.1 of a convex set and the fact

that S$ is convex (see Proposition E.2), we have zpiq P S$. On the other hand, (92) can be rewritten as

zpiq “ αi
αi ` β ¨

´
x` β

αi
¨ papiq ´mpiqq

¯

loooooooooooooomoooooooooooooon
y1

` β

αi ` β ¨m
piq. (93)

In the above expression, }x ´ y1}2 “ β. Therefore, y1 P Sě|s| by the definition of β. Moreover, mpiq P Sě|s|
by construction, which implies zpiq P Sě|s| because Sě|s| is convex (see Proposition E.1). Hence, altogether, we

conclude that zpiq P Sě|s| X S$ for i ě 0.

Based on the above consideration, we show now that

}mpiq ´PSě|s|XS$
rmpiqs}2 ď }mpiq ´ api`1q}2 ¨ p1` }x´mp0q}2{βq (94)

and

}api`1q ´PSě|s|XS$
rapi`1qs}2 ď }mpi`1q ´ api`1q}2 ¨ p1` }x´mp0q}2{βq (95)

for i ě 0. To demonstrate (94), note that

}mpiq ´PSě|s|XS$
rmpiqs}2 ď }mpiq ´ zpiq}2

ď }mpiq ´ api`1q}2 ` }api`1q ´ zpi`1q}2
“ }mpiq ´ api`1q}2 ` αi`1

αi`1 ` β ¨ }x´ api`1q}2
ď }mpiq ´ api`1q}2 ` αi`1

β
¨ }x´mp0q}2

“ }mpiq ´ api`1q}2 ` }m
pi`1q ´ api`1q}2

β
¨ }x´mp0q}2

ď }mpiq ´ api`1q}2 ` }m
piq ´ api`1q}2

β
¨ }x´mp0q}2.

(96)

In (96), we used the fact that z P Sě|s| XS$ and the Definition D.13 of the projection operator (the first line), the

triangle inequality (63) (the second line), (92) (the third line), combined inequalities (79) and (81) (the fourth
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line), and the Definition D.13 of the projection operator again (the last line). Similarly to (96), we can write

}api`1q ´PSě|s|XS$
rapi`1qs}2 ď }api`1q ´ zpi`1q}2

“ αi`1
αi`1 ` β ¨ }x´ api`1q}2

ď αi`1
β

¨ }x´mp0q}2
ď αi`1 ` αi`1

β
¨ }x´mp0q}2

“ }mpi`1q ´ api`1q}2 ` }m
pi`1q ´ api`1q}2

β
¨ }x´mp0q}2,

(97)

which proves (95).

Next, we derive two additional inequalities. In particular, we have

}mpiq ´PSě|s|XS$
rmpiqs}22 ´ }api`1q ´PSě|s|XS$

rapi`1qs}22
ě }mpiq ´PSě|s|XS$

rmpiqs}22 ´ }api`1q ´PSě|s|XS$
rmpiqs}22

“ }mpiq ´PSě|s|XS$
rmpiqs}22 ´ }papi`1q ´mpiqq ` pmpiq ´PSě|s|XS$

rmpiqsq}22
“ ´}api`1q ´mpiq}22 ` 2 ¨ xapi`1q ´mpiq,PSě|s|XS$

rmpiqs ´mpiqy
“ ´}api`1q ´mpiq}22 ` 2 ¨ xapi`1q ´mpiq, pPSě|s|XS$

rmpiqs ´ api`1qq ` papi`1q ´mpiqqy
“ }api`1q ´mpiq}22 ` 2 ¨ xmpiq ´ api`1q,api`1q ´PSě|s|XS$

rmpiqsylooooooooooooooooooooooooomooooooooooooooooooooooooon
ě0

ě }api`1q ´mpiq}22
(98)

for i ě 0. Thus,

}mpiq ´PSě|s|XS$
rmpiqs}22 ´ }api`1q ´PSě|s|XS$

rapi`1qs}22 ě }mpiq ´ api`1q}22, i ě 0. (99)

In (98), we used the Definition D.13 of the projection operator (the second line) and the containing-half-space

inequality (65) along with mpiq “ PSě|s| rapiqs (the sixth line). Replacing api`1q by mpi`1q and mpiq by api`1q

and repeating the same steps as in (98), we obtain

}api`1q ´PSě|s|XS$
rapi`1qs}22 ´ }mpi`1q ´PSě|s|XS$

rmpi`1qs}22 ě }mpi`1q ´ api`1q}22, i ě 0. (100)

Combining (94) with (99) and (95) with (100), we obtain, respectively,
ˆ

1´ 1

p1` }x´mp0q}2{βq2
˙
¨ }mpiq ´PSě|s|XS$

rmpiqs}22 ě }api`1q ´PSě|s|XS$
rapi`1qs}22 (101)

and
ˆ

1´ 1

p1` }x´mp0q}2{βq2
˙
¨ }api`1q ´PSě|s|XS$

rapi`1qs}22 ě }mpi`1q ´PSě|s|XS$
rmpi`1qs}22, (102)
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which then lead to
ˆ

1´ 1

p1` }x´mp0q}2{βq2
˙

loooooooooooooooooomoooooooooooooooooon
ră1

¨}mpiq ´PSě|s|XS$
rmpiqs}2 ě }mpi`1q ´PSě|s|XS$

rmpi`1qs}2 (103)

for i ě 0. Starting with i “ 0 and applying (103) iteratively, we get

ri ¨ }mp0q ´PSě|s|XS$
rmp0qs}2 ě }mpiq ´PSě|s|XS$

rmpiqs}2, i ě 0. (104)

According to the triangle inequality (63),

}mpiq ´m:}2 ď }mpiq ´PSě|s|XS$
rmpiqs}2 ` }m: ´PSě|s|XS$

rmpiqs}2 (105)

and [see (64)]

}mpjq ´m:}2 ě
ˇ̌}mpjq ´PSě|s|XS$

rmpiqs}2 ´ }m: ´PSě|s|XS$
rmpiqs}2

ˇ̌
. (106)

(106) and (91) together imply that a sequence

}mp0q ´PSě|s|XS$
rmpiqs}2, }mp1q ´PSě|s|XS$

rmpiqs}2, . . . , }mpjq ´PSě|s|XS$
rmpiqs}2, . . . (107)

converges to }m: ´ PSě|s|XS$
rmpiqs}2 for every i ě 0. On the other hand, this sequence is monotonically

decreasing [see (82)], and thus, by the monotone convergence theorem (Proposition D.10), it converges to its

greatest lower bound, i.e., }mpjq ´PSě|s|XS$
rmpiqs}2 ě }m: ´PSě|s|XS$

rmpiqs}2 for all i, j ě 0. Consequently,

(105) reduces to

}mpiq ´m:}2 ď 2 ¨ }mpiq ´PSě|s|XS$
rmpiqs}2. (108)

Applying (108) to (104), we finally obtain

γ ¨ ri ě }mpiq ´m:}2, i ě 0, (109)

where γ “ 2 ¨ }mp0q ´PSě|s|XS$
rmp0qs}2 ą 0. �

Remark. 1) The convergence proof of the iterative scheme AP-B relies entirely on the convexity and closedness

of the constraint sets. Therefore, this algorithm extends to more general sets than Sě|s| and S$. 2) The geometric

nature of the convergence requires additionally that the interior of at least one of the constraint sets is nonempty

and shares elements with the other set.

Proposition III.2. Consider m P Mω and c P Cd with |cj | “ řn{ν
k“1pc̃ν¨k ¨ eı2πνpk´1qpj´1q{nq, where c̃ν¨k P C

and n{ν P N. If $ ě ω and ν ě $ ` ω ´ 1, then a sequence mp0q,mp1q, . . . ,mpiq, . . . formed by the AP-B

algorithm for εtol “ 0 and Niter Ñ `8 converges to m.

Proof. The proof relies on two auxiliary results that apply to the m and c specified in the proposition:
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‚ For every q P R,

z “ q ` p|c| ´ qq ˝ θp|c| ´ qq ùñ zj “
n{νÿ

k“1

`
z̃ν¨k ¨ eı2πνpk´1qpj´1q{n

˘
, j P In. (110)

‚ For z defined by (110),

PS$
rm ˝ zs “ xzy ¨m, (111)

where, x|z|y “ 1
n

řn
i“1 |zi|.

To show (110), consider a g P Rn whose elements form a periodic sequence with the fundamental frequency

ν P N such that n{ν P N. Like any element of Rn, g can be expressed through its DFT:

gj “ 1?
n

nÿ

k“1

`
˜̃gk ¨ eı2πpk´1qpj´1q{n

˘
, j P In. (112)

On the other hand, the periodicity of g1, g2, . . . , gn implies that, for every k P In,

˜̃gk “ pFgqk “ 1?
n

nÿ

j“1

`
gj ¨ e´ı2πpk´1qpj´1q{n

˘

“ 1?
n

n{νÿ

j“1
gj

νÿ

l“1
e´ı2πppl´1q¨pn{νq`pj´1qqpk´1q{n

“ 1?
n

n{νÿ

j“1

ˆ
gj ¨ e´ı2πpk´1qpj´1q{n

νÿ

l“1

`
e´ı2πpk´1q{ν

˘l´1
˙

“
ˆ

1´ e´ı2πpk´1q
1´ e´ı2πpk´1q{ν

˙

looooooooooomooooooooooon
“0, if ppk´1q{νqRN

¨ 1?
n

n{νÿ

j“1

`
gj ¨ e´ı2πpk´1qpj´1q{n

˘
.

(113)

Combining (112) and (113) gives

gj “ 1?
n

n{νÿ

k“1

`
g̃ν¨k ¨ eı2πνpk´1qpj´1q{n

˘
, j P In, (114)

where g̃ν¨k “ ˜̃gν¨pk´1q`1. Now, note that |c| defined in the proposition is also periodic with the fundamental

frequency ν such that n{ν P N. If so, then the same holds for z defined by (110) because adding a constant or

rectifying a function does not change its periodicity properties. Combining this result with (114) validates the

claim of (110).
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To show (111), consider W$Fpm ˝ zq. For every r P In, we have

pW$Fpm ˝ zqqr “ pW$qrr?
n

nÿ

j“1

`
mj ¨ zj ¨ e´ı2πpr´1qpj´1q{n

˘

“ pW$qrr?
n

nÿ

j“1

ˆ
mj ¨

„ nÿ

l“1

ˆ
zl ¨ 1

n

nÿ

k“1
eı2πpk´1qpj´lq{n

loooooooooooomoooooooooooon
δj,l

˙
¨ e´ı2πpr´1qpj´1q{n

˙

“ pW$qrr?
n

nÿ

k“1

ˆ
1?
n

nÿ

l“1

`
zl ¨ e´ı2πpk´1qpl´1q{n

˘ ¨ 1?
n

nÿ

j“1

`
mj ¨ e´ı2πpj´1qpr´kq{n

˘˙

“ pW$qrr?
n

nÿ

k“1

`
˜̃zk ¨ ˜̃mr´k

˘

“ ˜̃z1 ¨ pW$qrr?
n

¨ ˜̃mr ` pW$qrr?
n

n´ν`1ÿ

k“ν`1

`
˜̃zk ¨ ˜̃mr´k

looooooooooooooomooooooooooooooon
“0ðù ωď$ďν´ω`1

˘

“ xzy ¨ ˜̃mr.

(115)

When writing the second equality above, we used the orthonormality of F´1. Combining (115) with the definition

of PS$
r. . .s (see (10) in the main text), we obtain (111).

After establishing (110) and (111), consider the sequences mp0q,mp1q, . . . ,mpiq, . . . and ap0q,ap1q, . . . ,apiq, . . ..
Note that

mp0q “ m ˝ |c|
“ m ˝ `qp0q ` p|c| ´ qp0qq ˝ θp|c| ´ qp0qq˘,

(116)

where qp0q “ 0. Hence, mp0q can be expressed as an elementwise product of the true modulator m and a vector

that satisfies (110). Let us now assume that, for some i ě 1, mpiq can be expressed as

mpiq “ m ˝ `qpiq ` p|c| ´ qpiqq ˝ θp|c| ´ qpiqq˘. (117)

Then, by (111),

api`1q “ PS$
rmpiqs “ qpi`1q ¨m, (118)

where,

qpi`1q “ xqpiq ` p|c| ´ qpiqq ˝ θp|c| ´ qpiqqy. (119)

Further, by the definition of PSě|s| r. . .s (see (9) in the main text),

mpi`1q “ PSě|s| rapi`1qs
“ m ˝ `qpi`1q ` p|c| ´ qpi`1qq ˝ θp|c| ´ qpi`1qq˘,

(120)
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i.e., mpi`1q can also be expressed as the product of m and a vector that satisfies (110). Hence, we conclude by

using mathematical induction that, for every i ě 1,

apiq “ qpiq ¨m, (121)

and

qpiq “ xqpi´1q ` p|c| ´ qpi´1qq ˝ θp|c| ´ qpi´1qqy, (122)

with q0 “ 0.

Next, observe that, by (122),

qpiq ´ qpi´1q “ xp|c| ´ qpi´1qq ˝ θp|c| ´ qpi´1qqy
ě 0,

(123)

i.e., the sequence qp0q, qp1q, . . . , qpiq, . . . is monotonically increasing. Moreover, it follows from (122) that, for

every i ě 1,
qpi´1q ď 1 ùñ qpiq “ qpi´1q ` xp|c| ´ qpi´1qq ˝ θp|c| ´ qpi´1qqy

ď qpi´1q ` p1´ qpi´1qq ¨ θp1´ qpi´1qqloooooomoooooon
“1

“ 1. (124)

Taken together with qp0q “ 0, (124) implies that the sequence qp0q, qp1q, . . . , qpiq, . . . is bounded from above by

1. Hence, by the monotone convergence theorem (see Proposition D.10), qp0q, qp1q, . . . , qpiq, . . . converges to its

least upper bound q̄ ď 1. If we assume that q̄ ă 1, then the convergence of qp0q, qp1q, . . . , qpiq, . . . to q̄ implies

that there exists an N such that

q̄ ´ qpNq ď xp|c| ´ q̄q ˝ θp|c| ´ q̄qy{2. (125)

By (122),
qpN`1q ´ qpNq “ xp|c| ´ qpNqq ˝ θp|c| ´ qpNqqy

ě xp|c| ´ q̄q ˝ θp|c| ´ q̄qy
ą xp|c| ´ q̄q ˝ θp|c| ´ q̄qy{2,

(126)

which means that qpN`1q ą q̄, i.e., the initial assumption that q̄ ă 1 is incorrect. Therefore, q̄ “ 1, and

qp0q, qp1q, . . . , qpiq, . . . converges to 1, i.e.,

@ε ą 0 DNpεq : i ą Npεq ùñ |1´ qpNq| ă ε. (127)

Finally, note that
|1´ qpNq| ă ε ùñ }m}2 ¨ |1´ qpNq| ă }m}2 ¨ εlooomooon

ε1

ùñ }m´m ¨ qpNq}2 ă ε1

ùñ }m´ apNq}2 ă ε1looooooooomooooooooon
by (121)

,

(128)
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i.e., (127) implies that the sequence ap0q,ap1q, . . . ,apiq, . . . converges to m. In the light of (81) and (82) in the

proof of Proposition III.1, this result allows concluding that mp0q,mp1q, . . . ,mpiq, . . . also converges to m. �

AP-A algorithm

Proposition III.3. A sequence mp0q,mp1q, . . . ,mpiq, . . . formed by the AP-A algorithm for εtol “ 0 and Niter Ñ
`8 converges to some m: P Sě|s| X S$. The convergence is monotonic, i.e., }mpi`1q ´m:}2 ď }mpiq ´m:}2
for i ě 0.

Proof. Analogously to the AP-B algorithm, if the sequence mp0q,mp1q, . . . ,mpiq, . . . terminates with some finite

i “ N , then we have mpNq “ m: P Sě|s| X S$. Therefore, we next consider the case when the sequence is

infinite. The main idea behind the proof is to show that the inequalities (78) and (80) apply not only to the AP-B

but also to the AP-A algorithm. When that is established, we can proceed along the path of the convergence

proof of the AP-B scheme.

To this end, we first derive some auxiliary (in)equalities. Specifically, it follows from the definition of the

operator PS$
[see (74)] that, for all z,y P Rn,

xz,PS$
rysy “ zTF´1W$Fy “ zTF´1W$W$Fy “ zTF´1W$FF´1W$Fy

“ pzTF´1W$Fq˚pF´1W$Fyq “ pzTFW$F´1qpF´1W$Fyq
“ ppFW$F´1qTzqTpF´1W$Fyq “ pF´1W$FzqTpF´1W$Fyq
“ xPS$

rzs,PS$
rysy.

(129)

Here, T and * mark, respectively, the transposition and complex conjugation. We used the following properties

of matrices W$ and F in (129): 1) W$W$ “ W$; 2) W$̊ “ WT
$ “ W$; 3) F˚ “ F´1; and 4) FT “ F.

The result of (129) can be rewritten as

xz´PS$
rzs,PS$

rysy “ 0. (130)

(130) is a particular instance of a more general result that the difference between any z P Rn and its projection

onto a linear subspace of Rn is perpendicular to any element of that subspace. Using (130), we obtain the

following:

}z}22 “ xz, zy “ xPS$
rzs ` pz´PS$

rzsq,PS$
rzs ` pz´PS$

rzsqy
“ }PS$

rzs}22 ` }z´PS$
rzs}22

ě }PS$
rzs}22.

(131)

Applying (131) to the line 6 of the AP-A algorithm
`
λ “ }mpi´1q ´ api´1q}22{}bpiq}22

˘
, we get

λ ě 1, (132)
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with the equality holding if and only if pmpi´1q ´ api´1qq is mapped by PS$
to itself, i.e., mpi´1q P S$.

However, this would mean that the convergence was reached at iteration i ´ 1. Finally, we note that line 7 of

the AP-A algorithm
`
apiq “ api´1q ` λ ¨ bpiq˘ implies

pPS$
rmpiqs ´ api`1qq “ pλ´ 1q ¨ papiq ´PS$

rmpiqsq (133)

and

xmpiq ´ api`1q,mpiq ´ apiqy “ xmpiq ´ apiq,mpiq ´ apiqy ´ λ ¨ xPS$
rmpiqs ´ api`1q,mpiq ´ apiqqy

“ }mpiq ´ apiq}22 ´
}mpiq ´ apiq}22

}PS$
rmpiqs ´ apiq}22

¨ }PS$
rmpiqs ´ apiq}22

“ 0.

(134)

In (134) we applied (129) to the term xPS$
rmpiqs ´ api`1q,mpiq ´ apiqqy.

We are now ready to prove that (78) and (80) hold for the AP-A algorithm. In particular, we have

}x´mpiq}22 “ }x´ api`1q ` api`1q ´mpiq}22
“ }x´ api`1q}22 ` }api`1q ´mpiq}22 ` 2 ¨ xmpiq ´ api`1q,api`1q ´ xy.

(135)

The first two terms in the second line of (135) are nonnegative by the definition of the norm. The last term is

nonnegative too (note that x P Sě|s| X S$):

xmpiq ´ api`1q,api`1q ´ xy “ xmpiq ´PS$
rmpiqs `PS$

rmpiqs ´ api`1q,api`1q ´ xy

“ xmpiq ´PS$
rmpiqs,api`1q ´ xylooooooooooooooooooomooooooooooooooooooon

“0 by (130)

`xPS$
rmpiqs ´ api`1q,api`1q ´ xy

“ pλ´ 1q ¨ xapiq ´PS$
rmpiqs,api`1q ´ xylooooooooooooooooooooooooomooooooooooooooooooooooooon

by (133)

“ pλ´ 1q ¨ xapiq ´mpiq `mpiq ´PS$
rmpiqs,api`1q ´ xy

“ pλ´ 1q ¨ xmpiq ´PS$
rmpiqs,api`1q ´ xylooooooooooooooooooomooooooooooooooooooon

“0 by (130)

`pλ´ 1q ¨ xapiq ´mpiq,api`1q ´ xy

“ pλ´ 1q ¨ xapiq ´mpiq,api`1q ´mpiq `mpiq ´ xy
“ pλ´ 1q ¨ xapiq ´mpiq,api`1q ´mpiqyloooooooooooooooomoooooooooooooooon

“0 by (134)

` pλ´ 1qloomoon
ě0 by (132)

¨ xapiq ´mpiq,mpiq ´ xylooooooooooooomooooooooooooon
ě0 by (65)

ě 0.

(136)

Therefore,

}x´mpiq}22 ě }x´ api`1q}22 ` }api`1q ´mpiq}22. (137)
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The derivation of the inequality (80) for the AP-A algorithm is equivalent to that for the AP-B:

}x´ api`1q}22 “ }x´mpi`1q `mpi`1q ´ api`1q}22
“ }x´mpi`1q}22 ` }mpi`1q ´ api`1q}22 ` 2 ¨ xapi`1q ´mpi`1q,mpi`1q ´ xyloooooooooooooooooomoooooooooooooooooon

ě0 by (65)

. (138)

Thus,

}x´ api`1q}22 ě }x´mpi`1q}22 ` }mpi`1q ´ api`1q}22. (139)

The rest of the proof follows step by step the proof of Proposition III.1. Indeed, starting with the inequalities

(78) and (80), to which (137) and (139) are equivalent, the proof of Proposition III.1 proceeds based on them

and the closedness and convexity of the sets Sě|s| and S$ entirely. The monotonicity of the convergence follows

from an equivalent of (90), which is derived as a part of the proof of the convergence itself.

�

Remark. 1) Concerning the set Sě|s|, the proof above relies entirely on its closedness and convexity. Thus, the

AP-A algorithm is still valid under these more general assumptions. 2) The expressions (129) – (134) apply

to projection operators onto any linear space. Hence, the AP-A algorithm still works if S$ is replaced by an

arbitrary linear space.

Proposition III.4. Consider m P Mω and c P Cd with |cj | “ řn{ν
k“1pc̃ν¨k ¨ eı2πνpk´1qpj´1q{nq, where c̃ν¨k P C

and n{ν P N. If $ ě ω and ν ě $ ` ω ´ 1, then a sequence mp0q,mp1q, . . . ,mpiq, . . . formed by the AP-A

algorithm for εtol “ 0 and Niter Ñ `8 converges to m.

Proof. The proof of this proposition goes along the lines of that of Proposition III.2. First, by using (110)

and (111), we derive the result analogous to (121) and (122). Then, we show the monotonic convergence of

qp0q, qp1q, . . . , qpiq, . . . to 1, which assures the convergence of ap0q,ap1q, . . . ,apiq, . . . and mp0q,mp1q, . . . ,mpiq, . . .
to m.

To derive the result analogous to (121) and (122), assume that, for some i ě 0 and qpiq P R,

apiq “ qpiq ¨m,

mpiq “ m ˝ `qpiq ` p|c| ´ qpiqq ˝ θp|c| ´ qpiqq˘.
(140)

First, note that (140) applies when i “ 0 with qp0q “ 0. Next, by the definition of the AP-A algorithm, we have

bpi`1q “ PS$
rmpiq ´ apiqs

“ PS$
rmpiqs ´ apiq

“ PS$
rm ˝ `qpiq ` p|c| ´ qpiqq ˝ θp|c| ´ qpiqq˘s ´ qpiq ¨m

“ xp|c| ´ qpiqq ˝ θp|c| ´ qpiqqy ¨mlooooooooooooooooooomooooooooooooooooooon
by (110) and (111)

,

(141)
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λ “ }m
piq ´ apiq}2
}bpi`1q}2

“ }p|c| ´ qpiqq ˝ θp|c| ´ qpiqq ˝m}2
xp|c| ´ qpiqq ˝ θp|c| ´ qpiqqy ¨ }m}2 ,

(142)

api`1q “ apiq ` λ ¨ bpi`1q

“
ˆ
qpiq ` }p|c| ´ q

piqq ˝ θp|c| ´ qpiqq ˝m}2
}m}2

˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
qpi`1q

¨m, (143)

and
mpi`1q “ PSě|s| rapi`1qs,

“ m ˝ `qpi`1q ` p|c| ´ qpi`1qq ˝ θp|c| ´ qpi`1qq˘.
(144)

Applying the principle of mathematical induction to the above results, we conclude that, for any i ě 0,

apiq “ qpiq ¨m, (145)

qpiq “
ˆ
qpi´1q ` }p|c| ´ q

pi´1qq ˝ θp|c| ´ qpi´1qq ˝m}2
}m}2

˙
, (146)

with qp0q “ 0.

By (146),

qpiq ´ qpi´1q “ }p|c| ´ q
pi´1qq ˝ θp|c| ´ qpi´1qq ˝m}2

}m}2
ě 0,

(147)

i.e., the sequence qp0q, qp1q, . . . is monotonically increasing. Moreover, it follows from (146) that, for every i ě 1,

qpi´1q ď 1 ùñ qpiq “
ˆ
qpi´1q ` }p|c| ´ q

pi´1qq ˝ θp|c| ´ qpi´1qq ˝m}2
}m}2

˙

ď
ˆ
qpi´1q ` }p1´ q

pi´1qq ¨m}2
}m}2

˙
“ 1,

(148)

Taken together with qp0q “ 0, (148) implies that the sequence qp0q, qp1q, . . . , qpiq, . . . is bounded from above by

1. Hence, by the monotone convergence theorem (see Proposition D.10), qp0q, qp1q, . . . , qpiq, . . . converges to its

least upper bound q̄ ď 1. If we assume that q̄ ă 1, then the convergence of qp0q, qp1q, . . . , qpiq, . . . to q̄ implies

that there exists an N such that

q̄ ´ qpNq ď 1

2
¨ }p|c| ´ q̄q ˝ θp|c| ´ q̄q ˝m}2

}m}2 . (149)

By (146),

qpN`1q ´ qpNq “ }p|c| ´ q
pNqq ˝ θp|c| ´ qpNqq ˝m}2

}m}2
ě }p|c| ´ q̄q ˝ θp|c| ´ q̄q ˝m}2

}m}2
ą 1

2
¨ }p|c| ´ q̄q ˝ θp|c| ´ q̄q ˝m}2

}m}2 ,

(150)
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which means that qpN`1q ą q̄, i.e., the initial assumption that q̄ ă 1 is incorrect. Therefore, q̄ “ 1, and

qp0q, qp1q, . . . , qpiq, . . . converges to 1. This, as shown in the last paragraph of the proof of Proposition III.2,

implies that ap0q,ap1q, . . . ,apiq, . . . and mp0q,mp1q, . . . ,mpiq, . . . converge to m. �

AP-P algorithm

Proposition III.5. A sequence mp0q,mp1q, . . . ,mpiq, . . . formed by the AP-P algorithm for εtol “ 0 and Niter Ñ
`8 converges to a unique m: P Sě|s| X S$ such that }m:}2 ď }x}2 for every x P Sě|s| X S$. The convergence

is monotonic, i.e., }mpi`1q ´m:}2 ď }mpiq ´m:}2 for i ě 0.

Proof. The proof follows as a corollary of a more general theorem proved for a finite number of closed convex

sets in a Hilbert space by Boyle and Dykstra [6, Theorem 2]. Specifically, for mp0q “ 0 and particular constraint

sets Sě|s| and S$, the sequence mp0q,mp1q, . . . ,mpiq, . . . formed by the algorithm formulated there (the so-called

Dykstra’s algorithm) converges to a unique m: P Sě|s| X S$ such that }m:}2 ď }x}2 for any x P Sě|s| X S$.

For our purposes, it is thus enough to show that the sequence mp0q,mp1q, . . . ,mpiq, . . . generated by the AP-P

algorithm converges to the same m:.

First, we observe that Dykstra’s algorithm formally turns into the AP-P (except the difference in the initial

conditions) if we set r “ 2, denote gi,1 ” api´1q, gi,2 ” mpi´1q, Ii,2 ” cpi´1q, and assign Ii,1 ” 0 there (see

Theorem 2 in [6]). Note that, originally, Ii,1 “ gi,1 ´ pgi,2 ´ Ii´1,1q and gi,1 “ PS$
rgi´1,2 ´ Ii´1,1s. However,

due to the linearity of PS$
[see (74)], we have

gi,1 “ PS$
rgi´1,2s `PS$

rIi´1,1s
“ PS$

rgi´1,2s `PS$
rgi´1,1slooooomooooon

“gi´1,1

´PS$
rgi´1,2slooooomooooon

“gi´1,1

`PS$
rIi´2,1s

“ PS$
rgi´1,2s `PS$

rIi´2,1s.

(151)

Applying (151) iteratively, we obtain gi,1 “ PS$
rgi´1,2s ` PS$

rI0,1s “ PS$
rgi´1,2s because I0,1 “ 0 by

construction. Therefore, given the constraint sets Sě|s| and S$, Ii,1 can indeed be canceled from the Dykstra’s

algorithm by setting it to 0 without any consequences to its convergence properties.

Further, assuming mp0q “ cp0q “ 0, we can verify that Dykstra’s algorithm after the first iteration coincides

with the initialized AP-P algorithm, i.e., the latter is shifted forward by one iteration with respect to the former.

Hence, the sequence mp0q,mp1q, . . . ,mpiq, . . . generated by the AP-P converges to the same m: P Sě|s| XS$ as

the analogous sequence formed by the Dykstra’s algorithm initialized with mp0q “ 0.

The monotonicity of the convergence of Dykstra’s, and thus the AP-P, algorithms follows from the fact that all

terms on the right-hand side of [6, (3.2)] are nonnegative and that each subsequent iteration only adds additional

terms without discarding the old ones. �
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G. LOWER BOUND ON THE CONVERGENCE ERROR

The proof of the statement about the lower bound on the convergence error made in Sections III-A and III-B

of the main text are presented here.

Proposition G.1. In the case of the AP-B and AP-A algorithms, the convergence error }mpi´1q ´m:}2{?n is

bounded from below by the infeasibility error εpiq for any i ě 1.

Proof. According to (79), which applies to both the AP-B and AP-A algorithms,

}mpi´1q ´m:}2{
?
n ě }apiq ´m:}2{

?
n @i ě 1. (152)

Moreover, by the Definition D.13 of the projection operator and the fact that m: P Sě|s|, we have

}apiq ´m:}2{
?
n ě }apiq ´PSě|s| rapiqs}2{

?
n “ }apiq ´mpiq}2{

?
n “ εpiq @i ě 1. (153)

Thus, }mpi´1q ´m:}2{?n ě εpiq for all i ě 1. �

Remark. Using the Definition D.13 of the projection operator and the fact that m: P S$, we similarly conclude

that

}mpiq ´m:}2{
?
n ě }mpiq ´PS$

rmpiqs}2{
?
n @i ě 0. (154)

(154) also applies in the context of the AP-P algorithm.
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H. TYPES OF WIDEBAND CARRIERS FOUND IN PRACTICE

Wideband carriers found in practice fall into three main classes: 1) (quasi-)harmonic; 2) (quasi-)random; and

3) spike-train. Below, we provide examples of real-world signals featuring these carrier types and applications

of their demodulation.

The need for demodulating signals formed of harmonic carriers is well recognized in acoustic imaging [7],

[8]. There, sinusoidal wavepackets are used as probing signals. However, in many situations, the interaction

between sound and matter is nonlinear. This makes the returning waves, whose time-dependent amplitude carries

information about the imaged object, harmonic. The possibility of efficient and accurate demodulation of signals

of this type would also allow generalizing the probing wave packets themselves from sinusoidal to harmonic.

A representative example of quasi-random carriers manifests in surface electromyography. In particular, an

electrical signal detected at the skin surface during the skeletal muscle activity is an amplitude-modulated colored

noise resulting from low-pass filtering of electric pulse trains generated by a large set of conditionally independent

muscle fibers [9, Ch. 5]. The amplitude component of the recorded electrical signal carries information about

the force pattern generated by the muscle being studied [10], [11] (see Fig. 11 for an example).

f s = 500 Hz

= 6 Hz

0 2 4 6 8 10 12 14 16
t (s)

0

1

x

Fig. 11. Demodulation of an electromyogram. The figure shows a 16 s long absolute-value electromyogram signal corresponding to the

response of a flexor carpi ulnaris muscle (forearm) to three consecutive grasps of a spherical object (grey) and its modulator inferred by

using the AP-A algorithm (red). The original recording was taken from [12], [13].

Probably the most elaborate applications of amplitude demodulation in the context of wideband signals are

found in human speech processing. Speech signals are built of temporarily structured segments of quasi-harmonic

and quasi-random carriers [14] that are amplitude-modulated at different timescales [15], [16]. Amplitude

demodulation of broad-band, as well as sub-band speech demodulation, is widely exploited in automatic speech

recognition [17], [18], [19], hearing restoration [20], [21] tasks, and fundamental studies of the neural mechanisms

of auditory information processing in the brain [22], [23], [24], [25]. In all these cases, the modulators and carriers

convey the information about specific aspects of speech, e.g., semantic meaning, associated emotion, or speaker

identity, that need to be extracted. Demodulation of signals with mixed quasi-harmonic and quasi-random carrier

types is also known in diagnostic phonocardiography [26], [27]. There, the extracted modulators of heart sounds

are used for the detection of events of normal or abnormal functioning of this organ.
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One of the most popular applications using demodulation of signals built of the spike-train type carriers is

the Pulse-Code Modulation (PCM) protocol [28]. There, pulses are regularly spaced with specified locations

and have a known constant amplitude and vanishing width.17 More complex quasi-regular or stochastic pulse

sequences of finite width manifest in electric activities of the cardiac muscles and neurons [9, Ch. 6], [29,

Ch. 1]. Physiological and diagnostic information contained in these responses is typically associated with the

microstructure and timing of the pulses. However, these recordings often come contaminated by artifacts or other

physiological signals that slowly modulate the baseline and amplitude of the pulses [30], [9, Ch. 7.1]. Hence, to

separate the fast cardiac or neural activity (the carrier) from other slowly changing physiological processes or

artifacts (the modulator), the raw signal must be demodulated [30] (see Fig. 12 for an example). Finally, as we

discuss in Sections IX.A and IX.B of the main text, carriers of the spike-train type also effectively manifest in

applications when modulator recovery from nonuniformly or sparsely sampled signals of any origin is needed.
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Fig. 12. Demodulation of an electrocardiogram. A: A 30 s long fragment of an electrocardiogram recording (black) and its upper

(red) and lower (blue) envelopes inferred by using the AP-A algorithm.19 B: The first 15 s of the recovered carrier, i.e., the desired

electrocardiogram with canceled artifacts. C: The first 15 s of the respiratory curve estimated from the upper and lower envelopes of the

original signal in panel A. The original recording was taken from [31], [32].

I. SYNTHETIC TEST SIGNALS

The mathematical models and numerical sampling algorithms of synthetic modulators and carriers examined

in this work are described next.

17These properties enable the pulse-coded signals to be demodulated by a simple low-pass filtering procedure [28].
19Here, we define the upper envelope of a signal s as m`minrss ¨ 1, where m is the modulator of s´minrss ¨ 1. Accordingly, the

lower envelope of s is defined as the negative upper envelope of ´s.
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Modulators (recovery tests)

For signal recovery tests discussed in Section C, modulators were generated by uniformly sampling from Mω.

Without loss of generality, we assumed the subset of Mω whose elements’ norms are fixed to
?
n. The sampling

was achieved by using a specially adapted version of the Metropolis-Hastings algorithm (see [33, p. 411] for an

introduction to this method). In the concrete, starting with some mp0q PMω, a sequence mp0q,mp1q, . . . defined

by

mpiq “
$
&
%

?
n ¨ rpiq{}rpiq}2, if rpiqj ě 0 @j P In

mpi´1q, otherwise
(155)

for i ě 1 was generated. Here,

rpiq “ mpi´1q ` F´1gpiq, (156)

and gpiq P Cn such that

Re
`
g
piq
1

˘ „ N p0, σq, Im
`
g
piq
1

˘ “ 0,

Re
`
g
piq
j

˘ „ N p0, σq, Im
`
g
piq
j

˘ „ N p0, σq, 2 ď j ď ω,

g
piq
j “ `

g
piq
n`2´j

˘˚
, n` 2´ ω ď j ď n,

g
piq
j “ 0, ω ` 1 ď j ď n` 1´ ω,

(157)

and gj KK gk for j ‰ k. We adjusted the parameter σ in (157) to achieve the acceptance rate of the sampling

scheme (155) between 0.4 and 0.6. The initial mp0q was taken as

mp0q “ ?n ¨ pgp0q ´minrgp0qs ¨ 1q{}gp0q ´minrgp0qs ¨ 1}2. (158)

The iterative process generating the sequence mp0q,mp1q, . . . was terminated upon the first instance of adherence

to the following equilibration criterion of the underlying Markov chain:

1

2ω ´ 2
¨
ωÿ

j“2

ˇ̌
ˇ̌
ˇ
1

i
¨
iÿ

l“1
pFmplqqj

ˇ̌
ˇ̌
ˇ

2

ă 0.01 ¨ n

2ω ´ 1
. (159)

The corresponding mpiq was then chosen as a sample point from Mω.

Modulators (performance tests)

For the performance, convergence, and robustness tests of the demodulation algorithm discussed in Sec-

tions IV – VI of the main text, two types of modulators were considered:

‚ Nonstationary Gaussian modulators were produced by transforming a delta-correlated Gaussian process

with a time-dependent low-pass filter. Specifically, m was calculated as

m “ w ˝ pm1 ´minrm1s ¨ 1q{maxrm1 ´minrm1s ¨ 1s, (160)
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with w being a window “function” (see (169)), and m1 defined by

m1i “
nÿ

j“1

´
g
p0q
j ¨ `F´1hpiq˘

i´j
¯
, i P In. (161)

In (161), for every i P In,

Re
`
h
piq
1

˘ „ `
PSω

rgp1qs˘
i
, Im

`
h
piq
1

˘ “ 0,

Re
`
h
piq
j

˘ “ `
PSω

rgp2j´2qs˘
i
, Im

`
h
piq
j

˘ “ `
PSω

rgp2j´1qs˘
i
, 2 ď j ď ω,

h
piq
j “ `

h
piq
n`2´j

˘˚
, n` 2´ ω ď j ď n,

h
piq
j “ 0, ω ` 1 ď j ď n` 1´ ω,

(162)

with gpjq, j P I2ω´1, being independent samples from the standard n-dimensional Gaussian distribution,

i.e., gpjql „ N p0, 1q for l P In, and gpjql KK g
pjq
k for l ‰ k.

‚ Maximally-uniformly distributed modulators were created by using the NORTA algorithm [34]. Specifically,

the modulators were calculated as

m “ w ˝ pm1 ´minrm1s ¨ 1q{maxrm1 ´minrm1s ¨ 1s, (163)

with w being the window “function” (see (169)), and m1 given by

m1 “ PSω
rΦpF´1rqs, (164)

where Φp. . .q is the cumulative distribution function of the standard Gaussian random variable and r is

given by

rj “

$
’’’’’’’&
’’’’’’’%

a
p‹1 ¨ g1, j “ 1

b
p‹j{2 ¨ pg2j´2 ` ı ¨ g2j´1q, 2 ď j ď tpn` 1q{2u

b
p‹pn`2q{2 ¨ gn, j “ pn` 2q{2

prn`2´jq˚, pn` 2q{2 ă j ď n

. (165)

In (165), g is the standard n-dimensional Gaussian random vector, and

p‹ “ ?n ¨ pFc‹q ˝ θpFc‹q, (166)

with c‹1 “ 1, and the remaining components of c‹ implicitly defined by

pF´1p{?nqj “
ż `8

´8

ż `8

´8

``
Φpxq ´ 0.5

˘ ¨ `Φpyq ´ 0.5
˘ ¨ φ2px, y|c‹j q

˘
dxdy, 2 ď j ď n. (167)
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In (167), φ2px, y|c‹j q is the probability density function of a 2-dimensional Gaussian random variable with

zero mean, unit variance, and the correlation between its two elements equal to c‹j . Elements of p are given

by

pj “

$
’’’’&
’’’’%

n{p24 ¨ pω ´ 1qq, 2 ď j ď ω

n{p24 ¨ pω ´ 1qq, n` 2´ ω ď j ď n

0, otherwise

, (168)

If all elements of Fc‹ were nonnegative, the m1 defined by (164) would have a rectangular power spectrum

with cutoff frequency ω, and m1i „ Up0, 1q for every i P In. However, in reality, such random vector does

not exist. Therefore, (166) is used to replace Fc‹ by the closest point in Cn that is elementwise nonnegative.

This modification expands the power spectrum of the resulting ΦpF´1rq in (164) beyond the intended one,

which is corrected by mapping ΦpF´1rq onto Mω in (164).

The window “function” w in (160) and (163) is used to scale the modulator to zero smoothly at the boundaries

with no effect on the remaining points:

wi “

$
’’’’&
’’’’%

sin2
´
π¨pi´1q
2¨ntrn

¯
, 1 ď i ď ntrn

1, ntrn ă i ď n´ ntrn
cos2

´
π¨pi´n`ntrnq

2¨ntrn

¯
, n´ ntrn ă i ď n

@i P I. (169)

In (169), ntrn is the length of the transition window. We assumed ntrn “ 3 ¨ rfs{ωs in the present work.

For simulations discussed in Sections IV – VI of the main text, we used fs “ 4 kHz. ω was set to 15 Hz

for nonstationary Gaussian modulators and 20 Hz for maximally-uniformly distributed modulators. The cutoff

frequency control parameter $ of the AP algorithms was fixed to 30 Hz.

Carriers (recovery tests)

For signal recovery tests discussed in Section C, carriers were generated by uniformly sampling from a subset

of Cd formed by all spike-train carriers with a fixed number of spikes ns:

Cns

d “  
x P Cd :

`řn
i“1 It1upxiq “ ns

˘ ^ `řn
i“1 It0upxiq “ n´ ns

˘(
(170)

The sampling was achieved by exploiting a customized version of the Metropolis-Hastings algorithm. In partic-

ular, starting with some qp0q P Q such that

Q “  
x P Nn˚0 :

`řn˚
i“1 xi “ n´

˘^ `
xi ă d @i P In˚

˘(
, (171)

where n´ “ ns ¨ d´ n, and n˚ “ mintn´, ns ´ 1u, a sequence qp0q,qp1q, . . . defined by

qpiq “
$
&
%

qpi´1q ` zi ¨ pepliq ´ epkiqq, if
`
qpi´1q ` zi ¨ pepliq ´ epkiqq˘ P Q

qpi´1q, otherwise
(172)
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for i ě 1 was generated. In (172), eplq is an element of Nn˚0 with its l-th component equal to one and the

remaining components equal to zero; li and ki are independent random numbers from a uniform distribution on

In˚ ; zi is a random number from a uniform distribution on the set of all integer numbers between ´σ and `σ,

where σ is a positive integer chosen to achieve the acceptance rate of the sampling scheme (172) between 0.4

and 0.6.

The iterative process generating the sequence qp0q,qp1q, . . . was terminated upon the first instance of adherence

to the following equilibration criterion of the underlying Markov chain:

1

n˚
¨
nÿ̊

j“1

ˇ̌
ˇ̌
ˇ
1

i
¨
iÿ

l“1
q
piq
j ´ n´

n˚

ˇ̌
ˇ̌
ˇ ă 0.01 ¨ n´

n˚
. (173)

The corresponding qpiq was then taken as a sample point from Q. Next, an extended vector q̄ P Nns

0 with

q̄j “
$
&
%
d´ qj , if 1 ď j ď n˚

d, n˚ ` 1 ď j ď ns

(174)

was defined. Its components were then randomly permuted to produce another vector q̃ P Nns

0 . The latter was

used to create an r P Nns` with

rj “ η `
jÿ

i“1
q̃i, j P Ins

, (175)

where η is a random integer number (the same for all j P Ins
) from a uniform distribution on In, and the

summation is assumed to be modulo In. Finally, the carrier c was generated by taking the zero element of Rn

and setting its components whose indexes are defined by the components of r to one.

Carriers (performance tests)

For the performance, convergence, and robustness tests of the demodulation algorithm discussed in Sec-

tions IV – VI of the main text, four types of carriers were considered:

‚ Nonstationary sinusoid,

c “ cos
`
2πpft`ψq˘, (176)

with f “ 200 Hz,

t “ f´1s ¨ p0, 1, . . . , n´ 1qT, (177)

and

ψ “ pg ´minrgsq{maxrg ´minrgss, (178)

where g “ PS$
rus

ui „ Up0, 1q, i P In, (179)
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such that ui KK uj whenever i ‰ j.

‚ Nonstationary harmonic,

c “
nfÿ

l“1

´
p2{3ql´1 ¨ cos

`
2πlfpt`ψlq ` ηl

˘¯
, (180)

with f “ 85 Hz, nf “ tfs{p2 ¨ fqu,

ηl „ Up0, 1q, l P Inf
, (181)

and

ψl “ ηl ` 0.2 ¨ pg ´minrgsq{maxrg ´minrgss, (182)

where g “ Pω1rus with ω1 “ 1 Hz and

ui „ Up0, 1q, i P In, (183)

such that ηi KK ηj and ui KK uj whenever i ‰ j.

‚ Nonstationary spikes,

c “ 1´ θ`1´řns

i“1 h ˚ epriq
˘ ˝ `1´řns

i“1 h ˚ epriq
˘
, (184)

where epriq is the unit vector with all but the ri-th of its components equal to zero, h is defined by

hi “

$
’’’’&
’’’’%

e´pi´1q2{4, if 1 ď i ď 11

e´pn´i`1q2{4, if n´ 9 ď i ď n

0, otherwise

, (185)

and r1, r2, . . . , rns
is a sequence of different elements of In generated following

ri “ ri´1 ` di ` η, (186)

until ri´1 ď n ´ di with r1 “ 1. In (186), η is a random number from a uniform distribution on In (the

same for all i); di is a random number taken independently from a uniform distribution on Izi at each

iteration, where

zi “ rfs{p2$q ¨ p0.8` 0.2 ¨ sinp2π5tiqqs, i P In. (187)

Note that, differently from the spike-train carriers generated for the purpose of recovery tests, (184) defines

sequences of finite-width spikes.

‚ White-noise,

ci „ Up´1, 1q, i P In, (188)

with ci KK cj whenever i ‰ j.
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PERFORMANCE TESTS

J. CONFIGURATIONS OF DEMODULATION ALGORITHMS FOR PERFORMANCE ANALYSIS

The following configurations of the AP and LDC demodulation algorithms were used for the performance

analysis in Section IV of the main text.

Window splitting

Segment lengths nseg “ t26, 27, . . . , 215u were examined in the case of the AP demodulation approach. In the

case of the LDC demodulation method, the range of segment lengths was more limited, nseg “ t26, 27, . . . , 211u,
to make the simulation times feasible. In order to reduce demodulation errors stemming from the window

decomposition, signals were split into segments with a particular overlap. On top of that, each segment was

windowed with the Hann function [35]. For each segment length nseg, different overlap spans were assumed:

nolp “ t25, 26, . . . , nseg{2u. The AS-based demodulation was performed only with the original signal windows

using no decomposition.

Control parameters of the AP algorithms

Overall, only two parameters are associated with the AP demodulation algorithms: 1) the cutoff frequency $;

and 2) the number of iterations Niter. In all cases, we fixed $ to 40 Hz. A set of different values of Niter was

considered, dependent on the particular algorithm: the range from 1 to 600 for AP-B, 1 to 40 for AP-A, and

1 to 6000 for AP-P. It was made sure that the maximum iteration numbers in all these sets allow for reaching

demodulation precision that is high enough not to affect the conclusions of the performance analysis.

Control parameters of the quadratic programming solvers for the LDC approach

In the case of the LDC approach, all elements of the weighting vector w [see (11)] corresponding to frequencies

below the threshold $ were assumed to be zero. The remaining elements of w were set to either of t102, 103u.
In the case of the OSQP solver, the following control parameters were tuned:

‚ Linear System Solver: {Suite-Sparse-LDL, MKL-Paradiso};

‚ Solution Polishing: tfalse, trueu;
‚ Warm Starting: tfalse, trueu;
‚ Absolute Tolerance: t10´2, 10´3, . . . , 10´6u;
‚ Relative Tolerance = Absolute Tolerance;

‚ Primal Infeasibility Tolerance = Absolute Tolerance;

‚ Dual Infeasibility Tolerance = Absolute Tolerance;

‚ Maximum Iteration Number: 215 ´ 1;
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‚ Run Time Limit: 0.

The Gurobi solver was tried with these settings:

‚ Method: t0, 1, 2u ” {primal-simplex, dual-simplex, barrier};

‚ Optimality Tolerance: t10´2, 10´3, . . . , 10´6u;
‚ Feasibility Tolerance = Optimality Tolerance;

‚ Run Time Limit: 0.

K. IMPLEMENTATION ON A COMPUTER

All demodulation algorithms considered in the present work were implemented in C and then interfaced with

MATLAB (R2018a) for a large-scale management of different instances and data analysis. The C code was

compiled with GCC (v8.3) using no optimization. Evaluation of the discrete Fourier transform, used in the

AS and AP approaches, relied on the FFT implementation of the Intel Math Kernel Library 2019 (update 5).

The calculations were performed on a Lenovo “ThinkCentre M910t Tower” desktop computer with an Intel

Core i7-7700 processor and Linux Ubuntu 16.04 operating system. In order to minimize the influence of other

operating system processes on the benchmarking results, one of the four CPU cores was dedicated exclusively

to the execution of the demodulation program. This was achieved by using the “isolplus” option of the kernel

scheduler. All computations were done in single-thread mode.
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ADDITIONAL RESULTS

L. ERRORS OF CARRIER ESTIMATES

Here, we discuss findings from the performance and robustness analyses of demodulation algorithms (intro-

duced in Sections IV and VI of the main text) in terms of carrier estimates. Analogous to the modulator recovery

error Em, we use Ec “ }c´ ĉ}2{}c}2 next.

Performance tests
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Fig. 13. Performance evaluation. A–D: Pareto fronts in the pEc, Tcpuq plane for different demodulation algorithms applied to the four

different types of test signals when window splitting is used. The green and brown stars mark the results of, respectively, the AS-LP

and AS methods. E–H: Examples of the original carriers considered in the present work (black) and their estimates obtained by using

the AP-B (red) and AS-LP (green) algorithms.

The high precision of modulator estimates (see Section IV-C in the main text) and the boundedness of ĉi
between ´1 and 1 (see Section VII in the main text) predetermine good quality carrier estimates provided by

the AP approach.20 This view is evidenced by the Pareto fronts in the pEc, Tcpuq plane shown in Fig. 13 A–D

and comparisons of exemplary c and ĉ in Fig. 13 E–H. We observed noticeable discrepancies between c and ĉ

only locally, around points with modulator levels very close to zero (see the signal segment at t “ 0.025 in

Fig. 13 E). That finding is explained by the fact that, in our case, ĉi ´ ci “ si ¨ pm̂´1i ´ m´1i q. Hence, even

small differences between mi and m̂i on the absolute scale can give notable differences between ci and ĉi if

mi{m̂i " 1. However, the condition m̂i ě si ( ùñ |ci| ď 1) inherent to all ĉ obtained by the AP algorithms

assures tolerable distortions of the carrier estimates even around the points with vanishingly small mi.

20Remember that ci{ĉi “ mi{m̂i in our case.
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The situation is different in the case of the AS-LP approach. Then, |si{m̂i| " 1, i.e., |ĉi| " 1, are possible

(see the signal segment at t “ 0.025 in Fig. 13 E). These divergences noticeably increase the recovery errors

Ec even for sinusoidal signals that AS-LP recovers sufficiently well outside the segments of vanishing mi (see

Fig. 13 A, E). Globally-inaccurate recovery of other carrier types demonstrated by the AS-LP (see Fig. 13 B– D,

F– H) is predetermined by inaccurate estimates of the modulators (see Section IV-C in the main text). We note

that, for sinusoidal carriers, appropriate estimates ĉ can be obtained by using the original AS method instead

of the AS-LP (Fig. 13 A). However, the AS gives very erroneous modulator estimates m̂, and hence, does not

improve carrier predictions ĉ considerably, for other types of signals (data not shown).

Robustness tests
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Fig. 14. Robustness evaluation. A–D: Dependence of the carrier recovery error Ec on P p0q (the probability of missing points) for the

four types of test signals and different AP algorithms at εtol “ 10´4 (color coding).

Fig. 14 shows demodulation results of the AS-LP, AP-B, AP-A, and AP-P algorithms in terms of carrier

recovery error for test signals corrupted by the multiplicative Bernoulli-t0, 1u noise (see Section VI). The

obtained Ec vs. P p0q relations for the AP algorithms are analogous to their counterparts Em vs. P p0q shown

in Fig. 5. In contrast, the AS-LP is even more inferior to the AP approach in terms of carrier reconstruction

(Fig. 14) than it is in terms of modulator recovery (Fig. 5 A–D). This fact is explained by the presence of the

|ĉi| " 1 divergences discussed above and illustrated by Fig. 13 E.

M. CONVERGENCE RATES AT DIFFERENT SIGNAL LENGTHS

The convergence results shown in Fig. 4 of the main text represent only signals with the length n fixed to

215 sample points. Therefore, we performed additional simulations with different n values to test the impact

of this parameter on the rate of the iterative process. We found no clear dependence of Niter required to

achieve a particular infeasibility error value ε on n, except transitional changes due to diminishing contributions

of the boundary effects in some cases (see Fig. 15 C2 – C2). These findings suggest that the increased Tcpu of

demodulation for longer n is primarily determined by the increased computational demands of single projections

(see Section III-D in the main text).
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Fig. 15. Convergence analysis of the AP algorithms at different n and fixed fs “ 4 kHz. A1–D1: Dependence of the iteration number

Niter necessary to reach a specific infeasibility error ε on the length of the signal for the AP-B algorithm applied to four different
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Fig. 16. Repeated demodulation of inferred carriers. Gray – sinusoidal (A), harmonic (B), spike-train (C), and white-noise (D) carriers

inferred by demodulating test signals shown in Fig. 2 A–D with the AP-A algorithm. Black – target repeated modulators following from

the assumption that the inferred carriers are fully demodulated. Orange – the real repeated modulators obtained with AP-A.

N. REPEATED DEMODULATION

Fig. 16 shows typical results of redemodulation of carriers inferred from the four types of synthetic test signals

considered in the present work by using the AP-A algorithm. Redemodulation of the carriers returns the identity
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modulator to a very good approximation (Em ď 10´2), implying a nearly complete separation of the modulator

and carrier information in the first step, as discussed in Section VII of the main text.

O. DEMODULATION OF SPEECH SIGNALS

In this section, we present results of additional simulations used to support the statements about the suitability

of the AP approach to demodulate wideband speech signals in Section VIII of the main text.

Synthetic modulators

The first question that we considered was up to which values of the cutoff frequency ω the natural speech

carriers meet the recovery condition rn{ds ě 2ω ´ 1. As mentioned in the main text, these carriers are of

quasi-random and quasi-harmonic origins, possibly featuring frequency glides. It is well known that typical

fundamental frequencies (f0) of male and female speaker voice are, respectively, 120 and 210 Hz (see [36] and

Table 1 therein). Hence, at least for the harmonic components, the condition rn{ds ě 2ω ´ 1 is expected to be

satisfied with ω ď 60 Hz. That is more than sufficient for appropriate demodulation, assuming that strictly all

spectral energy of the speech amplitude modulator is located below 20 Hz (see Section VIII-A). The situation

with the quasi-random and mixed components of speech signals is less certain and must be tested numerically.

To this end, we considered four speech-carriers generated by a male speaker uttering prolonged („ 1 s)

[α:], [ş], and [z], as well as vocable [waf] (see Fig. 17 A1 – A4) at f0 “ 120 Hz without noticeable amplitude

modulation. The [α:] is predominantly harmonic, [ş] is quasi-random, [z] has a mixed wave-shape, and [waf]

is quasi-harmonic but with upward and downward frequency glides. These characteristics are further revealed

by the power-spectral-density (PSD) plots for the [α:], [ş], and [z] (see Fig. 17 B1 – B3), and a spectrogram for

the [waf] (Fig. 17 B4). We then created test signals as products of mentioned carriers and maximally-uniformly

distributed synthetic modulators (see Section I) with ω “ 25 Hz and fs “ 44.1 kHz.

Demodulation of the considered test signals with the AP-A algorithm allowed us to achieve high-accuracy

modulator recovery, as shown in Fig. 17 C1 – C4 (note the insets with Em and Ec values there). In more detail,

we found that, for the [α:], [ş], [z], and [waf], the distances between carrier points with absolute values of,

respectively, ě 0.99, ě 0.95, ě 0.93, and ě 0.93 were below that needed to satisfy rn{ds ě 2ω ´ 1 at

ω “ 20 Hz. For the [ş], [z], and [waf], 80 % of the required points were ě 0.99. The demodulation quality

remained reasonably good when ω was increased to 50 Hz, resulting in Em values of 1 ¨10´2, 5 ¨10´2, 5 ¨10´2,

and 5 ¨ 10´2 for, respectively, [α:], [ş], [z], and [waf] carriers.

Natural modulators

Next, we aimed to clarify whether the AP approach can properly separate m and c of speech signals using

the dynamic range compression discussed in Section VIII-B of the main text. For this purpose, we considered
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Fig. 17. Demodulation of signals built of synthetic modulators and natural speech carriers. A1–A4: fragments of carrier-signals of

prolonged steady [α:] (A1), [
ş
] (A2), and [z] (A3), as well as an extended vocable [waf] (A4). B1–B3: periodogram estimators of the

power spectral densities of the carriers illustrated in A1–A3; B4: spectrogram of the vocable [waf]. C1–C4: exemplary segments of

amplitude-modulated carriers from panels A1–A4, their modulators (black), and modulator estimates obtained with the AP-A algorithm.

Insets of panels C1–C4 display values of the modulator and carrier recovery errors.

synthetic time series built of the four natural carriers [α:], [ş], [z], and [waf] introduced above and modulator

estimate m̂˚ of an utterance “. . . protein which forms p . . . ” from Section VIII-B of the main text. We then

demodulated the resulting signals by using the AP-A algorithm combined with the dynamic range compression.

The obtained estimates ˆ̂m˚ were in good agreement with the original, as shown in Fig. 18 (note the insets with

Em and Ec values there). The AP-B, AP-P, and LDC algorithms returned very similar modulator estimates but

needed much longer computing times that mirror the performance analysis presented in Section IV-C of the

main text.
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