
Group Invariant Dictionary Learning

Yong Sheng Soh

Department of Mathematics, National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

Institute of High Performance Computing
1 Fusionopolis Way, # 16-16 Connexis, Singapore 138632

15 July, 2020, revised 5 June, 2021

Abstract

The dictionary learning problem concerns the task of representing data as sparse linear
sums drawn from a smaller collection of basic building blocks. In application domains where
such techniques are deployed, we frequently encounter datasets where some form of symmetry or
invariance is present. Motivated by this observation, we develop a framework for learning dictio-
naries for data under the constraint that the collection of basic building blocks remains invariant
under such symmetries. Our procedure for learning such dictionaries relies on representing the
symmetry as the action of a matrix group acting on the data, and subsequently introducing a
convex penalty function so as to induce sparsity with respect to the collection of matrix group
elements. Our framework specializes to the convolutional dictionary learning problem when we
consider integer shifts. Using properties of positive semidefinite Hermitian Toeplitz matrices,
we develop an extension that learns dictionaries that are invariant under continuous shifts. Our
numerical experiments on synthetic data and ECG data show that the incorporation of such
symmetries as priors are most valuable when the dataset has few data-points, or when the full
range of symmetries is inadequately expressed in the dataset.

Keywords: sparse coding, equivariance, atomic norms, circulant matrices, orbitopes.

1 Introduction

The dictionary learning problem (also known as sparse coding in the literature) concerns the task
of representing data as sparse linear sums of a smaller collection of basic building blocks: Given a
dataset {y(i)}ni=1 ⊂ Rd, compute a collection vectors {aj}qj=1 ⊂ Rd so that

y(i) ≈
q∑
j=1

x
(i)
j aj , s.t. x(i) = (x

(i)
1 , . . . , x(i)q)ᵀ is sparse ∀i. (1)

The dictionary learning task is motivated by the prevalence of sparse representations in a wide
range of data processing applications. Sparse representations form the basis of numerous procedures
for storage, compression, as well as communication of data. In addition, numerous computational
procedures for downstream processing tasks such as denoising and the imputation of missing entries
heavily rely on data admitting sparse representations for its success.

A fundamental ingredient for applying these methods is that we identify a suitable transfor-
mation – frequently referred to as a basis – under which our dataset of interest admits sparse

1

ar
X

iv
:2

00
7.

07
55

0v
2

 [
ee

ss
.S

P]
 5

 J
un

 2
02

1

representations. The traditional process of identifying such transformations relies on extensive
knowledge about the data. For instance, we frequently deploy the collection of wavelets transforms
and discrete cosine transforms in image processing applications because of well-known properties
about natural images. The dictionary learning procedure may be viewed as a data-driven alterna-
tive in which an appropriate choice of basis is learned directly from data [1–5]. As the resulting
basis is specifically tuned to the dataset, it enjoys better performance compared to choices of bases
specified using prior knowledge in many instances [5, 6]. More importantly, dictionary learning is
useful in instances where one lacks the appropriate domain specific knowledge to identify a basis –
one simply applies dictionary learning techniques to learn a suitable choice of basis.

1.1 Group Invariant Dictionaries

Symmetries and invariances occur in a wide range of scientific and engineering domains. For
instance, in image processing applications where the data takes the form of image patches segmented
from larger natural images, one might expect that these patches possess some form of translation
or rotation invariance. In time series analyses where the data takes the form of short time series
segmented from longer time series, one might expect that these time series possess some form of shift
invariance occurring across time. In processing data over graphs, one might consider invariance with
respect to re-labelling of nodes, while in tomographic applications, one might wish to incorporate
invariances with respect to rigid rotations. In view of the prevalence of such symmetries arising in
applications, it is natural to consider learning dictionaries that also respect such symmetries.

There are several concrete advantages to learning such dictionaries. First, the incorporation of
symmetries allows us to identify multiple basis elements as being equivalent up to an appropriate
transformation. This identification allows us to reduce the degrees of freedom that are involved in
the dictionary learning task, and subsequently learn bases with greater statistical relevance. Second,
the incorporation of such symmetries prevents the learned dictionary from introducing unintended
biases; for instance, in learning dictionaries for image patches, we may prefer dictionaries that do
not favor upright orientations of certain dictionary elements.

Reducing sample complexity by incorporating invariances. In the following, we make
the case for learning dictionaries that incorporate the appropriate invariances via a numerical exper-
iment on synthetically generated data. Our description is brief, and we defer further experimental
details to Section 5. Given a vector (d1, . . . , dq)

ᵀ, we define an integer shift as any vector of the
form (dk, dk+1, . . . , dq, d1, . . . , dk−1)

ᵀ for some k, 0 ≤ k ≤ q − 1. We consider learning a dictionary
from a dataset {y(i)}1000i=1 ⊂ R30 that is generated from a dictionary that possesses integer shift
invariance – that is, each data-point y(i) is expressible as the linear sum of a small number of
integer shifts of a collection of vectors. In Figure 1, we compare the performance of two different
dictionary learning algorithms – the first incorporates integer shift invariances as a prior, and the
second is Regular Dictionary Learning (DL) which does not incorporate such a prior. We repeat
the experimental set-up over 10 different random initializations of both algorithms, and we compare
the distance between the ground truth dictionary and each iterate of both algorithms. We observe
that our framework converges to the ground truth dictionary in about 30 iterations whereas the
iterates from Regular DL do not converge to the ground truth, even after 100 iterates.

1.2 Prior and Related Works

Convolutional Dictionary Learning. Our framework is motivated by a line of work that learns
dictionaries possessing integer shift invariance. Concretely, let D ⊂ Rq be a collection of vectors.
We say that D is integer shift invariant if a ∈ D implies that all integer shifts of a are also in D.

2

0 20 40 60 80 100
Iterate

0.0

0.2

0.4

0.6

0.8

1.0

Di
ct

io
na

ry
 D

ist
an

ce

Figure 1: Comparison of learning a shift invariant dictionary using an algorithm that incorporates
shift invariance as a prior (dashed lines) with an algorithm that does not (solid lines).

The goal in Convolutional Dictionary Learning (DL) is to learn dictionaries that are integer shift
invariant [7–17].

The Convolutional DL problem admits a more compact description by means of convolutions (as
its name suggests): Given vectors u,v ∈ Rd, the convolution u∗v is the d-dimensional vector whose
i-th coordinate is the sum

∑q
k=1 ukvi−k. The Convolutional DL problem can thus be described as

one of learning a collection of vectors {aj}qj=1 such that data is well approximated as linear sums
of convolutions of these aj ’s with a corresponding collection of vectors of equal dimension:

y(i) ≈
q∑
j=1

aj ∗ x
(i)
j , s.t. x

(i)
j ∈ Rd,x(i)

j is sparse for all i, j. (2)

Convolutional DL techniques are used in a range of application domains where data exhibit shift
invariances, with image processing and audio processing being prominent examples [10–13].

Group Convolutional Neural Networks. Broadly speaking, convolutional neural networks can
be viewed as instances of neural networks that incorporate an appropriate form of shift invariances.
Such techniques have been empirically observed to be significantly more powerful (and perhaps
considered state-of-the-art) than traditional neural network architectures that do not incorporate
such priors in tasks such as image classification [18].

There is a body of work that seeks to extend the ideas of convolutional neural networks to
more general symmetries [19–22]. The basic ingredient in these networks is that the output from
applying transformations (such as shifts or rotations) in the input layer should yield the same
outcome had we only apply the same set of transformations on the output layer. Such a property
is known as equivariance, and is key for generalizing the structure of convolutional neural networks
to accommodate more general symmetries.

The key difference between this body of work and ours is that these works do not seek sparse
representations whereas sparse representations are central to our set-up, which subsequently ne-
cessitates the development of appropriate penalty functions to achieve our goal. In addition, while
some of these works such as [21,22] prescribe conceptual frameworks for incorporating group equiv-
ariant structure within neural networks, there remains a significant gap in practically implementing

3

these methods especially in settings where the group is continuous [19]. In contrast, one of the key
contributions of our framework is to overcome certain computational difficulties that arise precisely
because of continuous symmetries. In Section 6, we discuss future directions stemming from our
work in the context of neural networks.

Semidefinite Programming-Representable Regularizers. In Section 4.3, we describe an
approach for learning dictionaries that are continuously shift invariant. As we later show, a key
ingredient is to express the regularizers associated to such dictionaries via semidefinite programming
(SDP). A prior work that is conceptually related is [23], which proposes an extension of dictionary
learning to that of learning infinite dictionaries that are expressible via SDPs. The key difference
between our work and [23] lies in the role that SDP descriptions play – in [23], SDP descriptions
offer a framework for describing infinite collection of basic building blocks in a tractable fashion –
notably, the framework does not incorporate any form of symmetry; in Section 4.3, SDP descriptions
arises because of the type of symmetry we wish to incorporate in the dictionary.

1.3 Our Contributions

In this paper, we introduce an algorithmic framework for learning dictionaries that are invari-
ant under more general symmetries. In particular, our framework generalizes prior methods for
Convolutional DL.

The key technical difficulty in generalizing these prior works lies in identifying a suitable pa-
rameterization of a dictionary that is group invariant. To provide some context, prior methods
for dictionary learning operate on the basis of performing updates in alternating directions in
which (i) we fix a linear map D ∈ Rd×q representing dictionary elements and, given data vectors
{y(i)}ni=1 ∈ Rd, compute sparse vector {x(i)}ni=1 ∈ Rq such that y(i) ≈ Dx(i), and (ii) fix the sparse
vectors {x(i)}ni=1 ∈ Rq and update a linear map D so that y(i) ≈ Dx(i). These methods require us
to express the entire dictionary D explicity, and hence are no longer feasible if, for instance, the D
contains a continuum of elements.

To address such difficulties, we focus on symmetries that are expressible as a matrix group
action. More specifically, our framework requires every dictionary element to be expressible as the
orbit of some matrix group acting on a collection of generators:

D =
{
Ga : G ∈ G,a ∈ {aj}qj=1

}
. (3)

The matrix group G expresses the symmetry, and the collection of generators {aj}qj=1 are the basic
(or canonical) atoms from which we describe the entire dictionary.

In Section 2, we introduce our framework for learning group invariant dictionaries based on
solving the following minimization instance:

arg min
{Z(i)

j }
q,n
i,j=1⊂R

d×d

{aj}qj=1⊂R
d

n∑
i=1

(
1

2
‖y(i) −

∑
j

Z
(i)
j aj‖22 + λ

∑
j

‖Z(i)
j ‖G).

Here,
‖Z‖G := inf{t : tZ ∈ conv(G)}.

is a penalty function that is useful for promoting succinct representations with respect to the
collection G. The penalty function is known as an atomic norm in the literature [24].

4

The key conceptual contribution in our framework that addresses the issues we raise is the
following: Conventional wisdom tells us to decouple the learning task into the variables D and x(i)

– the linear map D contains the generators and its transformed copies, while the vectors x(i) only
contains the sparse coding information. Our framework proposes decoupling the learning task into

the variables aj and Z
(i)
j – the vectors aj represent the generators but not the transformed copies,

while the matrices Z
(i)
j combine sparse coding information with group transformation information.

As we show in Section 2, the dictionary learning task reduces to one of finding a suitable collection
of generators {aj}qj=1. This reduction is crucial because it allows us to learn infinite dictionaries so
long as they are finitely parameterized.

1.4 Notation

In the remainder of this paper, we adopt the notational convention whereby a denotes a scalar,
a denotes a vector, A denotes a matrix, and A denotes a set or a collection. Given a set C, we
denote the induced norm ‖x‖C := inf{t : tx ∈ conv(C)}. Then ‖x‖C < +∞ if x ∈ Span(C), and we
adopt the convention ‖x‖C = +∞ if x /∈ Span(C), as is standard in convex analysis. Subsequently,
minimizing objectives that incorporate ‖ · ‖C as a penalty necessarily enforces the solution to reside
in Span(C). Finally, an superscript asterisk ∗ (but not ?) denotes the complex conjugate, a regular
asterisk ∗ denotes convolution, ᵀ denotes the regular transpose, while † denotes the Hermitian
transpose.

2 Framework

We define a dictionary D ⊂ Rd to be a collection of vectors that is possibly infinite. The dictionary
represents the basic building blocks from which we describe our dataset of interest. As such, the
dictionary learning problem can be described as one of computing an appropriate dictionary for
a given dataset so that each data-point is well approximated as the linear sum of few dictionary
elements.

In the following, we describe the key ingredients necessary to apply our framework.

(A1) Matrix group representation. First, we require the invariance to be expressible as the linear
action of a matrix group G acting on data. More precisely, given data x ∈ Rd, we assume
that every transformed version of x is expressible as

Gx where G ∈ G, G ∈ GL(R, d).

We say that a dictionary D is invariant with respect to G if a ∈ D implies that Ga ∈ D for
all G ∈ G and all a ∈ D.

(A2) Finite generation. Second, our framework is only applicable to learning dictionaries that are
finitely generated. More precisely, we require D to be expressible as the action of G acting on
a finite collection of generators {a1, . . . ,aq}:

D = {Ga : a ∈ A, G ∈ G},A = {a1, . . . ,aq}.

From a practical consideration, the finite generation stipulation is by no means restrictive.
The reason we emphasize finite generation in our set-up is because it translates to a finite
parameterization of D even if the group G is infinite.

5

(A3) Origin symmetry. Third, we require the matrix group G to contain the negative identity
matrix −I:

−I ∈ G.

Note that it makes practical sense to include such an assumption – it simply reflects the fact
that if d is a dictionary element, then one would reasonably expect that its negation −d is
also contained in D.

(A4) Tractable descriptions of conv(G). Our fourth ingredient requires to provide tractable de-
scriptions of the set conv(G). At a conceptual level, our stipulation is equivalent to being
able to optimize over the set conv(G) tractably, which we require as a sub-routine in our
procedure.

2.1 Succinct Representations with respect to a Dictionary

Our algorithm for learning a group invariant dictionary requires us to perform the following task
as a sub-routine:

Given a (finitely generated) dictionary D ⊂ Rd and a vector y ∈ Rd, compute an
approximation of ỹ ≈ y such that ỹ is expressible as the linear sum of few elements
from D.

The analogue of the above procedure when specialized to Regular Dictionary Learning entails
the computational task of recovering as sparse vector from affine measurements: Given a linear
map D ∈ Rd×q and a vector y ∈ Rd, compute a suitably sparse vector x ∈ Rq so that y ≈ ỹ = Dx.
Here, the columns of the linear map D are the dictionary elements, and the constraint that x is
sparse is equivalent to the requirement that we use few dictionary elements in the approximation of
y. The näıve approach to recovering the sparse vector x is to employ a combinatorial search, which
is infeasible for problem instances in moderate to large dimensions. However, due to its importance
in a wide range of statistical and signal processing tasks, numerous procedures that work well in
practice and provably work in certain instances have been developed. One such class of methods is
based on a convex relaxation in which we estimate x by minimizing a least squares loss augmented
with a L1-norm [25–27]:

argmin
x

1

2
‖y −Dx‖22 + λ‖x‖1. (4)

Here, λ denotes a (positive) regularization parameter. Such methods are particularly powerful
because these are based on solutions of a tractable optimization instance, and are provably effective
at finding the sparsest solutions to the problem [25–27]. In the next section, we introduce the
appropriate generalization of (4) for our set-up.

2.2 Succinct Representations via Atomic Norms

Let C ⊂ Rd be a compact set. We say that a vector y ∈ Rd admits a succinct representation with
respect to C if it is expressible as the linear sum of a small number of elements from C:

y =
∑
i∈I

ciai where ai ∈ C, and |I| � d.

We remark that the cardinality of the set C is permitted to be arbitrarily large; in particular, the set
C may be infinite or uncountable. This notion of succinct representations generalizes several notions

6

of structured signals arising in applications. For instance, the collection of structured objects when
C = {±ej : 1 ≤ j ≤ q} is specialized to the collection of signed standard basis vectors corresponds to
sparse vectors. Similarly, the collection of structured objects when C = {uv′ : ‖u‖2 = ‖v‖2 = 1} is
specialized to the collection of rank-one matrices with unit Frobenius-norm corresponds to low-rank
matrices. We refer the interested reader to [24] for a more extensive list of examples.

The key property concerning objects that admit succinct representations with respect to some
collection C ⊂ Rd is that the atomic norm induced by the convex hull of C is a convex penalty
function that is effective at inducing structure as succinct representations with respect to C. More
formally, we define the atomic norm with respect to C as the following function [24]:

‖x‖C = inf {t : x ∈ t · conv(C)}. (5)

The function ‖ · ‖C is also known as the gauge function or the Minkowski functional defined with
respect to conv(C). The convexity of ‖ ·‖C follows from the fact that conv(C) is convex. In order for
the function ‖ · ‖C to define a true norm, we also require the set conv(C) to be centrally symmetric
– that is, x ∈ conv(C) if and only if −x ∈ conv(C). In the sequel, we take C to be the set D, and
hence ‖ · ‖C defines a true norm whenever −I ∈ G – this is precisely Assumption (A3).

Under the additional assumption that the centroid of the set conv(C) is at the origin – this is
satisfied if C is centrally symmetric and compact – then we have an alternative characterization of
the atomic norm:

Proposition 2.1. Suppose the centroid of conv(C) is the origin. Then

‖x‖C = inf
{∑

cj : x =
∑

cjaj ,aj ∈ C, cj > 0
}
.

The atomic norm generalizes choices of convex penalty functions that are widely used to induce
structure as sparse vectors or low-rank matrices. Specifically, the atomic norm when specialized to
C = {ej : 1 ≤ j ≤ q} being the collection of standard basis vectors recovers the L1-norm, and the
atomic norm when specialized to C = {uv′ : ‖u‖2 = ‖v‖2 = 1} being the collection of rank-one
matrices with unit Frobenius-norm recovers the matrix nuclear-norm (also known as the Schatten
1 norm). In the following, we apply the atomic norm induced by the dictionary D to approximate
a data vector sparsely with respect to D.

2.3 Atomic Norms for Group Invariant Dictionary Learning

In the remainder of this section, let D = {Ga : G ∈ G,a ∈ A}, A = {a1, . . . ,aq}, be a finitely
generated dictionary. A prominent class of methods for representing an input sparsely with respect
to some given dictionary D is to apply the proximal operator with respect to the atomic norm
induced by D. The use of such operators for performing denoising and obtaining sparse repre-
sentations was initially studied in [28, 29] – more frequently referred to as soft-thresholding – and
later extended to general atomic norms in [30]. In our context, we obtain ỹ as the solution of the
following minimization instance:

ỹ ∈ arg min
z∈Rd

1

2
‖y − z‖22 + λ‖z‖D. (6)

However, the regularizer ‖·‖D – while defined abstractly in (5) – is not in a form that is evidently
amenable to computation. Our final ingredient is to provide an alternative characterization of ‖·‖D
in terms of the group G and the generators A. Define the following atomic norm ‖ · ‖G over the
space of matrices Rd×d:

‖Z‖G = inf{t : tZ ∈ conv(G)}. (7)

7

Note that since Assumption (A3) guarantees that G is centrally symmetric, the expression in (7)
defines a norm. As a result of Proposition 2.1 as well as Assumptions (A1) and (A2), we obtain
the following equivalent expression for the atomic norm ‖ · ‖D:

Proposition 2.2. Given a matrix group G and a finite collection of generators A = {a1, . . . ,aq},
let D = {Ga : G ∈ G,a ∈ A} be the associated dictionary. Suppose −I ∈ G. Then

‖x‖D = inf
Zj∈Rd×d,1≤j≤q

q∑
j=1

‖Zj‖G : x =

q∑
j=1

Zjaj

 .

Proof of Proposition 2.2. Let x be arbitrary. Let LHS := ‖x‖D, and let RHS denote the optimal
value of the right hand side expression. Note that if x is not in the span of D, then the LHS is +∞ by
definition from (5), and the RHS is +∞ by infeasibility. As such, we may assume that x ∈ Span(D).
Fix ε > 0. Then we have x =

∑
k ck(Gkbk) where ck > 0, Gk ∈ G, bk ∈ A, and

∑
ck < LHS + ε.

Let Zj =
∑

k ckδ(bk,aj)Gk, where δ(·, ·) is the Kronecker delta function that evaluates to one
if and only if the two arguments are equal. Then

∑q
j=1 Zjaj =

∑q
j=1((

∑
k ckδ(bk,aj)Gk)aj) =∑

k((
∑q

j=1 ckδ(bk,aj)Gk)aj) =
∑

k ck(Gkbk) = x; i.e., the matrices Zj form a feasible solution
to the convex program on the right hand side. Based on Proposition 2.1, it follows that ‖Zj‖ ≤∑

k ckδ(bk,aj). Summing across j, we have
∑

j ‖Zj‖ ≤
∑

j

∑
k ckδ(bk,aj) =

∑
k(
∑

j ckδ(bk,aj)) =∑
k ck < LHS + ε. Finally, we take ε→ 0 to conclude that RHS ≤ LHS.
An essentially similar set of arguments applied in the opposite direction gives us the reverse

inequality LHS ≥ RHS, from which we conclude the proof.

Based on characterization result in Proposition 2.2, our procedure for finding an approximation
of y as a linear sum of few elements from D is to compute the optimal solution for the following
minimization instance:

arg min
{Zj}qj=1⊂Rd×d

1

2
‖y −

∑
j

Zjaj‖22 + λ

∑
j

‖Zj‖G

 . (8)

Note that our ability to minimize (8) tractably relies on us having tractable descriptions of the
convex hull of G – this is precisely what Assumption (A4) stipulates. Very frequently, tractable
descriptions of conv(G) lead to tractable numerical procedures for minimizing (8).

2.4 Learning Group Invariant Dictionaries via Matrix Factorization

We put the pieces together, and formally state our framework for learning group invariant dictionar-
ies. Let {y(i)}ni=1 ⊂ Rd denote the dataset of interest. Suppose we wish to learn a dictionary that is
invariant under the action of the matrix group G. We do so by solving the following minimization
instance:

arg min
{Z(i)

j }
q,n
i,j=1⊂R

d×d

{aj}qj=1⊂R
d

n∑
i=1

(
1

2
‖y(i) −

∑
j

Z
(i)
j aj‖22 + λ

∑
j

‖Z(i)
j ‖G).

s.t. ‖aj‖2 = 1 for all j

(9)

Here, we impose the additional constraint ‖aj‖2 = 1 to ensure that the resulting dictionary elements
are well conditioned.

Suppose we let {âj}qj=1 be the resulting optimal set of generators obtained from (9). Then the
learned dictionary is D = {G âj : 1 ≤ j ≤ q,G ∈ G}.

8

2.5 Intermission

We make a series of useful remarks concerning our framework.

1. From a conceptual perspective, Proposition 2.2 decouples the atomic norm ‖ · ‖D into two
components: The first of which is the penalty function ‖ · ‖G, and it depends purely on
the symmetry group G. The second of which is the affine equality x =

∑q
j=1 Zjaj , and it

depends purely on the generators. More importantly, the decoupling is essential to developing
a computational algorithm for learning group invariant dictionaries – it naturally leads to a
strategy based on minimizing with respect to each variable, and which generalizes existing
dictionary learning frameworks.

2. Since the penalty term in the objective (8) is an atomic norm, we know that the optimal
solution typically admits succinct representations with respect to G. However, we do not –
generally speaking – know how the optimal solution decomposes succinctly as elements in G.

3. In relation to our earlier point, we emphasize that our framework relies on the following
somewhat surprising observation:

For dictionary learning, we do not require the explicit decomposition of a data-
point into its atomic constituents (with respect to a dictionary estimate) in order
to learn a dictionary.

We make this point clearer with Regular Dictionary Learning: The first step of any iterative
procedure is to compute a sparse vector x(i) such that y(i) ≈ Dx(i) for every data vector y(i).
The second step is to update the dictionary estimate using the obtained vectors {x(i)}ni=1. If
we perform the second step via a least squares minimization [31] or a gradient descent, then
there is no instance in which one has to refer to the exact location of the non-zero entries.1

4. Conversely, there are certain applications such as classification tasks where the explicit de-
composition of a signal into its constituents is required. The problem of obtaining the sparsest
decomposition of a signal is computationally difficult, though a wide range of approximate
techniques are available in the literature [33].

5. We emphasize that, given a generic group G, there is no general procedure for providing
descriptions of conv(G) (and especially tractable ones) that are amenable to optimization.
Nevertheless, many interesting examples do admit tractable descriptions, and we describe
some of these in Section 4. We have strong reasons to believe that the question of providing
tractable descriptions of conv(G) for generic G is likely to be hard in general given that
the broader question of providing tractable descriptions of convex sets is widely known to
be difficult. In fact, the question of providing conic programming representations of matrix
groups remains an active research area (see Section 6). It is for these reasons we state
Assumption (A4) as it is.

1To be absolutely clear, there are certain classes of Regular Dictionary Learning algorithms such as the K-SVD [3]
and the ITKM [32] that do depend on knowing the support; that is, the location of the non-zero entries of x(i).
Roughly speaking, these algorithms update the dictionary elements sequentially, and as such require knowledge of
the location of non-zero entries.

9

3 Algorithm

In this section, we describe our algorithm for learning group invariant dictionaries. Our procedure
is based on minimizing the objective (9) in alternating directions, and it relies on the observation

that the objective (9) – when keeping the variables {aj} or the variables {Z(i)
j } fixed – leads to a

convex program. Our algorithm also generalizes prior methods for regular dictionary learning and
convolutional dictionary learning. We summarize the description of our procedure in Algorithm 1.

Algorithm 1 Alternating Minimization-based Algorithm for Learning Group Invariant Dictionar-
ies

Input: Initialization {aj}qj=1, Data {y(i)}ni=1

Require: Normalized dictionary generators {aj}qj=1

Algorithm: Repeat until convergence

1.[Fix ai, update Z
(i)
j] Update Z

(i)
1 , . . . , Z

(i)
q as solutions to the following convex program

arg min
Z1,...,Zq

1

2
‖y(i) −

∑
j

Z
(i)
j aj‖22 + λ ·

∑
j

‖Z(i)
j ‖G, 1 ≤ i ≤ n.

2.[Fix Z
(i)
j , update aj] Solve the least squares problem

(a1, . . . ,aq)← arg min
a1,...,aq

n∑
i=1

‖y(i) −
∑
j

Z
(i)
j aj‖22.

3.[Normalize] aj ← aj/‖aj‖2

Sparse representations via Atomic Norm Regularization. The first step in each iteration
is an update step in which we keep the variables {aj}qj=1 fixed, and we minimize the objective (9)

with respect to the variables {Z(i)
j }

q,n
j=1,i=1. This entails updating Z

(i)
1 , . . . , Z

(i)
q ∈ Rq×q as solutions

of the following convex program:

arg min
Z1,...,Zq

1

2
‖y(i) −

∑
j

Zjaj‖22 + λ ·
∑
j

‖Zj‖G, 1 ≤ i ≤ n. (10)

While the above update step can be tractably solved in many cases, practical implementations
of methods for solving (10) can be fairly expensive when the data dimension becomes moderately
large. We suggest some possible mitigation measures in the following:

1. Parallelization. First we observe that (10) is decoupled across the data variables y(i) for
1 ≤ i ≤ n. As such, the update step (10) can be performed in parallel.

2. Solve (10) approximately. Alternatively, one can attempt to solve (10) approximately or
even very crudely at each iteration. In our numerical experiments in Sections 5, we solve (10)
via first order methods in which we apply a very modest amount of iterations. Our numerical
experiments, and in particular those on synthetic data in Section 5, suggest that solving (10)
crudely is frequently sufficient to make progress in the overall algorithm.

3. Convex relaxations. A different approach to solving (10) approximately is via convex
relaxations in which we replace the penalty function ‖ · ‖G with an different penalty function

10

that leads to a computationally cheaper program in (10). Concretely, let G̃ be a convex outer
approximation of the set G, and let ‖ · ‖G̃ be the resulting induced norm. We replace the
penalty function ‖ · ‖G with ‖ · ‖G̃ for choices of outer approximations whose induced norm is
cheaper to evaluate compared to ‖ · ‖G.

Convex relaxations are used in a wide range of applications as a principled procedure for ob-
taining cheaper approximations of intractable optimization instances. In our context, convex
relaxations are useful in settings where the set conv(G) is intractable to describe. We discuss
connections between convex relaxations and the group structure of G in Section 6.

Dictionary update. In the second step of each iteration, we update the estimates of the

dictionary generators {aj}qj=1 while keeping the variables {Z(i)
j }

q,n
j=1,i=1 fixed. As the variables

{aj}qj=1 only appear in the squared error loss objective function (9), the update step reduces to the
solution of a least squares system:

(a1, . . . ,aq)← arg min
a1,...,aq

n∑
i=1

‖y(i) −
∑
j

Z
(i)
j aj‖22. (11)

Note that it is possible to perform the dictionary update via other means, such as by taking a
gradient step. In fact, in regular dictionary learning, updating dictionary estimates based on least
squares is frequently referred to as the Method of Optimal Directions (MOD) [31] – the proposed
update in (11) based on least squares is precisely the analog of the MOD in our set-up.

4 Examples

In this section, we describe instantiations of our framework (9) for a series of examples. Our
discussion focuses on: (i) specifying the group G that expresses the desired invariance, and (ii)
providing a conic programming description of the set conv(G). Using widely available software
for solving convex programs, our discussion provides the basic tools necessary to implement our
framework in a number of settings. We conclude this section with a description of additional
algorithmic simplifications for certain classes of invariances.

4.1 Regular Dictionary Learning

Our first example describes how our framework (9) expresses Regular Dictionary Learning (DL).
The group Greg = {±I} is the identity with its negation. The linear span of Greg are diagonal
matrices with constant entries

Z =

 z
. . .

z

 ,

and the atomic norm is ‖Z‖Greg = |z|.
Note that the Regular DL problem is more typically cast as follows

arg min
A∈Rd×q ,x(i)∈Rq

n∑
i=1

(
1

2
‖y(i) −Ax(i)‖22 + λ‖x(i)‖1

)
s.t. A = [a1| . . . |aq], ‖aj‖2 = 1 for all j.

(12)

We can recover the above formulation within (9) by setting G = Greg, choosing the number of

generators to be q, and identifying the constant variable in Z
(i)
j with x

(i)
j .

11

4.2 Integer Shift Invariance / Convolutional Dictionary Learning

Our second example concerns integer shift invariance, and describes how our framework (9) ex-
presses Convolutional DL. Assume that the data resides in Rd. Recall that a circulant matrix takes
the following form

z0 zd−1 . . . z2 z1
z1 z0 zd−1 . . . z2
... z1 z0

. . .
...

zd−2
...

. . .
. . . zd−1

zd−1 zd−2 . . . z1 z0

Let Tr be the circulant matrix whose leading column is a vector whose r-th entry is equal to
one (here, we use the convention that the leading coordinate is the 0-th coordinate), and whose
remaining entries are equal to zero. Then a shift by r coordinates can be represented by left
multiplication by the matrix Tr = (T1)

r. Subsequently, it follows that GInt = {Tr : 0 ≤ r ≤
d− 1, r ∈ Z}.

Linear combinations of Tr’s are circulant matrices, and hence the linear span of conv(GInt) are
circulant matrices. The associated atomic norm ‖ · ‖GInt

is given by the absolute sum of its entries

‖Z‖GInt
=

d−1∑
k=0

|zk|. (13)

Note that the Convolutional DL problem is more typically cast as follows

arg min
aj ,x

(i)
j ∈Rd

n∑
i=1

(
1

2
‖y(i) −

∑
aj ∗ x

(i)
j ‖

2
2 + λ

∑
‖x(i)

j ‖1
)

s.t. ‖aj‖2 = 1 for all 1 ≤ j ≤ q.

We can recover the above formulation within (9) by setting G = GInt, choosing the number of

generators to be q, and identifying the leftmost column of Z
(i)
j with x

(i)
j .

4.3 Continuous Shift Invariance

Our third example concerns a continuous analog of shift invariance, and is motivated by applications
in time series analysis. Suppose that we observe a continuous signal at regular (discrete) intervals,
and we wish to learn a dictionary that represents small time segments of the signal.

One drawback of Convolutional DL is that it does not provide us a mechanism of identifying two
observations that are derived by sampling the signal at regular intervals, but spaced apart by a non
integral shift [34]. To this end, Song, Flores and Ba expand on the ideas of Convolutional DL and
incorporate a grid-refinement step followed by an interpolation step to learn a continuously shift
invariant dictionary [34]. In the following, we describe a different approach whereby we express
the continuous shift invariance from the outset. Our approach utilizes trigonometric interpolation
and it relies on the existence of semidefinite programming (SDP) representations of certain sets.
In Section 4.4, we discuss how the framework in [34] may be viewed as one that interpolates
Convolutional DL and our ideas.

To simplify the exposition, we assume that the data is in R2d+1; i.e., the data dimension is odd.
There is a minor difference in the description of our framework depending on whether the data
dimension is odd or even, and this arises because of the way trigonometric interpolation is applied.

12

4.3.1 Description of Gcts

Let ω = exp(2iπ/(2d+ 1)), and denote the (normalized) DFT matrix

F =
1√
d

ω(−d)·0 ω(−d)·1 . . . ω(−d)·(2d)

ω(−d+1)·0 ω(−d+1)·1 . . . ω(−d+1)·(2d)

...
...

...

ω(d)·0 ω(d)·1 . . . ω(d)·(2d)

 . (14)

Let l(φ) ∈ C(2d+1) be the vector whose entries are (ω(−d)·φ, ω(−d+1)·φ, . . . , ω(0)·φ, ω(1)·φ, . . . , ω(d)·φ),
and let L(φ) be the diagonal matrix whose entries are l(φ). We say that two vectors x̃ ∼ x if

x̃ = (F †L(φ)F)x, φ ∈ [0, 1). (15)

Subsequently, we have Gcts = {(F †L(φ)F) : φ ∈ [0, 1)}.

4.3.2 Description of atomic norm

We proceed to provide a SDP description of the atomic norm induced by Gcts. First, note that since
the transformation F is unitary, and that the matrix L is diagonal, it suffices to seek descriptions
of the set conv({l(φ) : φ ∈ [0, 1)}). The SDP-based description of the atomic norm relies on useful
properties concerning matrices that are positive semidefinite (PSD) Toeplitz. To this end, we state
an intermediate result that summarizes the connection between such matrices and continuous shifts.
Denote v(φ) := (exp(i(2π)0 · φ), exp(i(2π)1 · φ), . . . , exp(i(2π)d · φ)). In the following, we use the
symbol + (−) as a sub-script to represent linear sums of atoms with positive (negative) coefficients.

Proposition 4.1. Let x ∈ R×Cd. Then the minimal values of the following optimization instances
are equal:

inf {
∑
|ci| : x =

∑
i∈I

civ(φi), ci ∈ R, φi ∈ [0, 1]}, (16)

and

inf {z+ + z− :x =

(
z+
z+

)
−
(
z−
z−

)
,(

z+ z†+
z+ ?

)
,

(
z− z†−
z− ?

)
are PSD Toeplitz}.

(17)

Here, I is an arbitrary index set, z+, z− ∈ R, z+, z− ∈ Cd, and ? ∈ Cd×d denotes an arbitrary
matrix.

Proposition 4.1 is based on a similar description for an atomic norm for signals that possess
continuous shift invariance and phase invariance [35]. The proof of Proposition 4.1 relies on the
existence of a Vandermonde decomposition for every PSD Toeplitz matrix, and is likewise based
on a similar result in [35].

Proposition 4.2 ([36–38]). Let X ∈ Cd×d be a positive semidefinite Toeplitz matrix. Then X
admits a Vandermonde decomposition of the form X = V DV †, where V is a d× d′ Vandermonde
matrix of the form

V =

eiθ1·0 eiθ2·0 . . . eiθd′ ·0

eiθ1·1 eiθ2·1 . . . eiθd′ ·1

...
...

eiθ1·(d−1) eiθ2·(d−1) . . . eiθd′ ·(d−1)

 ,

and D is a diagonal matrix with positive entries.

13

Proof of Proposition 4.1. Let OPT1 be the optimal value to (16), and let OPT2 be the optimal
value to (17).

We begin by showing that OPT1 ≥ OPT2. Suppose x =
∑

j∈J cjv(φj)−
∑

k∈K dkv(φk) where

cj , dk > 0 for all j ∈ J , k ∈ K. Construct the matrices Z+ =
∑

j∈J cjv(φj)v(φj)
† and Z− =∑

k∈K dkv(φk)v(φk)
†. It is easy to see that Z+ and Z− are PSD Toeplitz, and that the first column

of Z+−Z− is precisely x; i.e., Z is a feasible matrix in (17). By taking the infimum over all possible
decompositions of the form x =

∑
j∈J cjv(φj)−

∑
k∈K dkv(φj), it follows that OPT1 ≥ OPT2.

Next, we show that OPT2 ≥ OPT1. Let Z+ and Z− be the respective PSD Toeplitz matrices
in (17). By Proposition 4.2, Z+ and Z− admit a Vandermonde decompositions of the form Z+ =∑

j∈J cjv(φj)v(φj)
† and Z− =

∑
k∈K ckv(φk)v(φk)

†. Note that we have x =
∑

j∈J cjv(φj) −∑
k∈K dkv(φj). By taking the infimum over all feasible solutions to (17), and by noting that

z =
∑
cj −

∑
dk, it follows that OPT2 ≥ OPT1.

Let W2d+1 = F (R2d+1) be the image of the real vector space under F . One can verify W2d+1 =
{ (f−d, . . . , f−1, f0, f1, . . . , fd) : fi = (f−i)

∗, −d ≤ i ≤ d } ⊂ C2d+1. Then the linear span of
conv(Gcts), after a change of basis by the unitary transformation F , are diagonal matrices whose
diagonal are in W2d+1. The following result summarizes the description of the atomic norm.

Proposition 4.3. Let x ∈ R2d+1. Then

‖x‖Gcts = inf
z+,z−∈R, z+,z−∈Cd

z+ + z−

s.t. Fx =

 z∗+
z+
z+

−
 z∗−

z−
z−

(
z+ z†+
z+ ?

)
,

(
z− z†−
z− ?

)
are PSD Toeplitz.

4.3.3 Implementation details

In the following, we explain how Proposition 4.3 is applied within our dictionary learning framework.
Let y ∈ R2d+1 be the data vector and let {ai}qi=1 ∈ R2d+1 be generators for the dictionary. Let ỹ :=
Fy and ãi := Fai be the data and the generator expressed in the transformed basis, and let� denote
pointwise multiplication. Then the loss can be re-written as follows: ‖y −

∑
i

(
F †L(φ)F

)
ai‖22 =

‖(Fy)−
∑

i L(φ)(Fai)‖22 = ‖ỹ −
∑

i l(φ)� ãi‖22.
Following Proposition 4.3, the step in which we represent y as succinctly with respect to D as

in (10) is given by:

argmin
zi,+,zi,−∈R,
zi,+,zi,−∈Cd

1

2
‖ỹ −

q∑
i=1

ãi � (

 z∗i,+
zi,+
zi,+

−
 z∗i,−

zi,−
zi,−

)‖22 + λ

q∑
i=1

(zi,+ + zi,−)

s.t.

(
zi,+ z†i,+
zi,+ ?

)
,

(
zi,− z†i,−
zi,− ?

)
are PSD Toeplitz

. (18)

4.4 Integer Shift Invariance with Interpolation

In our fourth example, we expand on the techniques in Section 4.3 to describe an approach for
learning continuously shift invariant dictionaries using interpolation. Our discussion is conceptually
identical to the framework proposed by Song, Flores, and Ba [34].

14

More concretely, suppose we restrict the shift parameter φ in (15) to be integer multiples of
1/((2d + 1)K) instead of all values in the interval [0, 1), as in Section 4.3. Here, K is an integer
parameter, and it denotes the number of subdivisions within a single integer shift. Then, integer
shift invariance can be viewed as one extreme where K = 1, and continuous shift invariance can
be viewed as the other extreme where K = ∞. We then have Ginterp = {(F †L(φ)F) : φ =
k/((2d + 1)K), 0 ≤ k ≤ ((2d + 1)K) − 1}. The resulting atomic norm is polyhedral, and one can
show that the resulting DL problem is equivalent to the following

arg min
A,x(i)

n∑
i=1

(
1

2
‖y(i) −Ax(i)‖22 + λ‖x(i)‖1

)
.

Here, the linear map A comprises all interpolated shifts of the dictionary generators, and is subse-
quently of size d by (q × (2d+ 1)×K).

The relationship between Convolutional DL, the interpolated variant we describe here, and
continuously shift invariant DL (Section 4.3) suggests the following rule of thumb: For small K, it
is preferable to apply the interpolated variant as the sub-routine (10) entails solving a moderately
larger LP instead of a SDP. For large K however, it is preferable to learn a continuously shift
invariant dictionary because the size of the convex program associated to (10) does not grow with
K (i.e., it does not grow with finer discretizations).

Finally, we note that the framework proposed by Song, Flores, and Ba [34] is far more general; in
particular, it permits more general interpolation methods as well as signal reconstruction methods.
Our current discussion is simply an adaptation of their ideas, and we do so in order to seamlessly
describe the relationship between our work and theirs.

4.5 Invariance to Orthogonal Transformations

In our fifth example, the data are matrices {Y (i)}ni=1 ⊂ Rd×r, and our goal is to learn a dictionary
that is invariant under orthogonal transformations. The generators {Aj}qj=1 are matrices of dimen-
sions d× r, and the group Gorth = {Q : Q ∈ SO(d)} is the collection of orthogonal matrices acting
by left multiplication; that is, QA is a dictionary element for any orthogonal Q if A is. To learn a
dictionary that is invariant to orthogonal shifts, we minimize the following

arg min
Z

(i)
j ,Aj

n∑
i=1

1

2
‖Y (i) −

∑
j

Z
(i)
j Aj‖22 + λ ·

∑
‖Z(i)

j ‖Gorth
. (19)

The atomic norm ‖ ·‖Gorth
induced by the collection of orthogonal matrices is the spectral norm. To

compute the proximal map of a matrix Z with respect to the spectral norm and parameter λ, we
perform the following operations to its singular value decomposition (SVD): (i) replace the largest
singular value smax by s̃ := max{0, smax − λ}, and (ii) replace all other singular values by s̃ if it
exceeds s̃.

4.6 Algorithmic Simplifications

We describe a first order method for minimizing (10) for the specific instances where the invariance
is Gcts. We recognize that the minimization instance is a SDP, and hence can be solved using
standard software [39, 40]. Nevertheless, we believe that there is value in stating our algorithm
because it exploits certain structural properties of Hermitian and Toeplitz matrices, and it relies on
very basic linear algebraic computations. In the following, we let Hd denote the set of d×d complex

15

Algorithm 2 Algorithm for computing projection of X onto Hd
+ ∩ Td

Input: A complex Hermitian d× d matrix X. Initialize d× d Hermitian matrices Y,Q = 0.
Algorithm: Repeat until success iterates differ by at most ε.
1. Project X + P onto Hd

+:
– a. Compute eigendecomposition UDU † ← X + P .
– b. Compute pointwise maximum D ← max{D, 0}.
– c. Update Y ← UDU †.
2. Update P ← X + P − Y
3. Project Y +Q onto T:
– a. SetX to be the Toeplitz matrix withX1,k ← 1

d−k+1

∑d−k+1
i=1 (Y +Q)i,k+i−1+ 1

d−k+1

∑d−k+1
i=1 (Y +

Q)∗k+i−1,i, 1 ≤ k ≤ d , and Xk,1 ← 1
d−k+1

∑d−k+1
i=1 (Y + Q)∗i,k+i−1 + 1

d−k+1

∑d−k+1
i=1 (Y + Q)k+i−1,i ,

1 ≤ k ≤ d.
4. Update Q← Y +Q−X
Output: X.

Algorithm 3 Algorithm for minimizing (18)

Algorithm: Repeat until success iterates differ by at most ε
Input: Step size parameter η > 0. Initial matrix estimate X = 0.
1. Take negative gradient descent step: X ← X − η∇f(X)
2. Compute projection of X onto Hd

+ ∩ Td using Algorithm 2
Output: X.

Hermitian matrices, and we let Hd
+ denote the set of d × d complex Hermitian PSD matrices. In

addition, we let Td denote the set of d× d complex Hermitian Toeplitz matrices.
We proceed by discussing the simplifications for Gcts. First, we express (18) in following form

for some f
min
Z∈Hd

f(Z) s.t. Z ∈ Hd
+ ∩ Td. (20)

Our algorithm is based on projected gradient descent in which we alternate between taking steps
in the negative direction of the gradient and a projection onto the subset Hd

+∩Td. We perform the
latter step using an alternating projections-based method in which we alternate between applying
projection operations onto the sets Hd

+ and Td [41, 42].
Projected gradient descent-based methods are most effective whenever the projection step is

simple to compute. While such methods are most typically applied whenever the projection step
is expressible via a closed-form expression, we are not aware if projections onto Hd

+ ∩ Td can be
expressed as such. Instead, we settle on a slightly more expensive operation based on alternating
projections because projections onto the sets Hd

+ and Td only require simple primitives. More
specifically, let X be a Hermitian matrix with eigendecomposition UDU †. The projection of X onto
Hd

+ is the matrix UD+U
†, where D+ is the diagonal matrix obtained as the pointwise maximum

between D and the zero matrix [43]. The projection of X onto T is a linear operation as T is
a subspace. The procedure for computing projections onto Hd

+ ∩ Td is based on a more general
procedure for computing projections onto the intersection of two convex sets using projections of
each of these convex sets as basic primitives. The more general algorithm was first proposed by
Boyle and Dykstra [41], and subsequently adapted to our set-up by Suffridge and Hayden [42].
We summarize the procedure for computing projections onto Hd

+ ∩ Td in Algorithm 2, and we
summarize the full procedure for minimizing (18) in Algorithm 3.

Computational complexity. The optimization instance in (18) is a SDP of size O(qd)×O(qd).

16

Using the procedure in Algorithm 3, the most expensive sub-routine is to project onto Hd
+, which

has complexity O(d3) using regular matrix eigenvalue decompositions. Consequently, the overall
complexity cost per inner loop iteration is O(qd3), and the overall complexity of the proposed first
order method for solving (18) has complexity O(qd3m1m2), where m1 and m2 are the number of
inner and outer loops in Algorithm 2 respectively.

5 Numerical Experiments

In this section, we apply our framework over a series of numerical experiments using synthetically
generated data as well as real data. We discuss the utility as well as the limitations of our framework.

Dictionary distances. We use the following measure to describe the distance between two
dictionaries. Let D be a dictionary whose generators are A = {a1, . . . ,aq}, and let D′ be another
arbitrary dictionary. We define distance between D and D′ in terms of the mean squared error
between every generator in A from an element in D′:

dist(D,D′) =
1

q

q∑
i=1

inf
d∈D′

‖ai − d‖22. (21)

Implementation details. We briefly describe the implementation details used in the numerical
experiments. We solve the step corresponding to (10) via a first-order method (we provide details
shortly). To ensure that our comparison of different dictionary learning frameworks is fair, the
first-order methods we deploy are all comparable, and the number of iterations is always set equal
to 5. Our rule of thumb for choosing the regularization parameter λ is to select it as large as

possible while ensuring that the matrices Z
(i)
j ’s are not degenerate. The intuition is to maximize

the impact of the structure inducing penalty terms. In particular, this rule of thumb appears to
be most useful in real data in that smaller choices of λ (than those specified by our rule of thumb)
tend to learn less meaningful dictionary elements.

Our implementation of Regular DL follows the description in Section 4.1, and specifically the
formulation in (12). We solve the sub-routine corresponding to (10) via a first-order method in
which we alternate between a gradient step (with a line search) followed by a proximal step with
respect to the induced atomic norm (i.e. the L1-norm).

Our implementation of integer shift invariant / Convolutional DL follows the description in
Section 4.2. We solve the sub-routine corresponding to (10) using the same procedure as in Regular
DL.

Our implementation of continuous shift invariant dictionary learning follows the description in
Section 4.3. We solve the sub-routine corresponding to (10) using projected gradient descent (with
a line search) as described in Section 4.3.3. We apply 5 outer iterations of the projected gradient
descent, and in each iteration we apply a single iteration in the inner loop (where we project a
collection of matrices to be PSD Toeplitz).

5.1 Incorporating Invariances

Our first example is on synthetic data and it expands on the experiment described in the Introduc-
tion.

Signal model. We draw q = 3 unit Euclidean-norm {a?j : 1 ≤ j ≤ q} ⊂ Rd with d = 30 from

the uniform measure as our generators. We define the dictionary D? = {T r · a?j : dj ∈ Rd, 1 ≤ j ≤
q, 0 ≤ r ≤ d−1} to include all possible integer shifts. We generate n = 10000 data-points according

17

0 20 40 60 80 100
Iterate

0.0

0.2

0.4

0.6

0.8

1.0

Di
ct

io
na

ry
 D

ist
an

ce

0 20 40 60 80 100
Iterate

0.0

0.2

0.4

0.6

0.8

1.0

Di
ct

io
na

ry
 D

ist
an

ce

Figure 2: Comparison of learning a shift invariant dictionary using an algorithm that incorporates
shift invariance as a prior (our framework – dashed lines) with an algorithm that does not (Regular
DL – solid lines). In the left sub-plot we compare our framework with regular dictionary learning
on the same dataset comprising 1000 data-points; in the right sub-plot we compare our framework
using 1000 data-points with Regular DL applied over 10000 data-points.

to the following model:

y(i) =
s∑
j=1

c
(i)
j d

(i)
j , dj ∈ D?.

Here, the coefficients cj ∼ N (0, 1) are i.i.d. normal random variables, and the dictionary elements dj
are chosen from the dictionary D? uniformly at random (u.a.r.). We choose the sparsity parameter
s = 5.

Integer shift invariance. First, we apply Convolutional DL as described in Section 4.2 on a
subset of only 1000 data-points. We apply 50 iterations and we supply the choice of regularization
parameter λ = 0.4 as well as the correct number of generators q = 3. We plot the error between
each iterate and the true dictionary D? in Figure 2 (see the dashed lines in both plots). We repeat
this experimental set-up over 10 different random initializations. In all instances, we observe that
our algorithm recovers the underlying dictionary with an error of approximately 0.05.

Comparison with Regular Dictionary Learning. Second, we compare the results with
Regular DL as described in Section 4.1. We specify the number of generators to be equal to 3× 30,
which is actual number of dictionary elements, and we perform 100 iterations. In the left sub-plot
of Figure 2 we supply the same 1000 data-points, and we observe that in the algorithm recovers a
dictionary with error ≈ 0.2 from the underlying dictionary. In the right sub-plot of Figure 2 we
supply all 10000 data-points, and we observe that the error improves to 0.1 in the latter set-up,
which is still poorer than the results obtained using Convolutional DL using a tenth of the dataset.

These results emphasize the importance of incorporating the appropriate invariant structure,
particularly in settings where data is limited. A plausible explanation for this phenomenon is that
these invariances help reduce the degrees of freedom in the estimation problem significantly.

5.2 Learning Shift Invariant Dictionaries for ECG Data

We apply our framework in Section 4.3 to learn a shift invariant dictionary for an ECG time series.
The dataset {y(j)}nj=1 ⊂ R201 contains n = 1000 time series of length 201 segmented from a longer
time series, which is an ECG signal sampled at 360Hz obtained from the MIT-BIH Arrhythmia
Database (signal 100.dat) [44, 45]. We subtract an offset from each time series so that it is zero

18

mean, and we scale the resulting vector to be unit-norm. Figure 3 shows a subset of our dataset
{y(j)}nj=1, and Figure 4 shows a segment of the longer time series.

We apply our method to learn a dictionary that is continuously shift invariant with q ∈
{1, 2, 3, 4} generators. We apply 20 iterations of our method. For q ∈ {1, 2} we pick λ = 0.2,
and for q ∈ {3, 4} we pick λ = 0.1 as our choices of regularization parameter. In Figure 6, we
show the realizations of continuous shifts applied to the generators learned from the instance where
q = 4.

We show the generators obtained from our method in Figure 5. We observe that the generators
resemble spikes, which is consistent with what we expect from ECG signals. Interestingly, we also
note that the waveforms appear to be largely consistent across different choices of q.

Comparison with other methods. We compare the learned generators with those obtained
using other methods. First, we apply Convolutional DL (Section 4.2) to learn a single generator
(Figure 7, top left). In this instance, we apply 20 iterations, and we pick λ = 0.1 as our choice of
regularization parameter. Second, we apply an interpolated variant of Convolutional DL (Section
4.4) to also learn a single generator (Figure 7, top right). We add one interpolation point between
every integer shift so that the number of dictionary elements is double that of Convolutional DL. In
this instance, we apply 20 iterations, and we pick λ = 0.1 as our choice of regularization parameter.
Third, we apply the same interpolated variant of Convolutional DL, but with three additional
interpolation points per shift to learn a single atom (Figure 7, bottom left). Subsequently, the
number of dictionary elements is quadrupled compared to the first instance with Convolutional
DL. We apply 20 iterations, and we pick λ = 0.1 as our choice of regularization parameter. Fourth,
we apply Regular DL (Section 4.1) to learn q = 201 dictionary atoms (Figure 7, bottom right).
In this instance, we apply 100 iterations, and we pick λ = 0.02 as our choice of regularization
parameter.

For Convolutional DL and its interpolated variants, we observe that the learned generators also
resemble spikes, which is consistent with the waveforms learned using a continuously shift invariant
dictionary. For Regular DL however, we note the presence of numerous dictionary elements that
do not resemble spikes. The probable explanation for this is that Regular DL has substantially
more degrees of freedom compared to the other methods we applied, and as a result picks up
a substantially higher number of waveform patterns. This suggests that, if one is specifically
interested in learning essential features of a dataset, then incorporating some form of structural
invariance is essential.

We remark that while all methods incorporating shift invariance learn similar looking templates,
minor differences exist between the learned templates. For instance, the generator learned using
integer shift invariance has a less pronounced peak (absolute value ≈ 0.5) compared to the generator
learned using continuously shift invariance (absolute value > 0.8). In particular, the generators
learned using interpolated integer shifts lie between both extremes (absolute value ≈ 0.7 using
twice as many dictionary elements, and ≈ 0.8 using four times as many dictionary elements). It is
not entirely clear if these differences are artifacts of random initializations, or reflective of genuine
differences in these methods. One possible explanation we put forward is based on the intuition that
signals with high frequency components (as is the case for spikes) can appear quite different between
consecutive integer shifts. As such, methods that do not account for a continuum of shifts needs
to suppress the high frequency components so that the learned generator and its integer shifted
copies “cover” the data well, while methods that do permit continuous shifts are not constrained in a
similar way. Conversely, if the signal is sufficiently smooth, we expect the dictionaries learned using
integer shift invariant (Convolutional) DL and continuously shift invariant DL to be qualitatively
identical.

Comparison in compute time. In Figure 8, we compare the per iteration time across all

19

Figure 3: Samples of our dataset. Each datapoint is a time series of length 101 segmented from a
longer time series.

0.0 0.5 1.0 1.5 2.0 2.5
Time (seconds)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Am
pl

itu
de

 (m
V)

Figure 4: A segment of the longer ECG time series.

methods. We specifically record the time taken to solve (8) across all instances, and exclude the
time taken for the dictionary update step. As a note, the experiments were conducted in PYTHON

on a machine fitted with an Intel Core i7-7600U running at 2.80GHz. Our results suggest that
the interpolated version of Convolutional DL is computationally more expensive than the vanilla
Convolutional DL, but cheaper than learning continuously shift invariant dictionaries. As such,
the interpolated version of Convolutional DL as well as the more general framework in [34] may be
preferred to learning continuously shift invariant dictionaries if the number of interpolants required
is modest.

5.3 Processing on Unseen Orientations

In the following, we consider a task that highlight the utility of expressing the full range of orienta-
tions. In this experimental set-up, our dataset comprises n = 1000 time series of length 31. These
signals are segmented from the same ECG signal as in the experimental set-up in Section 5.2 – the

20

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Am

pl
itu

de

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

Figure 5: Generators of a continuously shift invariant dictionary learned from ECG data. We specify
as input q = 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right) number of generators.

Figure 6: Continuous shift of learned generators. Each row represents a single generator, and span
a single integer coordinate shift.

21

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

0.0 0.1 0.2 0.3 0.4 0.5
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Am
pl

itu
de

Figure 7: Generator of an integer shift invariant dictionary (top left), interpolated integer shift
invariant dictionary (2× dict. elements) (top right), interpolated integer shift invariant dictionary
(4× dict. elements) (bottom left), and generators from regular dictionary learning (bottom right)
learned from ECG data.

Approach Avg. per iteration time

Cts. Shift Inv. DL 280 secs
Convolutional DL (CDL) 2.2 secs

Interpolated CDL (2× pts.) 4.2 secs
Interpolated CDL (4× pts.) 8.3 secs

Regular DL 2.5 secs

Figure 8: Comparison of per iteration time.

22

0.0 0.2 0.4 0.6 0.8
Time (seconds)

0.2

0.0

0.2

0.4

0.6

0.8

Am
pl

itu
de

Figure 9: Subset of the dataset presented separately (left sub-plot) and superimposed on the same
plot (right sub-plot).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Am
pl

itu
de

Figure 10: Atoms learned from regular dictionary learning presented separately (left sub-plot) and
superimposed on the same plot (right sub-plot).

difference is that the signal is sampled at 36Hz, and the time series only attain a maximum in the
first 10 coordinates (see Figure 9 for a subset of the data). Stated simply, the dataset is constructed
such that we do not observe the full spectrum of shifts in our data.

Our first remark is that regular dictionary learning, when applied to the dataset, does not
learn atoms that capture shifts of the data beyond those observed in the dataset. Figure 10 shows
the output by applying regular dictionary learning to learn a dictionary comprising 31 atoms. In
contrast, our method when applied to the dataset with the choice of a single generator learns a
waveform that captures the signal (see Figure 11). The unbalanced nature of the data in the sense
that only a fraction of the full spectrum of orientations is represented in the data poses no difficulty
to our framework.

The incorporation of invariance priors becomes particularly useful when we wish to use the
learned atoms for processing orientations of data not observed in the training set. Consider the
following instance in which we observe a segment of the waveform – see left sub-plot of Figure 12,
and we wish to complete the missing entries. We do so by seeking the vector that minimizes the
norm induced by the learned atoms:

yopt ∈ arg min
x

‖x‖ s.t. Pobs.(x− ydata) = 0. (22)

Subsequently, the vector yopt is the solution of a convex program. In our numerical experiments,
we compute yopt using a CVXPY [46,47] implementation of CVXOPT [48].

23

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

Figure 11: Atom learned from our framework.

Figure 12 shows an example of the completed signal by instantiating ‖x‖ in the above using the
norms induced by atoms learned using regular dictionary learning and our method. We repeat (22)

over 100 different time series y
(i)
data, 1 ≤ i ≤ 100. The average squared error loss using our method

1
100

∑100
i=1 ‖yopt − ydata‖22/‖ydata‖22 is 0.079 using our method, and is 350 using regular dictionary

learning.

5.4 Dictionary Learning for Synchronization

We consider a stylized numerical experiment motivated by applications in synchronization problems.
Suppose we have a collection of r devices that are known to be synchronized relative to each other,
but the common phase of these devices is unknown. Our goal is to estimate the phase given noisy
measurements of these objects.

Concretely, consider matrices of the form {Y (i)}ni=1 ⊂ Rd×r, where Y (i) = G(i)A? + E(i) is the
product of an unknown orthogonal matrix G(i) ∈ O(d) and an unknown common linear map A?,
corrupted by noise E(i). We can view the columns of Y (i) as the noisy measurements of r different
devices. The columns of A? captures the phase of each device relative to other devices, while the
matrix G(i) captures a phase shift that is common to all objects, but specific to an observation
instance i.

In our first experiment, we generate n = 1000 data points with the choice of d = 3 and r = 20.
We generate A? from the normal distribution, and we normalize the columns of A? to be one. The
orthogonal matrices G(i) are drawn from the uniform measure over O(n), and the noise E(i) is
drawn from the normal distribution E(i) ∼ N (0, σI), with σ = 0.1.

We apply our framework in Section 4.5 (with the choice of a single generator) to estimate the
linear map A? (we also normalize the columns of each iterate to be unit-norm). In the left sub-
plot of Figure 13, we show the difference between the iterates and the ground truth A? using the
distance measure (21). Our results show that our method recovers the underlying A? in all 10
random initializations. Note that to compute the distance measure (21), it is necessary to solve an
optimization instance of the following form as a sub-routine

arg min
Q∈O(n)

‖A1 −QA2‖2F .

By eliminating the constant terms, this is equivalent to the following

arg max
Q∈O(n)

trace(A2A
ᵀ
1Q).

24

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Am
pl

itu
de

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

4

2

0

2

4

Am
pl

itu
de

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (seconds)

0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

Figure 12: Completing a partially observed ECG signal (top left) using regular dictionary learning
(in blue, top right), and our framework (in red, bottom).

We compute the solution to the above by first computing the SVD UΣV ᵀ = A1A
ᵀ
2, and setting

Q = UV ᵀ.

In our second experiment, the signals Y (i) =
∑q

j c
(i)
j G

(i)
j A

?
j+E(i) are linear sums of rotated A?j ’s.

Although the task of recovering the generators {A?j}
q
j=1 bears less resemblance to synchronization

applications, it can be solved using our framework in Section 4.5. We generate n = 1000 data
matrices with the same choice of parameters d = 3, r = 20, and σ = 0.1. Here, the additional

scaling variable c
(i)
j ∼ N (0, 1) is standard normal. We show the corresponding set of results in the

right sub-plot of Figure 13. In this instance, our method is less successful because of the increase
in number of unknown variables; our method appears to succeed only in 3 out of 10 random
initializations.

In summary, this experiment describes a concrete instance where the type of symmetry (namely
the orthogonal group) necessitates the flexibility that our framework provides: With continuous
shifts, one could apply discrete analogs as an approximation whereas with orthogonal rotations,
there is no obvious discrete analog. From a computational perspective, the instantiation of our
framework for this example is a relative simple procedure in that it only requires computing the
SVDs of certain matrices as a computational primitive.

6 Conclusion and Future Directions

In this paper, we develop a framework for representing data as sparse linear sums drawn from
a collection of basic building blocks subject to the constraint that the collection respects a pre-
specified symmetry. Our results show that the incorporation of such symmetries as priors is most
useful when dataset has few data-points, and when the full spectrum of symmetries is inadequately
represented in the dataset.

25

0 5 10 15 20 25 30 35 40
Iterate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Di
ct

io
na

ry
 D

ist
an

ce

0 5 10 15 20 25 30 35 40
Iterate

0

5

10

15

20

25

30

Di
ct

io
na

ry
 D

ist
an

ce

Figure 13: DL invariant to orthogonal transformations. The graphs show the distance of each
iterate from the ground truth dictionary. The data is synthetically generated by one generator in
the left sub-plot and two generators in the right sub-plot.

In the following, we discuss some future directions based on our work.
Misspecification, subgroups, and convex relaxations. Our first future direction concerns

studying the robustness of our framework to misspecification of the transformation group. One
instance in which misspecification arises is when we wish to specify a sub-group rather than the
full spectrum of symmetries in the data, e.g., discrete shifts as opposed to continuous shifts. We
may do so, for instance, out of computational considerations.

We note that the atomic norms induced by the original transformation group and the sub-
group are closely related – specifically, the level set of the atomic norm induced by the sub-group of
transformations would be a convex inner approximation of the level set of the original atomic norm.
As such, we have a strong reason to expect that atoms learned using both sets of transformation
groups will be closely related. In fact, convex inner (and outer) approximations are prominently
used to develop more tractable approximations of convex programs. For such reasons, it would be
useful to understand how the learned atoms using both sets of approaches differ.

Specifying subsets of the full invariance group and the associated computational
and statistical tradeoffs. One interesting conceptual question that warrants deeper investiga-
tion: Given a processing task involving data that possesses some form of invariance, is it always
advantageous to incorporate the full range of symmetries into the learning task? Our numerical
experiments in Sections 5.1 and 5.3 emphasize the importance of incorporating some basic level
of invariances. On the other hand, our experiments in Section 5.1 also suggest that it may not
be necessary to incorporate the full extent of symmetries. In fact, it may very well be possible
to learn representations of comparable quality by only incorporating some of the symmetries to
those learned by incorporating the full spectrum of symmetries. This insight may be useful from
a computational perspective because the former class of methods may be cheaper. It would be
useful, from a conceptual as well as a practical perspective, to understand the computational and
statistical tradeoffs associated with specifying only part of the full range of symmetries in a generic
representation learning task.

Applications to neural networks. In the Introduction, we discussed a closely related body
of work extending CNNs to more general invariances [19–21]. As we noted, the proposed neural
network architectures do not incorporate sparse structure whereas learning sparse representations
is central to our set-up. There are certain applications where incorporating sparse priors within
the neural network architecture is beneficial, and it would be interesting to see if the framework we

26

provide via atomic norms suggests natural analogs for neural networks.
Generic recipes for obtaining tractable descriptions of the convex hull of matrix

groups. An important future direction is to develop a procedure for obtaining tractable descrip-
tions of convex hulls for a broad collection of matrix groups. This procedure will allow us to learn
dictionaries that are invariant to larger collections of symmetries.

A class of objects that has been widely studied in convex algebraic geometry and optimization
concerns, and is closely related to the above problem is the collection of orbitopes [49]. An orbitope
is defined to be the convex hull of the orbit of a compact algebraic group acting linearly on a
vector space [49]. The level set of the atomic norm we apply in our framework is therefore an
orbitope, provided the matrix group describing the symmetries is compact algebraic. Furthermore,
the matrix group elements can be viewed as orbits of the identity matrix I, and hence the convex hull
of these elements is also an orbitope. The algebraic properties, the geometric properties, and the
optimization-related aspects of orbitopes are areas of active research interests – in particular, there
is a body of work that concerns providing descriptions of orbitopes via semidefinite programming
[49–51]. It would be useful to build upon these techniques to further understand the types of
invariances that are expressible within our framework.

Acknowledgements

The author is supported by the Agency for Science, Technology and Research (A*STAR) under its
AME Programmatic Funding Scheme (Project No. A18A1b0045) and the Ministry of Education
(Singapore) Academic Research Fund (Tier 1) R-146-000-329-133. The author would like to thank
Venkat Chandrasekaran for insightful discussions held during the beginning of this project, and
Riley J. Murray for providing helpful directions concerning numerical experiments. The author
also wishes to thank the three reviewers for feedback that has substantially improved the paper.

References

[1] B. A. Olshausen and D. J. Field, “Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images,” Nature, vol. 381, pp. 607–609, 1996.

[2] ——, “Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?” Vision
Research, vol. 37, no. 23, pp. 3311–3325, 1997.

[3] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for Designing Overcomplete
Dictionaries for Sparse Representation,” IEEE Transactions on Signal Processing, vol. 54,
no. 11, pp. 4311–4322, 2006.

[4] J. Mairal, F. Bach, and J. Ponce, “Sparse Modeling for Image and Vision Processing,” Foun-
dations and Trends in Computer Graphics and Vision, vol. 8, no. 2–3, pp. 85–283, 2014.

[5] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. Springer, 2010.

[6] M. Elad and M. Aharon, “Image Denoising via Sparse and Redundant Representations Over
Learned Dictionaries,” IEEE Transactions on Signal Processing, vol. 15, no. 12, pp. 3736–3745,
2006.

[7] B. Wohlberg, “Efficient Algorithms for Convolutional Sparse Representations,” IEEE Trans-
actions on Image Processing, vol. 25, no. 1, 2015.

27

[8] M. S. Lewicki and T. J. Sejnowski, “Coding Time-varying Signals using Sparse, Shift-invariant
Representations,” in Proceedings of the 1998 Conference on Advances in Neural Information
Processing Systems II, 1998.

[9] V. Papyan, Y. Romano, J. Sulam, and M. Elad, “Convolutional Dictionary Learning via Local
Processing,” in The IEEE International Conference on Computer Vision, 2017.

[10] P. Jost, P. Vandergheynst, S. Lesage, and R. Gribonval, “MoTIF : An Efficient Algorithm for
Learning Translation Invariant Dictionaries,” in Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), 2006.

[11] T. Blumensath and M. E. Davies, “Sparse and Shift-Invariant Representations of Music,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 14, no. 1, 2006.

[12] M. D. Plumbley, S. A. Abdallah, T. Blumensath, and M. E. Davies, “Sparse Representations
of Polyphonic Music,” Signal Processing, vol. 86, no. 3, 2006.

[13] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-invariant Sparse Coding for Audio
Classification,” in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, 2007.

[14] C. Rusu, “On Learning with Shift-invariant Structures,” Digital Signal Processing, vol. 99,
2020.

[15] E. Zisselman, J. Sulam, and M. Elad, “A Local Block Coordinate Descent Algorithm for
the CSC Model,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[16] C. Garcia-Cardona and B. Wohlberg, “Convolutional Dictionary Learning: A Comparative
Review and New Algorithms,” IEEE Transactions on Computational Imaging, vol. 4, no. 3,
2018.

[17] J. Liu, C. Garcia-Cardona, B. Wohlberg, and W. Yin, “First- and Second-Order Methods for
Online Convolutional Dictionary Learning,” SIAM Journal on Imaging Sciences, vol. 11, no. 2,
2018.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with Deep Convolu-
tional Neural Networks,” in Advances in Neural Information Processing Systems, 2012.

[19] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow, “Harmonic Networks:
Deep Translation and Rotation Equivariance,” in The IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[20] R. Gens and P. M. Domingos, “Deep Symmetry Networks,” in Advances in Neural Information
Processing Systems, 2014.

[21] T. Cohen and M. Welling, “Group Equivariant Convolutional Networks,” in Proceedings of
The 33rd International Conference on Machine Learning, 2016.

[22] R. Kondor and S. Trivedi, “On the generalization of equivariance and convolution in neural
networks to the action of compact groups,” in International Conference on Machine Learning
(ICML), 2018.

28

[23] Y. S. Soh and V. Chandrasekaran, “Learning Semidefinite Regularizers,” Foundations of Com-
putational Mathematics, vol. 19, 2019.

[24] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The Convex Geometry of
Linear Inverse Problems,” Foundations of Computational Mathematics, vol. 12, no. 6, pp.
805–849, 2012.

[25] D. L. Donoho, “Compressed Sensing,” IEEE Transactions on Information Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[26] ——, “For Most Large Underdetermined Systems of Linear Equations the Minimal `1-norm
Solution Is Also the Sparsest Solution,” Communications on Pure and Applied Mathematics,
vol. 59, no. 6, pp. 797–829, 2006.

[27] E. J. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles: Exact Signal Recon-
struction from Highly Incomplete Frequency Information,” IEEE Transactions on Information
Theory, vol. 52, no. 2, pp. 489–509, 2006.

[28] D. L. Donoho, “De-noising by Soft-Thresholding,” IEEE Transactions on Information Theory,
vol. 31, no. 3, 1995.

[29] D. L. Donoho and I. M. Johnstone, “Ideal Spatial Adaptation by Wavelet Shrinkage,”
Biometrika, vol. 81, no. 3, 1994.

[30] B. N. Bhaskar, G. Tang, and B. Recht, “Atomic Norm Denoising with Applications to Line
Spectral Estimation,” IEEE Transactions on Signal Processing, vol. 61, no. 23, pp. 5987–5999,
2013.

[31] K. Engan, S. O. Aase, and J. H. Husoy, “Method of Optimal Directions for Frame Design,”
in IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999.

[32] K. Schnass, “Convergence Radius and Sample Complexity of ITKM Algorithms for Dictionary
Learning,” Applied and Computational Harmonic Analysis, 2016.

[33] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by Basis Pursuit,”
SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61, 1998.

[34] A. H. Song, F. J. Flores, and D. Ba, “Convolutional Dictionary Learning with Grid Refine-
ment,” IEEE Transactions on Signal Processing, vol. 68, pp. 2558–2573, 2020.

[35] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed Sensing Off the Grid,” IEEE
Transactions on Information Theory, vol. 59, no. 11, 2013.

[36] C. Carathéodory and L. Fejér, “Über den zusammenhang der extremen von harmonischen
funktionen mit ihren koeffizienten und über den picard-landauschen satz,” Rendiconti del Cir-
colo Matematico di Palermo, vol. 32, no. 1, 1911.

[37] C. Carathéodory, “Über den variabilitätsbereich der fourierschen konstanten von positiven
harmonischen funktionen,” Rendiconti del Circolo Matematico di Palermo, vol. 32, no. 1, 1911.

[38] O. Toeplitz, “Zur theorie der quadratischen und bilinearen formen von unendlichvielen
veränderlichen,” Mathematische Annalen, vol. 70, no. 3, 1911.

29

[39] J. Renegar, A Mathematical View of Interior-Point Methods in Convex Optimization. MOS-
SIAM Series on Optimization, 2001.

[40] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming. SIAM Studies in Applied and Numerical Mathematics, 1994.

[41] J. P. Boyle and R. L. Dykstra, “A Method for Finding Projections onto the Intersection of
Convex Sets in Hilbert Spaces,” in Advances in Order Restricted Statistical Inference, Lecture
Notes in Statistics, R. L. Dykstra, T. Robertson, and T. T. Wright, Eds. Springer, New York,
1986, pp. 28–47.

[42] T. J. Suffridge and T. L. Hayden, “Approximation by a Hermitian Positive Semidefinite
Toeplitz Matrix,” SIAM Journal on Matrix Analysis and Applications, vol. 14, no. 3, 1993.

[43] N. J. Higham, “Computing a Nearest Symmetric Positive Semidefinite Matrix,” Linear Algebra
and its Applications, vol. 103, 1988.

[44] R. G. Mark and G. B. Moody, “The impact of the MIT-BIH Arrhythmia Database,” IEEE
Engineering in Medicine and Biology Magazine, vol. 20, no. 3, 2001.

[45] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, R. G. M. P. Ch. Ivanov,
J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit,
and PhysioNet Components of a New Research Resource for Complex Physiologic Signals,”
Circulation, vol. 101, no. 23, 2000.

[46] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A Rewriting System for Convex
Optimization Problems,” Journal of Control and Decision, vol. 5, no. 1, pp. 42–60, 2018.

[47] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex opti-
mization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.

[48] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: Python Software for Convex Opti-
mization.”

[49] R. Sanyal, F. Sottile, and B. Sturmfels, “Orbitopes,” Mathematika, vol. 57, no. 2, p. 275–314,
2011.

[50] R. Sanyal and J. Saunderson, “Spectral Polyhedra,” CoRR, vol. abs/2001.04361, 2020.

[51] H. Fawzi, J. Saunderson, and P. A. Parrilo, “Equivariant Semidefinite Lifts and Sum-of-Squares
Hierarchies,” SIAM Journal on Optimization, vol. 25, no. 4, p. 2212–2243, 2015.

30

	1 Introduction
	1.1 Group Invariant Dictionaries
	1.2 Prior and Related Works
	1.3 Our Contributions
	1.4 Notation

	2 Framework
	2.1 Succinct Representations with respect to a Dictionary
	2.2 Succinct Representations via Atomic Norms
	2.3 Atomic Norms for Group Invariant Dictionary Learning
	2.4 Learning Group Invariant Dictionaries via Matrix Factorization
	2.5 Intermission

	3 Algorithm
	4 Examples
	4.1 Regular Dictionary Learning
	4.2 Integer Shift Invariance / Convolutional Dictionary Learning
	4.3 Continuous Shift Invariance
	4.3.1 Description of Gcts
	4.3.2 Description of atomic norm
	4.3.3 Implementation details

	4.4 Integer Shift Invariance with Interpolation
	4.5 Invariance to Orthogonal Transformations
	4.6 Algorithmic Simplifications

	5 Numerical Experiments
	5.1 Incorporating Invariances
	5.2 Learning Shift Invariant Dictionaries for ECG Data
	5.3 Processing on Unseen Orientations
	5.4 Dictionary Learning for Synchronization

	6 Conclusion and Future Directions

