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Time-Frequency Phase Retrieval for Audio —
The Effect of Transform Parameters

Andrés Marafioti, Nicki Holighaus, and Piotr Majdak

Abstract—In audio processing applications, phase retrieval
(PR) is often performed from the magnitude of short-time Fourier
transform (STFT) coefficients. Although PR performance has
been observed to depend on the considered STFT parameters
and audio data, the extent of this dependence has not been
systematically evaluated yet. To address this, we studied the
performance of three PR algorithms for various types of audio
content and various STFT parameters such as redundancy, time-
frequency ratio, and the type of window. The quality of PR was
studied in terms of objective difference grade and signal-to-noise
ratio of the STFT magnitude, to provide auditory- and signal-
based quality assessments. Our results show that PR quality
improved with increasing redundancy, with a strong relevance
of the time-frequency ratio. The effect of the audio content was
smaller but still observable. The effect of the window was only
significant for one of the PR algorithms. Interestingly, for a good
PR quality, each of the three algorithms required a different set of
parameters, demonstrating the relevance of individual parameter
sets for a fair comparison across PR algorithms. Based on these
results, we developed guidelines for optimizing STFT parameters
for a given application.

I. INTRODUCTION

Phase is a crucial component of audio signals and affects
how humans perceive sounds [1] and speech [2], [3]. When
processing audio, a signal is often represented in the complex-
valued short-time Fourier transform (STFT) domain [4]–[6]),
although many audio applications focus on processing the STFT
magnitude [7]–[10]. In order to synthesize the targeted time-
domain signal, they estimate the STFT phase from the processed
STFT magnitudes by performing phase retrieval (PR) [11], [12].
The necessity of PR also arises in the generation of a signal
described only by STFT magnitude [13], [14]. PR algorithms
have been used successfully in the field of audio [15]–[17],
including specific applications such as audio inpainting [18],
[19], but many applications exist beyond the audio domain,
e.g., in X-ray crystallography [20], [21] and imaging [22], [23].

The input to PR algorithms is usually given by phaseless
transform coefficients with respect to some dictionary. The
classic problem of Fourier-based PR [24] has been extended
to deal with various time-frequency (TF) representations, most
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notably the STFT, the best understood and most widely used
TF representation in the field of audio processing. However,
different STFT parameters may yield different PR results.
From the mathematical perspective, PR is a difficult inverse
problem and various conditions ensuring its feasibility have
been derived, e.g., [25]–[31], yielding conditions on the
window, transform parameters, or limitations in the processed
input. These conditions, while theoretically correct, can be
impractical in actual applications. To find practical conditions,
we evaluated the performance of various PR algorithms under
systematic variation of STFT parameters and audio type.

Phase1 retrieval for audio signals reached its first milestone
in 1984, when the Griffin-Lim algorithm (GLA) was intro-
duced [32]. It is iterative and computationally intensive in
each iteration and unsuitable for real-time applications. Further
improvements with respect to quality [33]–[35] and computation
time [36], [37] yielded algorithms such as the fast Griffin-Lim
algorithm (FGLA) [38] and real-time iterative spectrogram
inversion [39]. Nowadays, GLA is a widely used iterative PR
algorithm, e.g., [40], [41].

Alternative, non-iterative algorithms such as single-pass
spectrogram inversion (SPSI) [42], phase unwrapping [43],
and phase gradient heap-integration (PGHI) [44], have been
proposed. SPSI assumes a sinusoidal model with linear phase
progression and phase locking [45] to the closest spectral peak.
It is fast and directly suitable for real-time usage, but it relies
on the assumption that the signal consists of slowly varying
sinusoidal components. PGHI is efficient and equally suitable
for real-time processing. Even though PGHI does not rely on
any signal assumptions, it is based on the phase-magnitude
relations [46], a property of the continuous STFT, which when
used in a discrete realm may introduce inaccuracies governed
by the parameters of the discrete STFT [47].

All these algorithms are applied to magnitude STFT co-
efficients which can be obtained with different parameters.
Unfortunately, besides general introductions to phase-aware
processing [15], [48], there are only a few hints towards which
are ‘good’ STFT parameters for PR algorithms. For example,
a large number of frequency channels seems to be beneficial
in music applications [14]. For a fixed number of frequency
channels, the window function and redundancy seems to affect
the PR quality [49], with larger redundancy improving the
PR quality [50], [51]. Still, a systematic investigation of the
transform parameters affecting the PR quality of audio seems
to be missing.

1From now on, we use phase when referring to the STFT phase.
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In this article, we first revisit relevant properties of the
discrete STFT [52]–[54] in the context of PR. We then
systematically evaluate three PR algorithms: PGHI, FGLA, and
SPSI. We consider five redundancies of the STFT between
2 and 32, many window sizes ranging from 32 to 61440
samples, and four types of windows: Gaussian, Blackman,
Hann, and Bartlett. In addition, we evaluate the PR performance
in a simple setting with processed magnitude spectrograms.
We also consider the performance of PR for various types
of audio signals. Finally, we describe guidelines for ob-
taining good STFT parameters for a given PR algorithm.
The code used to perform our experiments is available at
https://github.com/andimarafioti/phaseRetrievalEvaluation.

II. THE DISCRETE SHORT-TIME FOURIER TRANSFORM

We consider finite signals s ∈ CL and indices in the signal
domain are to be understood modulo L. The STFT of s, with
the analysis window g ∈ RL, time step a ∈ N and M ∈ N
frequency channels is given by

Sg(s)[m,n] =

L−1∑
l=0

s[l]g[l − na]e−2πiml/M

=
∣∣Sg(s)[m,n]∣∣ eiφg(s)[m,n],

(1)

for n ∈ {0, . . . , L/a−1} and m ∈ {0, . . . ,M −1}. If s and g
are real-valued, the STFT is conjugate symmetric in m and it is
sufficient to store the first MR = b(M/2) + 1c channels. Note
that φg(s) refers to the TF phase, which we refer to simply
by phase throughout this document. Accordingly, TF PR is
concerned with estimating the phase, or equivalently Sg(s),
from the magnitude

∣∣Sg(s)∣∣.
A. Properties of the STFT

Depending on the choice of transform parameters a, M , and
the window g, the discrete STFT encodes time and frequency
information with different properties. The full STFT, i.e., with
a = 1 and M = L, is a slowly varying function, owing to
significant overlap between both the time range covered by
adjacent time positions and the frequency range covered by
adjacent frequency channels. When increasing the time step a
over 1, the time resolution of the STFT decreases. Similarly,
when decreasing the number of channels M below L, the
frequency resolution of the STFT decreases. Jointly, time and
frequency resolution can be likened to the pixel resolution
in digital imaging. This joint resolution is characterized by
the redundancy (D) of the STFT, D =M/a. Figure 1 shows
examples of STFT magnitudes calculated with the same window
g, for various redundancies D. Especially at redundancy D = 2,
it can be seen that some characteristic features of the STFT
magnitude are obscured.

Further, the window g and it’s Fourier transform ĝ control the
inherent TF uncertainty [54] of the STFT, independently of a
and M . Namely, every window function g has a certain shape in
time and ĝ in frequency, which determine how spectro-temporal
signal components are smeared in the STFT magnitude. The
shape of a window is usually characterized by its width. In the
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Fig. 1: Exemplary spectrograms calculated for various redun-
dancies D. Calculations were done with the Gaussian window
and TF ratio of λ = 8.

classic uncertainty principle, a window’s time and frequency
width are defined as the standard deviation of g and of ĝ,
respectively. This notion is reasonable for any smooth, roughly
bell-shaped window.

The classic example of a bell-shaped window is the Gaussian
window. The Gaussian window minimizes the product of time
and frequency width and its Fourier transform is a Gaussian
as well. The discrete, periodized Gaussian, simply referred to
as Gaussian in this study, is defined as:

gλ[l] :=
∞∑

k=−∞

e−
π(l−kL)2

ξsλ , λ, ξs ∈ R+, (2)

where ξs is the assumed sampling rate (in Hz). It inherits from
its continuous counterpart the property that its DFT ĝλ is again
a Gaussian. The parameter λ defines jointly the width of gλ and
ĝλ, as illustrated in Figure 2 by the inverse relation between
the width of gλ and ĝλ. Precisely, the width of gλ (measured
in samples) is λ times as large as the width of ĝλ (measured
in Hz). This is why λ can be referred to as the TF ratio of a
Gaussian window. The effect of λ on the STFT is shown in
Figure 3, for different STFTs at the same redundancy D.

The Gaussian window is available in public libraries such
as Scipy [55] and LTFAT [56]. However, it is not the
most commonly used window function. Therefore, libraries
specializing in a particular field often do not implement it, e.g.,
PyTorch [57] for machine learning. Instead, it is more common
to compute the STFT using windows with short support, such as
the Hann, Hamming or rectangular windows. For those windows
g there is no exact equivalent to the TF ratio λ. Instead, one
can determine their equivalent λ through comparison to the

https://github.com/andimarafioti/phaseRetrievalEvaluation
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Fig. 2: Examples of Gaussian windows in the time domain (left)
and magnitude of their Fourier transform (right) for various
TF ratios λ. The length of the windows was the same, i.e.
L = 65536 samples, in all examples.

Gaussian window. Precisely, given a window g, we find λ as
argminλ ‖g − gλ‖, assuming that g is peak-normalized, i.e.,
max |g[l]| = 1. Alternatively, g can be fit to a given λ by
adjusting the length of g to minimize the norm distance to gλ.

In conclusion, the overall numerical properties of the
discrete STFT depend on the joint choice of the parameters
gλ, governing its uncertainty, and a and M , controlling its
resolution. The most favorable properties can be achieved when
the uncertainty is matched to the resolution, [58], [59]. With
the definitions in Eqs. (1) and (2), uncertainty and resolution
are matched if and only if

λ = aM/ξs. (3)

In this case, the STFT samples lie on a grid on which the ratio
between time- and frequency-steps coincides with λ, leading
to an optimally uniform covering of time-frequency space. In
all our experiments, λ, a and M are linked in this fashion.

B. Inverse STFT for signal synthesis

For any synthesis window g̃ ∈ RL, the inverse STFT of
S ∈ CM×N with respect g̃ is given by

s̃[l] =

N−1∑
n=0

M−1∑
m=0

S[m,n]g̃[l − na]e2πiml/M , (4)

for l ∈ {0, . . . , L − 1}. If a g̃ exists, such that s̃ = s for all
s ∈ CL, and with S = Sg(s), then the STFT Sg is invertible,
i.e., it forms a frame in the sense of [6], [60], [61] and g̃ is a
dual window for g. Generally, in order to obtain an invertible
STFT, a redundancy equal to or larger than one, D =M/a ≥ 1
is required2.

For redundancies D > 1, the STFT is overcomplete (or
redundant), and Sg maps into a strict subspace of CM×N .
In other words, not every matrix S ∈ CM×N represents an
STFT. We call S consistent if there is a signal s, such that
S = Sg(s) and inconsistent otherwise. Implicitly, the inverse
STFT operation applied to S projects onto the image of Sg
before synthesis, as visualized in Fig. 4. In practice, this means
that the inverse STFT, applied to inconsistent coefficients S

2In contrast to common practice, the number of channels M may be smaller
than the number of nonzero samples in g.
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Fig. 3: Exemplary spectrograms calculated for various TF ratios
λ of the Gaussian window. The same redundancy of D = 128
was used in all examples.

produces a signal s̃ with Sg (̃s) 6= S. Applied to consistent
coefficients S, we instead obtain S = Sg(S

−1
g (S)). Thus, in

the setting of PR, synthesis from a given spectrogram
∣∣Sg(s)∣∣

with a mismatched phase estimate φ will often lead to a poor
reconstruction. In some cases, we may also use (in)consistent
to describe magnitude coefficients M ∈ (R+

0 )
M×N that do not

correspond to the STFT of any signal, i.e., M 6= |Sg(s)| for
all s ∈ CL.

Fig. 4: Blue circle: Set of all possible TF coefficients. Yellow
circle: set of time-domain signals. Green circle: set of consistent
STFT coefficients. An inverse STFT done on a point from the
blue set yields a point from the yellow set. An STFT from
this point yields a point from the green circle, introducing a
projection error. An inverse STFT done on a point from the
green circle yields a point from the yellow set, which after a
subsequential STFT is remapped to the original point in the
green set without any projection errors.



4

III. GENERAL METHODS

A. Datasets

The phase of different types of audio signals may have
completely different characteristics, thus, we considered three
types of signals for the evaluation attempting to cover a
wide range of audio characteristics. First, we included speech
signals to the evaluation, because it is a widely used class of
signals, it consists not only of harmonic components, but also
transients and stochastic segments such as fricatives. Second,
we considered piano music synthesized from MIDI because it
represents a class of simple polyphonic sounds resembling
a linear combination of sine waves, without any ambient
recording noise. Third, we considered actual music recordings,
which included the natural variations from the musicians and
ambient noise from the recording setup.

1) Speech. For speech, we used LJ Speech [62], which is
a public-domain English speech dataset consisting of 13,100
short audio clips of a single speaker reading passages from
seven non-fiction books. All clips have a sampling rate of
22050 Hz and vary in length from 1 to 10 seconds and have a
total length of approximately 24 hours.

2) Midi synthesized music. We used the Lakh MIDI
dataset [63], a collection of 176,581 unique simple piano
MIDI files, to synthesize piano audio signals. This MIDI set
was created with the goal of facilitating large-scale music
information retrieval, both symbolic (using the MIDI files
alone) and audio content-based (using information extracted
from the MIDI files as annotations for the matched audio
files). The audio files were synthesized from MIDI data using
pretty midi [64], specifically its fluidsynth API. We generated
just one instrument with a sampling rate of 22050 Hz and and
set it to the piano program 1.

3) Music. We segmented the ‘small’ dataset of the free music
archive (FMA, [65]) by genre and used the genre ‘electronic’.
This was done to reduce the variability in the music structure
in our evaluations. FMA is an open and easily accessible
dataset, usually used for evaluating tasks in musical information
retrieval. The subset we used is comprised 1,000 30-s segments
of songs sampled at 44.1 kHz.

The audio material was processed at a sampling rate of 22050
Hz after resampling to that rate if necessary. Our experiments
use the Large Time-Frequency Analysis Toolbox (LTFAT, [56]).
Hence, since LTFAT’s STFT requires a,M to be divisors of the
length of the signal L, we chose the first L = 122880 samples
of a randomly selected 128 signals for each subset, resulting
in approximately 5.6 seconds per signal. For the experiments
with varying number of channels M , after reconstruction a
portion of signal of length M was removed at the beginning
and the end of the signals to avoid issues introduced by the
circularity of the considered STFT implementation.

B. PR algorithms

We evaluated three PR algorithms implemented in the Phase
Retrieval Toolbox (PHASERET, [66]): Phase-gradient heap
integration (PGHI) [44], fast Griffin-Lim (FGLA) [38], and

single-pass spectrogram inversion (SPSI) [42]. These algorithms
were chosen to cover a wide range of PR strategies and based
on the availability of tested and reliable implementations in
the toolbox, enabling a fair comparison. PHASERET relies on
LTFAT for STFT computation and other basic functionalities.

1) PGHI is a non-interative method. PGHI implies no
assumptions on the signal. Instead, it is based on the phase-
magnitude relations of an STFT computed using a Gaussian
window [46], namely, the relation between the partial phase
derivatives of the continuous STFT with a Gaussian window and
the partial derivatives of the logarithmic STFT magnitudes [44],
[52]. In PGHI, this relation is approximated for the discrete
STFT as:

∂nφg[m,n] ≈
aM

λ
∂m log(|Sg |)[m,n],

∂mφg[m,n] ≈ −
λ

aM
∂n log(|Sg |)[m,n]− 2πna/M.

(5)

Here, ∂n, ∂m denote numerical differentiation with respect
to n and m, respectively. This step may be realized, e.g., by
a finite difference scheme. The dependence on properties of
the Gaussian STFT suggests a dependence on the window
function, which was already observed in [49]. From the
phase-magnitude relation, the phase (φg) is reconstructed in
an adaptive integration scheme. The reliance on numerical
differentiation and integration suggests that the results of PGHI
also depend on the STFT parameters a,M, λ and, in particular,
its redundancy D. In our experiments, PGHI was initialized
with no prior knowledge of the original phase.

2) FGLA is an iterative algorithm relying on alternating
projections and it is based on the Griffin-Lim algorithm
(GLA) [32], which is itself an extension of the seminal
Gerchberg-Saxton algorithm [67]. Specifically, given a target
STFT magnitude combined with an initial phase estimate (in our
experiments, the phase was uniformly set to zero), the algorithm
performs first a projection onto the space of consistent STFTs.
Since the latter is a strict subspace of CM×N whenever the
STFT is redundant, this step is expected to yield a magnitude
different from the target. Therefore, the second step keeps
only the new phase, an imposes the target magnitude. Both
steps of GLA are repeated until convergence or until a certain
number of iterations. A final inverse STFT is then applied to
synthesize a time-domain signal. Thus, GLA does not rely on a
signal model, but only on the redundancy of the STFT. In our
experiments we employ fast Griffin-Lim (FGLA) [38], which
adds an acceleration term, governed by a hyperparameter α
to the GLA update, and empirically yields better results at
the same number of iterations, often significantly. For our
experiment we use the default value α = 0.99 proposed by the
reference implementation in LTFAT [56]. Furthermore, we set
the number of iterations to 100, which provides a decent trade-
off between quality and computation time. The convergence
curve after 100 iterations is already rather flat such that a
large number of iterations is required to achieve significant
improvements.
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3) SPSI is another non-iterative method. In contrast to PGHI,
SPSI does not rely on mathematical properties of the STFT.
And in contrast to FGLA, it is fast and directly suitable for
real-time usage. SPSI implicitly assumes a sinusoidal signal
model and thus fails for transient and broadband components
in the signal. At every time step, SPSI locates peaks in the
TF coefficients obtained and predicts the phase by assuming a
linear phase progression at the rate of the closest peak frequency.
Hence, the rate at which the TF coefficients vary over time
is expected to be a limiting factor of PR by SPSI. The phase
prediction, being similar to the integration scheme of PGHI,
depends on the time step parameter a and, to a lesser degree,
on the number of frequency channels M . In our experiments,
SPSI was initialized without any information regarding the
original phase.

C. Evaluation measures

The results were evaluated numerically by means of sev-
eral measures. First, we considered the signal-to-noise ratio
calculated on the magnitude spectrogram, (SNRMS). This
quantity is also sometimes referred to as spectral convergence.
Second, to consider human-like performance, we computed
the objective difference grade (ODG) based on perceptually
motivated models.

1) Spectrogram signal-to-noise ratio (SNRMS) is the
logarithmic ratio between the energy of the spectrogram |S|
of the original signal s and the energy of the spectrogram
difference (|Sr|−|S|), where Sr is the STFT of the reconstructed
time-domain signal sr:

SNRMS(S, Sr) = 10 log10
‖S‖2

‖|Sr| −|S| ‖2
. (6)

To compute SNRMS, we used the STFT as in Eq. (1) with
M = 2048, a = 128 (thus, DSNR = 16), and the Gaussian
window gλ with λSNR = aM/ξs ≈ 11.886. In Section IV-A,
we show that SNRMS only exhibits minor dependence on this
parameter choice.

2) Objective difference grade (ODG) is the overall quality
measure introduced in PEAQ [68], [69] and designed to mimic
perceptual quality ratings made by a human listener. PEAQ is
a full-reference algorithm, i.e., it performs a direct comparison
between a modified signal and a target signal3. It relies on an
auditory model obtained by processing STFT coefficients and
ranges from 0 to −4 with the interpretation shown in Tab. I.
We used the implementation from [70].

Internally, ODG computes the STFT of the analysed signal.
Thus, it might prefer a particular set of STFT parameters. To
consider this effect in our evaluation, we initially calculated
ODGs based on PEMO-Q [71] as well, which uses a Gamma-
tone filterbank. Due to this difference in analysis dictionary, it
is unlikely that PEMO-Q exhibits preference for certain STFT
parameters. We used the implementation from [72] and refer
to this measure as ODGPEMO.

3In our case, the original signal.

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

TABLE I: Interpretation of ODG.

IV. EXPERIMENTS

A. Sensitivity of the evaluation measures

For PR performance, we expected a significant effect of
the TF ratio and redundancy across the tested PR algorithms.
In order to distinguish between actual effects of the PR
algorithm and effects induced by the evaluation measure, we
first determined the sensitivity of the evaluation measures
ODG, ODGPEMO, and SNRMS to changes of these
parameters.
SNRMS reflects the average amount of phase distortion

over signal duration, thus, we hypothesized that it is largely
insensitive to changes in the TF ratio λ. On the other hand,
adjacent TF coefficients are correlated (with the correlation
increasing with D) and any uncorrelated distortion imposed on
the coefficients partially cancels in the synthesis process. Thus,
we expected the PR quality to improve with increasing redun-
dancy, and SNRMS to reflect this. However, SNRMS itself
is based on an STFT, the parametrization of which, determined
by λSNR and DSNR, might affect the results. To account
for this effect, for each evaluated condition, we calculated
SNRMS for all combinations of λSNR ∈ {10−3, 104} and
DSNR ∈ {2, 8, 32} and evaluated the statistics by means of
the average and standard deviation.

The manifestation of phase distortion in synthesized time-
domain signals s̃ depends on the width of the synthesis window
g̃, which further depends on λ. Therefore, we expected an
effect of the TF ratio on ODG. To account for possible
presence effects caused by the STFT parametrization in PEAQ,
we additionally calculated ODGPEMO for the same set of
conditions.

For the evaluation, we first computed STFTs for various TF
ratios λ ∈ {10−3, 104} and three redundancies D ∈ {2, 8, 32}.
Note that a λ,D combination uniquely determines both a and
M . Then, we added Gaussian white noise to the phase of
these STFTs. We tested three standard deviations σ ∈ {1,
0.5, 0.1} and phase values were wrapped onto the range ±π
after applying the distortion. Further note that the condition
with the highest distortion level corresponds to reconstructing
spectrograms with a nearly random phase. Finally, we calculated
the inverse STFT and applied the three measures to the result.
This setup provides direct evidence for the extent of sensitivity
of ODG, ODGPEMO, and SNRMS to the TF ratio λ and
redundancy D.

Fig. 5 shows the results. For the SNRMS, the statistics
across λSNR and DSNR show negligible standard deviation as
compared to the effect of changes of λ and D. This indicates
that the parametrization of SNRMS had nearly no effect on
the sensitivity and reliability of this measure when evaluating
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Fig. 5: SNRMS, ODG, and ODGPEMO resulting from the inverse STFT of speech signals with distorted phases. Symbols:
severity of distortion with σ = 0.1 (diamonds), σ = 0.5 (plus), σ = 1.0 (squares).

phase effects for various λ and D. The average SNRMS

correspond roughly to the values calculated for DSNR = 16
and λSNR = 10. Thus, in the following, we use parameters as
indicated in Sec. III-C to calculate SNRMS in the following
experiments.

For the highest distortion level (σ = 1), the SNRMS was
below 8 dB and ODG was worse than ‘annoying’ in most
cases, indicating that this amount of distortion substantially
destroyed the original signals in every considered combination
of λ and D. These results reflect the output one would expect
of our measures when reconstructing spectrograms with a
random phase. On the other side, ODGPEMO was between
‘not annoying’ and ‘annoying’ for the majority of conditions,
implying that even for nearly random phases, the results would
have been acceptable when relying on this measure alone. This
indicates that ODGPEMO is most probably not suitable as a
measure to analyze the effects of phase distortion.

For the moderate (σ = 0.5) and low (σ = 0.1) distortion
levels, a pattern emerges: at fixed TF width ratio, larger
D yielded better performance in terms of larger SNRMS

and better ODG. With most results being better than ‘not
annoying’, ODGPEMO showed little sensitivity to these
amounts of noise, except at extreme λ and low redundancy
D. We take this as further evidence to the poor sensitivity
of this measure to phase distortion. SNRMS showed little
effect of TF ratio, with a small peak at λ of approximately
10. In contrast, ODG seems to be more sensitive to the TF
ratio, following a bell shape with a clear peak at the same
single-digit λ for all Ds. This peak seems to be wide for low
levels of phase distortions and to become sharper for increasing
distortion level.

In summary, we observed the following: 1) the small
differences, when computing SNRMS parametrized to various
λSNR and DSNR combinations, indicate that the particular
choice of its own parametrization is not essential. 2) SNRMS,
calculated with the default parametrization, is sensitive to phase
distortions, but for a fixed amount of distortion, it is only
mildly sensitive to the TF ratio. Moreover, at low to moderate

distortion, SNRMS increases with D. SNRMS below 10
dB was in line with what we expect for reconstructions with
a random phase and can be used as a rule of thumb when
evaluating PR algorithms. 2) ODG is sensitive to both TF
ratio and redundancy, however, it showed ceiling effects, i.e.,
it saturated at low levels of distortions and high redundancies.
The sensitivity to the TF ratio seems to depend on the level
of distortion, with single-digit λ being a good choice at most
redundancies. 3) ODGPEMO was barely sensitive to phase
distortions and did not use the full range even for nearly
random phases. This provides strong indication that it is
not a suitable measure for evaluating phase effects. 4) All
measures showed consistently better results with increasing
redundancy, demonstrating the increased robustness of the
inverse STFT to phase distortions with increasing redundancy.
5) By combining SNRMS and ODG we can avoid our
evaluation to be hampered by the low sensitivity of SNRMS

to λ and the ceiling effects of ODG for high D, obtaining an
adequate scheme for evaluating PR algorithms in the following
experiments.

B. Effect of STFT parameters on PR

In this experiment, we studied the effect of the choice of
STFT parameters on PR in terms of SNRMS and ODG.
Evaluation was performed for Gaussian windows, while varying
the redundancy D, and TF ratio λ. The experiment aims to
not only assess the effect of D and λ, but also to demonstrate
performance differences between the algorithms.

To achieve this, we created spectrograms of the speech
dataset considering redundancies D ∈ {2, 4, 8, 16, 32} and
a large range of TF ratios λ ∈ [10−3, 104], applied all
considered PR algorithms (Sec. III-B) on those spectrograms,
and calculated SNRMS and ODG of the reconstructed signals.
The results are presented in Fig. 6.

For all three algorithms, λ had a clear effect on both
SNRMS and ODG. We can clearly see that the change of
ODG in λ is more pronounced than in Exp. A, indicating
actual impact of λ on PR quality. In contrast to Exp. A,
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Fig. 6: PR performance in terms of ODG and SNRMS

obtained with three PR algorithms: PGHI, SPSI, and FGLA.
Calculations done with the Gaussian window, and various
redundancies and TF ratios.

SNRMS also shows significant variation in λ, providing further
evidence that this is the case. For λ below 0.1 and above 100,
the level of phase distortions introduced by the PR corresponded
to that of high level of noise (σ = 1.0). Although the general
trend is similar across all algorithms, the extent to which STFT
parameters affect PR quality depended on the chosen algorithm.

For PGHI, both measures showed peaks at λ, and those
peaks were shared for every D. For PGHI peaks were less
pronounced than for FGLA, indicating that PGHI is less
sensitive to a particular choice of λ. For ODG, the peak
was at λ = 2.32, corresponding to M = 320 for D = 2.
For SNRMS, the peak was at λ = 5.94, corresponding to
M = 512 for D = 2. The performance increased with the
redundancy, showing ceiling effects in ODG for redundancy
of 16 or larger. For redundancies of D ≥ 16, SNRMS showed
little distortions, comparable to our low distortion level with
Gaussian white noise. From these results, we conclude that for
speech signals PGHI works best at D ≥ 16 with λ ≈ 3. For
lower redundancies, the performance degraded and the choice
of λ became even more important.

For FGLA, both measures followed a thin bell shape with
peaks at λ. This peak was the same at every redundancy D.
For ODG, the peak was at λ = 3.34, corresponding to M =
384 for D = 2. For SNRMS, the peak was at λ = 13.37,
corresponding to M = 768 for D = 2. For both measures,
the performance increased with the redundancy for D of up
to 8, showing no improvements beyond that redundancy. This
is in contrast with Sec. IV-A, where performance improved
with increasing redundancy. We conclude that for FGLA, the
choice of λ is crucial, with λ ≈ 8 providing good results. For
redundancies D ≤ 4, FGLA performed better than PGHI, but,
there is no gain in increasing D beyond 8.

For SPSI, even the best performance corresponded to large or
moderate level of distortion when compared to that obtained for
Gaussian white noise from Sec. IV-A. Performance increased
slightly with the redundancy, however still remained at a low
level. The performance depended on λ, showing a peak λ = 1.4
for every D, corresponding to M = 256 at D = 2. The
low general performance of SPSI is probably an effect of
the underlying signal assumption of slowly varying sinusoidal
components, which does not hold for speech signals.

In all three algorithms, the performance increased with the
redundancy. This is not surprising because with increasing
redundancy, phase and magnitude are more dependent and
deducing one from the other becomes easier. This is related
to the fact that phase can be perfectly calculated from the
magnitude of a continuous STFT (up a fixed scalar factor
and disregarding numerical precision) [46] and, by increasing
redundancy, the discrete STFT approximates the continuous
setting. Algorithms utilizing this principle particularly benefit
from increased redundancy. This explains the performance
increase with redundancy provided by PGHI (which is based
on that principle) and the limited performance gain provided
by FGLA and SPSI (which rely on other principles).

The time-frequency ratio λ affected the performance of all
tested algorithms. While the redundancy extends the range
of reasonable choices for λ, generally good performance can
be obtained for λ between 0.2 and 20, whereas performance
was mostly poor for λ below 0.1 and above 100. In order to
explain why particular time-frequency ratios are beneficial for
PR, we need to look into the interaction between the audio
signal and the window duration resulting from a particular
λ. For example, at this sampling rate, λ = 5 implies a
window duration of approximately 35 ms and provides a good
trade-off between temporal and spectral resolution, see Fig.
3. Substantially shorter and longer windows, i.e., resulting
from substantially smaller and larger time-frequency ratios,
respectively, create more spectral and temporal smearing in the
magnitudes, respectively.

C. Effect of STFT parameters on inconsistent spectrograms

In the previous experiment we considered PR from unmod-
ified magnitude spectrograms. This allowed us to investigate
the PR task in isolation, without having to consider incon-
sistency, e.g., introduced in processing. However, in practical
applications, PR is mostly applied to modified or synthetic
spectrograms, which are rarely consistent. Reconstruction
from inconsistent spectrograms introduces errors, recall Fig.
4. When combined with PR, these errors cannot be uniquely
attributed to either inconsistency or PR artifacts. Hence, we
investigated the PR effect on inconsistent spectrograms in
a simple setting: Approximating a time-invariant filter with
nonnegative frequency response by weighting spectrogram
channels according to the (sampled) frequency response and
subsequent PR of the phaseless weighted spectrogram. The
target signal is obtained by applying the frequency response
directly to the DFT of the full input signal. As a reference,
we use reconstruction from the weighted complex STFT, i.e.,



8

Fig. 7: Effect of the synthesis of inconsistent spectrograms in
terms of ODG and SNRMS obtained with original phases
(left columns) and reconstructed phases by PGHI (center
columns) and FGLA (right column). Calculations done with
the Gaussian window and various redundancies and TF ratios.

we use the original input phase. Given the poor performance
of SPSI in Exp. B, we did not consider it for this experiment.
The frequency response of the considered filter is

max({min({0.1 + cos(2π · 5ξ), 1}), 0.1}), (7)

with frequency index ξ ∈ {0, . . . , L−1}. The filter was chosen
only for the purpose of illustration. The filter had the same
length as the signal and possessed 15 equidistant peaks where
the output’s energy was unmodified, and 14 valleys where it
was reduced by a factor of 10. The sampled filter resolved all
valleys and peaks from the original filter for M ≥ 96. In this
setting, the larger the M , the milder the inconsistencies in the
processed STFTs.

The results are shown in Fig. 7. Using the original phase,
performance increased monotonically with λ. This corroborates
our initial hypothesis that the larger the M , the less inconsis-
tencies are introduced. The performance obtained by the three
PR algorithms also increased with λ until a tipping point where
their performance decreased similarly to the decrease found in
the previous experiment.

We conclude that the inconsistencies in spectrograms interact
with the effect of STFT parameters on PR. This is clear when
comparing to Exp. B, where the optimal performance was
found for a similar λ at every redundancy. In contrast, in this
experiment, where the phase is reconstructed from inconsistent
spectrograms, the optimal λ increased by a factor of ten when
doubling the redundancy.

D. Effect of the signal content

In this experiment, we investigate the relationship between
PR performance and the signal content. Based on the explana-
tion for the optimal PR parameters from IV-B, we expected the
signal content to affect the optimal PR parameters. To examine
this, we performed a reduced version of Exp. B on three
classes of audio signals and analyzed their effect on the PR
performance. Given that λ determines the TF resolution trade-
off and uncertainty, we expected to find optimal λ depending
on the signal content.

PR was performed by all three algorithms on each of the three
considered datasets. For PGHI, we used three redundancies
D ∈ {2, 8, 32}, for FGLA two redundancies D ∈ {2, 8}, and
for SPSI only D = 8, considering the reduced significance
of redundancy for FGLA and SPSI in previous experiments.
Figure 8 shows the results.

The PR performance depended on the signal class, however,
it not as strong as the dependency on the STFT parameters.
For example, for PGHI and redundancy of D = 32, we found
an average difference in SNRMS of approximately 10 dB
between speech and music, with a largest difference of 20
dB for λ = 10. Such a difference is smaller than that when
switching from D = 32 to D = 8 or varying λ by one order
of magnitude. The other PR algorithms showed even smaller
effect of the signal class.

Still, the signal class had a general effect on the optimal λ,
i.e., compared to speech, the optimal λ increased by factor three
on average when switching to MIDI, with the optimal λ for
music being between those found for speech and MIDI. This
effect can be (again) explained by looking at the interaction
between the audio signal and the window duration linked
with the time-frequency ratio. Music contains generally lower
frequencies, i.e., down to 20 Hz, while speech has the lowest
fundamental frequency around 80 Hz. Compared to the MIDI-
generated piano sounds, our electronic music had a larger
bandwidth. The MIDI-generated piano sounds, on the other
hand, contained on average more energy in the low frequency
region. Thus, our MIDI required longer window durations,
i.e., larger time-frequency ratios, in order to encode the phase
information in the magnitude at the same level of accuracy as
for speech.

The general conclusion from this experiment is that 1)
PR performance depends only a little on the signal class as
compared to the dependency on the STFT parameters, and 2)
the optimal λ depends on the frequency content to be processed,
with lower for speech and higher by up to a factor of three
when applied to low frequency signals such as music.

E. Effect of the window function

From the three PR algorithms, only PGHI places explicit
assumptions on the STFT parameters, specifically the window
being a Gaussian. Therefore, we expect a particular influence
of the window function for PGHI. FGLA and SPSI, on the
other hand, make little assumptions on the transform, so we
expect no large effect of the window function.
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Fig. 8: PR performance as an effect of the signal class. MIDI
represented in solid lines, speech in dashed lines, and music
in dotted lines. Color indicates redundancy: Blue (D = 32),
yellow (D = 8), and green (D = 2). All other aspects are as
in Fig. 6.

Fig. 9: PR performance as an effect of the window. Gauss
window represented in solid lines, Blackman in dashed lines,
Hann in dotted lines, and Bartlett in dash-dot line. All other
aspects are as in Fig. 8

To verify these hypotheses, this experiment repeats the Exp.
B, with the difference that we used either the Gaussian, the
Blackman, the Hann, or the Bartlett window in the STFT
computations. To match the windows to λ, we determine g
closest to the Gaussian gλ, as discussed in Sec. II-A. Following
this, we completed the procedure from Exp. B for a comparable
range of TF ratios. We evaluated this experiment for all
redundancies, but only show results for the same redundancies
as in Exp. D in order for the results to be easier to interpret.
The results are presented in Fig. 9.

Only PGHI showed a significant sensitivity to the window.
In particular, at a high redundancy such as 32, the difference
between every window is significant, even larger than the
difference for signal content. At this redundancy, the Gaussian
window clearly outperforms every other window, with the
Bartlett window performing even worse than the Gaussian
window at redundancy 8. For both PGHI and FGLA, the effect
of the window was not significant and was well below the
effect for signal content. From this experiment we conclude
that the choice of window does not significantly affect PR
algorithms which do not rely on particular structures of the
STFT.

F. Effect of the convergence of FGLA

A major drawback of iterative PR algorithms is the necessity
to perform multiple time-consuming iterations. In the previous
experiments, we were looking for the optimal TF ratio λ and
used 100 iterations of FGLA in all comparisons. However,
there might be an interaction between the TF ratio λ and the
performance per iteration, yielding a different optimum range
λ at different number of iterations.

To this end, we investigated the interaction between the STFT
parameters and the convergence properties of FGLA on the
speech dataset. The evaluation considered the Gaussian window,
the redundancy at which FGLA performed best, D = 8, and
a wide range of TF ratios, λ ∈ {10−3, 104}. The results were
collected after 5, 30, 100, and 300 iterations and are presented
in Fig. 10.

After only five iterations, the range of TF ratios yielding
good PR performance can be identified, both in terms of ODG
and, to a lesser extent, of SNRMS. After 30 iterations, this
range is clear for both measures. While SNRMS improved
with the increasing number of iteration, ODG showed ceiling
effects after 100 iterations for a wider range of TF ratios. Both
measures agreed that PR performance at 100 iterations was very
good, even though SNRMS continued to improve afterwards,
at the cost of higher computation time.

In the next step, we looked into the time-performance trade-
off for a good TF ratio. To this end, we fixed the TF ratio at
λ = 3.34 and performed PR with FGLA for redundancies D ∈
{2, 4, 8, 16, 32}. We set a minimum number of 120 iterations
at redundancy 32, such that we always perform more than the
default 100 iterations. Per halving redundancy, we doubled
the number of iterations, to have similar computation times
per redundancy. Figure 11 shows the PR performance plotted
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Fig. 10: FGLA’s performance after various numbers of iterations
for D = 8 and various TF ratios λ.

Fig. 11: FGLA’s performance as a function of the iteration
number for five redundancies and λ = 3.34.

against the computational time consumed in our workstation4.
The redundancy D = 8 resulted in the best time-performance
trade-off, with the exception of the first 5 seconds at D = 4,
where SNRMS showed slightly better results.

In conclusion, this experiment reveals that the optimal range
of λ for the iterative PR algorithm FGLA can be obtained after
as little as 5 iterations, greatly reducing the computation time
required to find the optimal λ for a new dataset. We also learned
that redundancy 8 does not only perform the best in terms of
quality, but it also maximizes the performance/computation
time trade-off.

G. Optimal parameters for future applications

Our results from the experiments allow us to compose a
procedure for finding the optimal set of STFT parameters
(λ,D) in future applications. This procedure retrieves the range
of optimal parameters based on user’s input such as the PR
algorithm and the audio content. The work flow is as follows:

1) Select the phase-retrieval method to evaluate, the audio
signals, and the range of λ and D.

2) Select error measures to use for evaluation. We recom-
mend a combination of measures such as SNRMS and
ODG.

3) Compute the STFT magnitudes with a given (λ,D), apply
the PR method, and compute the average error across all
signals.

4Our workstation is a Windows 10 PC equipped with an Intel i5 7400
processor and 16 GB of RAM. For these experiments we used the MEX
backend for LTFAT and the PHASERET toolbox.

4) Increase D and repeat step 3. If the method performs
above the given threshold, repeat this step. If it does not,
continue with the previous D.

5) Repeat step 3 with smaller and larger λ until the
performance starts decreasing. In this way, find the range
of λ for the given D that perform inside of your given
threshold.

An implementation of an algorithm following this guidelines
is freely available5. As a proof of concept, we applied our
algorithm to generate parameter sets for some representative
use cases and show the obtained parameters in Table II.

Algorithm Audio Best for D λ M
PGHI Speech Quality 32 0.14-53.5 320-6144
PGHI Speech Speed 16 0.65-11.89 480-2048
FGLA (300) Speech Quality 8 2.32-37.15 640-2560
FGLA (50) Speech Speed 8 2.32-13.38 640-1536
SPSI Speech Quality 8 0.83-1.49 384-512
SPSI Speech Speed 4 1.16-1.67 320-384
PGHI Music Quality 32 0.21-53.5 384-6144
PGHI Music Speed 16 1.16-107.0 640-6144
FGLA (300) Music Quality 8 9.28-334.37 1280-7680
FGLA (50) Music Speed 8 9.28-95.11 1280-4096
SPSI Music Quality 8 3.34-20.9 768-1920
SPSI Music Speed 4 6.68-18.57 768-1280

TABLE II: Optimal parameter sets for various use cases. The
number in parenthesis after FGLA refers to the number of
applied iterations. Audio content as in Sec. III-A. M was
derived from λ and the redundancy D. The threshold was set
to 15 dB for SNRMS and to 0.3 for ODG.

V. CONCLUSIONS

We systematically studied the effects of STFT parameters
and audio content on the quality of PR algorithms. The goal was
to demonstrate the effects, develop guidelines for optimizing
STFT parameters, and explain why they improve the PR
performance. To this end, we considered three classes of
algorithms reconstructing phase from STFT magnitude: iterative
(represented by FGLA) and non-iterative with and without a
signal model (represented by SPSI and PGHI, respectively). Our
results show that the PR performance depends on the algorithm,
the redundancy D, the TF ratio λ, the signal content, and even
the window type. Further, we provide guidelines to find the
best combinations of the parameters for a specific application.

As for the algorithms, PGHI showed the best and SPSI the
worst performance in terms of SNR and ODG. The performance
increased with D, with PGHI showing improvements beyond
D of 8, and FGLA and SPSI having their performance limited
even for D > 8. We explain this clear advantage of PGHI by its
direct exploitation of the theoretical phase-magnitude relation
present in the continuous STFT. Still, FGLA has the advantage
of providing better results at lower redundancies (D ≤ 8),
however, at the cost of significantly higher computation times.
To find the optimal STFT parameters for FGLA, as little as
five iterations sufficiently represent the relative performance of
the fully converged method. In general, PGHI with D = 32

5https://github.com/andimarafioti/phaseRetrievalEvaluation

https://github.com/andimarafioti/phaseRetrievalEvaluation
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seems to be a good choice, achieving a high SNR and an ODG
corresponding to the category ‘imperceptible’. While such high
redundancies are currently rarely considered in practice, their
advantages on the performance of phase retrieval may push
forward their popularity in future systems.

In all three algorithms, the optimal TF ratio was in the range
of 0.2 to 20. The particular choice seems to depend on the
type of application, though. For example, in our experiment
of PR algorithms applied to processed spectrograms, larger
λ provided an improvement. Also, the audio content requires
special consideration as we found higher optimal λ required for
signals having more energy in the lower frequencies. This can
be explained by the need of longer windows for low-frequency
content, an issue well-known in the parametrization of STFT
for audio applications, which, as our results show, also hold in
the problem of phase reconstruction.

The window type had an effect on the PR performance.
While for FGLA and SPSI, that effect was tiny compared
to that caused by other parameters, for PGHI, the Gaussian
window provided up to 20 dB more SNR compared to other
windows. This can be explained by the Gaussian STFT adhering
most closely to the PGHI model, which relies on the phase-
magnitude relations.

While our results demonstrate how to choose the optimal
parameters, many applications receive suboptimal TF represen-
tations for PR. Thus, future work may consider the development
of a system transforming a TF representation computed with
a suboptimal set of parameters into TF representations better
suited for PR.
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[50] N. Holighaus, G. Koliander, Z. Průša, and L. D. Abreu, “Characterization
of analytic wavelet transforms and a new phaseless reconstruction
algorithm,” IEEE Transactions on Signal Processing, vol. 67, no. 15, pp.
3894–3908, 2019.

[51] N. Holighaus, G. Koliander, L. D. Abreu, and Z. Pruša, “Non-iterative
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[53] F. Auger, É. Chassande-Mottin, and P. Flandrin, “On phase-magnitude
relationships in the short-time Fourier transform.” IEEE Signal Process.
Lett., vol. 19, no. 5, pp. 267–270, 2012.
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