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Abstract—Current research on multi-antenna architectures is
trending towards increasing the amount of antennas in the base
stations (BSs) so as to increase the spectral efficiency. As a result,
the interconnection bandwidth and computational complexity
required to process the data using centralized architectures is be-
coming prohibitively high. Decentralized architectures can reduce
these requirements by pre-processing the data before it arrives at
a central processing unit (CPU). However, performing decentral-
ized processing introduces also cost in complexity/interconnection
bandwidth at the antenna end which is in general being ignored.
This paper aims at studying the interplay between level of
decentralization and the associated complexity/interconnection
bandwidth requirement at the antenna end. To do so, we propose
a general framework for centralized/decentralized architectures
that can explore said interplay by adjusting some system pa-
rameters, namely the number of connections to the CPU (level
of decentralization), and the number of multiplications/outputs
per antenna (complexity/interconnection bandwidth). We define a
novel matrix decomposition, the WAX decomposition, that allows
information-lossless processing within our proposed framework,
and we use it to obtain the operational limits of the interplay
under study. We also look into some of the limitations of the
WAX decomposition.

Index Terms—WAX decomposition, MIMO, Massive MIMO,
LIS, WAX decomposition, decentralized processing, linear equal-
ization, MF.

I. INTRODUCTION

MULTI-ANTENNA architectures have been widely em-
ployed since they were first introduced in the 1990s and

they still remain a popular research topic. The main reason is
the enormous improvements in data rate and reliability coming
from exploiting space-division multiplexing and diversity. Cur-
rent research and development on multi-antenna architectures
is trending towards scaling up the number of antennas so as
to increase the spatial resolution, thus increasing the spectral
efficiency by serving several users in the same time-frequency
resource. Furthermore, the exploitation of millimeter-wave
spectrum in modern communications [2] also justifies the
increase in the number of antennas. The reason is that the huge
path-loss associated to these frequencies when the electrical
size of the antennas is kept constant needs to be overcome by
focusing the transmitted energy more effectively [3]. Massive
multiple-input multiple-output (MIMO) [4], [5] and large intel-
ligent surface (LIS) [6] are some examples of the trend towards
increasing the number of antennas, where massive MIMO
considers base stations (BSs) with hundreds of antennas while
LIS extends this concept even further by considering whole
walls of electromagnetically active material.

This paper is built upon previous results presented at the 2020 IEEE ICC
conference [1].

Massive MIMO is already a reality and several prototypes
have been developed and tested, such as [7]–[9]. In the pro-
totypes presented in [7], [9], the use of centralized processing
leads to huge data-rates between the antennas and the central
processing unit (CPU), which limits the scalability of the
system as the number of antennas grows. This fact is also
noticed in [8], which sacrifices performance by relying on
simple decentralized beam-forming to favor scalability. The
scalability issue is likely to be exacerbated if we consider LIS,
where we can think of practical deployments consisting of
walls equipped with an even larger number of antennas than
massive MIMO (the continuous surfaces are approximately
equivalent to the discrete surfaces when the sampling is dense
enough, as observed in [6], [10]). Other technologies that
are gaining popularity and are likely to face scalability is-
sues include cell-free massive MIMO [11]–[13], or intelligent
reflecting surfaces (IRS) [13]–[15]. We will base our study
in a general multi-antenna architecture so that it can be
easily extended to more specific applications, such as the ones
previously mentioned.

There is a current trend towards more decentralized archi-
tectures [16]–[24] so as to reduce the information transmitted
to the CPU. The idea is to carry out pre-processing of the data
at the antenna end (or close to it), so that the CPU does not
need to have access to all the information required to decode
raw data. Available literature on decentralized massive MIMO
proposes a wide range of solutions from fully-decentralized
architectures [16], [20]–[22], where channel state information
(CSI) does not have to be available at the CPU, to partially
decentralized architectures, where some of the processing tasks
are distributed, but either full [17], [24] or partial CSI [19] is
available at the CPU.

In this paper we do not address the problem of decentralized
CSI estimation; we assume that perfect CSI is available at
the CPU. We rely on the fact that CSI estimation does not
limit the overall level of decentralization within our framework
since it needs to be carried out only once per coherence block.
Thus, CSI estimation takes a minor fraction of the coherence
time, and the estimated CSI can be then used for the data
phase throughout the rest of the coherence block without
affecting the level of decentralization. However, the problem
of estimating and sharing CSI in an efficient and scalable way
within our framework remains as future work.

In [19] it is argued that an architecture is decentralized
enough if it does not need extra hardware apart from the
minimum required during the payload data phase. It also states
that the volume of data transferred during the data phase has to
be independent of the number of antennas at the base station.
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However, as happens in [19]–[22], in order to reduce this
volume of data (related to the number of connections to the
CPU) and make it independent of the number of antennas, each
antenna has to provide a number of outputs that scales with
the number of users. Note that in a centralized architecture we
would have only one output per antenna corresponding to one
input to the CPU per antenna. We notice the existence of an
interesting trade-off between the number of connections to the
CPU and the number of outputs from each antenna.

The main goal of this paper is to study the interplay between
level of decentralization and the corresponding increase in
decentralized processing complexity for multi-antenna archi-
tectures. We measure the level of decentralization as the num-
ber of connections to a CPU required during the data phase,
and we measure the decentralized processing complexity as
the number of multiplications/outputs per antenna (or antenna
panel)1 required to achieve a given level of decentralization. So
as to study this trade-off, we present a general framework for a
multi-antenna architecture which allows us to change the level
of decentralization and complexity by adjusting some system
parameters. In this framework, the antennas are grouped into
panels of a given number of antennas (this number can be
1 as in [1]). Distributed processing is applied by applying
a linear transformation to the inputs of each antenna panel,
which generates a given number of outputs (complexity). The
outputs are then combined using a combining module that is
connected to the CPU using a fixed number of CPU inputs
(level of decentralization).

To the best of our knowledge, the presented trade-off has
not been explored in the available literature and the results
we present are completely new. In [18] trade-offs between
different decentralized architectures, algorithms, and data pre-
cision levels are studied. However, these trade-offs are mainly
systematic while we are interested in fundamental trade-offs
where information rates are maintained with respect to typical
centralized systems. Thus, our framework focuses on complex
baseband processing, and we assume that the detection is
always performed in a CPU.

This paper extends the work presented in [1]. The list of
contributions are summarized next:
• We present a novel general framework for multi-antenna

systems that allows us to consider different levels of
decentralization and complexity by adjusting the system
parameters. This general framework accounts for typical
centralized architectures, decentralized architectures such
as the one presented in [19], and hybrid architectures in
between those two. In [1], a similar framework to the
one studied in this paper is considered. However, the
architecture presented in the current work is more general
since it adds the possibility of arranging the antennas into
panels.

• We define the WAX decomposition, a novel matrix
decomposition that allows us to define and exploit the
trade-offs within our general framework while achieving
information-lossless processing. In [1] the WAX decom-
position is already introduced, but in the current work

1Antenna panel refers to a group of co-located antennas.

we adapt it to use it in a more general framework.
Furthermore, we present novel results on the validity and
application of said decomposition, e.g., Theorem 2.

• We present the trade-off in terms of number of multi-
plications/outputs per antenna panel and number of con-
nections to the CPU for achieving information-lossless
processing within our general framework. This trade-off
is first studied in [1], but considering only the less general
version of the current framework.

• We study through simulations the cost of obtaining sim-
ple combining modules that accept WAX decomposition
within our general framework.

• We study complexity limitations for the combining mod-
ules within our general framework that accept WAX
decomposition.

• We study the information-loss associated to operating
within our framework when WAX decomposition is not
available.

• We present a simple non-optimal solution for determining
the distributed processing to be applied whenever WAX
decomposition is not available. A deeper research on
more effective solutions remains as future work.

The rest of the paper is organized as follows. Section II
presents the general framework under study, as well as the
system model and problem formulation. In Section III we
present the WAX decomposition, which allows the application
of information-lossless processing within our general frame-
work. In Section IV we study the problem of defining a simple,
but valid, combining network for our general framework.
Section V presents some discussion on the resulting trade-offs,
and some examples of the usage of WAX decomposition. Sec-
tion VI explores broadly the case where WAX decomposition
is not available and other information-lossy processing has to
be applied to maximize the data-rates within our framework.
We conclude the paper in Section VII with a summary of the
contributions and future work.

Notation: In this paper, lowercase, bold lowercase and
bold uppercase letters stand for scalars, column vectors and
matrices, respectively. When using the mutual information
operator, I(.; .), bold uppercase in the sub-scripts refers to
random vectors instead of their realizations. The operations
(·)T , (·)∗ and (·)H denote transpose, conjugate, and conjugate
transpose, respectively. The operation diag(·) outputs a block
diagonal matrix with the input matrices/vectors as the diagonal
blocks. The operator vec(·) transforms a matrix into a vector
by concatenating its columns. Ii corresponds to the identity
matrix of size i, 1i×j denotes the i × j all-ones matrix,
and 0i×j denotes the i × j all-zeros matrix. In this paper,
a randomly chosen matrix corresponds to a realization of a
random matrix whose elements are driven from a continuous
probability distribution function.

II. SYSTEM MODEL

Let us consider K single-antenna users transmitting to an
M -antenna BS through a narrow-band channel. The M × 1
received complex vector, y, can be expressed as

y = Hs + n, (1)
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where H is the channel matrix of dimension M × K, s is
the K × 1 vector of symbols transmitted by the users, and
n is a zero-mean complex white Gaussian noise vector with
sample variance N0. The M antennas are divided into panels
of N antennas; M/N = P is thus restricted to integer values.
Each panel, p ∈ {1, . . . , P}, multiplies the received vector,
yp = [y(p−1)N+1 . . . ypN ], by an L × N matrix, WH

p . The
aggregated outputs are combined through a fixed T × LP
matrix, AH . The resulting vector is forwarded to a CPU,
which can apply further processing. For our analysis, we will
assume that the CPU can multiply the incoming matrix by a
K×T matrix XH to be able to express the equivalent matrix
in the form of already known linear equalizers. However, our
main interest is to maximize the information rate at which
the users transmit to the CPU, so the last step is not required
for the analysis since it will not increase this information rate
(recall the data-processing inequality [25]). Also, we define
the previous matrices using conjugate transpose so as to ease
upcoming notation. Fig. 1 shows a block diagram of the
general framework under study.
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Fig. 1: General framework considered in this paper.

The post-processed vector can be expressed as

z = XHAHWHy, (2)

where W is an M × LP block diagonal matrix of the form

W = diag (W 1,W 2, . . . ,W P ) . (3)

We assume that the matrices W p, and X can be tuned for
every channel realization, while the matrix A is fixed. We can
interpret A as the matrix associated to a hardware combining
network that can be predesigned, but it cannot be changed
once deployed. Table I shows a classification of the different
system parameters considered within our framework.

For tractability we assume that the channel matrix, H , is
perfectly available at the BS. Thus, we can obtain W p, and
X as a function of said matrix. However, the consequences
of having an error in the estimation of H due to imperfect
CSI would not be enhanced by the framework under study.
In fact, the information-loss associated to having imperfect
CSI within our framework would not differ from the case of
having imperfect CSI in a typical centralized architecture. The
reason is that we could still apply an approximation of the
spatially-matched filter (MF) within our framework using the

TABLE I: System parameters

Given parameters Trade-off parameters
M , K L, T , N , P

Tunable parameters Parameters fixed by design
W , X A

imperfectly estimated channel matrix, as we will be able to
understand from the upcoming analysis.

For a fixed A, we are interested in maximizing the infor-
mation rate at which the users can transmit, i.e., we would
like to solve the maximization problem

maximize
X,{W p}Pp=1

IZ,S(z; s). (4)

More specifically, we will explore the cases where the max-
imization results in IZ,S(z, s) = IY ,S(y, s). From the data-
processing inequality [25] we have

IZ,S(z; s) ≤ IY ,S(AHWHy; s)

≤ IY ,S(y; s).
(5)

This means that the application of XH at the CPU cannot
possibly increase the information rate and, as we mentioned
before, it is just a manipulation to adapt the dimensions.
Furthermore, assuming s ∼ CN (0K×1, PsIK) so that the
mutual information is maximized (and thus coincides with the
capacity), we have [26]

IY ,S(y; s) = log det

(
IM +

Ps
N0

HHH

)
. (6)

Therefore, we can state that, if we are able to achieve

IZ,S(z; s) = IY ,S(y; s), (7)

the information rate is maximized and the equivalent process-
ing is information-lossless.

One of the main scopes of this paper is to study the
conditions, in terms of constraints on the system parameters,
for our framework to be able to perform information-lossless
processing. The following lemma will be helpful.

Lemma 1: Considering the presented framework, the equal-
ity

IZ,S(z; s) = log det

(
IM +

Ps
N0

HHH

)
, (8)

is fulfilled if and only if we can find a W and X such that

WAX = H. (9)

Proof: Let R(y) be any sufficient statistic for s (which
means that it is information-lossless [25]). Then, for any S ≥
K there exists a full-rank S ×K matrix X̃ such that

R(y) = X̃HHy. (10)

Therefore, for S = K, we have that XHAHWHy is a
sufficient statistic if and only if

XHAHWHy = X̃HHy, (11)

which leads to

X̃
−1

XHAHWH = HH , (12)
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but since X̃
−1

can be absorbed by X , we have

XHAHWH = HH , (13)

which proves the lemma by taking the conjugate transpose. �
Lemma 1 gives an important result to understand when the

maximization in (4) achieves information-lossless processing.
This lemma will be the basis in Section III for solving
the maximization problem (4) whenever information-lossless
processing is available within our framework. Note that (13)
would correspond to applying MF within our framework,
which is well known to be an information-lossless transfor-
mation if optimum processing is applied thereafter.

A. Notes on the downlink scenario

Throughout this paper we focus on the uplink scenario for
improved clarity. However, this work can straightforwardly
be extended to a downlink scenario. We next provide a few
details.

Let us assume channel reciprocity, which eases notation and
remarks the equivalence with the uplink scenario.2 This means
that, given the uplink equation (1), the corresponding downlink
equation for the vector received by the users is as follows

yd = HTzd + nd, (14)

where yd is now a K × 1 vector with entries associated
to the complex baseband signal seen by each user, zd is
the M × 1 precoded vector sent by the antennas, and nd

is the corresponding noise vector. We assume that the same
framework as in Fig. 1 applies for the downlink, but changing
the arrows from left to right. This implies that the linear
operators (including the combining module) are assumed to
be able to use inputs as outputs, and vice versa. The precoded
vector would then be defined as

zd = W ∗A∗X∗sd, (15)

where sd is now a K × 1 vector with complex entries
associated to the signals intended for each user. In this case,
Lemma 1 does not apply unless we assume that the users
can collaborate with each other. However, we can achieve
lossless precoding with respect to standard centralized linear
precoding schemes, since we can still apply typical precoding
schemes within our framework such as MF, zero-forcing
(ZF) or minimum mean squared error (MMSE). Furthermore,
with the assumption of channel reciprocity in place, the W
matrices could be kept fixed from the uplink processing (A
is still fixed by design) and X can be adapted to apply the
desired precoding scheme. In the case of non-reciprocity of the
channel, both X and W have to be recomputed for applying
the desired precoding based on the downlink channel.

B. Previously studied architectures within our framework

There are several multi-antenna architectures that could be
represented within our framework, which further motivates our

2In case of non-reciprocity, the presented framework would still be valid
as long as the base station has access to the downlink channel matrix.

study. In this case, what we mean with ”represent an archi-
tecture within our framework” is that there is a combination
of design variables within our framework that gives the same
processing. The most obvious architecture that fulfills this is
a typical centralized M -antenna architecture, e.g., centralized
massive MIMO systems. In this case all the antennas are
directly connected to a CPU, which corresponds to having
one antenna per panel, and all antennas connected directly to
the CPU, i.e., N = 1, L = 1, W p = 1 (scalar), T = M ,
A = IM . This architecture is depicted in Fig. 2 (left).

Another architecture that can be represented within our
framework is the decentralized massive MIMO architecture
from [19]. In this case, there is also one antenna per panel,
but antenna m multiplies its input by the K× 1 local channel
vector, hm, and the result is summed over all the antennas so
that the size of the vector transmitted to the CPU coincides
with the number of users, K. Thus, this architecture can be
represented within our framework by setting N = 1, L = K,
W p = hp (vector), T = K, A = [IK IK . . . IK ]

T , which
corresponds to MF if no X is applied at the CPU. This
architecture is depicted in Fig. 2 (right). In [19] it is claimed
that, for a system to be decentralized, the volume of data
transmitted to the CPU during the data phase should not scale
with M . However, the proposed solution reduces this scaling
to K by increasing the number of multiplications/outputs per
antenna to K, which increases the decentralized processing
complexity. Our framework allows us to freely adjust these
parameters.

Comparing the two architectures from Fig. 2, where in
both cases information-lossless processing can be applied,
we immediately identify a trade-off between the number of
connections to the CPU and the number of outputs per antenna
panel as depicted in Fig. 3 (left). Note that, in this case, we
have a single antenna per panel, i.e., N = 1. In our framework,
these two quantities, which are traded-off against each other,
correspond to T and L, respectively. We can also see the
trade-off in terms of multiplications per antenna as in Fig. 3
(right), which can lead to a fairer comparison if we consider
panels with more than 1 antenna. The main reason is that,
for N > 1, the number of outputs can be maintained [27],
but the complexity still increases due to a higher number of
multiplications.

If we look into other decentralized architectures, such as the
ones presented in [18], [20]–[22], [27], we can also represent
them within our framework and identify the trade-off between
inputs to the CPU and multiplications/outputs per panel (in
these cases the trade-off may not lead to information-lossless
processing). For example, the architectures from [20]–[22]
would all lead to the decentralized point in the plots from
Fig. 3 since they all apply K×1 filters in each antenna during
the data phase and generate K outputs per panel during the
data phase (N = 1 in these architectures). The same is true
in [27] if we consider outputs per panel, although if we look
at multiplications per panel we should scale the number of
outputs by the number of antennas per panel, N > 1. Note
that, even though [27] presents two different architectures with
different level of decentralization, within our framework they
lead to the same value of the trade-off; the only difference
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Fig. 2: Architecture of centralized massive MIMO (left), and decentralized massive MIMO from [19] (right).
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Fig. 3: Number of inputs to the CPU (related to T ) v.s. number
of outputs (left)/number of multiplications (right) per antenna
(related to L) for the architectures depicted in Fig. 2. Available
literature does not address the behavior in between 1 and K
outputs per antenna.

is that in the fully-decentralized architecture X would not be
applied. In [18], however, we would not be able to represent
the fully-decentralized architecture within our framework since
detection is performed before reaching the CPU, while our
framework only considers complex baseband processing.

III. WAX DECOMPOSITION

Given an arbitrary M ×K matrix, H , and a fixed LP ×T
matrix, A, we define the WAX decomposition of H , whenever
it exists, as

H = WAX. (16)

This decomposition relates directly to Lemma 1, i.e., W
has the structure defined in (3) and X is a T × K matrix.
Furthermore, the existence of this matrix decomposition for
any channel realization would assure that our framework can
apply information-lossless processing.

The next lemma will allow us to restrict our study to the
case where N = L since this case can span a major part of
the general problem through some manipulation.

Lemma 2: Assume M/L and L/N are integer valued.
Consider some fixed T ×K matrix X , an M ×K matrix H ,
an M × T matrix Ã, and an LP × T matrix A = TL,NÃ,
with

TL,N = IM
L
⊗
(
1 L

N×1
⊗ IL

)
. (17)

Then, the statement

∃W : H = WAX, (18)

where W is defined as in (3), is true if and only if

∃W̃ : H = W̃ ÃX, (19)

where W̃ = diag(W̃ 1, . . . , W̃M/L), and W̃ p are L × L

matrices ∀p ∈ {1, . . . ,M/L}, i.e., W̃ has the same structure
as (3) for N = L.

Proof: The right implication can be immediately seen by
choosing W̃ = WTL,N and noticing that this matrix already
has the required structure.

For the left implication it is enough to check that, for any
W̃ , there exists some W that fulfills WTL,N = W̃ , both
W and W̃ with their corresponding structure. In this case,
there is no linear transformation that gets W from W̃ , but we
can construct it as follows. Let us take Ŵ = W̃TL,M , with
TL,M = [IL, . . . , IL]T . We can then select the diagonal blocks
of W to be W p = [ŵT

(p−1)N+1, . . . , ŵ
T
(p−1)N ]T , where ŵm,

m = {1, . . . ,M}, are the rows of Ŵ . Thus, there is a one-
to-one mapping between all possible W̃ and W that fulfills
WTL,N = W̃ . �

Lemma 2 also implies that, whenever the assumptions apply,
the trade-off between the number of outputs per panel and the
number of inputs to the CPU required (L and T , respectively)
does not depend on the number of antennas per panel (N ).
However, the number of multiplications per panel would scale
with N . An important constraint of Lemma 2 is that we
need to have L ≥ N , which can be easily checked to be a
requirement for having information-lossless processing within
our framework unless L = K (leading to the trivial solution
of setting W p as the local MFs).

The rest of this paper assumes N = L, unless otherwise
stated, due to the intrinsic generality of this case. This means
that W in (16) is a square M × M block diagonal matrix
given by (3), with P = M/L, and containing square L × L
blocks. The physical implication of this restriction is that
all the panels in Fig. 1 have the same number of antennas
and outputs. However, as seen in the proof of Lemma 2, we
can construct almost any other case from the square case by
applying some transformations, with the only limitation that
M/L and L/N must evaluate to integer values, as well as



6

that A must be constructed using a specific structure. For
simplicity, we will use the same notation as in the general case
(16), but considering the new restriction on the dimensions.

A. Solving WAX

Let us assume for now that there exists the WAX decom-
position of H , we later investigate when this is the case. We
provide next a step-by-step solution for practical computation
of (16), i.e., for obtaining the matrices W and X in (16) based
on the current channel realization, H , and the fixed combining
network, A. This step-by-step solution will also be useful to
set the ground for our main result on the applicability of WAX
decomposition.

Let us express H = [HT
1 HT

2 . . .HT
P ]T and A =

[AT
1 AT

2 . . .AT
P ]T , where Hp and Ap ∀p ∈ {1, . . . , P} are

L×K and L× T blocks, respectively. The following lemma
will be useful.

Lemma 3: For all matrices H satisfying rank(Hn) = L
there exists a block diagonal matrix W and a matrix X such
that WAX = H if and only if there exists a block diagonal
invertible matrix Ŵ with the same form as W that fulfills
AX − ŴH = 0M×K .

Proof: Assume existence of a block diagonal matrix W
and a matrix X such that WAX = H . This is equivalent to

W pApX = Hp, 1 ≤ p ≤ P.

Since, by assumption, rank(Hp) = L, it follows that
rank(W p) = L ∀p, making the matrix W invertible.

The reverse statement is trivial; if an invertible Ŵ exists,
then we can set W = Ŵ

−1
. �

For a randomly chosen H , the condition rank(Hp) = L
holds with probability 1. We can then compute the WAX
decomposition by invoking Lemma 3, which yields the linear
system

AX −W−1H = 0M×K . (20)

Using the vectorization operator we get an equivalent linear
system of equations

Bu = 0MK×1, (21)

where u corresponds to the (TK + ML) × 1 vector of
unknowns,

u =


vec(X)

vec(W 1)
...

vec(W P )

 , (22)

and B is an MK × (TK + ML) block matrix of the form
B = [B1 B2] resulting from the vectorization operation, with

B1 = IK ⊗A, B2 = −(HT ⊗ IM )P. (23)

P is an M2×ML block matrix composed of identity matrices,
IL, separated by rows of zeros so as to disregard the zeros in
vec(W ). The solution to (21) can be found by setting u to be
any vector in the null-space of B, which will always be non-
zero if condition (24) is met (as will be seen shortly). Then,
we can obtain the corresponding W−1 and X from u through

inverse vectorization, and we should check that the resulting
W−1 is full rank so that we can obtain W by taking the
matrix inverse. Thus, the complexity of performing the WAX
decomposition using the provided method is equivalent to that
of finding the null-space of an MK × (TK + ML) matrix,
and inverting P matrices of dimension L× L.

We have now set the ground for presenting our main
result on the applicability of WAX decomposition, which is
established in the following theorem.

Theorem 1: Assuming N = L, which implies that P =
M/L must evaluate to an integer value, fulfilling the inequality

T > max

(
M
K − L
K

,K − 1

)
(24)

assures that, given a fixed randomly chosen A ∈ CM×T , a
randomly chosen H ∈ CM×K will admit a decomposition of
the form (16) with probability 1.

Proof: See Appendix A. �
An immediate result of Theorem 1 is that, since we are only

interested in having L ≤ K due to its practical implications
(otherwise there is no dimensionality reduction compared to
local MF from Fig. 2 right side), then we have T ≥ L
since T ≥ K. The case where Theorem 1 is not fulfilled
is considered in Section VI.

For a randomly chosen A, W−1 is full rank with probability
1, but note that some specific A matrices may lead to rank
deficient W−1 even if (24) is met. That is, for a poorly chosen
matrix A, the WAX decomposition of a matrix H cannot be
performed. In what follows next we study conditions on A in
order for the WAX decomposition to be feasible.

B. Studying validity of matrix A

While Theorem 1 states that any randomly chosen A works
for WAX decomposition, we are, from a practical perspective,
interested in A matrices having simple forms (providing low
computational complexity); for example, sparse matrices with
elements in the set {0, 1}. This would significantly simplify the
combining network. However, for such a matrix, Theorem 1
no longer applies. Therefore, it is of importance to investigate
the exceptions to Theorem 1.3

Definition 1: We consider A to be valid for WAX decom-
position (16) if the set of matrices H that does not admit such
a decomposition has measure 0. This is equivalent as saying
that the probability of a randomly chosen H admitting WAX
decomposition for a valid A is 1.

The following theorem will be useful to check if an A
matrix is valid or not.

Theorem 2: Consider a fixed M × T matrix A, where
T fulfills (24), and a randomly chosen H ∈ CM×K , such
that B = [B1 B2] from (23) is full-rank. If the specific
H admits WAX decomposition ((16) with N = L) for the
given A, then A will be valid for WAX decomposition with
probability 1, i.e., any other randomly chosen H will admit
WAX decomposition for the same A with probability 1.

3Note that, in the general case where N 6= L, selecting A as in Lemma 2
maintains the overall sparsity properties of Ã since the transformation TL,N

just replicates the matrix Ã in different positions, filling the rest with 0s.
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Proof: The proof is a side-result from the proof of The-
orem 1 in Appendix A. We just have to notice that the
determinant of W̃ p still fulfills (37) if A is fixed, so it is
enough if we can find an H that gives det(W̃ p) 6= 0 so that
the determinant is 0 only for a countable set of H matrices.
�

The main contribution of Theorem 2 is that we can know
if an A matrix is valid or not simply by trying to perform
WAX decomposition of a single randomly chosen H using
that A. Theorem 2 will be widely used for our simulation
results since it is our main result on the validity of A. An
essentially equivalent statement to that of Theorem 2 is to say
that, for a given matrix A, WAX decomposition of a randomly
chosen matrix H is possible with probability either 1 or 0.

The following lemma states a necessary condition for A to
be valid.

Lemma 4: Let Â be an FL×T submatrix of A formed by
selecting F out of the P blocks of size L × T that conform
A, {A1, . . . ,AP }. If A is valid, then

rank(Â) = min(FL,K). (25)

Proof: Let Ĥ be an FL ×K submatrix of H formed by
the F respective L ×K blocks of H , and Ŵ an FL × FL
block diagonal matrix with the F respective L×L blocks from
W as diagonal elements. If A is valid we can obtain Ŵ and
X such that Ŵ ÂX = Ĥ holds for any Ĥ except those in
a set of measure 0. For a randomly chosen H , rank(Ĥ) =
min(FL,K) with probability 1. Since

rank(Ŵ ÂX) ≤ min
(

rank(Ŵ ), rank(Â), rank(X)
)
,

condition (25) must be fulfilled. �
A further necessary condition for A to be valid is given in

Lemma 5.
Lemma 5: Let A0 be a submatrix of A formed by selecting

R rows from A, where all rows are in different blocks Ap. If
A is valid, then

rank(A0) > R
K − L
K

Proof: See Appendix B. �
We point out that, since A is an M × T matrix, rank(A0)

cannot exceed T . However, with T > M(K − L)/K, it is
guaranteed that RK−L

K < T .
An immediate consequence of Lemma 5 is that a block

Ap cannot be repeated arbitrarily often in A. In addition, any
block Ap must have rank L (see Lemma 4). Repeating the
block Ap r times in A, and selecting A0 as the same row
within each of these r blocks yields,

1 > r
K − L
K

,

which implies r < K
K−L . Whenever L ≤ K/2, r = 1 so that

each block Ap can only occur once in A.
Appendix C includes another, less intuitive, necessary con-

dition for A to be valid. Despite extensive efforts, we have not
been able to establish sufficient conditions for having a valid
A. The provided necessary conditions might not be helpful in
generating valid A matrices, but they constitute initial progress

on the matter. Thus, the problem of establishing sufficient
conditions for valid A matrices remains open.

IV. FINDING SPARSE A MATRICES

Let us keep restricting ourselves to the case where N = L
due to the generality of this case. Recall, however, that the
transformation (17), which allows considering other N values,
maintains the overall sparsity properties of A (although the
percentage of 1s can decrease since 0s are being padded). As
we have mentioned previously, from an implementation point
of view, it is desirable to have A as a sparse matrix of 1s
and 0s with as few 1s as possible. The main reason is the
direct relation between the number of 1s in A and the number
of sum operations required to implement such a combining
matrix. Recall that we can view A as the matrix associated
to a predesigned hardware combining module, which could be
intuitively implemented through a network of sum modules.

In the previous section, we provided some necessary condi-
tions on matrix A for the WAX decomposition to be applica-
ble. However, after extensive research on the matter, we have
not been able to find sufficient conditions for having a valid
A. This motivates the need of simulation results to further
understand the limits on the sparsity of A. Nevertheless, we
will support these simulations with a simple theoretical bound
that allows us to gain better understanding of how sparse A
may be.

From Lemma 4, we can say that each L × T block Ap

p ∈ {1, . . . , P}, has to be of rank L. If we put it together
with Lemma 5 we can say that a valid A has a maximum of

rmax =

⌈
K

K − L
− 1

⌉
(26)

equal Ap blocks. Therefore, if we aim at A matrices of 1s
and 0s with the minimum number of 1s, we can lower bound
the number of 1s through the following lemma.

Lemma 6: Given a valid A ∈ {1, 0}M×T , the number of 1s
in A, which incidentally coincides with its squared Frobenius
norm, can be lower bounded by

‖A‖2F ≥
Q−1∑
k=1

rmax(k −Q)

(
T

k

)
+QM, (27)

where Q is obtained by

Q = arg min
q

q∑
k=1

rmax

(
T

k

)
≥M. (28)

Proof: Let us impose the restriction that every row in A
can be repeated a maximum of rmax times, as suggested by
Lemma 5, where the restriction of selecting the rows from
different blocks can be relaxed since we are interested in
a lower bound. Each row of A must have at least a 1 at
some location, otherwise, considering L ≤ T , a row of only
0s would result in an Ap block with rank lower than L
(contradicting Lemma 4). Therefore, we can bound the number
of 1s in A by considering all possible combinations of rows
having a single 1, each of which could be repeated a maximum
of rmax times. Then, we can do the same for rows having 2
1s, and go on until we have enough rows to fill the M rows
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of A. Straightforward combinatorics result in the statements
in the lemma. �

Even though the lower bound presented in Lemma 6 might
look a bit hard to compute at first sight, for reasonable values
of the design variables (M ≤ 3rmaxT ), it is enough to consider
only rows with up to two 1s to have enough rows for filling
A, i.e., Q ≤ 2.

Figs. 4 and 5 show the minimum percentage of 1s required
to have a valid A through numerical optimization, as well as
the theoretical lower bound from Lemma 6, with respect to
100/Topt. The optimum T , Topt, is computed as

Topt = max

(⌊
M
K − L
K

+ 1

⌋
,K

)
, (29)

which corresponds to the minimum integer T that fulfills The-
orem 1. The reason for having 100/Topt is that it corresponds
to a trivial lower bound in the percentage of 1s, i.e., if we
have a single 1 per row. We can see that the relation between
the minimum percentage of 1s and 100/Topt is close to linear.
In Fig. 4, K is fixed and L is changed, while in Fig. 5 it is
the other way around. Although our initial intention was not to
provide a tight bound to the numerical simulation, we can note
that the obtained percentage of 1s for valid A matrices is in
general close to the lower bound computed given by Lemma 6
(within ±3% error in the plots).

The algorithm for computing the minimum percentage of 1s
consists of selecting A by adding 1s at random positions, with
some constraints related to Lemma 4, until a valid A has been
found. Then, we reduce through exhaustive search the number
of 1s in A as much as possible while maintaining its validity.
The validity of A is evaluated by considering Theorem 2.

Table II shows the minimum number of 1s for having a valid
A considering different values of K and L (recall L ≤ K for
information-lossless processing). The same algorithm as for
Figs. 4 and 5 is employed, and T is also selected to be Topt
from (29). We can see that, even though from Figs. 4 and 5
the percentage of 1s increases with L and decreases with K,
for the total number of 1s it is the other way around, i.e.,
it increases with K and decreases with L. This is because
the size of A increases at a higher rate when T is increased.
However, if we implement A using sum modules with only
two inputs, we would need to subtract T to the number of 1s
in A, since a single 1 in a column of A would not require any
sum module. Table III shows the minimum number of 2-input
sum modules required to have a valid A, i.e., the values of
this table correspond to the values of Table II subtracting the
respective T value to each entry. As we can see, the number
of sum modules required does not vary considerably with K
and L, and it remains in the order of M .

Fig. 6 shows the percentage of valid A matrices for different
percentage of 1s, where the 1s are placed at random positions
with the only restriction that they have at least a 1 per row and
per column. The algorithm employed consists of generating
a big number of random A matrices with the corresponding
percentage of 1s (while fulfilling a simple restriction related to
Lemma 4 with F = 1), and checking what percentage of them
are valid (Theorem 2 comes in handy here too). The different
curves correspond to the same parameter combinations as
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Lower bound
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Fig. 4: Minimum percentage of 1s required for a valid A ∈
{0, 1}M×T with respect to 100/Topt for M = 60, K = 7,
L = {2, 3, 4, 5, 6} (N = L).
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Fig. 5: Minimum percentage of 1s required for a valid
A ∈ {0, 1}M×T with respect to 100/Topt for M = 24,
K = {6, 5, 4}, L = 3 (N = L).

Fig. 5, where we can find the minimum percentage of 1s that
apply to the different values of K. As we can see, finding an A
attaining a percentage of 1s slightly higher than the optimum
one (+10%) is not that difficult since we can just put 1s at
random positions and, with high probability (around 80% in
the case of K = 4), this A will be valid.

L/K 1 2 3 4 5 6 7

1 60 89 98 102 104 105 108
2 - 60 78 89 94 98 102
3 - - 60 72 80 89 91
4 - - - 60 68 78 84
5 - - - - 60 65 72
6 - - - - - 60 66

TABLE II: Minimum number of 1s required to have a valid
A for M = 60, T = Topt
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L/K 1 2 3 4 5 6 7

1 59 58 57 56 55 54 56
2 - 58 57 58 57 57 59
3 - - 57 56 55 58 56
4 - - - 56 55 57 58
5 - - - - 55 54 54
6 - - - - - 54 57

TABLE III: Minimum number of 2-input sum modules re-
quired to implement a valid A for M = 60, T = Topt
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Fig. 6: Percentage of valid A ∈ {0, 1}M×T with 1s at random
positions with respect to the percentage of 1s for M = 24,
L = 3 (N=L).

V. DISCUSSION AND EXAMPLES

As mentioned previously, one of the goals of this paper is to
find the trade-off between the different system parameters re-
quired for the equivalent processing to be information-lossless.
An interesting case is when N = 1, since it relates directly
to the trade-off between the centralized and decentralized
architectures shown in Fig. 2. Assuming that our framework
is equipped with a valid matrix A, the trade-off between L
and T comes directly from condition (24). We can select T
as Topt from (29), as can be seen in Fig. 7.

It is interesting to observe that we reach a reduction
compared with the centralized architecture also for L = 1. To
elaborate a bit further, we observe that with L = 1, the number
of CPU inputs becomes T = Tmax ,

⌊
M − M

K + 1
⌋
. This

reduction comes about since we have allowed the antennas
to perform multiplications, which leads to a reduction in
the number of CPU inputs from M to, at most, Tmax. The
centralized architecture, illustrated in the left part of Fig. 2,
has the same number of outputs per antenna, namely 1, but
does not perform any multiplications. Therefore, the CPU must
operate with T = M . If we let Lmult denote the number
of multiplications per antenna, the centralized architecture
corresponds to Lmult = 0, and we can select T as

T =

{
M Lmult = 0

max
(⌊
M K−Lmult

K + 1
⌋
,K
)

Lmult > 0.

This is conceptually illustrated in the right part of Fig. 7.
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Fig. 7: Number of inputs to the CPU (related to T ) v.s. number
of outputs (left)/number of multiplications (right) per antenna
(related to L).

We conclude this section with a few examples.
Example 1: Assume a design with a CPU limited to

T ≤ 50 inputs, and antenna panels with L = 2 outputs.
We now consider how many antennas and users (M and K,
respectively) can be handled by the system. From (24), we
have 50 > M K−2

K implying that

50
K

K − 2
> M.

To maximize the left hand side, excluding the special case
K = L = 2 (which allows for an unlimited number of
antennas), we set K = 3 and obtain M < 150 so that we
can at most use 149 antennas. Differently put, if we choose
to equip the base station with 149 antennas, we can at most
serve K = 3 users. With 150+ antennas, only 2 users can be
served. Setting K = 4, yields that at most 99 antennas can be
used.

We next provide two numerical examples of the WAX
decomposition. The first one is meant to illustrate that it is
indeed possible to obtain valid sparse matrices A comprising
only elements in the set {0, 1}.

Example 2: Let M = 100, N = 4, P = 25, K = 10, and
L = 4. From Theorem 1, we have that T > 100 × 0.6 = 60,
so we take T = 61. It can be numerically verified that the
matrix

A =



I61

I39

I22

I17

I5

I5

I5

I2 I2 02×1

 (30)

is valid. We designed this A by aiming at a minimum number
of non-zero elements, while satisfying both Lemma 4 and
Lemma 5. It can be verified that A has 158 ones and 5942
zeros. Thus, merely 2.6% of A is non-zero.

Our next example is providing the reader with a graphical
illustration of the WAX decomposition.

Example 3: Let M = 8, N = 2, P = 4, K = 5, and
L = 2. Thus, T > 4.8, so we select T = 5. In this case, the
number of variables and the number of equations associated
to the linear system (20) is TK +ML = 41 and MK = 40,
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respectively; thus, we have precisely one more variable than
equations. A particular example of the WAX decomposition
for the given parameters is shown in (31). The strength of the
WAX decomposition is that, for any H , except for those in a
set of measure 0, the matrix A can be kept as it is while only
W and X need to change.

VI. INFORMATION-LOSS WITHOUT WAX DECOMPOSITION

Throughout the previous sections of the paper we have
focused on performing information-lossless processing within
our framework, i.e., we have focused on the cases where the
maximization (4) leads to IZ,S(z; s) = IY ,S(y; s). We have
defined the WAX decomposition, which allows performing
information-lossless processing within our framework. The-
orem 1 sets the main constraints on the system dimensions
for WAX decomposition, and equivalently information-lossless
processing, to be possible within our framework. However, it is
of great interest to know the information-loss produced when
WAX decomposition is not possible, i.e., we would like to
solve (4) when Theorem 1 is not satisfied.

Solving (4) is a research challenge in itself which might
lead to future work on the topic. In this section we will
present initial ideas, as well as numerical results using standard
optimization methods, to get an overall understanding of the
information-losses that are induced when having lower T than
the minimum required from Theorem 1. We will again focus
on the general case where N = L, and we will only consider
randomly chosen A and H matrices.

A. Approximate MF

A simple first approach, intuitively related to how we
compute WAX decomposition, is to work on the minimization
problem

minimize
X,{Ŵ p}Pp=1

‖AX − ŴH‖2F,

s.t. rank(Ŵ p) = L, ∀p
‖X‖+ ‖Ŵ ‖ = c,

(32)

where Ŵ has the same structure as (3) for N = L and
P = M/L, and the actual matrix W to be used in our
framework would be obtained as W = Ŵ

−1
. The last

constraint in (32) ensures a non-zero solution, where the scalar

c can be any non-zero real value.4 The minimization (32)
leads to the WAX decomposition when Theorem 1 applies.
This means that we could solve both problems using the same
approach, and thus, without altering the overall complexity.
In case (24) is fulfilled, (32) would give 0, and the solution
would also solve the maximization (4), which is not true in
general.

Solving (32) can be seen as applying approximate MF
within our framework. This minimization can be found in
closed-form when L ≤ min(T,K) as we will now prove.
Let us rewrite the norm as

‖AX − ŴH‖2F =

P∑
p=1

‖ApX − Ŵ pHp‖2F. (33)

Assuming the optimum X has been fixed, we would have
Ŵ p = ApXH†p (H†p being the right pseudo-inverse of Hp),
which is of rank min(T,K,L) when A and H are randomly
chosen. We can restrict ourselves to L ≤ min(T,K) due to
its previously mentioned practical interest. In this case, (32) is
solved by considering the equivalent linear system from (21)

‖AX − ŴH‖2F = uHBHBu. (34)

The vector u corresponds to the entries of matrices X and
Ŵ , so the constraint on the norms of Ŵ and X corresponds
to an arbitrary norm constraint on u. With this in mind, the
solution to the minimization problem is obtained by setting u
to be the eigenvector associated to the lowest eigenvalue of
BHB. If the conditions for WAX were fulfilled, the lowest
eigenvalue of BHB would be 0, which would lead to the
information-lossless solution.

B. Antenna selection

Another practical approach that would give a lower bound
to the maximum IZ,S(z, s) from (4) is to consider antenna
selection so as to reduce M until Theorem 1 is satisfied.
Note that this approach is valid only when T ≥ K, which
was not the case with the previous approach. Furthermore,
for N > 1, the antenna selection would correspond to panel
selection since we need an integer number of panels, which
means we can only reduce N antennas at a time.

4Note that, when applying W = Ŵ
−1

, the multiplication associated to
(2) will cancel out any common scaling of Ŵ and X .



1 −1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 2 −1 0 0
0 0 0 0 0 0 2 −1
0 0 0 0 0 0 2 2


︸ ︷︷ ︸

W



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 1 1
0 1 0 1 1
0 0 1 1 1


︸ ︷︷ ︸

A


−2 −1 −1 2 2
1 −2 −1 1 2
1 −1 −2 −1 −2
0 2 0 −1 0
0 −1 2 1 −2


︸ ︷︷ ︸

X

=



−3 1 0 1 0
−2 −4 −3 5 6
1 1 −2 −2 −2
0 −2 0 1 0
−2 −2 5 4 −4
2 −2 3 0 −4
1 −2 2 3 4
4 −2 2 0 −8


︸ ︷︷ ︸

H

(31)
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How to optimally make the panel selection is also a research
problem in itself, but we limit our results to simple selection
where the panels having the highest local channel matrix
norms are the ones being used.

C. Numerical results

Definition 2: Let us define the relative rate for our frame-
work as

EA,H

(
IZ,S(z, s)

IY ,S(y, s)

)
, (35)

where A and H are standard IID Gaussian random matrices.
Figs. 8 and 9 show the average relative rates, which have

been optimized using norm minimization (32) and panel
selection. We have also included as a comparison the aver-
age relative rate obtained by standard brute force numerical
optimization using the result from (32) as starting point. This
numerical optimization can give us a hint of what average
relative rates could be achieved if more clever optimization
approaches were considered. In the plots, we have considered
the range of L and T values not accepting a WAX decom-
position according to Theorem 1. Fig. 8 shows that when we
reduce T below Topt the performance gets slowly degraded,
so the system would still be able to work at acceptable rates
even if we cannot perform WAX decomposition. In the case
of Fig. 9, reducing L below Lopt,5 attains a steeper loss, but
the degradation is still reasonable. We can also see that the
norm minimization associated to (32) presents a considerable
loss with respect to the numerical optimization, but it can still
serve as a simple auxiliary method that allows our framework
to keep serving users under conditions where WAX is not
possible, e.g., if the number of users increase. In fact, (32)
corresponds to the WAX decomposition when the parameters
allow it, so that no further processing would be needed in such
a system.

Panel selection, can perform better than the norm minimiza-
tion in some cases, but the limitation of having to disregard
full panels makes it perform slightly worse for most values of
T in Fig. 8. Furthermore, this method is slightly less versatile
than norm minimization since it is not available for all possible
values of T , as can be seen in Fig. 8. However, we can note
that T < K intuitively translates into having to discard the
data from certain users, which could potentially be considered
in more complex antenna selection schemes.

VII. CONCLUSIONS

We have introduced a general framework that allows the
exploitation of the trade-off between complexity (number of
multiplications/outputs per panel) and level of decentraliza-
tion (connections to CPU) in multi-antenna architectures. We
have presented the WAX decomposition, a matrix decomposi-
tion that achieves information-lossless processing within our
framework under some restrictions. Said restrictions also de-
scribe the trade-off between number of multiplications/outputs
per panel and number of connections to the CPU if we consider
only information-lossless processing. Furthermore, we have

5Lopt can be obtained from Theorem 1 as a converse of Topt.
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Fig. 8: Average relative rate (in percentage),
IZ,S(z, s)/IY ,S(y, z), with A and H having IID Gaussian
entries, for M = 24, K = 5, L = 3, Topt = 10.

1 2 3 4
60

65

70

75

80

85

90

95

100

Numerical optimization

Norm minimization

Panel Selection

Fig. 9: Average relative rate (in percentage),
IZ,S(z, s)/IY ,S(y, z), with A and H having IID Gaussian
entries, for M = 24, K = 5, T = 5, Lopt = 4.

studied the problem of finding simple combining networks (A
matrices) that admit WAX decomposition within our frame-
work. Finally, we have broadly studied the information-loss
produced when the system parameters lead to non-availability
of the WAX decomposition.

Future work could include a deeper study on the cases where
WAX decomposition is not available and information-lossy
processing has to be applied. This same line would include
the design of efficient algorithms and analytical solutions to
optimize the achievable information rates. Furthermore, find-
ing sufficient conditions for the combining network (i.e., A)
to be valid for WAX decomposition still remains unresolved.
Other lines of work could include narrowing the study to some
of the exceptions that we have not covered such as when the
parameters are not divisible, etc.

APPENDIX A: PROOF OF THEOREM 1
We first make the observation that the rank of A cannot be

lower than the rank of H . The rank of a randomly chosen
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A is min(M,T ) with probability 1. Assuming that M ≥ K,
this implies T ≥ K, expressed as T > max(·,K − 1) in the
statement.

We next provide a lemma that will be useful.
Lemma 7: Let W and Ŵ be two matrices of the same

form as W in (3) with N = L (i.e., they are block diagonal
matrices where the blocks are L × L matrices). If AX =
ŴH is solvable such that det(Ŵ p) > 0, 1 ≤ p ≤ P , then
WAX = H is solvable.

Proof: Suppose AX = Ŵ
H
H is solvable such that

det(Ŵ p) > 0, 1 ≤ p ≤ P . This implies that Ŵ
−1

exists.
Thus,

Ŵ
−1

AX = H.

The lemma follows by observing that Ŵ
−1

is of the same
form as W , so we can take W = Ŵ

−1
. �

Let us now study AX = ŴH . Said matrix equation
specifies MT linear equations in TK + ML variables, and
hence, it is solvable if T > M(K − L)/K, as can be
seen from the vectorized version in (21). It remains to show
that for randomly chosen A and H , the solution satisfies
det(Ŵ p) > 0, 1 ≤ p ≤ P . Let us define V as the set of
admissible solutions, i.e.,

V = {A,H | ∃Ŵ ,X : AX = ŴH,

det(Ŵ p) 6= 0, ∀p,det(BBH) 6= 0},
(36)

where B = [B1B2] is again the matrix associated to the
equivalent linear system (21), which is given by (23). Assum-
ing that B is full-rank, the solution to AX = ŴH depends
on F = TK + ML −MK free variables, here denoted by
{zf}. The solution {Ŵ }i,j is a linear combination of the free
variables {zf} where the weights depend on A and H , i.e.,

{Ŵ p}i,j =

F∑
f=1

cp,i,j,f (A,H)zf .

Note that the number of free variables, F , can be increased
if B is not full-rank (leading to a different polynomial
expression), that is why we are only interested in the solutions
giving a full-rank B, i.e., det(BBH) 6= 0. Thus, the following
lemma will come in handy.

Lemma 8: Given randomly chosen matrices H and A, the
matrix B = [B1B2] (B1 and B2 are defined as in (23))
fulfills det(BBH) 6= 0 with probability 1.

Proof: We can define the determinant det(BBH) as a
polynomial expression of the form

det(BBH) =
∑
g

bg(A,H)
∏
i,j,l,k

{H}hi,j,g

i,j {A}al,k,g

l,k .

This polynomial expression will evaluate to 0 only for a
countable set (which thus attains probability 0) of A and H
matrices if we can find at least an A and an H such that
det(BBH) 6= 0. One example of this is when A is chosen
randomly and we have {H}i,j = {A}i,j , i ∈ {1, . . .M},
j ∈ {1, . . . ,K}. �

A similar reasoning to the one used in the proof of Lemma 8
can be applied to show that for randomly chosen A and H we
have Ŵ 6= 0 with probability 1. The determinant det(Ŵ p)

can be written as a polynomial combination of the previous
{Ŵ p}i,j . Thus we can express it as

det(Ŵ p) =

G∑
g=1

c̃g(A,H)

F∏
f=1

z
qg,f
f , (37)

for some G, with
∑F
f=1 qg,f = P, ∀g. Thus, the only

possibility for having det(Ŵ p) = 0 is if the coefficients
are zero, i.e., c̃g(A,H) = 0, 1 ≤ g ≤ G. However, the
coefficients c̃g(A,H) are rational expressions of the entries in
A and H . This means that, in order to have c̃g(A,H) = 0, a
polynomial multi-variate expression of the entries in A and H
must be 0. Again, this can only happen at most in a countable
set of A and H as long as we find an A and an H such
that det(Ŵ p), ∀p, while still assuring that B is full-rank so
that F remains fixed. The same example as in the proof of
Lemma 8, i.e., randomly chosen A and {H}i,j = {A}i,j ,
i ∈ {1, . . .M}, j ∈ {1, . . . ,K}, gives the trivial solution
Ŵ = IM , and thus fulfills both conditions. Therefore, we
have proved that a randomly chosen A and H will be in the
set V with probability 1.

APPENDIX B: PROOF OF LEMMA 5

From the structure of B1 in (23), we observe that a
particular row of A appears exactly in K rows of B. Let
us denote B0 as the submatrix of B formed by all rows in
B where the rows of A0 appear. Clearly, to satisfy (21), we
must in particular satisfy B0u = 0RK×1. Now, B0 reads

B0 =
[
IK ⊗A0 Ĥ0

]
,

where Ĥ0 is formed from H as follows: Let ι(r) denote
the block Hι(r) where the rth row in A0 is taken from. Let

H0 =
[
HT

ι(1) Hι(2)T . . . HT
ι(R)

]T
, and let II(`) be an R×L

matrix with a single entry equal to 1 at row ` and column
(ι(`) mod L) + 1, and all other equal to 0. Then,

Ĥ0 =
[
0D0 HH

ι(1)⊗II(1) 0D1 HH
ι(2)⊗II(2)

. . . 0DR−1
HH

ι(R)⊗II(R) 0DR

]
(38)

where we have used the shorthand notation

Dk = RK × (ι(k + 1)− ι(k))L2,

ι(0) , 1, ι(R+ 1) ,M/L.

To study the null space of B0 we may just as well study
the null space of (IK ⊗QH

0 )B0, where Q0R0 = A0 is the
QR decomposition of A0. We have,

(IK ⊗QH
0 )B0 =

[
IK ⊗R0 (IK ⊗QH

0 )Ĥ0

]
. (39)

Let κ = rank(A0). The matrix IK ⊗ R0 consequently has
K(R− κ) all-zero rows.

If we extract said all-zero rows, we obtain,

[
0K(R−κ)×TK P (IK ⊗QH

0 )Ĥ0

]
vec(X)

vec(W 1)
...

vec(W P )

=0K(R−κ)×1
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where P is a K(R − κ)×KR matrix that extracts the rows
where IK ⊗R0 is all-zero. This implies that we can discard
X so that we equivalently obtain

P (IK ⊗QH
0 )Ĥ0

vec(W 1)
...

vec(W P )

 = 0K(R−κ)×1. (40)

We next note that, due to the many all-zero columns in
Ĥ0 (represented by the terms 0Dk

in (38)), not all the W p

matrices matter. In fact, it can be straightforwardly verified
that (40) is equivalent to

P (IK ⊗QH
0 )H̄0

wι(1)

...
wι(R)

 = 0K(R−κ)×ML, (41)

where wm is the 1 × L vector formed from extracting the
entries at the mth row of W that are allowed to take non-
zero values, and

H̄0 =
[
HH

ι(1)⊗I(1) HH
ι(2)⊗I(2) . . . HH

ι(R)⊗I(R)
]
, (42)

where I(`) is the non-zero column of II(`).
For randomly chosen H , the matrix P (IK ⊗ QH

0 )H̄0 is
full rank with probability 1. Therefore, (42) only has a non-
trivial solution whenever the number of unknowns is larger
than the number of equations, i.e., whenever, RL > K(R−κ).
Consequently,

κ > R
K − L
K

.

APPENDIX C: NECESSARY CONDITION FOR A

As per previous results, a matrix H can, with probability
1, be decomposed as H = WAX if and only if there
exists a full rank matrix Ŵ such that AX = ŴH . We
are now interested in establishing necessary conditions for
the matrix A so that this is possible. Let AS denote a
submatrix of A comprising an arbitrary selection of rows
in A with rank (AS) = r. An immediate consequence is
that rank (ASX) ≤ r. Assuming that H = WAX holds,
rank

(
Ŵ SH

)
= rank (ASX), where Ŵ S is a submatrix

of Ŵ comprising rows corresponding to those in AS . On the
other hand, if no Ŵ S exists such that rank

(
Ŵ SH

)
≤ r,

we can infer that A does not allow for a WAX decomposition,
i.e., there are no matrices W and X such that H = WAX .
Therefore, a necessary condition on A for the existence of a
WAX decomposition is

rank (AS) ≥ min
ŴS∈W

rank
(
Ŵ SH

)
, ∀S, (43)

where we will define the setW after having introduced further
notation. The matrix A contains M rows, and since L divides
M , A contains P = M/L blocks of L rows. Let the 1 × P
vector a denote the number of rows in AS taken from the pth
block in A, and let AS,p and Ŵ S,p be the ap×T and ap×M
submatrices of AS and Ŵ S , respectively, formed from these
ap rows. With that, W is the set containing all block-diagonal
matrices where the pth block is of dimensions ap×K and has

rank ap (the latter is needed to ensure that the overall matrix
Ŵ is invertible).

We are now ready to study (43). Suppose that the minimum
of (43) is r. Since Ŵ SH has dimensions (

∑
p ap)×K this

implies that the null-space of Ŵ SH has dimension K − r.
Thus, if rank

(
Ŵ SH

)
= r, there must exist a K × (K − r)

matrix N such that Ŵ SHN = 0. Recalling that Ŵ S is
block-diagonal with each block being of dimension ap × L
and having rank ap, it follows that

rank (HpN) ≤ L− ap (44)

where Hp is of dimension L×K and H = [HH
1 · · · H

H
P ]H.

Thus, if we want to solve the minimization in (43), we have the
equivalent problem of finding the maximum possible number
of columns in the matrix N so that it is full rank and
rank (HpN) ≤ L− ap, p = 1 . . . P .

We next define the rank-profile J of a matrix N as
Jb,p = rank (HpN1:b)− rank (HpN1:b−1), where N1:b de-
notes columns 1, 2, . . . , b of N . We remark that Jb,p ∈ {0, 1},
and that J depends on H , although our notation does not indi-
cate this dependency. In the following lemma, we characterize
the admissible rank-profiles.

Lemma 9: There exists a full rank matrix N with B columns
such that rank (HpN) ≤ L−ap if and only if the rank-profile
matrix J satisfies

K−Ld<L(ā) +

b−1∑
b′=1

P∑
p=1

Jb′,p +

P∑
p=1

Jb,p

(
L−

b−1∑
b′=1

Jb′,p

)
≥ b,

1 ≤ b ≤ B,

B∑
b=1

Jb,p ≤ āp, 1 ≤ p ≤ P,

where d<L(·) denotes the number of elements of its argument
that are less than L, and āp = L− ap.

Proof: We first note that if ap = 0 for any p, then the
condition in (44) is trivially satisfied for any N so we can
without loss of generality assume that ap > 0, ∀p. From the
definition of Jb,p if follows that rank (HpN) =

∑B
b=1 Jb,p;

thus, the second set of conditions in the lemma is trivial.
Consider now a specific value b. If Jb,p = 0, it follows that

column b of N , nb is restricted to

nb ∈ Ib,p = N (Hp) ∪ span
(
H+

pHpN1:b−1
)
,

while Jb,p = 1 does not restrict nb so that nb ∈ Ib,p = CK .
By inspection, it can be seen that the dimensionality of Ib,p
can be written as

dim(Ib,p) = K(1− Jb,p) + Jb,p

(
K − L+

b−1∑
b′=1

Jb,p

)
.

Altogether, we have that

nb ∈
P⋂
p=1

Ib,p.
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The dimensionality of the intersection satisfies

dim

(
P⋂
p=1

Ib,p

)
=

P∑
p=1

dim(Ib,p)− (P − 1)K.

This dimensionality must be at least b, since there are already
b − 1 vectors in N1:b−1 in the same space, and the rank of
N1:b must be full for all b. By manipulation, the statement of
the lemma can be obtained. �

Altogether, a necessary condition on A is that the rank of
any submatrix AS satisfies rank (AS) ≥ K −BS , where BS
is the largest integer B that satisfies the conditions specified in
Lemma 9; note that the vector a in the conditions depends on
S. It can be seen from Lemma 9 that finding the largest integer
B that satisfies the conditions is a non-linear (quadratic)
integer problem and we have not been able to solve it in closed
form.
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